
Oracle Inequalities for Model Selection

in Offline Reinforcement Learning

Jonathan N. Lee
Stanford University
jnl@stanford.edu

George Tucker
Google Research
gjt@google.com

Ofir Nachum
Google Research

ofirnachum@google.com

Bo Dai
Google Research

bodai@google.com

Emma Brunskill
Stanford University

ebrun@cs.stanford.edu

Abstract

In offline reinforcement learning (RL), a learner leverages prior logged data to
learn a good policy without interacting with the environment. A major challenge
in applying such methods in practice is the lack of both theoretically principled and
practical tools for model selection and evaluation. To address this, we study the
problem of model selection in offline RL with value function approximation. The
learner is given a nested sequence of model classes to minimize squared Bellman
error and must select among these to achieve a balance between approximation and
estimation error of the classes. We propose the first model selection algorithm for
offline RL that achieves minimax rate-optimal oracle inequalities up to logarithmic
factors. The algorithm, MODBE, takes as input a collection of candidate model
classes and a generic base offline RL algorithm. By successively eliminating
model classes using a novel one-sided generalization test, MODBE returns a policy
with regret scaling with the complexity of the minimally complete model class. In
addition to its theoretical guarantees, it is conceptually simple and computationally
efficient, amounting to solving a series of square loss regression problems and then
comparing relative square loss between classes. We conclude with several numerical
simulations showing it is capable of reliably selecting a good model class.1

1 Introduction

Model selection is a fundamental task in supervised learning and statistical learning theory. Given
a sequence of model classes, the goal is to optimally balance the approximation error (bias) and
estimation error (variance) offered by the potential model class choices, even though the best model
class is not known in advance. Model selection algorithms are extremely well-studied in learning
theory (Massart, 2007; Lugosi and Nobel, 1999; Bartlett et al., 2002; Bartlett, 2008), and methods
like cross-validation have become essential steps for practitioners.

In recent years, interest has turned to model selection in decision-making problems like bandits and rein-
forcement learning. A number of theoretical works have studied the online setting (Agarwal et al., 2017;
Foster et al., 2019; Pacchiano et al., 2020; Lee et al., 2021a; Modi et al., 2020; Chatterji et al., 2020;
Muthukumar and Krishnamurthy, 2021). Similar to the bias-variance balance in supervised learning,
these algorithms typically aim to select the model class with smallest statistical complexity that contains
the true model. Despite these recent efforts, the current understanding of model selection in offline
(or batch) reinforcement learning (RL) is comparatively nascent. Offline RL is a paradigm where the

1Supplementary material is available at: https://sites.google.com/stanford.edu/offline-model-selection.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

a
rX

iv
:2

2
1
1
.0

2
0
1
6
v
1

[c

s.
L

G
]

 3
 N

o
v
 2

0
2
2

learner leverages prior datasets of logged interactions with the environment (Lange et al., 2012; Levine
et al., 2020). The learner is tasked with returning a good policy without further environment interaction.
As has been acknowledged in several recent papers (Xie and Jiang, 2021; Mandlekar et al., 2021; Kumar
et al., 2021), one of the major challenges preventing widespread deployment of offline RL algorithms
in the real world is the lack of algorithmic tools for model selection, evaluation, and hyperparameter
tuning. In experimental settings, researchers typically evaluate candidate learned models by using
online rollouts of the policies after learning with offline data. However, such approaches are not feasible
in many real world settings where the entire process of producing a single policy must be conducted
only on the offline dataset, due to complications such as logistics, safety, or performance requirements.

In recent years, this problem has been recognized as a major deficiency in the field and a number
of efforts have been made to remedy it. On the empirical side, several researchers have proposed
workflows and general heuristics specifically addressing this problem (Kumar et al., 2021; Tang
and Wiens, 2021; Paine et al., 2020). However, all have noted that solutions designed to evaluate
or select models typically have their own hyperparameters and modeling choices. Consider, for
example, applying off-the-shelf offline policy evaluation (OPE) methods (Precup, 2000; Thomas and
Brunskill, 2016). These typically require some function approximation of their own. Thus, rather than
solving the problem, naively using OPE just shifts the burden of model selection to the OPE estimator.
Similarly, recent efforts to solve model selection in online bandits and RL are inapplicable as they
almost universally require interaction with the environment (Foster et al., 2019; Pacchiano et al., 2020;
Lee et al., 2021a). The solution to the offline problem seems to require new ideas.

On the theoretical side, there is also significant motivation for devising model selection algorithms
as there is growing evidence suggesting that strong conditions on the function class2 are necessary
to achieve non-trivial guarantees in offline RL in the worst case (Foster et al., 2021; Zanette, 2021;
Wang et al., 2020). Perhaps the most widely used and recognized condition is completeness (Munos
and Szepesvári, 2008; Antos et al., 2008; Chen and Jiang, 2019) which essentially says that T f ∈F for
any f ∈F , where T is the Bellman operator andF is the model class.3 Unsurprisingly, completeness
plays an important role in the proofs of many value-based offline RL algorithms since sample efficient
results are provably impossible without it (in the absence of additional assumptions – see Xie and Jiang
(2021); Zhang and Jiang (2021)). Despite the growing realization of the importance of these conditions,
there seems to be comparatively little work addressing the problems of identifying complete model
classes or certifying sufficient conditions for sample efficient offline RL.

Lee et al. (2021b) considered the problem of model selection in the offline setting with the intent of
addressing some of the aforementioned issues. It was shown that full model selection (competitive with
an oracle that has knowledge of the best model class) is impossible in general in offline reinforcement
learning. They proposed several relaxations to achieve weaker oracle inequalities, but these were
limited to contextual bandits with linear model classes where there is no issue of completeness. The
question of whether any similar results are possible for full offline reinforcement learning with general
function classes has remained open.

1.1 Contributions

Theoretical Guarantees In this paper, we give the first rate-optimal model selection algorithm
for offline RL with value function approximation. We begin by summarizing known results for
a single model class using value-based methods. For any individual model class F that satisfies
completeness and an offline dataset of n samples with sufficient coverage, the gold-standard regret

bound is Õ
(

√

COMP(F)/n
)

4 where COMP(F) denotes the statistical complexity of F . This is

achieved, for example, by Fitted Q-Iteration (FQI) (Chen and Jiang, 2019). Clearly, one would like
COMP(F) be as small as possible to achieve a tighter bound.

2That is, conditions sufficient for supervised learning, like realizability, tend not to be sufficient on their own
for offline RL.

3
F is a model class meant to estimate Q-functions. It consists of functions mapping state-action pairs

to value predictions. The Bellman operator applied to f ∈ F pointwise is defined as T f(x,a) = r(x,a) +
maxa′Ex′|x,af(x

′,a′).
4For clarity, Õ omits dependence on certain parameters such as the horizon H , distribution mismatch factors,

number of classes M , failure probability δ, log factors, and constants.

2

We consider the model selection problem where we are given an offline dataset of n samples and
a nested sequence of M model classes F1⊆ ...⊆FM . We investigate the following question: Can
we achieve a model selection guarantee for offline RL with regret scaling with the complexity of the
smallest complete model class?

We present a novel and conceptually simple algorithm, MODBE, that achieves regret scaling with
the complexity of the smallest class satisfying completeness without knowledge of this class a priori.

Theorem 1. (informal version of Corollary 1) Given an offline dataset of n samples and nested

model classes F1⊆ ...⊆FM , MODBE outputs π̂ such that Reg(π̂)= Õ
(

√

COMP(Fk∗
)/n
)

where

k∗=min{k∈ [M] : Fk is complete } .

A guarantee of this nature is typically known as an oracle inequality since an oracle with knowledge
of the "best" model class ahead of time could simply choose it. We remark that this oracle inequality
is rate-optimal in COMP(Fk∗

) and n, showing that we do not have to sacrifice efficiency for adaptivity.
This is in contrast to some other works in model selection for decision-making where this unfortunate
efficiency-adaptivity trade-off has been observed (Foster et al., 2019; Pacchiano et al., 2020; Xie and
Jiang, 2021). In Appendix A, we discuss how the nestedness condition is necessary.

We also provide a robustness result for model selection (Theorem 3): if no models are Bellman complete

(that is, k∗ does not exist), MODBE obtains Reg(π̂)≤Õ
(

mink∈[M]

√

ξk+COMP(Fk)/n
)

where ξk

is a measure of the global completeness error ofFk.5 Our results show that, while some model selection
problems remain elusive without further assumptions, strong rate-optimal oracle inequalities are still
possible under standard offline RL assumptions even without knowledge of the best classes in advance.

Technical Highlights. The key to achieving the near optimal regret rate is to achieve the near optimal

excess risk rate of the squared Bellman error (which is of order Õ (COMP(Fk∗
)/n)). To do this,

MODBE iteratively compares the relative effectiveness of two candidate model classes by employing a
hypothesis test that compares the difference of their estimated risks to a one-sided generalization bound.
The fact that the test leverages only the one-sided generalization bound is crucial: using easier two-sided
bounds (e.g. from uniform deviation bounds on risk estimators) leads to a squared Bellman error rate of

Õ
(

√

COMP(Fk∗
)/n
)

, which translates to a slow Õ((COMP(Fk∗
)/n)1/4) regret rate. Instead the one-

sided generalization error allows us to ultimately obtain the optimal Õ
(

√

COMP(Fk∗
)/n
)

regret rate.

Practical Results. In practice, MODBE can be instantiated with any base offline RL algorithm
that attempts to minimize squared Bellman error, including but not limited to FQI. MODBE is also
computationally efficient, requiringO(Hk∗M) calls to an empirical squared loss minimization oracle
and O(k∗) calls to the base offline RL algorithm. In Section 5, we demonstrate the effectiveness
of MODBE on several simulated experimental domains. We use neural network-based offline RL
algorithms as baselines and show that MODBE is able to reliably select a good model class.

1.2 Additional Closely Related Work

Several prior works have specifically set out to address the model selection problem from a theoretical
perspective, as we do here. Lee et al. (2021b) formalized the end-to-end model selection problem for
offline RL where, given nested model classes, the goal is to produce a regret bound competitive with
an oracle that has knowledge of the optimal model class. Their positive results, however, were limited
only to linear model classes for contextual bandits; ours apply to sequential settings. An earlier work
by Farahmand and Szepesvári (2011) had partially addressed our problem but made several restrictive
assumptions such as a known generalization bound that underestimates the approximation error (which
is generally unknown); our algorithm only relies on commonly known quantities. Another notable
work is the BVFT algorithm of Xie and Jiang (2021). While initially designed for general policy
optimization, BVFT can be applied to model selection (Zhang and Jiang, 2021) but it incurs a slow

1/n1/4 regret rate in theory (compared to our 1/n1/2) and requires a stronger data coverage assumption.
One advantage of BVFT is that it can be used more generally to tune hyperparameters beyond the
selection of model classes. However, the specialization of our algorithm to model selection enables

5See Section 3.1 for a precise definition.

3

the stronger guarantees. Thus, we view the two algorithms as complementary. Jiang et al. (2015)
studied abstraction selection between nested state abstractions of increasing granularity; however,
this eschews problems specific to value function approximation setting. Hallak et al. (2013) studied a
similar abstraction problem, giving only asymptotic guarantees. In Section 3.2, we will discuss in more
detail why several seemingly natural approaches to model selection do not produce satisfactory results.

2 Preliminaries

Notation For any n∈N, we let [n] = {1,...,n}. The notation a. b implies that a≤Cb for some
absolute constant C > 0. We will use C,C1,C2 ... > 0 to denote absolute constants (independent of
problem parameters). For a set A, ∆(A) denotes the set of distributions over A.

We consider the finite-horizon Markov decision processM(X ,A,H,P,r,ρ) whereX is the (potentially
infinite) state-space,A is the action space, H is the length of the horizon, P :X ×A→∆(X) is the
transition kernel, r :X×A→ [0,1] is a deterministic reward function, and ρ∈∆(X) is an initial state
distribution. A learner interacts with the MDP by proposing an H-step policy π=(πh)h∈[H] where

each πh :x 7→πh(·|x) maps x∈X to a distribution over actions in ∆(A).6 At step h=1, x1 is drawn
according to ρ. Then at step h∈ [H], the agent observes xh, draws ah according to πh(·|xh) observes
reward r(xh,ah) and the MDP transitions to xh+1 according to P(·|xh,ah). For a policy π, we let
Pπ
h (x,a) and Pπ

h (x) denote the marginal state-action and state densities of π respectively at step h.

Following standard definitions, we let V π
h : X → R denote the value function of π at step h ∈ [H]

which is given by V π
h (x)=Eπ

[

∑

s≥hr(xs,as) xs=x
]

. Here, the expectation Eπ is over trajectories

under π with ah ∼ πh(·|xh). Similarly, the action-value function Qπ
h : X ×A → R is defined as

Qπ
h(x,a)=Eπ

[

∑

s≥hr(xs,as) xs=x,as=a
]

.The optimal policy (which exists under mild conditions

when H is finite (Sutton and Barto, 2018)) is denoted by π∗ and this maximizes V π
h (x) for all x

and h. The average value of a policy π is given by v(π) := Ex∼ρ [V
π
1 (x)]. Finally, we define

the Bellman operators: Tπ
h Q(x,a)= r(x,a)+Ex′∼P (·|x,a),a′∼πh+1(·|x′)[Q(x′,a′)] and T ∗

hQ(x,a)=
r(x,a)+Ex′∼P (·|x,a)[maxa′∈AQ(x′,a′)].Note that the values of v(π),V π

h , andQπ
h are always in [0,H]

due to the constraint on r. For convenience, we denote theQ function of the optimal policy asQ∗=Qπ∗

.

We consider the setting where the learner is provided with a model class F ⊆ (X ×A→ [0,H]) to
estimate action value functions at each step. For exposition, we assume this model class is finite;
however, it is straightforward to extend to infinite settings with appropriate complexity measures. For
simplicity, we will assume that the learner uses the sameF for each timestep h∈ [H] but this is trivially
extended. We assume that 0∈F and we always write fH+1=0. For any function f ∈X×A→ [0,H],
we define the argmax policy πf (x)=argmaxa∈Af(x,a). We will also write f(x)=maxa∈Af(x,a).

2.1 Offline Reinforcement Learning

The distinguishing feature of the offline (or batch) RL is that we assume that the learner is provided
with a dataset D of example transitions in the MDP. The learner itself is not permitted to interact in
the environment. The objective is to produce a good policy π̂ using only data from the dataset D.

Formally, the dataset decomposes as D = (Dh)h∈[H] for each timestep where Dh = {(x,a,r,x′)}
consists of tuples of transitions and incurred rewards. We assume Dh contains n datapoints that are
sampled i.i.d from a fixed marginal distribution µh∈∆(X×A) and the data are independent across
timesteps h. That is, there are Hn datapoints total. For example, the data could be generated from

h-step state-action distribution of a behavior policy πb so that µh(x,a)=Pπb

h (x,a)=πb
h(a|x)Pπb

h (x).

For f,g ∈ (X ×A→ R), we use the notation ‖f − g‖2µh
= Eµh

[

(f(x,a)−g(x,a))2
]

. The average

squared Bellman error under µ at state h with respect to f,g is ‖f −T ∗
hg‖2µh

. Following classical
conventions (Munos and Szepesvári, 2008; Duan et al., 2021), we make a concentrability assumption
that the data distribution µ has good coverage over the MDP for all reachable state-actions.

Assumption 1. There exists a constant C(µ)>0 such that suph,x,a,π
Pπ

h (x,a)
µh(x,a)

≤C(µ).

6With some abuse of notation, for deterministic πh we write a=πh(x) to denote its highest-probability action.

4

Concentrability is a structural assumption and it is widely regarded as perhaps the most standard
assumption when studying offline RL problems (Foster et al., 2021). We remark that recent theoretical
works have striven to weaken this condition via pessimistic methods (Liu et al., 2020; Jin et al., 2021;
Xie et al., 2021; Uehara and Sun, 2021). However, Theorem 2 of Lee et al. (2021b) shows that model
selection bounds of this type are not possible even in contextual bandits and even though the single
model class bounds are possible. As a result, we will not consider this refinement in the present paper.

In this offline setting, the learner aims to use D and F to produce a policy π̂ so as to minimize the
regret, which measures the difference in average value between the optimal policy π∗ and π̂:

Reg(π̂) :=v(π∗)−v(π̂). (1)

The following variant of the performance difference lemma will be used throughout the paper. It shows
that it is sufficient to control the squared Bellman error to bound regret.

Lemma 1 (Duan et al. (2021)). For any f1, ... , fH , let π := (πfh)h∈[H]. Then,

Reg(π)≤2
√

C(µ)
∑

h∈[H]‖fh−T ∗
hfh+1‖2µh

.

3 Model Selection Objectives

In this section, we state our primary model selection objectives and discuss their significance as well
as challenges associated with solving them.

3.1 The Model Selection Problem

For a finite function class F that we consider here, the gold-standard regret guarantee for offline
algorithms with value function approximation is

Reg(π̂)=Õ
(

√

C(µ)APPROX(F)+
√

C(µ)log|F|
n

)

, (2)

where APPROX(F) :=maxh∈[H],f ′∈Fminf∈F‖f−T ∗
hf

′‖2µ is the completeness error of the classF
(Chen and Jiang, 2019). This is achieved, for example, by the Fitted Q-Iteration (FQI) algorithm. If
we were using infinite classes, we would replace log|F|with another suitable notion of complexity
such as pseudodimension. Such bounds naturally exhibit a trade-off: larger function classes may have
a better chance of keeping APPROX(F) close to zero7 but require more data to minimize the estimation
error. Small classes face the opposite problem.

Definition 1. A classF is complete if APPROX(F) :=maxh∈[H],f ′∈Fminf∈F‖f−T ∗
hf

′‖2µ=0.

The objective of model selection is to achieve refined regret bounds that balance approximation error
and estimation error. To this end, we assume that the learner is presented with not just a single model
class F , but rather a nested sequence of M classes F1 ⊆ ...⊆FM . Solving a problem with nested
model classes is common practice in both supervised learning and offline RL. For example, one often
starts with an extremely large classF and then considers restrictions ofF to an increasing sequence
F1⊆ ...⊆FM =F . In a linear setting, this could correspond to trying to find a subset of candidate
features that are sufficient to solve the problem.

Since the approximation error is typically unknown a priori, we aim to design an algorithm capable of
selecting a good class in a data-dependent manner. In particular, we would like to achieve oracle inequal-
ities reflecting that we can compete with the performance of an oracle that has this knowledge in advance.

Our primary objective is to compete with the minimally complete model class.

Problem 1. Let k∗=min{k∈ [M] : Fk is complete}. Find π̂ with Reg(π̂)=Õ(
√

C(µ)log(|Fk∗
|)/n).

Here, Fk∗
is the smallest class that satisfies completeness on the data distribution. Such oracle

inequalities are common in model selection for online bandits and RL (Foster et al., 2019) – albeit
they are generally not rate-optimal in that literature. In particular, Problem 1 states the regret bound

7In contrast to realizability, this intuition of monotonicity of APPROX(F) is not universally true for complete-
ness. Adding functions to the class F might actually increase APPROX(F). However, it remains a useful heuristic.
In Appendix A, we discuss how model selection in this setting is not possible without nestedness.

5

should achieve the same dependence on log|Fk∗
| and n, as would an optimal offline algorithm using

a single class with k=k∗. In other words, we do not tolerate any worse dependence on either quantity

such as Õ(1/n1/4) rates and other lower order terms.

We are also interested in a robustness when k∗ may not exist, i.e. allFk have some approximation error.

Problem 2. Define the global completeness error as ξk :=maxh∈[H],f ′∈FM
minf∈Fk

‖f−T ∗
hf

′‖2µh
.

Find π̂ so that Reg(π̂)=Õ
(

mink∈[M]

{

√

C(µ)ξk+
√

C(µ)log(|Fk|)/n
})

Note that ξk≥APPROX(Fk) by definition. For the estimation error, however, the guarantee remains
rate-optimal. We remark that a solution to one of the above problems does not immediately imply
a solution to the other. For example, a class Fk may be complete, but ξk can still be large. Perhaps
surprisingly, our proposed algorithm will be able to handle both problems simultaneously without
knowledge of whether k∗ exists, thus achieving the min of both oracle inequalities.

3.2 Limitations of Prior Approaches

We now review some of the core challenges involved in solving the above problems. There are a
number of seemingly natural approaches to model selection in RL that are surprisingly unable to
produce satisfactory results, at least off-the-shelf.

Adaptive offline policy evaluation The most natural approach, to which we have alluded in the
introduction, is to first compute π̂k with a base algorithm using function class Fk, for each k∈ [M].
Then, one can estimate v(π̂k) using an off-the-shelf offline policy evaluation approach such as fitted
Q-evaluation (Munos and Szepesvári, 2008; Duan et al., 2020), DICE methods (Nachum et al., 2019;
Dai et al., 2020; Zhan et al., 2022), marginalized importance estimators (Xie et al., 2019), or doubly
robust estimators (Jiang and Li, 2016; Thomas and Brunskill, 2016). Then one simply picks the π̂k

with the best estimated value. The main drawback of this approach is that nearly all of the above
methods require selecting a model class to perform the estimation,8 and it is unclear how to balance the
estimation and approximation error optimally to compete with the oracle. One possible solution is to
employ the adaptive estimator of Su et al. (2020), which takes as inputs a sequence of offline estimators
and known upper bounds on their deviations and returns an estimator that competes with the best one.
This is precisely the approach taken by Lee et al. (2021b) for linear contextual bandits. However, for
general function classes in RL, there is no obvious way to compute the analogous deviation bounds,
which oftentimes depend on the unknown quantity C(µ). Since these bounds are required by the
adaptive estimator as inputs, we are yet again left with unknown hyperparameters to tune.

Bellman error estimators Recall we are focusing on base offline RL algorithms that attempt to mini-
mize the squared Bellman error of objective. Therefore, one might ask whether it is possible to estimate
the Bellman errors (e.g. with the validation dataset) and compare the model classes using the Bellman
error as a proxy. Consider, for example, FQI which iteratively minimizes the squared Bellman error:

f̂h=argmin
f∈Fk

ÊDh

[

(

f(x,a)−r−max
a′

f̂h+1(x
′,a′)

)2
]

,

where we use ÊDh
to denote the empirical mean calculated with samples from the dataset Dh.

Presumably, we could simply choose the model class Fk that has the smallest cumulative squared
error. The main issue with this approach is the classic double-sampling problem (Baird, 1995; Duan
et al., 2021): the standard estimator of the Bellman error is biased, as a result of using an empirical
version of the Bellman operator T ∗. By selecting based on this error function alone, we will end up

favoring model classes that also induce low variance of the regression targets, given by r+f̂h+1(x
′)

at step h. This is because the expectation is given by:

Eµh

[

(

f̂h(x,a)−r−f̂h+1(x
′)
)2
]

=‖f̂h−T ∗f̂h+1‖2µh
+Eµh

[

var
x′∼P(·|x,a)

(

f̂h+1(x
′)
)

]

.

In reality, we want to choose a classFk to minimize only the first term on the right-hand side, summed
over h∈ [H], following Lemma 1. However, the second term is generally unknown. One could assume

8In the case of marginalized importance sampling, the guarantee is not strong enough to compete with the
oracle.

6

there is a sufficiently powerful class G such that T ∗f ∈G for all f ∈F (Chang et al., 2022). But there
remains a question of how to select the class G to trade off approximation error and estimation error,
creating another unsolved model selection problem.

In the same vein, another approach we might consider is recent BVFT algorithm of Xie and Jiang
(2021) to select among the fk learned by the base algorithm. This solves the model selection problem

but the guarantee of BVFT has a slow O(1/n1/4) dependence and thus does not achieve either oracle
inequality. It also, in theory, requires that a discretization parameter is set based on a concentrability
coefficient stronger than C(µ), which is typically unknown. Follow up work has shown this can be
chosen adaptively in practice (Zhang and Jiang, 2021).

Perhaps most conceptually related to our approach is past work which compares Bellman errors
of finer-grained state abstraction functions on the Q-function computed on coarser-grain state
abstraction (Jiang et al., 2015). This work provided bounds on the resulting policy performance of
the selected abstraction in discrete state and action setting, where models are varying levels of state
abstractions. However, this work and analysis critically depends on the discrete state and action setting:
our work shows how a similar idea can be used in the value function approximation setting, with
substantially different tools and analysis techniques.

Representation Learning Readers familiar with work in representation learning for RL (Agarwal
et al., 2020) might observe that the problem vaguely resembles objectives for selecting feature
representations for low rank MDPs such as Modi et al. (2021). Unfortunately, the problem settings
are quite different, and we cannot simply adapt such representation learning algorithms to the model
selection problem since they are either insensitive to the model class complexities or they require
stronger realizability assumptions. It would be interesting future work to better understand the
relationship between these two problems.

4 MODBE Algorithm

Having introduced the model selection objectives, we now present our main result, a novel model
selection algorithm for offline RL that provably achieves the aforementioned oracle inequalities. We
first give an intuitive sketch of the approach and present the full algorithm in subsequent subsection.
As a thought experiment, we will consider the case when M=2 and a minimally complete classFk∗

exists.9 We will also ignore logarithmic factors and H dependence for now. A key algorithmic idea
is that we will first start optimistically by guessing that k∗ =1. Running a base algorithm like FQI
withF1 on training data returns the functions f1,...,fH , which, with high probability, satisfy

∑

h‖fh−T ∗
hfh+1‖2µ=Õ

(

C(µ)log(|F1|)
n

)

if k∗ actually equals 1. Given these functions, we can pose a square loss regression problem where
the regression targets (i.e., the "y’s" of the regression problem) are given by the empirical Bellman
updates using training data:

L̂h(g,fh+1)=
1
n

∑

(x,a,r,x′)∈Dh
(g(x,a)−r−fh+1(x

′))
2
.

Let Lh(f,g) := Eµh

[

L̂h(f,g)
]

. Solving this regression problem for each h over the class F2 will

generate g1,...,gH ⊆ F2. The key insight is that the sequences (fh)h and (gh)h are both trying to
minimize the same empirical square loss function with the same regression targets: r+ fh+1(x

′).
Unlike the Bellman error estimators from the previous section that incur biases, the lossesLh(fh,fh+1)
and Lh(gh,fh+1) are comparable and estimable from a validation set. By nestedness ofF1⊆F2,F2

cannot have more approximation error on this regression problem. Provided we can get a good estimate
of generalization errors L(fh,fh+1) and L(gh,fh+1) with validation data, this naturally brings forth
the following generalization test: if

Lh(gh,fh+1)<L(fh,fh+1)−Õ
(

log(|F1|)
n

)

(3)

9While the algorithm requires minimal changes to extend beyond these constraints, there are some notable
analytic challenges in the proof. For general M , we cannot guarantee the class returned will be the correct one
always – it may be substantially smaller but with controllable approximation error. When k∗ does not exist, there
is a chance to "skip" the best model class, so we must show that this is tolerable.

7

Algorithm 1 Model Selection via Bellman Error (MODBE)

1: Input: Offline datasetD=(Dh) of n samples for each h∈ [H], Base algorithmB, function classes
F1⊆ ...⊆FM , failure probability δ≤1/e, and estimation error function ω for B.

2: Let ntrain = ⌈0.8·n⌉ and nvalid = ⌊0.2·n⌋ and split the dataset D randomly into Dtrain =(Dtrain,h)
of ntrain samples and Dvalid=(Dvalid,h) of nvalid samples for each h∈ [H].

3: Set ζζζ := 96H2log(16M2H/δ)
nvalid

4: Initialize k←1.
5: while k<M do
6: (fh)h∈[H]←B(Dtrain,Fk,δ/4M)
7: for k′←k+1,...,M do

8: Setααα :=max
{

ωntrain,δ/4M (Fk′), 200H
2log(8M2H|Fk′ |/δ)

ntrain

}

9: Set TOL :=2ααα+2ζζζ+ωntrain,δ/4M (Fk)
10: Minimize squared loss on training set for all h∈ [H] with regression targets from class k:

gh←argmin
g∈Fk′

L̂h(g,fh+1) :=
1

ntrain

∑

(x,a,r,x′)∈Dtrain,h

(g(x,a)−r−fh+1(x
′))

2
(4)

11: Compute squared loss using the validation set for all h∈ [H] as a function of f :

L̃h(f,fh+1)=
1

nvalid

∑

(x,a,r,x′)∈Dvalid,h

(f(xh,ah)−rh−fh+1(x
′))

2
(5)

12: if L̃h(gh,fh+1)<L̃h(fh,fh+1)−TOL for any h∈ [H] then
13: k←k+1
14: goto Line 5.
15: end if
16: end for
17: goto Line 19
18: end while
19: return π̂=(πfh)h∈[H]

reject F1 and pick F2. Otherwise pick F1. That is, a switch will occur not when F2 performs only
marginally better thanF1, but when it performs substantially better as measured by the generalization
error that we see for bothfh and gh on this regression problem. If (3) holds, then there is reason to believe
thatF1 is not complete, makingF2 the right choice. Crucially, the test only checks for generalization

error, so the tolerance term on the right side goes as Õ
(

log(|F1|)
n

)

, which is the correct rate for this

problem. Thus, if the test turns out to be wrong, we will only lose additive factors of the correct rate.

4.1 Full Algorithm

The full algorithm, MODBE (Model Selection via Bellman Error), is presented in Algorithm 1. While
the underlying principle described just above is similar, MODBE must handle a number extensions
that complicate the algorithm such as dealing with general M , accounting for proper estimation errors,
and being robust to the case when k∗ does not exist. Interestingly, the fundamental algorithmic idea
remains the same – only the tolerances change and it loops over the model classes.

MODBE takes as input a base offline RL algorithm (such as FQI), the model classesF1⊆ ...⊆FM , and
the offline dataset D∈ [H]. The dataset is split randomly into a training set Dtrain and a validation set
Dvalid. The algorithm begins optimistically, starting with the candidate model class k=1 and running
the base algorithm withFk on the training dataset to generate the candidate functions f . We retrain on
the empirical square loss using a class k′>k by regressing to target values r+fh+1(x

′). This amounts
to solving a sequence of H least squares regression problems using class k′, yielding the functions gh.

Since fh and gh are attempting to solve the same regression problem (with the same target values),

we can compare their performance on this shared squared loss objective L̃ with validation data. We
use a generalization error test in Line 12 to decide whether to keep using class k. If the test fails and
it is discovered that the larger model class Fk′ is able to achieve substantially smaller loss than Fk,

8

then we move to a larger model class k←k+1. The process is repeated until all classes are exhausted
or no model class k′ offers a big enough improvement over k to cause the test to fail.

4.2 Rate-Optimal Oracle Inequalities

We show that this simple procedure is able to achieve both of the oracle inequalities of the previous sec-
tion simultaneously. We start with a generic version of the theorem that is stated in terms of an assumed
performance bound ω on the base algorithm. We will presently instantiate the base algorithm with FQI,
showing that this version precisely achieves the desired oracle inequalities with the correct rates.

Definition 2. Let B be a base offline RL algorithm for value function approximation that takes as
input a model class F , an offline dataset D of n samples for each h∈ [H], and a failure probability
δ. For β>0 and a function ω, we say that B is (β,ω)-regular if (1) ω is a known real-valued function
of n∈N, δ∈R, and Fk, and it satisfies ωn,δ(Fk)≤ωn,δ(Fk′) for all k′≥k; (2) B(D,Fk,δ) returns
(fh)h∈[H]⊆Fk such that fh+1 is independent of Dh and

P

(

max
h∈[H]

‖fh−T ∗
hfh+1‖2µh

≤β ·APPROX(Fk)+ωn,δ(Fk)

)

≥1−δ. (6)

In this definition, β represents a multiplicative factor of error on the approximation error and ω
represents the estimation error, which we expect to decrease in n and increase in the complexity of

the classF . Generally, we will have ωn,δ(F)=Õ(log(|F|/δ)/n) (see Lemma 2 for FQI). For model
selection, we thus hope to achieve a bound that matches what the base algorithm would achieve had

k∗ been known in advance, up to additive terms of

√

log|Fk∗ |
n .

Our primary theorem addresses Problem 1 using an arbitrary base algorithm.

Theorem 2. Let B be an (β,ω)-regular algorithm and suppose that k∗ (defined in Problem 1) exists.
Then Algorithm 1 with inputs D,B,F1⊆ ...⊆FM , ω, and δ≤1/e outputs π̂ such that, with probability
at least 1−δ,

Reg(π̂)≤C ·
√

C(µ)H
(

ωntrain,δ/4M (Fk∗
)+

H2(log|Fk∗
|+ι)

n

)

(7)

for some absolute constant C>0 and ι=log(M2H/δ).

The above theorem shows a regret bound scaling with the square root of the error term ω of the

base algorithm B plus a Õ(log(|Fk∗
|)/n) estimation error. Importantly, as stated in Problem 1, the

statistical complexity depends only onFk∗
and not any of the larger classes.

For concreteness, we now instantiate Theorem 2 with a standard finite-horizon FQI (Duan et al., 2020)

base algorithm, which satisfies Definition 2 with ωn(F) = Ô(log|F|/n). This in turn translates to
the desired rate-optimal oracle inequalities.

Lemma 2. Consider the FQI algorithm (stated in Appendix C for completeness). For a model class
F , FQI is a (3,ω)-regular base algorithm with

ωn,δ(F)=O
(

H2log(H|F|/δ)
n

)

.

By plugging this classic result in Theorem 2 as the base algorithm, we arrive at a solution to Problem 1.

Corollary 1. Let B be instantiated with FQI (Algorithm 3 in Appendix C). Define ι=log(M2H/δ)
Then, under the same conditions as Theorem 2, there is an absolute constant C > 0 such that, with
probability at least 1−δ, Algorithm 1 outputs π̂ satisfying

Reg(π̂)≤C ·
√

C(µ)H3(log|Fk∗
|+ι)

n
. (8)

The proof of Theorem 2 (and by extension Corollary 1) follows a nearly identical intuition as outlined
at the beginning of this section. In particular, the proof shows two parts: (1) MODBE will never return
a value of k that exceeds k∗ and (2) if MODBE returns k < k∗, then the approximation error must
be small because it was undetectable by the test when comparing to k∗. however, a key novelty is
recognizing that the generalization test in Line 12, which compares the errors of the two model classes
on the same regression problem, can be used to prove both (1) and (2).

9

Contextual Bandit As a basic validation experiment, we started with the CB setting of Lee et al.
(2021b) which considers a nested sequence of linear model classes with increasing dimension d.

Without any tuning, we simply set the tolerance of MODBE to TOL(Fk,Fk′)= dk′

n . Figure 1 shows
the results in terms of the log-regret as a function of the dataset size. We observe that both MODBE and
Hold-Out (choosing the model class with the smallest error) are able to easily match the performance
of the best model class while SLOPE (Lee et al., 2021b) ends up being fooled by nearby classes.

RL Discrete Control Our experimental setup for the RL problems in Gym (Brockman et al., 2016)
builds on top of the d3rlpy framework (Seno and Imai, 2021), which contains open-source implemen-
tations of offline RL algorithms. We used DQN (Mnih et al., 2015) (which is closest to FQI). In both
CartPole and MountainCar, we considered model classes that were two-layer neural networks with
ReLU activations and d nodes in the hidden layer and varied the parameter d. Again, we simply set
the tolerance of MODBE to dk/n motivated by pseudodimension bounds (Bartlett et al., 2019). For
simplicity, we modified MODBE to work in the discounted infinite horizon setting, which can trivially
be done (see Appendix D for details on this modification). The neural network classes considered had
d∈{10,50,1000,5000,25000,50000}. In both settings, we compared MODBE to Hold-Out, which
is a seemingly sensible baseline that chooses the model class with lowest estimated Bellman error on a
validation set. For deterministic settings only, this is theoretically justified. Figure 1 shows the reward
as a function of the dataset size (in episodes). On CartPole, MODBE and Hold-Out are both able to
compete with the best classes and are roughly at parity. However, on MountainCar, we find that Hold-
Out does surprisingly poorly while MODBE is successfully able to reject the poor model classes. We
conjecture that the empirical failure of Hold-out (which is not predicted in theory since the environment
is deterministic) is possibly due to sensitivity to optimization error that makes the inherent Bellman
error misleading. In contrast, the generalization test of MODBE seems to be more robust to this.

6 Discussion

In this paper, we introduced a new algorithm, MODBE, for model selection in offline RL: to our
knowledge it is the first to achieve rate-optimal oracle inequalities in n and COMP(Fk∗

). A number of
interesting open questions remain. (1) Are there rate-optimal procedures that can be used to select hy-
perparameters beyond model complexity such as learning rates, batch sizes, et cetera? (2) Can the ideas
of MODBE be extended to more general algorithms that do not rely on Bellman error minimization? (3)
For the robustness guarantee, the global completeness ξ is potentially much worse than APPROX(F).
Is it possible to achieve a robust oracle inequality of the formO(mink

√

APPROX(Fk)+log|Fk|/n)
when k∗ does not exist? We believe these questions are of great practical and theoretical importance
for understanding how to effectively evaluate and select models in offline RL.

Acknowledgments and Disclosure of Funding

We thank Annie Xie and Yannis Flet-Berliac for help and advice with experiments and anonymous
reviewers for their valuable feedback. JNL is supported by the NSF GRFP. This work was also
supported in part by NSF Grant #2112926.

References

Alekh Agarwal, Haipeng Luo, Behnam Neyshabur, and Robert E Schapire. Corralling a band of bandit
algorithms. In Conference on Learning Theory, pages 12–38. PMLR, 2017.

Alekh Agarwal, Sham Kakade, Akshay Krishnamurthy, and Wen Sun. Flambe: Structural complexity
and representation learning of low rank mdps. Advances in neural information processing systems,
33:20095–20107, 2020.

András Antos, Csaba Szepesvári, and Rémi Munos. Learning near-optimal policies with bellman-
residual minimization based fitted policy iteration and a single sample path. Machine Learning,
71(1):89–129, 2008.

Leemon Baird. Residual algorithms: Reinforcement learning with function approximation. In
Machine Learning Proceedings 1995, pages 30–37. Elsevier, 1995.

11

Peter L Bartlett. Fast rates for estimation error and oracle inequalities for model selection. Econometric
Theory, pages 545–552, 2008.

Peter L Bartlett, Stéphane Boucheron, and Gábor Lugosi. Model selection and error estimation.
Machine Learning, 48(1):85–113, 2002.

Peter L Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight vc-dimension and
pseudodimension bounds for piecewise linear neural networks. The Journal of Machine Learning
Research, 20(1):2285–2301, 2019.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym (2016). arXiv preprint arXiv:1606.01540, 2016.

Jonathan Chang, Kaiwen Wang, Nathan Kallus, and Wen Sun. Learning bellman complete
representations for offline policy evaluation. In International Conference on Machine Learning,
pages 2938–2971. PMLR, 2022.

Niladri Chatterji, Vidya Muthukumar, and Peter Bartlett. Osom: A simultaneously optimal algorithm
for multi-armed and linear contextual bandits. In International Conference on Artificial Intelligence
and Statistics, pages 1844–1854, 2020.

Jinglin Chen and Nan Jiang. Information-theoretic considerations in batch reinforcement learning.
In International Conference on Machine Learning, pages 1042–1051. PMLR, 2019.

Bo Dai, Ofir Nachum, Yinlam Chow, Lihong Li, Csaba Szepesvári, and Dale Schuurmans. Coindice:
Off-policy confidence interval estimation. Advances in neural information processing systems,
33:9398–9411, 2020.

Yaqi Duan, Zeyu Jia, and Mengdi Wang. Minimax-optimal off-policy evaluation with linear function
approximation. In International Conference on Machine Learning, pages 2701–2709. PMLR, 2020.

Yaqi Duan, Chi Jin, and Zhiyuan Li. Risk bounds and rademacher complexity in batch reinforcement
learning. In International Conference on Machine Learning, pages 2892–2902. PMLR, 2021.

Amir-massoud Farahmand and Csaba Szepesvári. Model selection in reinforcement learning. Machine
learning, 85(3):299–332, 2011.

Dylan Foster, Akshay Krishnamurthy, and Haipeng Luo. Model selection for contextual bandits. arXiv
preprint arXiv:1906.00531, 2019.

Dylan J Foster, Akshay Krishnamurthy, David Simchi-Levi, and Yunzong Xu. Offline reinforcement
learning: Fundamental barriers for value function approximation. arXiv preprint arXiv:2111.10919,
2021.

Assaf Hallak, Dotan Di-Castro, and Shie Mannor. Model selection in markovian processes. In
Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 374–382, 2013.

Nan Jiang and Lihong Li. Doubly robust off-policy value evaluation for reinforcement learning. In
International Conference on Machine Learning, pages 652–661. PMLR, 2016.

Nan Jiang, Alex Kulesza, and Satinder Singh. Abstraction selection in model-based reinforcement
learning. In International Conference on Machine Learning, pages 179–188. PMLR, 2015.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In
International Conference on Machine Learning, pages 5084–5096. PMLR, 2021.

Aviral Kumar, Anikait Singh, Stephen Tian, Chelsea Finn, and Sergey Levine. A workflow for offline
model-free robotic reinforcement learning. arXiv preprint arXiv:2109.10813, 2021.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforcement
learning, pages 45–73. Springer, 2012.

12

Jonathan Lee, Aldo Pacchiano, Vidya Muthukumar, Weihao Kong, and Emma Brunskill. Online model
selection for reinforcement learning with function approximation. In International Conference
on Artificial Intelligence and Statistics, pages 3340–3348. PMLR, 2021a.

Jonathan N Lee, George Tucker, Ofir Nachum, and Bo Dai. Model selection in batch policy
optimization. arXiv preprint arXiv:2112.12320, 2021b.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Provably good batch off-policy
reinforcement learning without great exploration. Advances in neural information processing
systems, 33:1264–1274, 2020.

Gábor Lugosi and Andrew B Nobel. Adaptive model selection using empirical complexities. The
Annals of Statistics, 27(6):1830–1864, 1999.

Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-Fei,
Silvio Savarese, Yuke Zhu, and Roberto Martín-Martín. What matters in learning from offline
human demonstrations for robot manipulation. arXiv preprint arXiv:2108.03298, 2021.

Pascal Massart. Concentration inequalities and model selection: Ecole d’Eté de Probabilités de
Saint-Flour XXXIII-2003. Springer, 2007.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Aditya Modi, Nan Jiang, Ambuj Tewari, and Satinder Singh. Sample complexity of reinforcement
learning using linearly combined model ensembles. In International Conference on Artificial
Intelligence and Statistics, pages 2010–2020. PMLR, 2020.

Aditya Modi, Jinglin Chen, Akshay Krishnamurthy, Nan Jiang, and Alekh Agarwal. Model-free
representation learning and exploration in low-rank mdps. arXiv preprint arXiv:2102.07035, 2021.

Rémi Munos and Csaba Szepesvári. Finite-time bounds for fitted value iteration. Journal of Machine
Learning Research, 9(5), 2008.

Vidya Muthukumar and Akshay Krishnamurthy. Universal and data-adaptive algorithms for model
selection in linear contextual bandits. arXiv preprint arXiv:2111.04688, 2021.

Ofir Nachum, Yinlam Chow, Bo Dai, and Lihong Li. Dualdice: Behavior-agnostic estimation of
discounted stationary distribution corrections. Advances in Neural Information Processing Systems,
32, 2019.

Aldo Pacchiano, My Phan, Yasin Abbasi Yadkori, Anup Rao, Julian Zimmert, Tor Lattimore, and
Csaba Szepesvari. Model selection in contextual stochastic bandit problems. Advances in Neural
Information Processing Systems, 33:10328–10337, 2020.

Tom Le Paine, Cosmin Paduraru, Andrea Michi, Caglar Gulcehre, Konrad Zolna, Alexander Novikov,
Ziyu Wang, and Nando de Freitas. Hyperparameter selection for offline reinforcement learning.
arXiv preprint arXiv:2007.09055, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Doina Precup. Eligibility traces for off-policy policy evaluation. Computer Science Department
Faculty Publication Series, page 80, 2000.

Takuma Seno and Michita Imai. d3rlpy: An offline deep reinforcement learning library. arXiv preprint
arXiv:2111.03788, 2021.

David Simchi-Levi and Yunzong Xu. Bypassing the monster: A faster and simpler optimal algorithm
for contextual bandits under realizability. Mathematics of Operations Research, 2021.

13

Yi Su, Pavithra Srinath, and Akshay Krishnamurthy. Adaptive estimator selection for off-policy
evaluation. In International Conference on Machine Learning, pages 9196–9205. PMLR, 2020.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Shengpu Tang and Jenna Wiens. Model selection for offline reinforcement learning: Practical
considerations for healthcare settings. In Machine Learning for Healthcare Conference, pages 2–35.
PMLR, 2021.

Philip Thomas and Emma Brunskill. Data-efficient off-policy policy evaluation for reinforcement
learning. In International Conference on Machine Learning, pages 2139–2148. PMLR, 2016.

Masatoshi Uehara and Wen Sun. Pessimistic model-based offline reinforcement learning under partial
coverage. arXiv preprint arXiv:2107.06226, 2021.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.

Ruosong Wang, Dean P Foster, and Sham M Kakade. What are the statistical limits of offline rl with
linear function approximation? arXiv preprint arXiv:2010.11895, 2020.

Tengyang Xie and Nan Jiang. Batch value-function approximation with only realizability. In
International Conference on Machine Learning, pages 11404–11413. PMLR, 2021.

Tengyang Xie, Yifei Ma, and Yu-Xiang Wang. Towards optimal off-policy evaluation for reinforcement
learning with marginalized importance sampling. Advances in Neural Information Processing
Systems, 32, 2019.

Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro, and Alekh Agarwal. Bellman-consistent
pessimism for offline reinforcement learning. Advances in neural information processing systems,
34:6683–6694, 2021.

Andrea Zanette. Exponential lower bounds for batch reinforcement learning: Batch rl can be
exponentially harder than online rl. In International Conference on Machine Learning, pages
12287–12297. PMLR, 2021.

Wenhao Zhan, Baihe Huang, Audrey Huang, Nan Jiang, and Jason D Lee. Offline reinforcement
learning with realizability and single-policy concentrability. arXiv preprint arXiv:2202.04634, 2022.

Siyuan Zhang and Nan Jiang. Towards hyperparameter-free policy selection for offline reinforcement
learning. Advances in Neural Information Processing Systems, 34, 2021.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Introduction, Discussion,
and discussions of assumptions and after every theorem statement.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] The work
is theoretical in nature.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See preliminaries
and before theorem statements.

(b) Did you include complete proofs of all theoretical results? [Yes] See appendix.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main
experimental results (either in the supplemental material or as a URL)? [Yes]

14

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were
chosen)? [Yes] See Empirical Results section and Appendix D.

(c) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix D.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]

(b) Did you mention the license of the assets? [Yes]

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board
(IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

15

A On the Nestedness of Model Classes

Throughout this work, we assume that the given model classes are nested in the sense thatF1⊆ ...⊆FM .
While this is a very common problem setting in both supervised learning and reinforcement learning,
it can cause theoretical issues with completeness since adding functions to a model class can actually
increase in the completeness error unlike realizability-based assumptions. Despite this, the following
proposition shows that no type of model selection bound is possible without this nestedness in general.

Proposition 1. There exists a family of MDPs, a collection of model classesF1 andF2, and a data
distribution µ=µ1,...,µH with C(µ)=Θ(1) such that (1) eitherF1 orF2 complete for any MDP in the
family and |Fi|=Θ(1) for i∈{1,2}, and (2) any algorithm that outputs π̂ with v(π∗)−E[v(π̂)]≤C1

must use at least C2S
1/3 samples where 0<C2 and 0<C1<1 are constants.

Proof. The proof is a simple consequence of a recent impossibility result from Foster et al. (2021)
for problems with concentrability but without completeness. Theirs is summarized as follows:

Let H =3. Let F1=(Fh
1)h∈[H] and F2=(Fh

2)h∈[H] be time-varying model classes such that each

contains a single function, fh
1 and fh

2 respectively for each h. The result of Foster et al. (2021) shows

that, defining Fh =Fh
1 ∪Fh

2 , there are a family of MDP modelsM and functions fh
1 and fh

2 such

that (1) the value function Qπ
h of any policy π is realized inFh for all h and any algorithm that outputs

π̂ with v(π∗)−E[v(π̂)]≤C1 must use at least C2S
1/3 samples for constants C1,C2.

Thus, for any MDP model inM, eitherF1 orF2 satisfies completeness by the realizability condition

above. A model selection oracle inequality should then ideally yield v(π∗)−E[v(π̂)] = Õ(
√

1/n)

since |Fh
1 |=1 and |Fh

2 |=1. However, this would contradiction the lower bound result of Foster et al.

(2021), which requires at least Ω(S1/3) samples to achieve constant error.

Though the argument is simple, we remark on its significance. Our model selection objectives outlined

in Section 3.1 suggest that we should aim to achieve v(π∗)−E[v(π̂)] = Õ
(

√

C(µ)logFk∗

n

)

for any

of the MDPs in the family, where n is the number of samples in the dataset and k∗ is the index of the
class that is complete for the given MDP. This is because it is guaranteed in the first condition that
at least one of the classes is complete and realizes Q∗.

However, the proposition shows that we will need at least poly(S) samples to achieve any non-trivial
regret bound, precluding the model selection objective since S can be much larger than logFk∗

. The
proposition also ensures that |Fi|=Θ(1) (in fact the size of both in the proof is simply |Fi|=1), which
is to say that the hardness is not due to the inherent complexity of the model classes.

Note that BVFT (Xie and Jiang, 2021) does not contradict this hardness result for the same reason that
it does not contradict the result of Foster et al. (2021): BVFT leverages a stronger coverage assumption.

B Proof of Theorem 2

B.1 Proof Sketch

Having outlined the intuition behind the algorithm and generalization error test in Section 4, we will
now sketch the proof in a simplified setting so that the primary mechanism can be seen in a slightly
more formal way. We restrict the sketch to the setting where M =2 and k∗∈{1,2} exists. For such
a setting the definition of TOLn(F1,F2) will be excessively large, but sufficient nonetheless to prove
our desired oracle inequality. We define the following quantities:

Lh(f,g) :=Eµh
(f(x,a)−r−g(x′))

2

L∗
h(g) :=inf

f
Lh(f,g)

where the inf in the second line is over all measurable functions. Note that this makes L∗
h(g) the

irreducible error of the regression problem which is actually achieved by f=T ∗g. For the purposes

of exposition, we will take ntrain =n and assume that the validation error L̃h(f,g) exactly equals its

expectation Lh(f,g) := Eµh
(f(x,a)−r−g(x′))

2
. For the sketch only, we will ignore dependence

16

on H and we will also assume that all necessary concentration inequalities hold with high probability10.
That is, the base algorithm returns functions fk=(fk

h) such that

‖fk
h−T ∗

hf
k
h+1‖2µh

≤L×APPROX(Fk)+ωn,δ(Fk) (11)

and the empirical minimizers g2=(g2h) in Algorithm 1 satisfy

Lh(g
2
h,f

1
h+1)−L∗

h(f
1
h+1)≤Õ

(

APPROX(F2)+
log|F2|

n

)

We will now break the analysis down into cases:

• If it happens that k∗=1 then we will show that the test will not fail and the correct class k∗=1
will always be returned by Algorithm 1. Note that in this case APPROX(F1)=0 by definition
of k∗. Thus, (11) implies that for all h∈ [H]:

Lh(f
1
h ,f

1
h+1)−L∗

h(f
1
h+1)=‖f1

h−T ∗
hf

1
h+1‖2µh

≤ωn,δ(F1)

Then, an algorithm that reliably picks k∗=1 should be able to tolerate generalization error on
the order of at least ωn,δ(F1). This motivates our definition of TOLn(F1,F2) in Line 9 of Al-

gorithm 1, which ensures that TOLn(F1,F2)≥ωn,δ(F1)
11. Then, when the algorithm reaches

the generalization test in Line 12, it will compare the error in Lh(f
1
h ,f

1
h+1)−L∗

h(f
1
h+1) to

the error in Lh(g
2
h,f

1
h+1)−L∗

h(f
1
h+1). Since TOLn(F1,F2)≥ωn,δ(F1) and Lh(f

1
h ,f

1
h+1)−

L∗
h(f

1
h+1)≤ωn,δ(F1) (because k∗=1), we will always have that

Lh(g
2
h,f

1
h+1)−L∗

h(f
1
h+1)≥Lh(f

1
h ,f

1
h+1)−L∗

h(f
1
h+1)−TOLn(F1,F2)

And, by adding L∗
h(f

1
h+1) to both sides of the above display, we see that the generalization

test in Line 12 will never fail:

Lh(g
2
h,f

1
h+1)≥Lh(f

1
h ,f

1
h+1)−TOLn(F1,F2)

meaning that Algorithm 1 will never make the switch from k=1 to k=2 when k∗=1, so
the correct model class is returned and the error is then trivially bounded as

‖f1
h−T ∗

hf
1
h+1‖2µh

≤ωn,δ(F1) (12)

• If k∗ = 2 and the switch to k= 2 is made, then the correct model class is returned and we
immediately have the error bound ‖f2

h−T ∗
hf

2
h+1‖2µh

≤ωn,δ(F2).

• However, if k∗=2 and the switch is not made (meaning Algorithm 1 returns k=1), we can
show that the error cannot be much worse than the error of k∗. To do this, we will use the fact
that the generalization test in Line 12 has (wrongly) succeeded in order to bound the error of
Lh(f

1
h ,f

1
h+1)−L∗

h(f
1
h+1) in terms of the error of Lh(g

2
h,f

1
h+1)−L∗

h(f
1
h+1) plus additional

terms due to the tolerance: That is, for any h∈ [H]

‖f1
h−T ∗

hf
1
h+1‖2µh

=Lh(f
1
h ,f

1
h+1)−L∗

h(f
1
h+1)

≤Lh(g
2
h,f

1
h+1)−L∗

h(f
1
h+1)+TOLn(F1,F2)

(13)

Recall that since k∗ = 2, there is no approximation error for this class so Lh(g
2
h,f

1
h+1)−

L∗
h(f

1
h+1)≤ Õ

(

log|F2|
n

)

. Finally, we can apply the definition of TOLn(F1,F2) as well as

monotonicity of ωn(F1)≤ωn(F2) so that (13) can further be bounded as

‖f1
h−T ∗

hf
1
h+1‖2µh

≤Õ
(

log|F2|
n

+ωn,δ(F2)

)

(14)

Therefore, since F1 did not fail the generalization test, we can actually use this to our
advantage to say that its error is not much worse thanF2 even though k∗=2.

10Eventually, in the main proof, care will have to be taken to ensure these events to occur with high probability
at the expense of logarithmic factors.

11Factors on δ (due to union bounds to handle the high probability events) are omitted in the sketch for clarity.

17

Algorithm 2 Model Selection via Bellman Error (MODBE) with indexing notation

1: Input: Offline datasetD=(Dh) of n samples for each h∈ [H], Base algorithmB, function classes
F1⊆ ...⊆FM , failure probability δ≤1/e.

2: Let ntrain = ⌈0.8·n⌉ and nvalid = ⌊0.2·n⌋ and split the dataset D randomly into Dtrain =(Dtrain,h)
of ntrain samples and Dvalid=(Dvalid,h) of nvalid samples for each h∈ [H].

3: Set ζ := 96H2log(16M2H/δ)
nvalid

.

4: Initialize k←1.
5: while k<M do
6: fk :=(fk

h)h∈[H]←B(Dtrain,Fk,δ/4M)
7: for k′←k+1,...,M do

8: Setαααk :=max
{

ωntrain,δ/4M (Fk),
200H2log(8M2H|Fk|/δ)

ntrain

}

for all k∈ [M]

9: Set TOLntrain
(Fk,Fk′) :=2δk′+2ζ+ωntrain,δ/4M (Fk) for all k<k′.

10: Minimize squared loss on training set for all h∈ [H] with regression targets from class k:

gk
′

h ←argmin
g∈Fk′

L̂h(g,f
k
h+1) :=

1

ntrain

∑

(x,a,r,x′)∈Dtrain,h

(

g(x,a)−r−fk
h+1(x

′)
)2

(15)

11: Compute squared loss estimator using the validation set for all h∈ [H] as a function of f :

L̃h(f,f
k
h+1)=

1

nvalid

∑

(x,a,r,x′)∈Dvalid,h

(

f(xh,ah)−rh−fk
h+1(x

′)
)2

(16)

12: if L̃(gk
′

h ,fk
h+1)<L̃(fk

h ,f
k
h+1)−TOLntrain

(Fk,Fk′) for any h∈ [H] then
13: k←k+1
14: goto Line 5.
15: end if
16: end for
17: goto Line 19
18: end while

19: return π̂=
(

πfk
h

)

h∈[H]

By combining the results of the case when k∗=1 (where we showed (12) holds) and the case when
k∗ = 2 (where we showed that (14) holds), we have managed to show that the index k returned by
Algorithm 1 will satisfy

‖fk
h−T ∗fk

h+1‖2µh
=Õ

(

log|Fk∗
|

n
+ωn,δ(Fk∗

)

)

Appealing to the performance difference lemma (Lemma 1), we are able to guarantee that

Reg(π̂)=Õ
(
√

C(µ)
(

log|Fk∗
|

n
+ωn,δ(Fk∗

)

)

)

B.2 Concentration Inequalities

We now turn to the formal proof of Theorem 2. In order to make the analysis easier, we state another
version of the algorithm, which is more notation-heavy but also more precise so that we can easily
refer objects in the analysis at different indices. To be clear, the algorithms are identical – the notation
has just been augmented to include indices and other modifiers for clarity.

We require several basic components in order for the final model selection bound to hold. The first
few are concentration results concerning the datasets. These will allow us to prove generalization
error bounds for each of the classes as well as to obtain good estimates of the regression error via the
validation set.

18

Recall some useful shorthand notation to represent the true and empirical loss functions. For any
measurable functions f,g∈(X×A→R) and a training dataset D=(Dh)h∈[H] of n samples for each

h and a validation dataset D′=(D′
h)h∈[H] of m samples for each h, we define

Lh(f,g)=Eµh
(f(x,a)−r−g(x′))

2
(17)

L∗
h(g)=inf

f
Lh(f,g) (18)

L̂h(f,g)=
1

n

∑

(x,a,r,x′)∈Dh

(

f(xi,h,ai,h)−r(xi,h,ai,h)−g(x′
i,h)
)2

(19)

L̃h(f,g)=
1

m

∑

(x,a,r,x′,)∈D′
h

(f(x,a)−r−g(x′))
2

(20)

where, as in the proof sketch, the inf in the second line is also over all measurable functions. Finally,
recall that, for any functions f,g∈(X×A→R), we have defined

‖f−T ∗g‖2µh
:=Eµh

(f(x,a)−T ∗g(x,a))
2

It is easy to see that this is equal to Lh(f, g) without the irreducible erorr: ‖f − T ∗g‖2µh
=

Lh(f,g)−L∗
h(g).

To proceed with the concentration analysis, we will show that all the necessary events will hold
simultaneously with high probability. This requires defining some additional notation.

We let fk=(fk
h)h∈[H]←B(D,Fk) for each k∈ [M]. Then, for each h∈ [H], we define the empirical

minimizers for a larger class k′ with the same regression target as follows:

gk
′→k

h =argmin
g∈Fk′

L̂h(g,f
k
h+1)

for all k′≥k. Not all of these need be computed in the execution of Algorithm 1, but we will analyze
them all for the sake of simplicity in the concentration analysis. We define the following event that
guarantees all of these value function approximators achieve their desired errors simultaneously up
to log factors.

E1=
⋂

k∈[M],k′>k,h∈[H]

{

‖gk′→k
h −T ∗

hf
k
h+1‖2µh

≤3APPROX(Fk′)+
C1H

2log(8M2H|Fk′ |/δ)
n

}

where C1>0 is a constant to be determined. The next event ensures that the base algorithm actually
achieves its guarantees from Definition 2.

E2=
⋂

k∈[M],h∈[H]

{

||fk
h−T ∗

hf
k
h+1‖2µ≤β ·APPROX(Fk)+wn,δ/4M (Fk)

}

The above E2 occurs with probability at least 1− δ
4 essentially by definition of the base algorithm. The

last event that we are interested in relates the true loss Lh to the validation loss L̃h on the independent

dataset D′. We define L̃∗
h(f

k
h+1) := L̃h(T

∗
hf

k
h+1,f

k
h+1). The events are given by

E3=
⋂

k∈[M],k′>k,h∈[H]

{

L̃h(g
k′→k
h ,fk

h+1)−L̃∗
h(f

k
h+1)≤2

(

Lh(g
k′→k
h ,fk

h+1)−L∗
h(f

k
h+1)

)

+
C3H

2log(16HM2/δ)

m

}

⋂ ⋂

k∈[M],h∈[H]

{

L̃h(f
k
h ,f

k
h+1)−L̃∗

h(f
k
h+1)≤2

(

Lh(f
k
h ,f

k
h+1)−L∗

h(f
k
h+1)

)

+
C3H

2log(16HM2/δ)

m

}

E4=
⋂

k∈[M],k′>k,h∈[H]

{

Lh(g
k′→k
h ,fk

h+1)−L∗
h(f

k
h+1)≤2

(

L̃h(g
k′→k
h ,fk

h+1)−L̃∗
h(f

k
h+1)

)

+
C4H

2log(16HM2/δ)

m

}

⋂ ⋂

k∈[M],h∈[H]

{

Lh(f
k
h ,f

k
h+1)−L∗

h(f
k
h+1)≤2

(

L̃h(f
k
h ,f

k
h+1)−L̃∗

h(f
k
h+1)

)

+
C4H

2log(16HM2/δ)

m

}

where C3,C4>0 are constants to be determined. We will prove the following guarantee.

19

Theorem 4. Let E=⋂4
i=1Ei. Then, P (E)≥1−δ.

To prove this result, we will show that these events occur with high probability. We require several
intermediate results, starting simply with Bernstein’s inequality.

Lemma 3 (Bernstein’s Inequality). Let Z1,...,Zn be a sequence of independent random variables
with E[Zi]=0, σ2=var(Zi) and |Zi|≤B. Then, with probability at least 1−δ, for any η>0

|
∑

i∈[n]

Zi|≤
√

2nσ2log(2/δ)+Blog(2/δ)

≤ nσ2

2η
+Blog(2/δ)+ηlog(2/δ)

Proof. The first inequality is a standard Bernstein inequality found in, for example, Vershynin (2018).
The second inequality follows by applying the AM-GM inequality to the first.

The next lemma is a generalization error bound showing that the Bellman error of a function f ∈F
can be bounded in terms of the excess training loss, the approximation error ofF , and the estimation

error which is Õ(log|F|/n). The next lemma shows that the minimizer of the empirical squared loss
achieves good generalization error with respect to the optimal function in its class.

Lemma 4. Fix F ⊆ (X × A → [0, H]) and h. Let g ∈ G be fixed where G ⊆ F . For
i ∈ [n] and (xi, ai) ∼ µh and x′

i ∼ P(·|x, a), define yi = r(xi, ai) + g(x′
i). Define

Zf
i = (f(xi,ai)−yi)2 − (f∗(xi,ai)−yi)2 where f∗ = argminf∈F ‖f − T ∗

hg‖2µh
. Then, with

probability at least 1−δ, for all f ∈F simultaneously,

‖f−T ∗
hg‖2µh

≤ 2

n

∑

i

Zf
i +3‖f∗−T ∗

hg‖2µh
+
40(H+1)2log(2|F|/δ)

n

Proof. We will drop some of the sub- and super-script notation with the understanding that E means

Eµh
and Zi means Zf

i . It is easy to see that E[Zi]=L(f,g)−L(f∗,g)=‖f−T ∗g‖2µh
−‖f∗−T ∗g‖2µh

.
Furthermore, we can bound the variance as

var(Zi)=E[Z2
i]−E[Zi]

2

≤EZ2
i

=E

(

(f(xi,ai)−yi)2−(f∗(xi,ai)−yi)2
)2

=E

(

(f(xi,ai)−f∗(xi,ai))
2
+2(f(xi,ai)−f∗(xi,ai))(f

∗(xi,ai)−yi)
)2

=E(f(xi,ai)−f∗(xi,ai))
2
(f(xi,ai)+f∗(xi,ai)−2yi)2

≤4(H+1)2‖f−f∗‖2µh

≤8(H+1)2
(

‖f−T ∗g‖2µh
+‖f∗−T ∗g‖2µh

)

where we have used the fact that f(·,·),f(·,·)∈ [0,H], yi ∈ [0,H+1], and (a+b)2 ≤ 2a2+2b2 for
a,b∈R. Using Lemma 3, we have that with probability at least 1−δ,

‖f−T ∗g‖2µh
−‖f∗−T ∗g‖2µh

=E[Zi]

≤ 1

n

∑

i

Zi+
var(Z1)

η
+
4(H+1)2log(2/δ)

n
+
ηlog(2/δ)

n

≤ 1

n

∑

i

Zi+
8(H+1)2

(

‖f−T ∗g‖2µh
+‖f∗−T ∗g‖2µh

)

η

+
4(H+1)2log(2/δ)

n
+
ηlog(2/δ)

n

≤ 1

n

∑

i

Zi+
‖f−T ∗g‖2µh

+‖f∗−T ∗g‖2µh

2
+
20(H+1)2log(2/δ)

n

20

where in the last equality we have chosen η = 16(H+1)2. Rearranging and then taking the union
bound over all f ∈F gives the result.

Note that if we takef= f̂h to be the empirical minimizer of L̂h(·,g), then the bound in Lemma 4 becomes

‖f̂h−T ∗
hg‖2µh

≤3‖f∗−T ∗
hg‖2µh

+
40(H+1)2log(2|F|/δ)

n

≤3APPROX(F)+ 40(H+1)2log(2|F|/δ)
n

where the last inequality follows because G⊆F . Equipped with these bounds, we are now ready to
prove that event E1 holds with good probability.

Proposition 2. P (E1)≥1− δ
4 with the constant C=200.

Proof. The proof follows by repeatedly applying Lemma 4. Note that f̂k
h+1 is independent of the data

Dh. Therefore, for any h we may condition on fk
h+1 and see that

‖gk′→k
h −T ∗fk

h+1‖2µh
≤3APPROX(Fk′)+

40(H+1)2log(2|F|/δ)
n

(21)

with probability at least 1−δ. By this independence, integrating ensures that the above holds regardless
of fk

h+1. Taking the union bound over all h∈ [H], all k∈ [M] and all k′>k, we get that (21) holds for

all with probability at least 1−M2Hδ. Changing variables to δ′=4M2Hδ completes the proof.

Proposition 3. P (E2)≥1− δ
4 .

Proof. This follows immediately from Definition 2 and a union bound and changing variables
δ′=4Mδ.

Proposition 4. P (E3∩E4)≥1− δ
2 with C3=C4=96.

Proof. Fix a single tuple (k, k′, h). For shorthand, let us define f := fk
h+1, g := gk

′→k
h

and g∗ := T ∗
hf

k
h+1. Then, similar to the proof of Lemma 4, we define yi = ri + f(x′

i) and

Zi=(g(xi,ai)−yi)2−(g∗(xi,ai)−yi)2.

Note that Eµh
[Zi]=L(g,f)−L∗(f)=‖g−T ∗

hf‖2µh
. Similarly, var(Zi)≤E[Z2

i] where

E[Z2
i]=E(g(xi,ai)−g∗(xi,ai))

2
(g(xi,ai)+g∗(xi,ai)−2yi)2

=4(H+1)2E(g(xi,ai)−g∗(xi,ai))
2

≤4(H+1)2‖g−g∗‖2µh

=4(H+1)2(Lh(g,f)−L∗
h(f))

By Lemma 3, we can guarantee that

|
(

L̃h(g,f)−L̃h(g
∗,f)

)

−(Lh(g,f)−L∗
h(f))|≤

4(H+1)2(Lh(g,f)−L∗
h(f))

η

+
4(H+1)2log(2/δ)

m
+
ηlog(2/δ)

m

=
(Lh(g,f)−L∗

h(f))

2
+
12(H+1)2log(2/δ)

m
with probability at least 1−δ. Rearranging terms, we are able to conclude that

L̃h(g,f)−L̃h(g
∗,f)≤ 3(Lh(g,f)−L∗

h(f))

2
+
12(H+1)2log(2/δ)

m
and, simultaneously,

Lh(g,f)−L∗
h(f)≤2

(

L̃h(g,f)−L̃h(g
∗,f)

)

+
24(H+1)2log(2/δ)

m

We may repeat the same calculation when setting g=fk
h for all k∈ [M] and h∈ [H]. Taking the union

bound over all (k,k′,h) and changing variables to δ′=4(M2H+MH)δ gives the result.

21

Proof of Theorem 4. The result follows immediately by a union bound combining the events E1, E2,

and E3 and E4, where it was shown that P (E1)≥1− δ
4 , P (E2)≥1− δ

4 and P (E3∩E4)≥1− δ
2 .

B.3 Proof of Theorem 2

Armed with the concentration results of the previous section, we are ready to prove Theorem 2, which
is restated here for clarity.

Theorem 2. Let B be an (β,ω)-regular algorithm and suppose that k∗ (defined in Problem 1) exists.
Then Algorithm 1 with inputs D,B,F1⊆ ...⊆FM , ω, and δ≤1/e outputs π̂ such that, with probability
at least 1−δ,

Reg(π̂)≤C ·
√

C(µ)H
(

ωntrain,δ/4M (Fk∗
)+

H2(log|Fk∗
|+ι)

n

)

(7)

for some absolute constant C>0 and ι=log(M2H/δ).

Proof. Let us assume the event E holds using the training dataset Dtrain of ntrain samples and validation
dataset Dvalid of nvalid samples. Theorem 4 shows that P (E)≥1−δ. Recall that the training set size is
ntrain and the validation set size isnvalid. As shorthand, Algorithm 2 also defines the following quantities:

αααk=max

{

ωntrain,δ/4M (Fk),
C1H

2log(8M2H|Fk|/δ)
ntrain

}

ζζζ=
C3H

2log(16M2H/δ)

nvalid

where C1 and C3 are the constants from Propositions 2 and 4.

Note that αααk is still monotonically non-decreasing in k as both sequences that comprise it are
monotonically non-decreasing. Recall the definition of TOLntrain

(Fk,Fk′):

TOLntrain
(Fk,Fk′) :=2ωntrain,δ/4M (Fk)+2ζζζ+αααk′

We will drop the subscript notation on ω and TOL with the implicit understanding that
ω(·)=ωntrain,δ/4M (·) and TOL(·,·)=TOLntrain

(·,·).
We will prove the oracle inequality of Theorem 2 when k∗ exists (second claim of Theorem 2).
Consider the following cases.

1. Suppose that algorithm has currently reached k=k∗. We can guarantee that the generalization
test in Line 12 will never fail in this situation, and, therefore, the algorithm will return k=k∗
which achieves the desired oracle inequality by definition. Note that by E , for all h∈ [H]
and k′>k,

L̃h(f
k
h ,f

k
h+1)−L̃∗

h(f
k
h+1)−TOL(Fk,Fk′)

≤2Lh(f
k
h ,f

k
h+1)−2L∗

h(f
k
h+1)+ζζζ−TOL(Fk,Fk′)

=2‖fk
h−fk

h+1‖2µh
+ζζζ−TOL(Fk,Fk′)

≤2ω(Fk)+ζζζ−TOL(Fk,Fk′)

=−αααk′−ζζζ
≤−ζζζ

where the second inequality has used E2 along with the fact that APPROX(Fk) = 0 in this
case. Similarly, we have that

0≤ 1

2

(

Lh(g
k′→k
h ,fk

h+1)−L∗
h(f

k
h+1)

)

≤ L̃h(g
k′→k
h ,fk

h+1)−L̃∗
h(f

k
h+1)+ζζζ

The above inequalities imply that we will always find that

L̃h(f
k
h ,f

k
h+1)−L̃∗

h(f
k
h+1)−TOL(Fk,Fk′)≤−ζζζ

≤ L̃h(g
k′→k
h ,fk

h+1)−L̃∗
h(f

k
h+1)

22

and therefore

L̃h(f
k
h ,f

k
h+1)−TOL(Fk,Fk′)≤ L̃h(g

k′→k
h ,fk

h+1)

Therefore, the test will never fail when k=k∗ while E holds.

2. Now let us consider the case where Algorithm 1 returns k<k∗. In this case, the test succeeded
for all k′ >k even though class Fk has APPROX(FK) 6=0. It remains to show that little is
lost in this case even though there is approximation error in the returned class. Note that this
implies that the test succeeded for k′=k∗. Therefore, we have

L̃h(f
k
h ,f

k
h+1)−TOL(Fk,Fk′)≤ L̃h(g

k∗→k
h ,fk

h+1)

for all h∈ [H]. Then, event E implies that

‖fk
h−T ∗

hf
k
h+1‖2µh

=Lh(f
k
h ,f

k
h+1)−L∗

h(f
k
h+1)

≤2
(

L̃h(f
k
h ,f

k
h+1)−L̃∗

h(f
k
h+1)

)

+ζζζ

≤2
(

L̃h(g
k∗→k
h ,fk

h+1)−L̃∗
h(f

k
h+1)

)

+ζζζ+2TOL(Fk,Fk∗
)

≤4
(

Lh(g
k∗→k
h ,fk

h+1)−L∗
h(f

k
h+1)

)

+2ζζζ+ζζζ+2TOL(Fk,Fk∗
)

≤8αααk∗
+7ζζζ+2ω(Fk)

≤8αααk∗
+7ζζζ+2ω(Fk∗

)

where the second to last line follows from applyingE1 along with the fact that fk
h+1∈Fk⊆Fk∗

and the last line uses the monotonicity property ω(Fk)≤ω(Fk∗
) since k<k∗ by assumption.

Since all the cases have been handled, we see that we are able to guarantee that, for all h∈ [H]

‖fk
h−T ∗

hf
k
h+1‖2µh

≤8αααk∗
+7ζζζ+2ω(Fk∗

)

Appealing to the performance difference lemma, the regret can be bounded as

Reg(π̂)≤2
√

C(µ)H(8αααk∗
+7ζζζ+2ω(Fk∗

))

This completes the proof of the second claim of Theorem 2 when k∗ exists.

B.4 Proof of Theorem 3

Theorem 3. Under the same conditions as Theorem 2, if k∗ does not exist, there exists an absolute
constant C>0 such that, with probability at least 1−δ, Algorithm 1 outputs π̂ satisfying

Reg(π̂)≤C · min
k∈[M]

{
√

C(µ)H
(

β ·ξk+ωntrain,δ/4M (Fk)+
H2(log|Fk|+ι)

n

)

}

. (9)

Proof. Now consider the case where k∗ does not necessarily exist. This setting is slightly
more challenging as we must tolerate the case where Algorithm 1 outputs k that is too large;
whereas, in the previous case, we showed that such an event could never occur. Let us denote
k†=argmink∈[M]

{

ξk+ωntrain,δ/4M (Fk)
}

.

1. If the algorithm returns k=k†, then we are done.

2. Consider the case whereFk is returned with k<k†. Then, since the test has succeeded with
k†, we have that for all h∈ [H]

L̃h(f
k
h ,f

k
h+1)−L̃∗

h(f
k
h+1)≤ L̃h(g

k†→k
h ,fk

h+1)−L̃∗
h(f

k
h+1)+TOL(Fk,Fk†)

≤2
(

Lh(g
k†→k
h ,fk

h+1)−L∗
h(f

k
h+1)

)

+ζζζ+TOL(Fk,Fk†)

≤2(3APPROX(Fk†)+δk†)+ζζζ+TOL(Fk,Fk†)

23

Furthermore,

Lh(f
k
h ,f

k
h+1)−L∗

h(f
k
h+1)≤2

(

L̃h(f
k
h ,f

k
h+1)−L̃∗

h(f
k
h+1)

)

+ζζζ

≤12APPROX(Fk†)+4αααk†+3ζζζ+2TOL(Fk,Fk†)

≤12APPROX(Fk†)+8αααk†+7ζζζ+2ω(Fk)

≤12APPROX(Fk†)+8αααk†+7ζζζ+2ω(Fk†)

3. Finally, we consider the last case where Fk is returned for k > k†. This implies that for
i=k−1 there is some j∈ [k,M] and h∈ [H] such that the test failed. That is,

L̃h(g
j→i
h ,f i

h+1)−L̃∗
h(f

i
h+1)≤ L̃h(f

i
h,f

i
h+1)−L̃∗

h(f
i
h+1)−TOL(Fi,Fj)

≤2
(

Lh(f
i
h,f

i
h+1)−L∗

h(f
i
h+1)

)

+ζζζ−TOL(Fi,Fj)

≤2(β ·APPROX(Fi)+ω(Fi))+ζζζ−TOL(Fi,Fj)

where the last line uses event E2 from the base algorithm guarantee. Further lower bounding
the left side, we get that

0≤ 1

2

(

Lh(g
j→i
h ,f i

h+1)−L∗
h(f

i
h+1)

)

≤ L̃h(g
j→i
h ,f i

h+1)−L̃∗
h(f

i
h+1)+ζζζ

≤2(β ·APPROX(Fi)+ω(Fi))+2ζζζ−TOL(Fi,Fj)

(22)

Plugging in our value for TOLntrain
(Fi,Fj) and rearranging, we are able to conclude from

(22) that

δj≤2βAPPROX(Fi)≤2βξi

Therefore,αααk≤αααj≤2Lξi≤2Lξk† by the monotone property of both sequences (αααk) and
(ξk). Finally using E2 again, this implies that for all h∈ [H]

‖fk
h−T ∗

hf
k
h+1‖2µh

≤LAPPROX(Fk)+ω(Fk)

≤β ·APPROX(Fk)+δk
≤β ·APPROX(Fk)+2β ·ξk†

≤3β ·ξk†

Observing the bounds from both cases, we are then able to conclude that for whatever k is returned
by Algorithm 1, we have the bound

max
h∈[H]

‖fk
h−T ∗

hf
k
h+1‖2µh

≤12(βξk†+αααk†+ζζζ+ω(Fk†))

Again, the performance difference lemma ensures that

Reg(π̂)≤2
√

12C(µ)H(βξk†+αααk†+ζζζ+ω(Fk†)).

We finally conclude by using the fact that αααk .ω(Fk)+
H2log(M2H|Fk|/δ)

ntrain
for all k ∈ [M] and that

ntrain and nvalid are constant fractions of n.

C FQI Algorithm and Guarantees

Here we state and then prove a more detailed version of the FQI guarantee that was originally stated
in Lemma 2.

Lemma 5. Consider the FQI algorithm (stated in Appendix C for completeness). For a model class

F , FQI is a (3,ω)-regular base algorithm with ωn,δ(F)= 200H2log(16H|F|/δ)
n .

24

Algorithm 3 Fitted Q-Iteration

1: Input: Offline dataset D=(Dh) of n samples for each h∈ [H] and model classF
2: Initialize fH+1=0∈F
3: for h=H,...,1 do
4:

fh←argmin
f∈F

1

n

∑

(x,a,r,x′)∈Dh

(f(x,a)−r−fh+1(x
′))

2

5: end for
6: return (fh)h∈[H]

Proof. This result can be obtained almost immediately from Lemma 4 in the case where the model
classes are the same. Observe that Dh is independent of fh+1. Therefore, conditioned on fh+1, we
have that

‖fh−T ∗
hfh+1‖2µh

≤3APPROX(F)+ 40(H+1)2log(2|F|/δ)
n

with probability at least 1−δ since fh is the empirical minimizer. Integrating out the conditioning,
taking the union bound over h∈ [H], and changing variables to δ′=Hδ yields the result.

We may now apply this result to immediately Corollaries 1 and 2.

Corollary 1. Let B be instantiated with FQI (Algorithm 3 in Appendix C). Define ι=log(M2H/δ)
Then, under the same conditions as Theorem 2, there is an absolute constant C > 0 such that, with
probability at least 1−δ, Algorithm 1 outputs π̂ satisfying

Reg(π̂)≤C ·
√

C(µ)H3(log|Fk∗
|+ι)

n
. (8)

Proof of Corollaries 1 and 2. We start with Corollary 2 Recall that Theorem 3 ensures that for an
(β,ω)-regular algorithm in the case where k∗ does not exist, we have

Reg(π̂)≤C0 · min
k∈[M]

{
√

C(µ)H
(

βξk+ωntrain,δ/4M (Fk)+
H2(log|Fk|+ι)

n

)

}

(23)

with probability at least 1−δ for some absolute constant C0>0 and ι=log(M2H/δ).

Using Lemma 2, we may substitute in the values of ω and L=3 to achieve

Reg(π̂)≤C0 · min
k∈[M]

{
√

C(µ)H
(

3ξk+
200H2log(64M |Fk|/δ)

ntrain

+
H2(log|Fk|+ι)

n

)

}

≤C ′
0 · min

k∈[M]

{
√

C(µ)H
(

ξk+
H2log(M |Fk|/δ)

n
+
H2(log|Fk|+ι)

n

)

}

≤C ′′
0 · min

k∈[M]

{

√

C(µ)Hξk+

√

C(µ)H3(log|Fk|+ι)

n

}

where C ′
0,C

′′
0 >0 are absolute constants. In the second line, we have used the fact ntrain and nvalid are

constant fractions of n. In the third line, we have used
√
a+b≤√a+

√
b for a,b≥0.

25

For Corollary 1, when k∗ exists, the proof is essentially identical, except that we use Theorem 2:

Reg(π̂)≤C1 ·
√

C(µ)H
(

ωntrain,δ/4M (Fk∗
)+

H2(log|Fk∗
|+ι)

n

)

≤C ′
1 ·
√

C(µ)H
(

200H2log(64HM |Fk∗
|/δ)

ntrain

+
H2(log|Fk∗

|+ι)

n

)

≤C ′′
1 ·
√

C(µ)H3(log|Fk∗
|+ι)

n

where C1,C
′
1,C

′′
1 >0 are all absolute constants.

D Experiment Details

D.1 Practical Implementation of MODBE for the RL Setting

MODBE, as stated in Algorithm 1, is originally designed for the finite horizon case in which there
are H functions comprising the value function approximators. For the contextual bandit setting (where
H=1), we make no modifications. In an effort to further increase the computational and statistical
efficiency of MODBE in the RL setting (as well as to demonstrate that its primary principles are fairly
robust), we opted for a discounted infinite horizon implementation with discount factor γ = 0.99
(default for d3rlpy).

We use a single fixed dataset D (not split into timesteps) and fed this to the Deep Q-Network (DQN)
implementation of Seno and Imai (2021) using all the default hyperparameters except for the network
architecture, which was specific to each model class as described in Section 5. For consistency, we
set the number of epochs to 20 across all model classes and experiments for DQN. This generates
value function approximators f1, ... ,fM . To implement a close approximation of Algorithm 1 in
discounted case, considered the following procedure. While the algorithm is on model class k, we
compute empirical risk minimizers for k′≥k so that

gk
′←argmin

g∈Fk′

1

ntrain

∑

(x,a,r,x′)∈Dtrain

(g(x,a)−r−γfk(x′))2

We then decide whether to switch to k+1 by using the generalization test:

L̃(gk
′

,fk)≥ L̃(gk,fk)−TOLntrain
(Fk,Fk′)

where the functional L̃(·,fk) is the estimated loss on the validation data, as before:

L̃(g,fk)=
1

nvalid

∑

(x,a,r,x′)∈Dvalid

(g(x,a)−r−γfk(x′))2

As noted in Section 5, we did not find it necessary to tune the any parameters related to TOLntrain
(Fk,Fk′)

and simply set it to
dk′

n where dk is the dimension of the linar model (for the contextual bandit setting)
or the number of hidden nodes in the neural network (for the RL settings), which roughly (up to
constants and logarithmic factors) matches known bounds on the pseudo-dimension (Bartlett et al.,
2019). The lack of necessity to actually make TOL theoretically valid is actually a positive of the
algorithm: it shows it is fairly robust in practice and simply matching the order appears to be good
enough to generate the current results. To fit the empirical risk minimizers in the CB setting, we simply
used ridge regression as in Lee et al. (2021b). To do the same in the RL setting, we trained neural
networks of with the same architectures as the DQNs in d3rlpy (state inputs and one output per action
to predict the value). We used an Adam optimizer with on 10 epochs with a learning rate of 4e-3 and
a batch size of 64. This was implemented through PyTorch (Paszke et al., 2019).

One might ask whether it is possible to extend this beyond neural networks with one hidden layer.
In practice one can easily use any model, but, in theory, some care may need to be taken in order to
set the value of TOLntrain

. For example, to handle more hidden layers, we can appeal to generalized
pseudo-dimension bounds (Bartlett et al., 2019). As observed in the current experiments, the setting
of TOLntrain

to rough estimates does not seem to make a huge impact on the results.

26

Hold-out baseline The hold-out method as a model selection baseline was implemented by choosing

k that minimizes L̃(fk, fk) in the RL setting. In the contextual bandit setting it is equivalent to

selecting k to minimize L̃(fk,0), since there is only one step.

D.2 Experimental Setups

We now describe the specific experimental setup so that it may be reproduced. In order to generate the
plots which vary based on the sample size of D, we simply curtailed the dataset to the given amount of
samples shown on the x-axis. Generation of the datasets varied in each domain. It would be interesting
in the future to evaluate performance on more stochastic RL environments (the CB evnironment is
stochastic) as these are ones we expect toe Hold-out method to do very poorly on. Despite this, our
current experiments show it is already sub-optimal even in deterministic settings.

Contextual Bandit We replicated almost exactly the study of Lee et al. (2021b). To recap their study,
there is a linear contextual bandit with |A|=10 and an infinite state space where the linear feature vectors
of ambient dimension d=200 for each action are generated by sampling from normal distributions with
different covariance matrices. The reward function is generated by taking the inner product of θ∗ with
feature vector for action a∈A. To make this an interesting model selection problem, only the first d∗=
30 coordinates are non-zero (although this is not known to the learner) and thus a model class using only
the firstd∗ coordinates is sufficient to solve the problem without any approximation error. The individual
model classes were generated by simply truncating the coordinates of the feature vectors to the following
sizes {15,20,25,28,29,30,50,75,100,200}. The base algorithm was Algorithm 1 of Lee et al. (2021b).

One difference is that we included several additional model classes to the d∗ = 30 model that are
close enough to fool the SLOPE algorithm used in Lee et al. (2021b). This also involved increasing
the ambient dimension from d = 100 to d = 200, but we kept d∗ = 30. We suspect that this poor
performance of SLOPE is due to the fact that SLOPE is heavily dependent on the known deviation
bounds whereas MODBE seems to be comparatively robust. The results of SLOPE seem to be poor
whenever the deviation bounds are invalid or too conservative.

CartPole We used the default dataset from d3rlpy (Seno and Imai, 2021) which contains approx-
imately 1500 episodes of a good (but not optimal) behavior policy on the CartPole domain. Everything
else remains the same as the standard CartPole environment in Gym (Brockman et al., 2016).

MountainCar Since no default dataset for MountainCar is provided in d3rlpy, we generated our
own through the following procedure. First, we trained a policy online via SARSA on the discretized
environment to achieve good performance on the task. We then collected the offline policy by executing
1000 episodes under the good policy which also took a random action at any time step with probability
0.3 to induce some coverage on the dataset. To simplify the problem for the base DQN algorithm,
we also replaced the sparse reward in the offline dataset with a more dense and informative reward
function, giving bonuses for high speeds, proximity to the goal, and achieving the goal. We note that
this change is done only to simplify the problem and help the base algorithm solve the task with limited
computational resources and tuning so as to increase reproducibility. Everything else remains the
same as the standard MountainCar environment in Gym (Brockman et al., 2016).

D.3 Hardware

Contextual bandit experiments were run on a standard personal laptop with 16 GB of memory and
an Intel Core i7 processor. RL experiments were run on an internal cluster with 16 GB of memory
and an NVIDIA GTX 1080 Ti GPU for PyTorch (Paszke et al., 2019).

27

	1 Introduction
	1.1 Contributions
	1.2 Additional Closely Related Work

	2 Preliminaries
	2.1 Offline Reinforcement Learning

	3 Model Selection Objectives
	3.1 The Model Selection Problem
	3.2 Limitations of Prior Approaches

	4 ModBE Algorithm
	4.1 Full Algorithm
	4.2 Rate-Optimal Oracle Inequalities
	4.2.1 Robustness

	5 Empirical Results
	6 Discussion
	A On the Nestedness of Model Classes
	B Proof of Theorem 2
	B.1 Proof Sketch
	B.2 Concentration Inequalities
	B.3 Proof of Theorem 2
	B.4 Proof of Theorem 3

	C FQI Algorithm and Guarantees
	D Experiment Details
	D.1 Practical Implementation of ModBE for the RL Setting
	D.2 Experimental Setups
	D.3 Hardware

