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Abstract
Sketching algorithms or sketches enable accurate network
measurement results with low resource footprints. While
emerging programmable switches are an attractive target to
get these benefits, current implementations of sketches are
either inefficient and/or infeasible on hardware. Our contri-
butions in the paper are: (1) systematically analyzing the re-
source bottlenecks of existing sketch implementations in hard-
ware; (2) identifying practical and correct-by-construction op-
timization techniques to tackle the identified bottlenecks; and
(3) designing an easy-to-use library called SketchLib to help
developers efficiently implement their sketch algorithms in
switch hardware to benefit from these resource optimizations.
Our evaluation on state-of-the-art sketches demonstrates that
SketchLib reduces the hardware resource footprint up to 96%
without impacting fidelity.

1 Introduction
The ability to monitor network traffic is necessary for var-
ious network management tasks such as traffic engineer-
ing, anomaly detection, load balancing, and resource pro-
visioning [10, 13, 27, 29, 43, 45, 54]. In this respect, recent
developments in programmable switches and attendant lan-
guages [9, 14] make it possible to support richer fine-grained
and real-time monitoring capabilities.

With this network programmability, sketch-based moni-
toring has emerged as a promising alternative to traditional
sampling-based techniques [19, 49]. At a high-level, sketch
algorithms consist of updating multiple counter arrays with a
series of independent hash function calls and counter updates.
Sketch-based approaches have been developed to support a
broad spectrum of measurement tasks with provable resource-
accuracy trade-offs, including heavy-hitter detection or quan-
tile estimation (e.g., [17, 21]), general estimation capabilities
(e.g., UnivMon [41]), and more expressive multidimensional
analytics (e.g., R-HHH [12]).

While prior efforts have demonstrated the feasibility of ex-
pressing sketches using these language APIs [32, 41, 46, 53],
implementing sketches efficiently in hardware remains an

open challenge. For example, off-the-shelf sketch implemen-
tations often cannot run with the desired accuracy levels due
to insufficient hardware resources (see §3). Indeed, some pro-
posed sketches (e.g., [41]) are infeasible as implemented, or
even if they are feasible, consume significant resources.

Even if more hardware resources may become available,
so too do operators’ demands of in-switch applications, and
the resources consumed by sketches will be unavailable for
other switch functions. Thus, it is essential to explore if, and
how, we can efficiently realize sketch-based telemetry on pro-
grammable switches. This is the central question that this
paper tackles. Specifically, we focus on programmable hard-
ware switches based on the Reconfigurable Match-Action
Tables (RMT) paradigm [1].

We identify and analyze four key resource bottlenecks for
realizing sketches on RMT switch hardware:
• Hash calls: Sketches make a number of counter updates

based on independent hash functions, requiring a large
number of hash calls in hardware.

• Memory accesses: Sketches need to access on-chip mem-
ory (e.g., SRAM) for counter updates, but the number of
memory accesses per packet is limited in hardware.

• Pipeline stages: Some sketches need to select a subset
of counter arrays for counter updates [23, 37, 41]. How-
ever, implementing this naively can cause a long chain of
sequential computation dependencies which stresses the
limited number of switch pipeline stages.

• Resources for tracking heavy flowkeys: Some sketches
need to keep track of the flowkeys identifying the heavy
hitters (e.g., 5-tuple, source IP, or destination IP) [12, 17,
21, 36, 41]. Common structures such as priority queues or
heaps used in software are not supported on programmable
switches and existing solutions entail undesirable tradeoffs
between miss rate, data plane memory, and control plane
bandwidth.
Having identified these bottlenecks, our contribution is

a careful synthesis of known and novel optimizations into
a practical library for enabling efficient sketch implemen-



tations atop the RMT architecture. While some of these
build on prior work in optimizing sketching for other targets
such as software switches, FPGAs, and embedded platforms
[40, 51, 52, 55], our main contribution is in realizing feasible
and effective optimizations based on our bottleneck analy-
sis and translating them into the switch hardware setting.
For example, to reduce the number of hash calls, we iden-
tify opportunities to consolidate and reuse hash results across
multiple counter updates [24, 35]. Similarly, we identify an
opportunity to reduce the pipeline stages by eliminating code
dependencies based on longest prefix matching using TCAM
[55]. We reduce the memory accesses by refactoring sketch
algorithms and removing unnecessary memory accesses. We
also develop practical flowkey tracking mechanisms that are
feasible in hardware. Note that all optimizations preserve
correctness while reducing the resource footprint.

To make it easy for sketch developers to benefit from
these optimizations with minimal effort, we implement Sketch-
Lib, an easy-to-use API using the P4 language [14]. These
optimizations can be applied to a broad spectrum of clas-
sical sketches (e.g., [17, 21, 36]) and recent innovations
(e.g., [12, 41]). We qualitatively evaluate the suitability of
SketchLib for 19 published sketches and observe that 15 of
them can be expressed and can benefit from one or more
of our optimizations. We acknowledge that not all optimiza-
tions are applicable for every sketch and we envision sketch
developers using our API to adopt the relevant optimizations.

We quantitatively evaluate the utility of SketchLib in
improving 7 of the 15 applicable sketches covering a di-
verse set of target telemetry tasks: Count Sketch (CS) [17],
PCSA [25], MRAC [37], Multi-resolution Bitmap [23], Hier-
archical Heavy Hitters [12], and UnivMon [41]. Our evalua-
tion using a range of packet traces empirically confirms that
our optimizations provide similar accuracy ( 1.9%) with sub-
stantially (up to 96%) reduced resource usage. Furthermore,
some complex sketches (e.g., UnivMon) that were previously
infeasible on current hardware become feasible.

Contributions and Roadmap. To summarize, we make the
following contributions:
• Bottleneck Analysis (§3): We identified four key resource

bottlenecks for sketch implementations on the hardware
programmable switch.

• Optimizations (§4): We identify and synthesize practical
correctness-preserving optimizations to address the bottle-
necks for sketches on switch hardware.

• API Implementation (§5): We design a convenient API
to make our optimizations easy to use for developers who
implement sketches on RMT programmable switches.1 We
verified significant resource benefits on a broad range of
sketching algorithms.

1SketchLib is publicly available at https://github.com/SketchLib.
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Figure 1: Count Sketch has three components - hash computa-
tions, multiple counter arrays, and heavy flowkey storage.

control ingress // R-HHH
{

V = randomInt(1, L);

if (V == 1) {
key = srcIP/32;
apply(CS_level_1,key);

}
if (V == 2) {

key = srcIP/24;
apply(CS_level_2,key);

}
if (V == 3) {

key = srcIP/16;
apply(CS_level_3,key);

}
...

}

(a) R-HHH

control ingress // UnivMon
{

key = srcIP/32;

apply(CS_level_1, key);
apply(compute_hash_h1, key);

if (h1 == 1) { // 0 or 1
apply(CS_level_2, key);
apply(compute_hash_h2, key);

if (h2 == 1) {
apply(CS_level_3, key);
apply(compute_hash_h3, key);

if (h3 == 1) {
...

}

(b) UnivMon

Figure 2: Simplified P4 code of existing multi-level sketches.

2 Background
In this section, we start by providing some background on
sketching algorithms and programmable switch architecture.
We then describe how the sketch code is mapped onto the
hardware resources.

2.1 Background on Sketches
Sketching algorithms or sketches are randomized approxi-
mation algorithms that are designed to compute different
observed statistics on a given data stream during every mea-
surement time interval called epoch. In network monitoring,
prior work has shown that sketches (e.g., [12,17,21,32,40–42,
46,53]) offer better resource-accuracy tradeoffs relative to tra-
ditional techniques that rely on sampling (e.g., NetFlow [19]).
Our focus in this paper is not to develop new sketches but to
enable efficient sketch realizations on programmable switches.
To better understand the different resource requirements of
sketches, we classify prior sketching work into two categories:
1. Single-level sketches: As a canonical example, consider
the count sketch (CS) [17] for heavy hitter detection shown in
Fig. 1. A single-level sketch such as Count Sketch maintains a
2D-array of counters: R independent counter arrays with size
of W ; i.e., R ⇥ W memory counters. As each packet arrives,
we extract a flowkey from the packet (e.g., srcIP, IP 5-tuple).
On this key, we compute two independent hash functions ci
and si, corresponding for each row i. ci is used to select a
specific column and si is a 1-bit hash used to determine either
to increase or decrease the counter.
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Figure 3: RMT switch architecture.

The total number of hash computations is 2R. Count Sketch
requires additional memory space for storing heavy flowkeys
whose estimated flow counts are above a threshold. Other
single-level sketches requiring a 2D-array include the count-
min sketch (CMS) [21], k-ary (Kary) sketch [36]. Some single-
level sketches like HyperLogLog (HLL) [26] only need a 1D
array data structure.
2. Multi-level sketches: Conceptually, these consist of multi-
ple single-level sketches to enable richer queries. For instance,
R-HHH and UnivMon can use multiple count sketches, called
levels (e.g., L levels of R ⇥ W counters). R-HHH supports
detection of hierarchical heavy hitters, which detects heavy
hitters based on different lengths of IP prefixes and Univ-
Mon provides more general estimation capabilities. Other
sketches like PCSA, MRAC, and multi resolution bitmap
(MRB) [23,25,37] use multiple 1D-array single-level sketches.
Multi-level sketches typically select a subset of counter arrays
to issue counter updates for a given flowkey. For instance, as
shown in Fig. 2a, R-HHH randomly selects one level of count
sketch using a level-specific key (e.g., IP prefix) to update
per packet. In contrast, UnivMon uses an additional sampling
stage using hash functions that return 0 or 1 to select levels
for update, as shown in Fig. 2b.

2.2 Programmable Switch Hardware
Our focus in this paper is programmable switch hardware
based on the Reconfigurable Match-Action Tables (RMT)
paradigm [15]. A canonical commercial realization of this ar-
chitecture is the Intel Tofino switch chip [1]. Based on public
documentation and conversations with vendors, we believe
that while other programmable switches (e.g., Broadcom Tri-
dent [2]) may have different hardware resource allocation
strategies, the architectural bottlenecks for sketches are likely
similar. We leave it as future work to extend SketchLib to
other hardware targets.
Hardware architecture. RMT-based programmable
switches have a pipeline of reconfigurable match-action
tables in the data plane, as shown in Fig. 3. There are
constraints in packet processing pipeline to meet the line-rate
processing requirement. For example, at each stage, a
packet can access a limited amount of compute and memory
resources. Each stage has an identical design with the
same types of resources. To provide flexible match-action
operations, each stage has a match table that matches packet

parser parse_ipv4 {
extract ( ipv4 ); 
return select ( latest.protocol )

6:         parse_tcp
17:         parse_udp;

Default:         ingress;
}}

control ingress {// UnivMon
apply (count_sketch_level_1)
apply (compute_hash_1)

// Dependency
if ( hash_1==1 ) {

apply (count_sketch_level_2)
apply (compute_hash_2)  }

// Dependency
if ( hash_2==1 )  { 

apply (count_sketch_level_3)
apply (compute_hash_2)  }

}

control egress {
mirroring ( )
routing ( ) 

}

…
…
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Figure 4: Mapping P4 code to switch resources.

headers to specific values followed by an action unit that
executes a set of simple instructions, depending on the output
of the matching unit.
Key hardware resources. We now briefly describe the key
hardware resources available in each pipeline stage. First,
there are a number of hardware hash function calls (hash
calls) per pipeline stage. They are used to compute hash func-
tions (e.g., CRC with user-defined polynomials) over packet
header fields or metadata to support operations such as load
balancing and table lookups. Each pipeline stage also has a
fixed amount of SRAM that can be used to maintain state, for
example counter arrays. Stateful ALUs (SALUs) are hardware
resources that allow one read and one write operation to the
stateful object in SRAM. Each SALU can be used for counter
update operations such as counter increment or decrement. Fi-
nally, each pipeline stage is also equipped with some amount
of ternary content-addressable memory (TCAM) that can be
used for wildcard matches over header fields. Overall, the
amount of these resources is fixed at hardware design time,
and it is limited. For example, a commercial programmable
switch today is equipped with (at most) 10 SALUs, 10 hash
calls, 10 MBs of SRAM and TCAM per pipeline stage with a
total of 12 pipeline stages [15, 43, 56].2

The data plane can interact with the switch control plane
for additional processing. However, the switch control plane
is not designed for real-time processing, e.g., the bandwidth
to the control plane is limited and the response time is high.
So it is only useful for infrequent operations.

2.3 P4 Programming and Compilation
Programs for RMT switches are written in the P4 lan-
guage [14] as illustrated in Fig. 4. At a high-level, a P4 pro-
gram consists of the following components. First, a packet
parser parses the header fields of each packet and stores the ex-
tracted fields into metadata. Second, a series of match-action

2The other absolute resource numbers are proprietary.
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figurations. Dotted red line indicates target accuracy.

operations are executed based on the match-action abstraction,
e.g., matching a specific header field and update a register as
an action. The action is specified by special functions that
map operations to hardware resources, e.g., functions for hash-
ing and accessing memory. Finally, the P4 program defines
the packet forwarding behaviors, e.g., routing a packet to an
egress port, recirculating it in the pipeline, or forwarding it to
the switch control plane.

The P4 compiler maps the P4 program into a static pipeline
realization. The compiler analyzes the dependencies between
operations in the P4 program, to map the program on to the
pipeline stages. For instance, given the code snippet in Fig. 4,
the resolution of each if-clause depends on the previous
hash result. Because of this dependency, two consecutive if-
clauses cannot run in parallel, so the compiler has to map
them to different pipeline stages in order for them to run
sequentially. If a mapping of a whole program is possible
considering hardware constraints, packets are guaranteed to be
processed at line rate; otherwise compilation fails. Note that
vendor-specific compiler backends are typically proprietary.

3 Bottleneck Analysis
In this section, we consider three exemplar sketches (single-
level: count sketch; multi-level: R-HHH and UnivMon) to
quantify the resource bottlenecks. We implement them in P4
based on the logic described in prior work [17, 23, 25, 26, 37,
41] similar to the structure presented in Fig. 2.

3.1 Methodology and Setup
Configuring sketches. Running sketches entails picking pa-
rameters (e.g., the count (R) and size (W ) of counter arrays)
to trade-off the accuracy vs. resource use. We envision an
operator configuring the sketches with some target accuracy
goal, e.g., the median error should be less than 5%. Operators
can use trace-driven analysis to pick reasonable operating
regimes for these parameters.

As an example, Fig. 5 illustrates this trade-off for entropy
estimation using UnivMon. The figure shows the estimation
accuracy using an hour-long inter-ISP packet trace captured
on a OC-192 link [7] with different parameters R and W for
count sketches and L = 16 levels. We see that the error de-
creases as we increase the number of rows (R) and width (W )

for count sketches. Naturally, the higher accuracy configu-
rations incur more hardware resources. For our bottleneck
analysis, we target an accuracy of under 5% median error
(dotted red line in Fig. 5), which we achieve with minimal
resource use with the configuration R = 3 and W = 2048. We
repeat the analysis for count sketch and R-HHH and consider
a similar operating regime for these sketches as well.

Estimating resource footprint. For a given set of sketch
parameters, the most direct way to measure the required hard-
ware resources is to compile the code and run it on the hard-
ware. However, this limits our analysis to currently available
platforms. In order to support “what if” analysis for hardware
with different resources (e.g., more pipeline stages), we ex-
tended an existing open source tool for mapping P4 programs
to the RMT hardware, which we will refer to as RMT resource
mapper [34]. Specifically, we address three issues to extend
RMT resource mapper for our analysis:
• Inputs: The input to Tofino compiler is P4-16 code with

some hardware-specific primitives whereas RMT resource
mapper accepts only P4-14 code [8]. Thus, we first con-
vert our P4-16 code into equivalent P4-14 code. Then,
we convert Tofino-specific primitives to equivalent ones
specified in the language specification. For instance, we
replace Tofino-specific primitives for accessing registers
with register_read and register_write.

• Resources: First, RMT resource mapper does not model
hash calls and SALUs in their original design. Thus, we
extend RMT resource mapper to model hash calls and
SALUs and added the corresponding optimization con-
straints for assignment of these new resources. Second, we
observed that RMT resource mapper assigns memory even
for tables without any entries and action data. To fix this
disconnect, we decouple the memory/table assignment.

• Objective: RMT resource mapper supports different opti-
mization objectives: minimizing latency, power, or pipeline
stages. The objective of minimizing pipeline stages is the
most suitable because it gives resource mappings that are
closest to those generated by the Tofino compiler.
With these fixes in place, we validate our extensions by

comparing the resource usages between RMT resource map-
per and Tofino compiler for a wide range of sketches and
configurations, for the cases that are feasible on current hard-
ware. Based on the measurement results, we conclude that
our modified RMT resource mapper is a good proxy of Tofino
compiler as it captures the relevant resource constraints, and
its resource allocation results are close to that of Tofino com-
piler (see Appendix A for more details).

3.2 Identified Bottlenecks
Using the RMT resource mapper, we measure the usage of
each type of resources based on the output of the compiler for
three sketches: Count Sketch, R-HHH, and UnivMon. For the
purpose of bottleneck analysis, we use a base configuration
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Figure 6: Resource bottlenecks for sketch implementations.

of: W = 2048, R = 3, and L = 16 for UnivMon and L = 25
for R-HHH [12], which provides an error of up to 15% when
processing packets from an inter-ISP packet trace [7]. We
choose the value for L from the original papers [12, 41].

Fig. 6 illustrates how the use of four bottleneck resources
depends on key sketch parameters. While the amount of avail-
able hardware resources can differ across hardware vendors
and versions, we see that resource usage increases rapidly
as we need more counters to meet higher accuracy require-
ments. While we cannot report exact resource usages due to
proprietary reasons, we note that UnivMon and R-HHH are
infeasible today on the hardware for many configurations. Per-
haps more importantly, switches must also support tasks other
than sketch-based telemetry (e.g., [33, 43]). Thus, it is critical
to reduce the resource footprint of the sketches to ensure they
can co-exist with other switch functions.
B1. Hash calls: Recall that count sketch needs 2R hash calls
per packet (§2.1), matching the results in Fig. 6a. UnivMon
and R-HHH execute one count sketch per level L. As a result,
R-HHH needs L ·2R hash calls. UnivMon needs to compute
an additional L 1-bit hash calls in its sampling stage, adding
up to L · (2R + 1) hash calls.

At first glance, it may seem that the number of hash calls
is not a bottleneck as these are called on demand per packet.
While this is true in a software setting, where only the re-
quired calls are performed on demand, hashing on hardware
is different. On a hardware switch, all hash calls appearing
in the code need to be pre-allocated since execution at line
rate must be guaranteed for all possible execution paths. This
increases resource requirements, even if hash calls need not
be executed. For example, even though UnivMon and R-HHH
(Fig. 2) may not update all levels of count sketches for all
packets, all hash resources must be pre-allocated.
B2. Memory accesses: Count Sketch maintains R counter
arrays (§2.1) and for each row it must read one counter from
memory and update its value. This means that count sketch
needs R counter updates per packet, requiring R Stateful ALUs
(SALUs) as shown in Fig. 6b. When the compiler compiles

the P4 code of UnivMon and R-HHH in Fig. 2, it allocates
separate memory regions and SALUs for each level of count
sketches, thus SALU requirements are proportional to the
number of levels L. Since we need R memory processes per
packet for the count sketch at each level, we need a total
L·R SALUs for R-HHH and UnivMon. This makes memory
access hardware (SALU) a bottleneck (Fig. 6b). Similar to
hash resources, SALUs need to be pre-allocated at compile
time, even if they may remain unused.
B3. Resources for tracking heavy flowkeys: Many sketches
need to track heavy flowkeys to enable downstream analytics
tasks. Typically, these sketches store heavy flowkeys in a
separate data structure (e.g., heap or priority queue) [17, 41].

In practice, however, the exact details of if/how this can be
realized on switch hardware are unclear. Specifically, a heap
or priority queue, while feasible in software switches is too
complex to be implemented on the programmable hardware
switch. Alternatively, the data plane can relay all flowkeys
to the switch control processor or record all flowkeys in the
data plane. However, these are not feasible; e.g., bandwidth
between the data plane and the control plane is limited, and
data plane memory is also limited. Some sketch constructions
store heavy flowkeys together with the counters [11,32,46,53].
However, these are infeasible at line-rate on today’s RMT
switches.3

To reduce the memory use, prior work proposed an opti-
mized baseline—when a packet arrives, it checks whether
the frequency of a flowkey has exceeded the threshold by
querying the sketch counter, and if so, it reports the key to the
control plane [33, 39, 41]. Unfortunately, this still has a prob-
lem as “heavy” flowkeys may be reported redundantly every
time a packet arrives and needs more control plane bandwidth.
To avoid duplicate reporting to the control plane, we could
use a Bloom filter to check if a heavy key has already been
reported [33]. However, we need to configure the Bloom
filter (i.e., bitmap size and number of hash functions) to have
really low false positives since a false positive in the Bloom
filter for the duplicate check is a potential miss of a heavy
flowkey. Fig. 6c confirms this trade-off; we can configure the
Bloom filter depending on the target miss rate and we find the
memory footprint is correspondingly higher (We use 3 hash
functions for Fig. 6c). Using a Bloom filter might be a valid
approach if we allow some missing heavy flowkeys, we argue
a design that targets a zero miss rate is more desirable.

We implement four possible strawman solutions to report
heavy flowkeys and run microbenchmarks on a Tofino hard-
ware switch to understand a trade-off between the accuracy
and the resource consumption. Table 1 summarizes our analy-
sis and shows that we have an undesirable trade-off between
the miss rate of heavy flowkeys, data plane resources (mem-

3Specifically, HashPipe [46] and ElasticSketch [53] cannot be directly
implemented on RMT architecture due to complex memory access patterns
(see [11, 47] for more details). Precision [11] requires recirculation, which
means some packets must go through entire pipeline again.



Miss rate CP
bandwidth

DP
resource

Recored every key in the DP Zero Low Infeasible

Report every key to the CP Zero Infeasible Low

Report heavy keys to the CP Zero Infeasible Low

Report non-duplicate heavy keys Low Low High

Table 1: Strawman solutions for tracking heavy flowkeys (CP:
control plane, DP: data plane).

ory for keys and hash calls for Bloom filters), and the control
plane bandwidth (for reporting keys).
B4. Pipeline stages: So far we have implicitly assumed that
the switch has a single pool of resources on the switch (i.e.,
SRAM/TCAM, SALUs, and hash calls) that can be allocated
to the sketch operations. In reality, the resources are parti-
tioned across the pipeline stages. This impacts resource use
in two ways. First, before an operation can be assigned to a
stage, all required resources need to be available on that stage.
If that is not the case, it needs to be moved to the next stage.
Second, if there is a dependency between two operations, e.g.,
O1 ! O2 in the code, then O2 must be placed on a later stage
than O1, even if there are unused resources available on stages
earlier in the pipeline. For example, the sequential if clauses
used by UnivMon (Fig. 4) create sequential dependencies
between the if clauses.

This means that, depending on resources required by op-
erations and dependencies between them, the compiler will
only be able to use a subset of the resources on the switch. To
account for this, we consider pipeline stages as a separate re-
source. Fig. 6d shows the number of pipeline stages needed as
a function of level L if we respect this architectural constraint.
We see that UnivMon requires similar or more pipeline stages
than R-HHH with same configuration parameters and the gap
is increasing as the number of levels increases. This is a di-
rect result of the sequential dependencies in UnivMon. The
number of pipeline stages used is measured by running the
RMT resource mapper.

4 Optimizations
Next, we present a series of optimizations to address the re-
source bottlenecks we identified earlier. For each optimization,
we discuss the key idea, before discussing the correctness and
applicability constraints. Some of these optimizations (e.g.,
O1, O3, O4) have appeared in earlier theoretical efforts and
demonstrated in other settings (e.g., FPGA, software switch).
Our contribution here is translating these ideas to hardware
switches. Others (O2, O5, O6) are novel to the best of our
knowledge. As summarized in Table 2, our optimizations
can be applied to a broad spectrum of published sketches for
telemetry and benefit 15 out of the 19 sketches listed. Some
sketches that are outside our scope cannot be supported as they
either use: (1) processing logic that is infeasible in hardware
(i.e., Hashpipe, ElasticSketch); (2) counter data structures

Sketch Type Sketch Name Feasible
on HW?

Applicability
of SketchLib

Frequency
Estimation
/
Heavy
Hitters

Count-Min [21] Yes O6
Count Sketch [17] Yes O1, O6
MRAC [37] Yes O3, O5
Hashpipe [46] No N/A, due to in-

feasible logic
Precision [11] Yes No, uses packet

recirculation
Hierarchical
Heavy Hitters

RHHH [12] Yes O1, O2, O5, O6
HHH [20] Yes O1, O6

Cardinality PCSA [25] Yes O3, O5
MRB [23] Yes O3, O5
LogLog [22] Yes O3
HyperLogLog [26] Yes O3

Entropy EntropySketch [38] Yes O1
Change
Detection K-ary [36] Yes O1, O2, O6

Super
Spreaders

SpreadSketch Yes O3, O5
BeauCoup [18] Yes No, non-counter

based sketch
General UnivMon [41] Yes O1, O2, O3, O4,

O5, O6
FCM [47] Yes O6
SketchLearn [32] Yes O2
ElasticSketch [53] ? 4 Not applicable

Table 2: Applicability of SketchLib on existing sketches.

different from sketches (i.e., BeauCoup); or (3) complex pro-
cessing patterns such as packet recirculation (i.e., Precision).

4.1 Optimizing Hash Calls
Both single- and multi-level sketches need to compute mul-
tiple hash functions, resulting in high hash call usage in the
hardware pipeline. We describe two optimizations: consoli-
dating short hash calls and reusing hash calls.
Optimization 1. Consolidate many short hash calls. We
observe that many hash calls only need short-length (e.g., 1-
bit) hash results. For instance, count sketch (Fig. 1) computes
a series of 1 bit hash calls, s1 to sR. Similarly, UnivMon (Fig. 2
(b)) computes h1 to hL. We can reduce the number of hash
calls by consolidating many short hash calls, as long as the
inputs to the hash calls are the same.

Consider a count sketch with R ⇥W = 3 ⇥ 512 counters.
Per row, we need two hash results: a 9-bit (i.e., log2 512 = 9)
hash to index into the counter array and a 1-bit hash for the
“sign” of the counter. Instead of using 3 ·2 = 6 hash calls, we
can instead use one hash call that returns a 30-bit result to
provide the 6 hash calls as in Fig. 7. Note that splitting a long
hash result only needs simple hardware shift and bit mask
operations. R-HHH and UnivMon are also benefited as they
use multiple count sketches. Further, UnivMon uses many
1-bit hash calls in its sampling stage.
Correctness and applicability: For this optimization to be
valid, the split short-bit hash results from the longer hash re-
sult must use the same flowkey as the input and, if required

4As the P4 implementation is not public, we failed to implement ElasticS-
ketch’s Top-K algorithm due to its complex “multi-stage rolling” memory
access pattern. Other efforts have also pointed out this issue [47].
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Figure 7: Optimization 1 reduces hash calls for count sketch.

Flowkey Seed Additional Condition Opt

same diff. Sum of hash bit length is
less than max capacity O1

same same - O2diff. same One level of hash calls is executed
diff. diff. - -

Table 3: Conditions for optimization 1 and optimization 2.

by the sketching algorithm, be pairwise independent [17].
Independence is achieved by randomly picking (different)
seeds for hash calls in practice [12, 41, 53]. Theoretical anal-
ysis in other contexts [24, 35] shows that using different bits
from the same hash call can also provide independence. Em-
pirically, recent work [51] shows no accuracy loss for Uni-
vmon and our results (§6) confirm this with other sketches
listed in Table 5. In addition, hash calls need to be short so
that the sum of hash bit length is less than the length of one
call (e.g., 32 bits). Fortunately, many single- and multi-level
sketches [12, 17, 23, 25, 26, 37, 41] satisfy this condition.

Optimization 2: Reuse the hash calls across levels for
multi-level sketches. Our second insight is that we can reuse
the hash calls if there are no independence requirements
across them ; i.e., they can use the same seed. Although hash
independence is usually required across different counter ar-
rays within a single level sketch, it is not required across
levels [16]. Thus, we can use the same hash seed cross differ-
ent levels for multi-level sketches.

Specifically, the original implementations of R-HHH and
UnivMon (see Fig. 2) use a different hash seed in each of
the CS_level_i count sketch executions. We can modify the
code to reuse the same hash seed and reuse hash results when
independence is not needed. This optimization reduces the
number of hash calls significantly. For example in Fig. 2,
R-HHH and UnivMon each have a set of hash calls Fi as
{ fi1, fi2, ... fi(2R)} at each level i of count sketch, resulting in
L ·2R hash calls. By simply changing all of Fi to F1, we reduce
hash call usage from L ·2R to 2R. For R-HHH, the result of
F1 is used to update one selected level of count sketch, and
for UnivMon, result of F1 can be used to update potentially
multiple levels per packet.

Correctness and applicability: Reusing seed values across
levels does not affect the theoretical independence require-
ments [16]. We empirically confirm in the evaluation that this
optimization achieves similar accuracy (§6.1).

Table 3 summarizes the conditions under which the two
hash optimizations are used. Note that for O2, if different
levels’ hashes have diverse output bit-length requirements,
the hash call with the longest output bit-length will be used to

control ingress // UnivMon
{

apply(CS_level_1);
apply(compute_h1);

if (h1 == 1) { // 0 or 1
apply(CS_level_2);
apply(compute_h2);

if (h2 == 1) {
apply(CS_level_3);
apply(compute_h3);

if (h3 == 1) {
...

}

CS
2

Stage 1
CS
3

Stage 2

… CS
L

Stage L/2
CS
1

Stage 1
CS
2

Stage 2

… CS
L

Stage L

Internal fragmentation 

L pipeline stages L/2 pipeline stages

CS
1

control ingress // Opt_UnivMon
{

apply(compute_h); // L bit
level = TCAM_optimization(h);

if (level >= 1) {
apply(CS_level_1);

}
if (level >= 2) {
apply(CS_level_2);

}
if (level >= 3) {
apply(CS_level_3);

}
...

}

Figure 8: Optimization 3 removes the sequential computation
dependency and reduces the usage of pipeline stages.

supply hash results with various bit lengths. Also we need to
make sure that the hash seeds are either the same in the first
place or can be set to the same for O2 to apply.

4.2 Optimizing Pipeline Stages
The sequential if clauses are observed in both single and
multi-level sketches. This creates sequential compute depen-
dencies and entails high usage of pipeline stages.
Optimization 3: Avoiding the sequential if clauses using
a longest prefix match. To explain this optimization, we use
UnivMon (Fig. 8) as an example. Deciding which levels to
be updated for each flowkey creates a logical dependency
between levels. Specifically, level i+1 needs to be updated
only if the value of hi returns 1 for hash functions hi : [n] !
{0/1}. These L-level dependencies lead to an implementation
as Fig. 8-left using sequential if clauses with hash values
(h1,h2,. . . ,hL).

To address this bottleneck, our insight is that the number
of leading 1-bits in (h1,h2,. . . ,hL) represents the sequence of
“true” conditions in the if clauses. We observe that this is
equivalent to the longest prefix match (LPM), which can be
computed efficiently in hardware. That is, we can compute L
hash bits together using a single L bit hash and use LPM to
identify which layers need to be updated. This LPM operation
is realized via TCAM as shown in Fig. 9. We insert rules with
1- and wildcard bits corresponding to each level and perform
LPM to obtain the last level of UnivMon for each flowkey.
LPM is relatively cheap—can be done in one pipeline stage
using a small amount of TCAM. With this optimization, we
can reduce the usage of pipeline stages by half if one count-
sketch consumes half of the resources in one pipeline stage
(Fig. 8-right).
Correctness and applicability: Our refactored implementation
has the same functionality, resulting in the same updates to the
sketch arrays. This optimization applies to many single and
multi-level sketches that build on the power-of-two choices
observation [23, 25, 26, 37, 55].
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Figure 9: Replacing the sequential if clauses via TCAM.

4.3 Optimizing Memory Accesses
Sketches require memory accesses for their counter updates,
leading to high SALU usage. This becomes especially signifi-
cant for multi-level sketches.
Optimization 4: Refactor multi-level sketches to update
one level per packet. We refactor multi-level sketching algo-
rithms and their code to guarantee only one level is updated
per flowkey. Recall that UnivMon needs to update one or more
levels of count sketch (CS) for each packet with its flowkey. In
Fig. 10 (top), a flowkey of packet Kgreen updates three levels,
Kgray updates two levels, and Kred updates all levels of count
sketch. Instead, our modified algorithm is guaranteed to up-
date only the “last” level for each packet, as shown in Fig. 10
(bottom). The modified algorithm becomes structurally simi-
lar to other multi-level sketches that natively update only one
level [12, 23, 25, 37]. As a result, the processing overhead is
significantly reduced.

This “update-last-level” idea was also proposed to opti-
mize UnivMon for embedded platforms [52] and software
switches [40, 51]. Our contribution here is: (1) to extend this
to programmable switches and (2) to generalize the idea to
support updating arbitrary levels. Based on the algorithmic
design, different multi-level sketches may require different
optimization strategies to update a level (e.g., RHHH [12]
modifies HHH [20] by randomly selecting a level to update).
To implement this optimization, we can insert user-defined
ternary rules in TCAM (as O3) to classify packets into differ-
ent levels in a multi-level sketch.
Correctness and applicability: By construction, our modified
algorithm provides equivalent functionality as the original
version. As shown on the right side of Fig. 10 with Kgreen
flowkey as an example, Levels 1 and 2 do not need to be
updated anymore. Level 3 has the estimated flow count for
this particular flow with the same or better accuracy since
Level 3 only processes a smaller amount of traffic than Levels
1 and 2. Thus, the estimated count of Kgreen from Level 3 can
be reused for Levels 1 and 2. This applies to all other flowkeys
during the offline estimation in the network control plane.

To apply this optimization, a multi-level sketch should meet
two conditions: (1) the original algorithm has multiple sketch
updates per packet, and (2) it is algorithmically correct to
reduce the multi-level updates to one per packet. That said,
we acknowledge that there are scenarios where this optimiza-
tion is not directly applicable. For instance, it is not obvious
if/how we can refactor some multi-level sketches such as
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Figure 10: UnivMon updates only the last level per packet. CS
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Figure 11: Optimization 5 removes unnecessary allocated
SALUs by rewriting P4 code.

SketchLearn [32] to update only one level per flowkey (if
possible). This requires future research.

Optimization 5: Remove unnecessary SALU operations.
A multi-level sketch maintains multiple independent levels of
sketches. For each counter at each level, the compiler statically
allocates an SALU for memory access. This results in high
SALU usage, even if only one level needs to be updated per
packet; i.e., usage is the same as updating all levels.

We can remove unnecessary SALUs when only one update
is needed per packet. The reason why the compiler ineffi-
ciently preallocates SALUs for all possible memory accesses
is that it is difficult to automatically figure out that only one
update is needed at runtime. Our optimization restructures
the P4 code to make this explicit for the compiler that only
one count sketch update is needed per level. Instead of using
separate counter arrays located in different switch memory
regions, we consolidate the counter arrays of all levels in a
single array located in one region of memory. This is possible
because SALU can support random access, thus based on
the selected level, we can compute the corresponding index
value to access the consolidated register. Fig. 11 illustrates
this SALU optimization. This optimization reduces the SALU
requirements for multi-level sketches by a factor of L (the
number of levels, e.g., 25 for R-HHH [12]).

Correctness and applicability: This technique does not affect
accuracy because the modified code has the same functionality
as the original version. We can apply the optimization to
multi-level sketches that have the property of updating only
one level per flowkey. There are many multi-level sketches
satisfying this property [12, 23, 25, 37, 41].



Resource Bottlenecks Optimizations API

Hash Calls O1. Consolidate short-bit hash calls hash_consolidate_and_split()

O2. Reuse hash calls across levels select_key_and_hash()

Pipeline Stages O3. Remove sequential if clauses using TCAM tcam_optimization()

SALUs O4. Update only one level per flowkey -
O5. Rewrite P4 code to reduce memory accesses consolidate_update()

Resources for tracking heavy flowkeys O6. Use a hash table to remove duplicate flowkeys heavy_flowkey_storage()

Table 4: The relationships among the bottlenecks, optimizations and API calls.

4.4 Optimizing Heavy Flowkey Reporting
Optimization 6: Use a hash table and an exact-match ta-
ble for checking duplicate flowkeys. As discussed in §3.2
B3, prior efforts [33, 39] use Bloom filters as the duplicate
checker but the false positives from the filters will cause
misses of heavy flowkeys, unless a very large Bloom filter
is used. To improve this tradeoff between miss rate and data
plane resource, we use a hash table and an exact-match table
to check duplicates. Specifically, the hash table stores heavy
flowkeys and detects whether there is a collision. For each
heavy flowkey, if it is already stored in the hash table or exact-
match table, it will not be reported to the controller; otherwise,
it will be inserted to the hash table. But if this flowkey collides
with another key in the hash table, then it will be reported
to the controller which then inserts this flowkey to the exact-
match table to filter future duplicate keys. In this way, we can
ensure a zero miss rate on reporting heavy flowkeys.
Correctness and applicability: This optimization ensures a
zero miss rate of heavy flowkeys because when collisions hap-
pen in the hash table, the flowkeys are reported to the control
plane and inserted to the exact-match table (as a secondary
duplicate checker). No unique heavy flowkeys are dropped
in this mechanism. Compared to Bloom filters, this approach
adds some additional control plane bandwidth when collisions
happen in the hash table. As we evaluate in §6.5, this added
bandwidth is small (e.g., 2% increase). This optimization can
be applied to both single- and multi-level sketches requiring
heavy flowkey tracking [12, 17, 41].

5 SketchLib API
In this section, we present our P4 API for helping sketch
developers to use our optimizations. For each API call, we
show the implementation for the macro and how the macro
is used. SketchLib API supports both P4-14 and P4-16 [6].
Table 4 maps the optimizations to the API calls.
hash_consolidate_and_split(Key,Seed,List

(BitLen),BL_sum,List(Mask))
5 reduces hash calls

by consolidating small bit hash calls (O1). Fig. 12 shows
how a sequence of short hash calls is replaced by a macro
that uses only a single hash call with length the sum of all

5While there is no concept of List in P4, we use it to describe the type of
parameters conceptually throughout this section. In our API implementations,
it is converted to multiple parameters; e.g., List(BitLen) ! (BL1, BL2,
BL3) as shown in Fig. 12.

BitLen of the shorter hashes. The resulting hash value is then
partitioned in shorter hashes. For P4-14, we split the result
using modify_field_with_shift(dst, src, shift,
mask) primitive (i.e., dst = (src » shift) & mask)
where mask is a series of 1’s with BitLen as shown. For
P4-16, the same principle is applied, but bit slice operation
(e.g., h[BL1:0]) is used. Note that the macro specifies
both the number of short hashes being merged (List) and
the names of the short hashes, so multiple macros must be
defined if O1 is applied multiple times.

1: h1 = hash(sIP, seed1, 5);
2: h2 = hash(sIP, seed2, 3);
3: h3 = hash(sIP, seed3, 4);

1:#define   
hash_consolidate_and_split_3
(Key, Seed, BL1, BL2, BL3,
BL_sum, mask1, mask2, mask3)

2: h = hash(Key, Seed, BL_sum);
3: h1 = h & mask1;
4: h2 = (h >> BL1) & mask2;
5: h3 = (h >> (BL1+BL2)) & mask3;

1: hash_consolidate_and_split_3
(sIP, seed1, 5, 3, 4, 12,
0b11111, 0b111, 0b1111)

Figure 12: hash_consolidate_and_split()

select_key_and_hash(List(Key),Level,Seed

,BitLen) implements O2 for the case one of the several
hash calls with different Key and same Seed is selected
for execution. Here, we can select the key in advance and
use only one hash call to get the result as in Fig. 13. For
instance, R-HHH can be optimized by using this API call.
The example shown is a single hash call, but if multiple are
needed (e.g. sketch with R =5 needs 5 hash calls), the number
of hash calls can be increased. For the sketches that share the
same Key and Seed (e.g., UnivMon), no separate API call is
necessary since the hash value can simply be reused.

1: if (V == 1)
2:   h = hash(key1, seed, 3);
3: if (V == 2)
4:   h = hash(key2, seed, 3);
5: if (V == 3)
6:   h = hash(key3, seed, 3);

1: #define select_key_and_hash_3
(key1, key2, key3, V, Seed, BL)

2: if (V == 1)
3:   k = key1;
4: if (V == 2)
5:   k = key2;
6: if (V == 3)
7:   k = key3;
8: h = hash(k, Seed, BL);

1: select_key_and_hash_3
(key1, key2, key3, V, seed, 3)

Figure 13: select_key_and_hash()

tcam_optimization(Hash_Result) implements
O3 to remove sequential if clauses by applying an equivalent
a LPM table which uses TCAM to which levels need to be
updated. The macro implements the use of the TCAM to look
up the level (see Fig. 8).
consolidate_update(Level,Index) implements
O5 to reduce memory accesses, as illustrated in Fig. 14. Level



indicates the selected counter array and Index references the
location for the memory update within the counter array. The
API call consolidates counter arrays and computes the new ad-
dress for the consolidated array. size indicates the bit length
(e.g., 10) of the width (e.g., 1024).

1: if (V == 1)
2:   update_array_1(V, index);
3: if (V == 2)
4:   update_array_2(V, index);
5: if (V == 3)
6:   update_array_3(V, index);

1:#define consolidate_update_3
(V, index)

2: n_index = ((V-1)<<(size))+index;
3: update_array_1_to_3(n_index);

1: consolidate_update_3(V, index)

Figure 14: consolidate_memory_update()

heavy_flowkey_storage(Key,List(Estimate

),Threshold) reduces the memory space for heavy
flowkeys (O6). The challenge is checking whether the
estimated flow count is above a threshold entirely in the
data plane. Specifically, this entails computing the median
value based on an estimated flow count from each row and
comparing it to the threshold value. However, computing
the median is not supported in the data plane. Instead, we
leverage the fact that we can check whether the median of
a set of values exceeds a threshold without computing the
median as follows. We compare all of estimated flow count
for all rows, as shown in lines 3-9 in Fig. 15 which is for R
= 3 case. Then, the condition (sum (s1, s2, s3) � 2) at line
11 is equal to (median(est1, est2, est3) > T).6 This can be
generalized for different Rs. We implement the duplicate
filter using a hash table and a exact-match table. If a flowkey
collides with an entry in the hash table and the exact-match
table does not have an entry for the flowkey, we report it to
switch control plane via a PCIe channel. Upon receiving the
reported key, the switch control plane CPU adds entries into
the exact-match table.

6 Evaluation
In this section, we evaluate the benefits of SketchLib on seven
sketches. Across a range of settings, we see that SketchLib can
reduce the resource footprint of sketches on switch hardware
(up to 96%) while achieving similar accuracy.

6.1 Experimental Setup

Sketches. We implement all 15 sketches in Table 2 using
SketchLib and source codes for sketches are available at [6].
Among 15 sketches, we pick seven representative sketches
for our evaluation as in Table 5.

Testbed. We evaluate SketchLib on a local testbed with an
Edgecore Wedge 100BF Tofino-based programmable switch
and a server equipped with dual Intel Xeon Silver 4110 CPUs,
128GB RAM, and a 100Gbps Mellanox CX-4 NIC connected
to the switch. We use the P4-16 version of SketchLib with
Tofino SDE version of 9.1.1 in our experiments.

6For Count-Min sketch [21], we can use (sum (s1, s2, s3) � 1).

01:#define heavy_flowkey_storage_3
(Key, Est1, Est2, Est3, T)

02: 
03: s1, s2, s3 = 0;
04: if (Est1 > T)
05:   s1 = 1;
06: if (Est2 > T)
07:   s2 = 1;
08: if (Est3 > T)
09:   s3 = 1;
10: 
// above threshold test
11: if (s1 + s2 + s3 >= 2) {
12:   if (HT[h(Key)] == empty) { // HashTable
13:   HT[h(Key)] = Key;
14:     send_to_cpu(Key);
15:   } else if(HT[h(Key)] != Key) {
16:     if (!(flowkey in MT)) { // MatchTable
17:       send_to_cpu(Key);
18:     }
19:   }
20: }

Figure 15: heavy_flowkey_storage()

Traces. We use five CAIDA backbone traces capture at
3/20/14 to 6/19/14 Sanjose, 1/21/16 Chicago, 5/17/18 to
8/16/18 New York City [7]. We split one hour traces into 30
second epochs. Each epoch includes about 12M-23M packets,
with 398K distinct source IPs, 280K distinct destination IPs,
and 1.6M distinct 5 tuples.

Level (L) Row (R) Width (W ) Space
CS [17] - 5 4096 80KB
HLL [26] - - 2048 8KB
UnivMon [41] 16 5 2048 640KB
R-HHH [12] 25 3 2048 600KB
MRAC [37] 12 - 2048 96KB
MRB [23] 16 - 4096 8KB
PCSA [25] 32 - 20 0.125KB

Table 5: Sketch parameters for evaluation.
Sketch parameters. Table 5 shows the configuration param-
eters for the sketches. Most sketches use 4 byte counters. The
cardinality estimators (e.g., MRB and PCSA) use bitmap thus
each counter is 1 bit.
Metrics. Depending on the sketch and the measurement task,
we report two error metrics. For each metric, we run the exper-
iment 5 times independently with different hash parameters
and report the 25%, 50%, 75% percentiles of the errors. For
brevity, we report results using source IP as the flowkey except
for R-HHH, noting that the results are qualitatively similar for
other types of flowkeys. R-HHH uses (source IP, destination
IP) pair as flowkey as presented in the original paper [12].

• Average Relative Error (ARE): 1
k Âk

i=1
| fi� f̂i|

fi
, where k

means the top k heavy flows. fi is actual flow count for
flow i and f̂i is the estimated flow count from the sketch.
fi � fi+1 for any i, thus it is sorted in descending order.
We use k=50 for count sketch and R-HHH.

• Relative Error (RE): |True�Estimate|
True , where True is ground

truth value and Estimate is estimated value. We use this
metric for sketches that estimate cardinality and/or entropy.
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Figure 16: Accuracy comparison of sketches between original and optimized sketches across traces. Left: original, Right: optimized.
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Figure 17: Resource consumption before/after optimizations.

6.2 Accuracy
We run the accuracy experiment of SketchLib in two ways.
First, we show the accuracy is preserved between baseline
software implementation and hardware implementation with
SketchLib (§6.2.1). Second, we compare the accuracy of
the hardware implementations with and without SketchLib
(§6.2.2).

6.2.1 Comparison with the Software Baseline

Reporting methodology. We compare the accuracy of the
sketch refactored with SketchLib (on hardware) against a base-
line software implementation. The baseline software imple-
mentation runs sketches on the software. We run experiments
over multiple traces with independent runs. After optimiz-
ing sketches with SketchLib, we run experiments on Tofino
hardware with all five traces. For each one-hour trace, we
randomly sample 40 30-second epochs and obtain 5 accuracy
numbers per epoch with independent trials. The server replays
traces to the switch using tcpreplay at a speed of 800K pack-
ets/second. Between epochs, we wait for switch control plane
to pull counters and flowkeys from the data plane (see §7).
Result. Fig. 16 empirically validates that SketchLib opti-
mizations achieve similar accuracy. For every trace, the left
blue bar represents the software baseline and the right green
bar is the hardware reported result with SketchLib applied.7
Fig. 16a - Fig. 16d shows the accuracy of sketches that need
to track heavy flowkeys and the rest show sketches that need

7We do not show MRAC as the estimation logic for MRAC is not public.

UnivMon Without SketchLib With SketchLib
Level (L) 8 6 5 16
Row (R) 4 5 6 5

Width (W ) 32768 32768 32768 2048
RE (%) 95.4% 98.8% 99.4% 9.5%

Table 6: Relative error in cardinality estimation with and with-
out SketchLib.

to maintain only counter arrays. Fig. 16c and Fig. 16d show
the errors of UnivMon for cardinality estimation and entropy
estimation. We can visually confirm that the distributions of
accuracy before and after optimizations are similar.

6.2.2 Accuracy Improvement with SketchLib

Reporting methodology. We want to compare the best ac-
curacy between with and without SketchLib on the hard-
ware. We use UnivMon for this experiment. To systematically
sweep configuration parameters for the best accuracy without
SketchLib, we exploit the property of UnivMon. Among three
sketch parameters level (L), row (R), and width (W ), L is the
most critical parameter, thus we pick three highest feasible
L. Then we find maximum R and lastly W . Given fixed L, we
explored different parameter R other than maximum R but
result was similar. We use the simulator with 40 samples of
trace1. With SketchLib, we use the same configuration from
the original UnivMon paper.

Result. Table 6 shows that all feasible configurations without
SketchLib show high error rate more than 95%. On the other
hand, UnivMon with SketchLib shows low error rate of 9.5%.



Sketches Hash Calls (O1/O2) SALUs Pipeline Stages
CS 31%/0 9%

HLL 80%/0 86%
UnivMon 44%/47% 90% 65%

RHHH 32%/60% 92% 62%
MRAC 87%/0 91% 68%
MRB 90%/0 93% 76%
PCSA 92%/0 96% 86%

Table 7: Individual resource reductions by optimizations.

6.3 Switch Resource Consumption
Next, we report the resource usage improvements on the iden-
tified resource bottlenecks (Table 7). The sketch parameters
used are reported in Table 5.
Reporting methodology. We measure resource usages from
original implementation using RMT resource mapper and
optimized implementation using Tofino compiler to measure
resource reductions. To factor out resource reductions for
different optimizations in Table 7, we wrote P4 code with
individual optimizations applied using SketchLib APIs to
measure the resource usages.
Hash calls. Table 7 shows that using O1 to consolidate the
1-bit hash calls is effective for both single and multi-level
sketches. For example, the number of hash calls for count
sketch is reduced by 31%. R-HHH and UnivMon benefit
from O1 as they are composed of multiple count sketches.
Further, PCSA, MRAC, MRB and HLL have a series of 1-bit
hash calls which O1 improves. For UnivMon and R-HHH,
we can apply both O1 and O2 by reusing hash calls across
levels to further reduce hash calls by over 90%. We further
investigate the sensitivity of the reduction of hash calls vs.
sketch parameters in Fig. 17a.8 Multi-level sketches UnivMon
and R-HHH have significant reduction and the resource used
is close to single-level count sketch.
Stateful ALUs. O5 applies only to multi-level sketches and
reduces SALU usage significantly if there are many levels in
the sketch. With 16-32 levels, O5 saves 92% to 96% of the
SALUs. We can see in Fig. 17a that O5 reduces SALU of
UnivMon and R-HHH significantly across rows.
Counter Memory Space. Interestingly, O5, which we de-
signed to reduce SALU usage, additionally reduces memory
space. Investigating this further, we find that original sketch
implementations have a memory region fragmentation prob-
lem. One counter array is smaller than a block of SRAM, caus-
ing additional (unused) memory overhead per each counter
array. O5 has the added benefit of consolidating counter ar-
rays and achieve 54%–96% of resource reduction in memory
space for multi-level sketches (not shown).
Pipeline stages. The reduction of pipeline stages depends
on a combination of factors — hash calls, SALUs, and code
dependencies. Table 7 shows reduced pipeline stages from
9% to 86% across sketches. Sketches where O5 applies (HLL,
UnivMon, MRAC, MRB, PCSA) have a large reduction be-
cause it removes many sequential if clauses. Effectively, our

8Missing point for R-HHH in Fig. 17 means it is infeasible.

FCM native SketchLib-optimized
Resource FCM+topK FCM(+O6) CM UnivMon

Pipe. Stage 8 8 7 12
SRAM 9.5% 10.8% 8.0% 7.3%
TCAM 0% 0% 0% 0.3%
SALUs 20.8% 14.6% 14.6% 12.5%

Hash Calls 13.9% 9.7% 11.1% 18.1%
Hash Bits 5.6% 4.0% 4.0% 4.9%
Table 8: Comparison of hardware resource utilization.

SketchLib-optimized
FCM+topK FCM(+O6) CM UnivMon

HH (ARE) 1.41% 0.01% 0.13% 0.73%

Table 9: ARE of heavy hitter detection.
# of flows 500K 1M 5M 10M 30M

FCM+topK 0.35% 0.84% 3.60% 6.15% 17.0%
SketchLib
UnivMon 2.59% 2.08% 2.21% 2.36% 2.96%

Table 10: Entropy error (RE), FCM vs. SketchLib-optimized
UnivMon.

optimization can make the footprint of multi-level sketches
agnostic to number of levels (Fig. 17c).

6.4 Comparison with FCM
FCM [47] is a recently published sketch with general capa-
bility, and it is feasible on the programmable switch. Thus,
we compare FCM against sketches optimized with SketchLib
in terms of resource usages and accuracy. Table 8 shows re-
source utilization comparison between FCM and SketchLib
optimized sketches. We use the same configuration from pub-
lic FCM code [3], and make SketchLib-optimized sketch use
similar resources to FCM.
Heavy hitter detection. Table 9 shows the accuracy result
of heavy hitter detection. We can see that FCM+topK suffers
from a high error rate because of an inefficient mechanism for
tracking heavy flowkey (approximate topK implementation
of ElasticSketch [53]). Note that if FCM deploys one of our
optimizations for tracking heavy flowkeys, FCM+O6 reduces
the error rate significantly from 1.41% to 0.01%. We use the
simulator with 40 samples of trace1 and report median ARE.
Entropy and cardinality. Table 10 and Table 11 com-
pare entropy and cardinality estimation accuracy between
FCM+topK and SketchLib-optimized UnivMon. In the exper-
iments, UnivMon reports top-200 heavy hitters per level. For
entropy, UnivMon shows a relatively stable error rate (2⇠3%)
across workloads, whereas FCM is dependent on workloads
and the error rate can go up to 17%. For cardinality, the error
rate of UnivMon is moderately increasing 9, whereas FCM
suddenly becomes unusable after 5M flows. This is because
Linear Counting [50] is used to estimate cardinality in FCM.

6.5 Tracking Heavy Flowkeys
To evaluate the impact of O6, we consider three metrics: miss
rate, control plane bandwidth, and data plane memory. We

9We observe that, when UnivMon reports more heavy hitters per level, the
cardinality error rate decreases (e.g., 17.58% in 10M flows with top-1000).



# of flows 500K 1M 5M 10M 30M
FCM+topK 0.004% 0.107% 0.519% 100% 100%
SketchLib
UnivMon 21.9% 20.7% 31.7% 39.5% 73.8%

Table 11: Cardinality error (RE), FCM vs. SketchLib-
optimized UnivMon.

With SketchLib
Resource UnivMon UnivMon + NFs (L2, L3, LB, FW)

Pipe. Stage 12 12
SRAM 7.3% 38.6%
TCAM 0.3% 25.0%
SALUs 12.5% 12.5%

Hash Calls 18.1% 18.1%
Hash Bits 4.9% 11.2%

Table 12: Sketches are infeasible without SketchLib. With
SketchLib, there are rooms for additional network functions
(L2/L3 forwarding, L4 load balancer, and stateful firewall).

compare SketchLib-optimized approach vs. an “optimal” soft-
ware solution. For this evaluation, we use two sketches (CS,
UM) that track “heavy” flowkeys. For each 1-hr trace, we split
it into epochs as before, and set a target threshold correspond-
ing to the top 0.2 percentile of flow sizes (The results are
independent of the threshold; this is to make the experiment
concrete). Across different traces and sketches, SketchLib in-
curs zero miss rate, and at most 2% increase in control plane
bandwidth (due to small number of duplicates), using less
than 400KB of data plane memory overall (independent of
the threshold, results not shown for brevity). To put this in
context, a Bloom-filter based strawman for suppressing dupli-
cates as discussed in §3 configured with the same memory use
has a miss rate of 0.2%. Overall, this confirms that SketchLib
offers a more practical alternative to the infeasible, inaccurate,
and/or expensive strawman solutions from §3.

6.6 Other Benchmarks

Additional Network Functions. After optimized with
SketchLib, sketches can even coexist with additional network
functions such as L2/L3 forwarding, L4 load balancer, and
stateful firewall. Table 12 shows resource utilization for addi-
tional network functions.

Code simplification. In addition to the resource efficiency
benefits, our optimizations also simplify the sketch implemen-
tations by reducing the lines of code, as shown in Table 13.

Compilation time. We also measured compilation time to
see whether our modified code will add significant overhead
to the compiler. We measure compile time is measured on
the server specified in (§6.1). For most cases, there was a
negligible ( 1 second) increase (not shown).

7 Related Work

Programmable switches. The programmable switch archi-
tecture was introduced by Bosshart et al [15]. Subsequent
work proposed a programming framework [14], functional
hardware [1], and also compilation workflows [34]. Other

Sketch CS HLL UM RHHH MRAC MRB PCSA
Before 201 290 460 471 261 317 305
After 131 112 127 128 91 94 93

Table 13: Lines of code simplification (UM stands for Univ-
Mon).

vendors have developed programmable pipelined architec-
tures and compilation workflows from P4 or P4-like primi-
tives [4, 5]. While our focus is on Tofino, our approach could
be useful for other platforms as well.
Optimizing sketches. HashPipe [46] focused on heavy hitter
detection, but is not feasible in the current hardware. Other
work has focused on the optimizing sketching algorithms in
software switches (e.g., [31, 40, 51]). However, some of their
ideas do not translate into a hardware context. For instance,
NitroSketch increases the memory footprint to reduce CPU
consumption, but the key bottleneck in hardware is different.
Similarly, other approaches split a sketch into a fast and slow
path on the software switch (e.g., [31]). Unfortunately, this is
not relevant in hardware since we need all operations to be in
the fast path. Some recent work [51, 52] specifically focus on
optimizing UnivMon for embedded platforms and software
switches. We translate these insights to a switch hardware
realization, and generalize beyond UnivMon.
Control plane reporting. While this work focuses on opti-
mizing data plane components of sketch-based monitoring,
there are other challenges in accurately retrieving sketch coun-
ters in the control plane. Naïvely retrieving the counters using
the existing control plane APIs can result in poor accuracy
due to a nonnegligible amount of read and reset delays. We
analyze this problem and suggest recommendations in parallel
work [44].
Other work in network telemetry. Our focus in this pa-
per is on sketch-based telemetry. There are other efforts for
complementary monitoring capabilities (e.g., [29,30,48]) and
performance-oriented objectives (e.g., [28, 45]).

8 Conclusions

Given increasing traffic rates and rich telemetry required, we
see the confluence of two trends: the use of sketching algo-
rithms and programmable switch hardware. Unfortunately,
existing sketch implementations are not efficiently realizable,
thereby limiting their effectiveness and coexistence with other
switch functions. To this end, we systematically analyze the
resource bottlenecks, suggest correct-by-construction opti-
mizations, and design a practical library to help developers
use these optimizations. Our evaluations show that the Sketch-
Lib library is broadly applicable to many sketches and reduces
their resource footprint while achieving similar accuracy.

This work focuses on a single sketch-based monitoring
task written using SketchLib APIs. We plan to support mul-
tiple tasks on a switch and automate the optimizations by
integrating our techniques with a compiler as future work.
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A Comparison of RMT resource mapper and
Tofino compiler

To validate RMT resource mapper as a proxy for Tofino com-
piler, we conduct experiments to compare resource allocation
results of RMT resource mapper and the Tofino compiler. We
pick five different sketches (UnivMon, R-HHH, PCSA, HLL,
and MRB). We vary one parameter of sketches while fixing
other parameters and analyze the resource allocation results.
We focus on five different resource types; pipeline stages,
hash calls, SALU, SRAM, and TCAM.

Fig. 18–Fig. 22 illustrate the results. Note that all of the
resource usages are normalized. We can see that for hash
calls, SALU, SRAM, and TCAM usages are identical between
RMT resource mapper and the Tofino compiler. For pipeline
stages, results are the same for PCSA, HLL, and MRB. How-
ever, RMT resource mapper finds mapping which uses fewer
pipeline stages than the Tofino compiler for UnivMon and
R-HHH. RMT resource mapper minimizes stages while the
Tofino compiler finds more sparse mapping (e.g., mapping
a small number of tables per stage). We validate both of the
mappings from RMT resource mapper and Tofino compiler
are valid. We confirm with the vendor that the Tofino compiler
uses complex heuristics and the cost function of power budget
and compilation time, which are different from that of RMT
resource mapper and can introduce the gap. Our extensions
to the RMT resource mapper is available at [6].
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Figure 18: RMT resource mapper vs. Tofino compiler: pipeline stages
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Figure 19: RMT resource mapper vs. Tofino compiler: Hash Call
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Figure 20: RMT resource mapper vs. Tofino compiler: SALU
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Figure 21: RMT resource mapper vs. Tofino compiler: SRAM
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Figure 22: RMT resource mapper vs. Tofino compiler: TCAM
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