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Abstract

In the stochastic linear contextual bandit setting there exist several minimax pro-
cedures for exploration with policies that are reactive to the data being acquired.
In practice, there can be a significant engineering overhead to deploy these algo-
rithms, especially when the dataset is collected in a distributed fashion or when a
human in the loop is needed to implement a different policy. Exploring with a sin-
gle non-reactive policy is beneficial in such cases. Assuming some batch contexts
are available, we design a single stochastic policy to collect a good dataset from
which a near-optimal policy can be extracted. We present a theoretical analysis as
well as numerical experiments on both synthetic and real-world datasets.

1 Introduction

Many settings may substantially benefit from data-driven contextualized decision policies that opti-
mize the desired expected outcome. Online machine learning methods like multi-armed bandits and
reinforcement learning, that adaptively change interventions in response to outcomes in a closed
loop process (see Figure 1a), may not yet be practical for all domains due to the expertise and in-
frastructure needed. However running an experiment with a fixed decision policy to identify a good
personalized policy is likely to be both simple logistically (since currently such decision policies
are often specified by hand) and more easily accepted, since many areas (education, healthcare,
social sciences) commonly deploy experiments across a few conditions to find the best approach.
For example, education startups, political campaigns, and governmental agencies can use email and
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text messages to provide targeted information and opportunities, such as information to encourage
vaccination, or tips to parents to support their child’s developmental stage. Such organizations are
familiar with standard experimental design, and but generally lack the infrastructure for continuous
online contextual MAB learning. Experiments that involve deploying a nonadaptive policy that fit
in with standard workflows but enable data-efficient learning of contextualized policies might offer
substantial benefits over AB testing or relying on other segmentation methods that may not directly
optimize desired outcomes.

For these reasons, a key opportunity is to design static or nonadaptive policies that can be used
to gather data to identify optimal contextualized decision policies. Indeed a fixed data collection
strategy is practically desirable (1) whenever multiple agents collect data asynchronously and com-
munication to update their policy is difficult or impossible, and (2) whenever changing the policy
requires a significant overhead either in the engineering infrastructure or in the training of human
personnel. Several prior papers limit the number of policy switches with minimal sample complex-
ity impact (Han et al., 2020; Ruan et al., 2020; Ren et al., 2020; Bai et al., 2019; Wang et al., 2021).
Motivated by the above settings, we look for a single, nonadaptive policy for data collection.

Setting and goal We consider the linear stochastic contextual bandit setting where each context
s ∈ S is sampled from a distribution µ and a context-dependent action setAs is made available to the
learner. The bandit instance is defined by a feature extractor φ(s, a) ∈ R

d and some unknown param-

eter θ⋆ ∈ R
d. Upon choosing an action a ∈ As, the linear reward function r(s, a) = φ(s, a)⊤θ⋆+η

is revealed to the learner corrupted by mean zero 1-subGaussian noise η. Our goal is to construct
an exploration policy πe to gather a dataset, such that after that dataset is gathered, we can extract a
near optimal policy π̂ from it. In particular, we want to minimize the number of exploration samples.

Perhaps surprisingly, there has been relatively little work on this setting. Prior work on exploration
to quickly identify a near-optimal policy focuses on best-arm identification using adaptive policies
that react to the observed rewards (Soare et al., 2014; Tao et al., 2018; Jedra and Proutiere, 2020)
or design of experiments that produces a nonadaptive policy for data collection (Kiefer and Wol-
fowitz, 1960; Esfandiari et al., 2019; Lattimore and Szepesvari, 2020); both lines of work assume
that a single, repeated context with unchanging action set is presented to the learner. In contrast
we are interested in identifying near-optimal context-specific decision policies. The closest related
work (Ruan et al., 2020) investigates our task as a subtask for online regret learning, but requires an
amount of data that scales as Ω(d16), which is impractical in applications with even moderate d.2

Without any apriori information, no algorithm can do much better than deploying a random policy,
which can require an amount of data that scales exponentially in d, see appendix G.1. However,
in many common applications, prior data about the context distribution µ(s) and the state–action
feature representation φ is available. For example, an organization will often know information
about its customers and specify the feature representation used for state–action spaces in advance.3

The initially available state contexts are referred to as offline (state) contexts data.

Our algorithm leverages historical context data to enable data efficient design of experiments for
stochastic linear contextual bandits. It uses offline context-only data C to design a nonadaptive
policy πe to collect new, online data where reward feedback is observed (see Figure 1b), and uses
the resulting dataset D′ to learn a near-optimal on average decision policy π̂ for future use. We
highlight that the algorithm does not get to adjust the exploratory policy πe while the online data is
being collected.

Contributions We make the following contributions.

• Using past state contexts only, we design a single, nonadaptive policy to acquire online data that
can be used to compute a context-dependent decision policy that is near-optimal in expectation
across the contexts with high probability, for future use.

• To identify an ǫ-optimal policy, our algorithm achieves the minimax lower bound
Ω(min{d log∑sAs, d

2)}/ǫ2) on the number of online samples (ignoring log and constants),

while keeping the number of offline state contexts required polynomially small (O(d2/ǫ2) or
O(d3/ǫ2)).

2Note that the number of offline data in (Ruan et al., 2020) is independent of 1/ǫ. But for most of the
practical settings, our bound d3/ǫ2 can be much smaller than d16.

3In other words, given a set of previously observed states s1, . . . , sM , and a known state–action representa-
tion φ, for any potential action a, we can compute the resulting representation φ(s, a).
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3 Setup

We consider the stochastic linear contextual bandit model with stochastic contexts. A bandit instance
is characterized by a tuple 〈S,A, µ, r〉 where S is the context space and µ is the context distribution.

For a context s ∈ S , the action space is denoted by As. The feature map φ : (s, a) 7→ φ(s, a) ∈ R
d

is assumed to be known and defines the linear reward model r(s, a) = φ(s, a)⊤θ⋆ + η for some

θ⋆ ∈ R
d parameter and some mean-zero 1-subgaussian random variable η.

We occasionally use the Õ notation to suppress polylog factors of the input parameters d, λ, 1
δ

. We

write f . g if f = O(g), and f / g if f = Õ(g). We say f = Ω(g) if there exists a positive

constant c such that f ≥ cg. For a positive semi-definite matrix Σ ∈ R
d×d and a vector x ∈ R

d,

let ‖x‖Σ =
√
x⊤Σx. For two symmetric matrices A,B, we say A 4 B if B − A is positive

semi-definite.

Our analysis consists of an offline and online component. We often add ′ to indicate the online quan-
tities, e.g., we denote with s1, s2, . . . the offline contexts and with s′1, s

′
2, . . . the online contexts.

3.1 Objective and Error Decomposition

As depicted in Figure 1, our approach is to leverage offline state contexts C = {s1, . . . , sM} where
sm ∼ µ to design a single stochastic policy πe to acquire data from an online data stream C′ =
{s′1, . . . , s′N}. This generates a dataset D′ = {(s′n, a′n, r′n)}n=1,...,N where s′n ∼ µ, a′n ∼ πe(s

′
n)

and r′n = r(s′n, a
′
n). Using D′, the least-square predictor θ̂ and the corresponding greedy policy π̂

can be extracted

θ̂ =
(
Σ′

N

)−1
N∑

i=1

φ(s′n, a
′
n)r

′
n, π̂(s) = argmax

a∈As

φ(s, a)⊤θ̂ (1)

where Σ′
N =

(∑N
n=1 φ(s

′
n, a

′
n)φ(s

′
n, a

′
n)

⊤+λregI
)

is the empirical cumulative covariance matrix

with regularization level λreg . The quality of the dataset D′ (and of the whole two-step procedure)
is measured by the suboptimality of the extracted policy π̂ obtained after data collection:

Es∼µ[max
a

φ(s, a)⊤θ⋆ − φ(s, π̂(s))⊤θ⋆]. (2)

Note that Eq. (2) measures the expectation over the contexts of the suboptimality between the result-
ing decision policy π̂ and the optimal policy. This is a looser criteria than a maximum norm bound
which evaluates the error over any possible context s: in general this latter error may not be easily
reduced if certain directions in feature space are rarely available.

A related objective is to minimize the maximum prediction error on the linear bandit instance. By
least square regression analyses (Lattimore and Szepesvári, 2020), with probability at least 1− δ we
have

Es∼µ max
a
|φ(s, a)⊤(θ⋆ − θ̂)| ≤

√
β Es∼µ max

a
‖φ(s, a)‖(Σ′

N
)−1 , (3)

where

√
β = min

{√
2 ln 2|

∑

s

As|+ ln
1

δ
︸ ︷︷ ︸

Small
∑

s
As

, 2

√
2d ln 6 + ln

1

δ︸ ︷︷ ︸
Large

∑
s
As

}
+

√
λreg‖θ⋆‖2

︸ ︷︷ ︸
Regularization Effect

. (4)

The above expression assumes that the state-action-rewards (s′n, a
′
n, r

′
n) are drawn i.i.d. from a

fixed distribution. This is satisfied in our setting as the data-collection policy πe is nonadaptive to
the online data. The parameter β governs the sample complexity as a function of the size of the
state-action space and also highlights the impact of the regularization bias.

Small predictive error (Eq. (3)) can be used to bound the suboptimal gap of the greedy
policy (Eq. (2)). Therefore to obtain good performance, it is sufficient to bound
Es∼µ maxa ‖φ(s, a)‖(Σ′

N
)−1 . This can be achieved by designing an appropriate sampling policy

πe to yield a set of (s′n, a
′
n, r

′
n) tuples whose empirical cumulative covariance matrix Σ′

N is as
‘large’ as possible.
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4 Algorithms

Reward-free LINUCB First, assume it is acceptable to have an algorithm that updates its policy
reactively. In order to reduce Es∼µ maxa ‖φ(s, a)‖(Σ′

n)
−1 we could use an algorithm that, every

time a context s ∼ µ is observed, chooses the action argmaxa∈As
‖φ(s, a)‖(Σ′

n)
−1 where the norm

‖φ(s, a)‖(Σ′

n)
−1 that represents the uncertainty is highest (cf. section 3.1). Such procedure is related

(although not identical) to the well known globally optimal design of experiment applied to linear
bandits (i.e., Lattimore and Szepesvari (2020)). Algorithmically, it corresponds to running the LIN-
UCB algorithm (Abbasi-Yadkori et al., 2011) with the empirical reward function set to zero. In other
words, the planner is essentially an offline, reward-free version of LINUCB. We emphasize that the
associated non-stationary policy is generated offline and is not actively played. One can show that
after≈ d2/ǫ2 iterations the uncertainty

√
β Es∼µ maxa ‖φ(s, a)‖(Σ′

n)
−1 ≤ ǫ; if the algorithm stores

the observed reward r(s, a) in every visited context s and chosen action a, the greedy policy that
can be extracted from this dataset (of size ≈ d2/ǫ2) is ǫ-optimal (cf. Eqs. (2),(3)), as desired.

Unfortunately we cannot run this reward-free algorithm online, as its policy is reactive to the online
stream of observed online contexts s and selected actions a, while we want a nonadaptive policy.

Algorithm 1 PLANNER (Reward-free LINUCB)

1: Input: Contexts C = {s1, . . . , sM}, reg. λreg

2: Σ1 = λregI
3: m = 1
4: for m = 1, 2, . . .M do
5: if det(Σm) > 2 det(Σm) or m = 1 then
6: m← m
7: Σm ← Σm

8: end if
9: Define πm : s 7→ argmaxa∈As

‖φ(s, a)‖Σ−1

m

10: Σm+1 = Σm+αφmφ⊤
m; φm = φ(sm, πm(sm))

11: end for
12: return policy mixture πe of {π1, . . . , πM}

Algorithm 2 SAMPLER

1: Input: πe = {π1, . . . , πM}, reg. λreg

2: Set D′ = ∅
3: for n = 1, 2, . . . N do
4: Receive context s′n ∼ µ
5: Sample m ∈ [M ] uniformly at random
6: Select action a′n = πm(s′n)
7: Receive feedback reward r′n
8: Store feedback D′ = D′ ∪ {s′n, a′n, r′n}
9: end for

10: return dataset D′

Our algorithm leverages this idea and consists of two subroutines: 1) the planner (Alg. 1) which
operates on offline contexts and identifies a mixture policy πe (this is the exploratory policy πe

mentioned in the introduction) 2) the sampler (Alg. 2) which runs πe online to finally gather the
dataset. This way, πe is nonadaptive to the online data.

Planner The purpose of the planner is to use past contexts to compute the exploratory policy. The
planner runs the reward-free version of LINUCB on the offline context dataset C as described earlier
in this section. This way, the planner selects the action a in the current offline context sm that
maximizes the uncertainty encoded in ‖φ(sm, a)‖Σ−1

m
where Σm is a scaled, regularized, cumulative

covariance over the contexts parsed so far and the actions selected. Note this procedure is possible
since the state–action function φ(sm, a) is assumed to be known for any input (sm, a) pair, and
no actual rewards are observed. The doubling schedule yields a short descriptor for the planner’s
policies {π1, . . . , πM}. The variable m indicates the last doubling update before iteration m.

A key choice is the parameter α ∈ (0, 1] in the cumulative covariance matrix update. The rationale

is that when α < 1 each rank-one update φmφ⊤
m to the cumulative covariance gets discounted. The

smaller α is, the more offline samples the planner needs to get to a sufficiently positive definite
covariance matrix ΣM . This choice effectively averages the updates and increases the estimation
accuracy of the planner’s covariance with respect to its conditional expectation.

Sampler Upon termination, the planner identifies a sequence of policies π1, . . . , πM . Now consider
the average policy πe: every time an action is needed, πe samples one index m ∈ [M ] uniformly at
random and plays πm. This is the policy that the sampler (Alg. 2) implements for N = αM ≤ M
fresh online contexts. Intuitively, executing the mixture policy πe in the online phase produces the
same covariance matrix as ΣM (in expectation).
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Sample Complexity Bounds

Small
∑

sAs Large
∑

sAs Large
∑

sAs

Offline Data M d3/ǫ2 d3/ǫ2 d2/ǫ2

Online Data N (d ln
∑

s |As|)/ǫ2 d2/ǫ2 d2/ǫ2

Regularization λreg 1 1 d

Table 1: Sample complexity bounds (ignoring constants and log terms) to obtain an ǫ-optimal policy

Upon playing πm in state s′n, the corresponding reward is observed and the tuple ({s′n, a′n, r′n}) is
stored. Since πe is the average policy played by the planner, we expect that running πe on the online
dataset produces a covariance matrix Σ′

N similar to the planner’s ΣM . In a sense, the covariance
matrix is a proxy for the amount of information acquired by the algorithm. This means the sampler
acquires the same information that the planner would have acquired if it was acting online. Since
the planner is the reward-free LINUCB algorithm, we expect its policy to efficiently reduce our
uncertainty over the reward parameters and learn a near optimal policy; our analysis will make this
intuition precise. Note the sampler’s policy is nonadaptive to the online stream of data.

Our work uses mixture policies; mixture policies are not essential, although they arise naturally from
the way the algorithms are formulated.

5 Main Result

Theorem 1. Fix ǫ > 0, and consider running Alg. 1 for M = Ω̃( d2β
λregǫ2

) iterations and Alg. 2 for

N = Ω̃(dβ
ǫ2
) iterations with regularization λreg ∈ (Ω(ln(d/δ)), d]. Let θ̂, π̂ be as in Eq. (1). For

any ǫ ≤ 1, with probability at least 1− δ the expected maximum uncertainty

Es∼µ max
a∈As

|φ(s, a)⊤(θ⋆ − θ̂)| ≤ ǫ (5)

and the suboptimality of the greedy policy π̂ satisfies

Es∼µ max
a∈As

(φ(s, a)− φ(s, π̂(s)))
⊤
θ⋆ ≤ 2ǫ. (6)

In Table 1 we instantiate the bounds from Theorem 1 in different settings, ignoring constants and
log terms. This highlights different tradeoffs between the regularization λreg and the number of
offline contexts (M = N/α) needed to achieve the online minimax sample complexity lower bound
≈ min{d, ln∑s |As|} × d/ǫ2 (Chu et al., 2011; Abbasi-Yadkori et al., 2011). 5 In the large action
regime ln |∑sAs| ' d, a regularization level λreg ≈ d gives the optimal online sample complexity

N ≈ d2/ǫ2 while requiring a context dataset of the same size (M ≈ d2/ǫ2, by choosing α = 1).

More often, a lower level of regularization can be preferable to introduce less bias. For example
λreg = 1 is a common choice in linear bandits (Abbasi-Yadkori et al., 2011; Chu et al., 2011). When
the cumulative covariance matrix is less regularized, we may need to compensate with additional
offline data to ensure the covariance matrices are accurately estimated, which is achieved by setting
M = N/α ≈ dN (i.e., α ≈ 1/d). In this way, additional samples are collected by the planner
to maintain its covariance estimation accuracy (and hence its planning accuracy) despite the lower
regularization.

Note that our algorithm achieves optimal sample complexity for the online data. Even with adap-
tive policies, the best known minimax upper bound is d2/ǫ (Abbasi-Yadkori et al., 2011; Chu et al.,
2011). Although Chu et al. (2011); Abbasi-Yadkori et al. (2011) consider regret minimization in-
stead of sample complexity. But their results can be easily translated to sample complexity bounds
(See Lemma 3 in Appendix A.2, and also Jin et al. (2018, Section 3.1)). However, the optimal rate
of the number of offline data is unclear. We believe our results can be improved by new tools in
matrix concentration, and we leave this direction for future work. Interestingly, in our experiments
the algorithm performed well numerically even when λreg < 1 and α = 1.

5The minimax lower bounds in the literature are stated for the regret setting, but can nonetheless be adapted
to derive sample complexity results. See Appendix A.1 for detailed discussion.
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More generally, the amount of regularization should be set following the classical bias-variance
tradeoff; its choice is mostly a statistical learning question, and its optimal value is normally problem
dependent. As a result, the problem dependent tradeoff between different values of λreg is not
reflected in our minimax analyses but can be appreciated in our numerical experiments on the real
world dataset.

6 Proof Sketch

We give a brief proof sketch where we ignore constants and log factors; the full analysis can be found
in the appendix. First we introduce some notation. We define the scaled cumulative covariance ΣM

at step m for the planner and the cumulative covariance Σ′
n for the sampler at step n:

Σm = α

m−1∑

j=1

φ(sj , aj)φ(sj , aj)
⊤ + λregI, Σ′

n =

n−1∑

j=1

φ(s′j , a
′
j)φ(s

′
j , a

′
j)

⊤ + λregI (7)

where the planner’s j actions is aj = πj(sj) and likewise the sampler’s j actions is a′j ∼ πe(s
′
j).

Uncertainty Stochastic Process We represent the value of the uncertainty though a stochastic pro-
cess. Let us define the filtration for the planner Fm = σ(s1, . . . , sm−1) at stage m and for the
sampler F ′

n = σ(s1, . . . , sM , s′1, . . . , s
′
n−1) at stage n to represent the amount of information avail-

able. Let us also define the observed uncertainty Um for the planner and likewise U ′
n for the sampler:

Um
def
= max

a∈Asm

‖φ(sm, a)‖(Σm)−1 , U ′
n

def
= max

a∈Asn

‖φ(s′n, a)‖(Σ′

n)
−1 . (8)

We ultimately want to bound E
′
n U

′
n = E[U ′

n | Fn] = Es∼µ maxa ‖φ(s, a)‖(Σ′

n)
−1 when n = N ,

i.e., the average uncertainty at the end, see Section 3. Likewise, let us define Em Um = E[Um |
Fm] = Es∼µ maxa ‖φ(s, a)‖(Σm)−1 .

We show that E′
N U ′

N is minimized in two steps: 1) we show that the planner’s uncertainty EM UM

can be bounded 2) since the sampler implements the planner’s average policy, E′
N U ′

N cannot be too
far from EM UM .

We highlight that M ≥ N in general, i.e., the stochastic processes proceed at different speed. In
fact, the planner needs more data than the sampler (M ≥ N ) as the planner’s policy is reactive to the
offline contexts; this forces us to use more data-intensive concentration inequalities for the planner.

6.1 Offline Uncertainty

The next lemma is formally presented in Lemma 5 and Lemma 7 in the appendix and examines the
reduction in the planner’s expected uncertainty EM UM .

Lemma 1 (Offline Expected Uncertainty). With high probability we have

EM UM ≤
1

M

M∑

m=1

Em Um /
1

M

M∑

m=1

Um /

√
d

αM
.

Proof sketch. We start by modifing a result from the classical bandit literature (e.g., Abbasi-Yadkori
et al. (2011)) to bound the average realized uncertainty Um while accounting for the extra α scaling
factor contained in the covariance matrix ΣM :

1

M

M∑

m=1

Um =
1

M

M∑

m=1

‖φ(sm, am)‖Σ−1

m
/

√
d

αM
.

The parameter α on the right hand side above arises from its inclusion in the definition of cumulative
covariance Eq. 7. This justifies the last inequality in the lemma’s statement.

While we bounded 1
M

∑M
m=1 Um, we need to bound the average conditional expectations

1
M

∑M
m=1 Em Um. Bernstein’s inequality would bound the actual deviation

∑M
m=1 Um by the con-

ditional variances (or expectations
∑M

m=1 Em Um given our boundness assumptions); here we need
the opposite, and so we ‘reverse’ the inequality in Theorem 3 (Reverse Bernstein for Martingales)

to claim
∑M

m=1 Em Um /
∑M

m=1 Um with high probability to conclude.
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6.2 Online Uncertainty

In the prior section we showed that the planner would be successful in reducing its final uncertainty
EM UM if it was collecting reward information; moreover, its sequence of policies π1, . . . , πM only
depends on the observed contexts. Because of this, if the sampler runs the planner’s average policy
πe, we would expect a similar reduction in the uncertainty E

′
N U ′

N after N = αM iterations (the
α factor simply arises because the planner’s information are discounted by α). The argument is
formalized in Lemma 4 (Relations between Offline and Online Uncertainty) in the appendix, which
we preview here. We let K be the number of policy switches by the sampler which is bounded by
K / d in Lemma 16 (Number of Switches) in appendix.

Lemma 2 (Relations between Offline and Online Uncertainty). If λreg = Ω(ln d
δ
) and M =

Ω
(

KN
λreg

ln dNK
λregδ

)
, upon termination of Alg. 1 and 2 it holds with high probability that

E
′
N U ′

N . EM UM .

Proof. Let d1, . . . , dM be the conditional distributions of the feature vectors sampled at timesteps
1, . . . ,M in Alg. 1 after the algorithm has terminated. Conditioned onFM , the di’s are non-random.
Then the conditional expected covariance matrix given FM can be defined as

Σ = α

M∑

i=1

Eφ∼di
φφ⊤ + λregI (9)

Now, our argument relies on some matrix concentration inequalities which hold if

λreg = Ω(ln
d

δ
),

1

α
= Ω

(
K

λreg

ln
dNK

λregδ

)
. (10)

Precisely, from Lemma 14 (Matrix Upper Bound Offline Phase) and Lemma 15 (Matrix Upper
Bound Online Phase) with high probability we have that

∀x, ‖x‖2 ≤ 1 : ‖x‖(Σ′

N
)−1 . ‖x‖

Σ
−1 and ‖x‖

Σ
−1 . ‖x‖Σ−1

M
. (11)

In words, we can relate the planner’s (random) scaled covariance ΣM to its conditional expectation

Σ, with the guarantee that it won’t be very different from the sampler’s covariance Σ′
N (which

implements the planner’s policy). These concentration inequalities are key to the proof and are
proved in the appendix.

Define the policy maximizing the online uncertainty π′
n(s) = argmaxa∈As

‖φ(s, a)‖(Σ′

n)
−1 . Under

the event in Eq. (11) we can write

E
′
N U ′

N

def
= Es∼µ max

a∈As

‖φ(s, a)‖(Σ′

N
)−1 = Es∼µ ‖φ(s, π′

N (s))‖(Σ′

N
)−1 . Es∼µ ‖φ(s, π′

N (s))‖
Σ

−1

. Es∼µ ‖φ(s, π′
N (s))‖Σ−1

M
≤ Es∼µ max

a
‖φ(s, a)‖Σ−1

M
= EM UM .

6.3 Conclusion and Tradeoffs

We can now tune the parameters α, λreg . Starting from Eq. (3), we can write

Es∼µ max
a

φ(s, a)⊤(θ⋆ − θ̂) ≤
√

β E
′
N U ′

N .
√
β EM UM .

√
βd

αM
=

√
βd

N
. (12)

Thus, the rate-optimal online sample complexity N ≈ βd
ǫ2

always suffices. However, we need a
different number of offline contexts depending on the regularization that we want to adopt. Since
K / d, the reader can verify that if λreg ≈ d then the preconditions in Eq. (10) are verified with
M ≈ N , so α ≈ 1. If a lower value for the regularization λ ≈ 1 is desired, M ≈ dN would be
required (thus α ≈ 1

d
).

The reason why we might need M ≥ N (i.e., α ≤ 1) is that the planner’s policy is adaptive to the
observed offline contexts. This means that the planner’s cumulative covariance ΣM is not a sum
of i.i.d. rank-one random matrices; in this case, we need either a more data-hungry concentration
inequality or heavier regularization, leading to the the precondtion on α in Eq. (10).
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