
An Explainer for Temporal Graph Neural Networks

1st Wenchong He*
University of Florida

Gainesville, USA.

whe2@ufl.edu

1st Minh N. Vu*
University of Florida

Gainesville, USA.

minhvu@ufl.edu

3rd Zhe Jiang
University of Florida

Gainesville, USA.

zhe.jiang@ufl.edu

4th My T. Thai
University of Florida

Gainesville, USA.

mythai@cise.ufl.edu

AbstractÐTemporal graph neural networks (TGNNs) have
been widely used for modeling time-evolving graph-related tasks
due to their ability to capture both graph topology dependency
and non-linear temporal dynamic. The explanation of TGNNs
is of vital importance for a transparent and trustworthy model.
However, the complex topology structure and temporal depen-
dency make explaining TGNN models very challenging. In this
paper, we propose a novel explainer framework for TGNN
models. Given a time series on a graph to be explained, the
framework can identify dominant explanations in the form of a
probabilistic graphical model in a time period. Case studies on the
transportation domain demonstrate that the proposed approach
can discover dynamic dependency structures in a road network
for a time period.

Index TermsÐTGNN, graph explanations, interpretable DL

I. INTRODUCTION

In the last several years, Graph Neural Networks (GNNs)

have been increasingly popular due to their ability to capture

the complex relationship and interactions in a system [1]±[9].

GNNs assume static graph data and operate by aggregating

information in the local neighborhood of a node. However,

many real-world systems are dynamic and evolving over time.

For example, in the transportation domain, accurate traffic

forecasting requires both temporal features (periodicity and

trend) and spatial dependency modeling (the topology of a

road network). A Temporal Graph Neural Network (TGNN)

combines both a GNN and a recurrent neural network (RNN)

to capture both the spatial dependency and temporal dynamics

in a system [10]±[12].

Although TGNNs have achieved wide success in modeling

spatial networks with temporal dynamics, it is unclear why a

model makes certain predictions. Such explanation is crucial

because: (1) It improves the transparency and consequently the

trust of a TGNN model in a growing number of safety-related

applications when being deployed into the real world; (2) It

allows end-users to identify interesting dynamic dependency

structures in the system. For example, for traffic forecast-

ing, the spatial dependency structure can change due to the

evolving characteristics of the traffic flow. In a non-congestion

period, the traffic status at upstream roads impacts the traffic

status at downstream roads through the transfer effect, and

in a congestion period, the traffic status at downstream roads

*Authors contribute equally

impacts the traffic status at upstream roads through the feed-

back effect [10], [13]. Such dependency dynamics are crucial

for a transportation domain expert to identify the influential

neighboring roads at different time periods when predicting

the traffic flow or speed for one road segment.

The problem of explaining TGNNs is challenging for sev-

eral reasons. First, to generate an accurate explanation for

the temporal predictions, we need to consider the network

structural and temporal dependency simultaneously, which

increases the problem complexity compared with the static

GNN explanations. Second, the explanations identified in some

time steps may be insignificant or redundant, it is non-trivial

to discover the dominant interesting dependency structure in

a time period and eliminate the redundant pattern. Third,

the computation complexity is high considering the high

complexity of the interpretable domain and quadratic potential

temporal windows for explanations.

We propose a novel explainer framework for the temporal

graph neural network interpretations based on the static graph

explainer. Specifically, the main contributions are:

• To reduce the interpretation complexity, we reformu-

late the temporal graph neural network model such that the

explanations at different temporal snapshots can be done

independently to leverage the static graph explainer.

• We propose a pruning approach to discover the temporal

dominant interesting explanations from the independent expla-

nations at each time step and eliminate the insignificant and

redundant explanations. The proposed pruning algorithms can

reduce the temporal search space and improve efficiency.

• The case studies of the TGNN explanations on the

transportation domain show that our proposed explainer frame-

work can provide interpretable explanations and discover the

dynamic dependency structure of the spatial network.

II. BACKGROUND ON GRAPH NEURAL NETWORK

EXPLANATION

This section provides some related background and prelim-

inaries of our paper. The following provides some highlights

on GNN and TGNN, the current landscape of explaining

predictions made by GNNs, and the PGM-Explainer, which

serves as an important component of our method.

GNNs and TGNNs: With the increasing availability of

modern graph data and the popularity of graph-related tasks,

many Graph-based Neural Networks have been introduced

in recent years, such as ChebNets [1], Graph Convolutional978-1-6654-3540-6/22/$31.00 © 2022 IEEE

Networks [2], GraphSage [3], Graph Attention Networks [4],

among others [5]±[9], [14]. At a high level, these models

exploit the non-linear transformation in conventional neu-

ral networks to transform input features and aggregate (or

propagate) those features via a graph’s connectivity. To con-

sider the time-varying features of graph-related tasks, TGNNs

combine GNN and RNN models together, e.g., Temporal

Graph Convolutional Neural Network (T-GCN) [10], Spatial-

Temporal Graph Social Network (STGSN) [12]. A TGNN

integrates the GNN architecture (to model the structural topol-

ogy dependency) and an RNN model (to capture the non-

linear temporal dependency for time series). Recent studies

have put significant attention into the TGNN model, such as

applications in traffic forecasting, social network analysis, and

human trajectory prediction [10], [12], [15].
Explanation methods for GNNs: Similar to some previ-

ously studied deep neural network architectures, the GNNs

are known to be black-boxes, i.e. it is unclear how they

generate predictions. To address this issue, several explanation

methods, called explainers, for GNNs have been introduced

recently [16]±[18]. The main objective of the explainers is to

identify some network components such as nodes, edges, or

sub-graphs, that explain, clarify or contribute the most to the

model’s predictions. The scope of explanations can also vary:

some methods focus on explaining the overall behaviors of

the model, while others aim to explain the model’s prediction

on a specific input instance. In this work, we focus on the

latter, which is known as the ªlocal explanationº method.

Local explanation methods can also be classified based on

their methodology: gradients or features-based, perturbation-

based, decomposition, and surrogate methods.
Explaining the GNN using PGM-Explainer: This pa-

per aims to extend PGM-Explainer [17], a local explanation

method based on a probabilistic graphical model, from GNN

explanation to TGNN explanation. The main reason why we

choose PGM-Explainer as a base framework is that it can

capture the graph dependencies within TGNN’s variables. This

makes the explainer a strong candidate to explain models with

high temporal-spatial dependencies as TGNNs. In the next

paragraphs, we provide a more formal description of how

PGM-Explainer explains the static GNNs.
We consider the forwarding of a GNN or TGNN to be

explained as a function Φ. In practice, since the output of

Φ can contain many predictions (for example as in node clas-

sification), we denote o the target prediction to be explained.

As such, the prediction to be explained can be written as the

function Φo : G → K, where G is the set of input graphs and

K is the set of prediction’s outputs on that target.
PGM-Explainer represents the GNN’s variables via a di-

rected acyclic probabilistic graph, i.e. a Bayesian network [19].

Given a target prediction to be explained o, PGM-Explainer

solves the optimal Bayesian network B∗:

argmax
B∈E

RΦ,o(B), s.t. |V(B)| ≤M,o ∈ V(B), (1)

where E is the set of all Bayesian networks and o is the random

variable corresponding to the target prediction o. The set of

random variables in Bayesian network V(B) represents the set

of explanatory features in the input graph of the model, which

is typically a subset of nodes in the input graph. The objective

RΦ,o(B) measure the fitness of the Bayesian network B with

a set of perturbation data generated from the function Φo.

The constraints in the optimization is to encourage compact

solutions and guarantee the target prediction is included in the

explanations. One choice of the objective RΦ,o(B) is the BIC

score, which is given as follows:

RΦ,o(B) = scoreBIC(B : Do) = l(θ̂B : Do)−
logn

2
Dim[B]

where Do is the perturbation data generated from Φo and

Dim[B] is the dimension of model B. θB are the parameters

of B and function l(θB : Do) is the log-likelihood between

the data Do and θB. θ̂B in the score is parameters’ value that

maximizes the log-likelihood, which is called the maximum

likelihood estimator. This choice of objective has been proven

to be consistent with the data [20].

III. PROBLEM STATEMENT

This section provides a problem formulation for TGNN

explanation. Based on our previous introduction of PGM-

Explainer in case of static GNNs, we describe the formulation

for TGNN and highlight some key properties and challenges

of the problem compared to the static case.

The function learnt by a TGNN can be considered as a

mapping from a graph G and a sequence of feature matrices

to the predictions:

Y = Φ(G; [Xt, · · · , Xt+T−1]), (2)

where T is the time window of the model. In practice, the

total time interval [t1, t2] is normally larger than the window

T . In that case, the interval [t1, t2] is processed into t2− t1−
T + 1 sequences of length T and feed into the TGNN. We

consequentially have t2 − t1 − T + 1 predictions.

Therefore, the problem of explaining the TGNN’s predic-

tions is not only about explaining the function Φ at some

specific input sequence [Xt, · · · , Xt+T−1] but also about ex-

plaining all predictions during the time interval [t1, t2], which

includes t2 − t1 − T + 1 predictions.

Formally, given a trained TGNN model Φ and the predic-

tions at the temporal interval to be explained, we define our

problems as discovering the crucial dependency structures for

the model making predictions on the interval. In the follow-

ings, we will first address how prediction of each sequence of

length T is explained. Then, we describe how all explanations

can be combined to explain all predictions on the interval.

IV. APPROACH

Our framework consists of two modules as shown in Fig-

ure 1. The first module leverages PGM-explainer to explain

TGNN model independently for each time step. Then the

second module aims to discovery the dominant interesting ex-

planations from the explanations identified in the first module.

In the following we will discuss the two modules and use T-

GCN [10] as an example of TGNN model.

GNN

A

E D

B C

Data

Generation

𝑡 𝑡 𝑡

…

Dominant explanations

discovery

[𝑡 , 𝑡]

“A is orange”

PGM-

explanation

Prediction
Prediction

on Graph

Perturbed

Graph
Input

Graph A

E D

B C

A

E D

B C

A

E D

B C

A

E D

B C

A

E D

B C

Fig. 1: Our proposed temporal graph neural network explainer framework

A. T-GCN Explanation

A naive way to explain the TGNN Φ on its input

[Xt, · · · , Xt+T−1] is to treat the sequence as a single feature

matrix and explain the model as in the case of non-temporal

models. One drawback of this approach is the temporal in-

formation and dependencies among model’s variables are not

considered and included in the explanations. Furthermore, the

number of input’s features would be scaled up with a factor

of the window T . This introduces significant computation

complexity on the explaining process.

To overcome challenges in explaining the TGNN discussed

in Sect. III , we reformulate the TGNN equations based on its

sequential implementation [10] as follow:

Y = Φ̄(G;Xt+T−1;Ht+T−1), (3)

Hi+1 = Φ̄(G;Xi;Hi), i = t, · · · , t+ T − 2. (4)

Here, Hi is the hidden features or configurations that the

TGNN computes during the sequential forwarding computa-

tion. With this formulation, we can consider the problem of

explaining the TGNN Φ as the problem of explaining Φ̄ at

its last computation with argument Ht+T−1. On one hand,

the argument Ht+T−1 is the result of the aggregation of the

input features from the past time steps. On the other hand, it

can be considered as the configuration of the last computation

where the model makes the final prediction. That configura-

tion dictates how the graph’s components work together to

generate the model’s prediction. Thus, we rewrite (Eq. 3)

as Y = Φ̄Ht+T−1
(G;Xt+T−1). Then, for each sequence

[Xt, · · · , Xt+T−1] the function Φ̄Ht+T−1
can be explained by

PGM-Explainer as described in Eq. 1.

Specifically, for each time sequence starting with index t,

we generate a perturbation data Dt of Φ̄Ht+T−1
. Similar to

that in PGM-Explainer, Dt contains two components. First

is a set of random seeds determining which nodes of the

input graph G is perturbed. Second is an indicator whether the

predictions on each nodes is changed by the perturbation on

the nodes. The predictions on the perturbations are computed

based on the function Φ̄Ht+T−1
, in which the value of Ht+T−1

is computed based on the original input data by forwarding

the model using Eq. 4. For each Dt, we use PGM-Explainer

to solve for an optimal Bayesian network Bt explaining the

model at that snapshot.

Note that the explanation Bayesian network Bt can be

different among different snapshots. In analyzing temporal

predictions of TGNN, the network structures that can represent

many snapshots are much more favorable. Thus, we propose

a Temporal Bayesian Information Criterion (TBIC) score

measuring the fitness of a given Bayesian network B with

a temporal data D = {Dt}
te
t=ts

:

scoreTBIC(B : D) :=
1

te − ts + 1

te∑

t=ts

scoreBIC(B : Dt).

To mitigate the impact of variations in the data Dt at each

snapshot and grasp a better intuition on how much the edges

in the Bayesian network B help capture the data, we use a

normalized version of the TBIC score, called FD(B). The

normalized TBIC is the different between the TBIC score of

B and the Bayesian network with no edge B0:

FD(B) := scoreTBIC(B : D)− scoreTBIC(B0 : D) (5)

=
1

te − ts + 1

te∑

t=ts

(scoreBIC(B : Dt)− scoreBIC(B0 : Dt)) .

We can see that each term in the sum of Eq. 5 captures the

gain of including the edges in Bt to fit each data Dt.

With the normalized TBIC score FD, we now can define

the interesting Bayesian network and the temporal domi-

nant interesting Bayesian network. Specifically, the Bayesian

network B is an interesting Bayesian network on a given

temporal window [ts, te] if FD(B) > Bthreshold, where

Bthreshold is a hyper-parameter as a threshold for selecting

the interesting Bayesian network. Furthermore, if the temporal

window [ts, te] is not a subset of any other interesting Bayesian

network temporal window, then B is a temporal dominant

interesting Bayesian network on that temporal window. The

definition of ªdominanceº provides a compact explanation.

B. Discover dominant interesting Bayesian networks

In this section, given the independent explanation from

PGM-explainer {Bi}
te
i=ts

, and the data in each time step

{Di}
te
i=ts

, we aim to discover interesting dominant Bayesian

graph in the temporal window. We first described a brute-force

approach for temporal pattern discovery. Then we described

our proposed pruning approach based on the antimonocity

property of dominant interesting Bayesian network.

1) Brute-force approach: The brute-force approach has two

phases, namely interesting Bayesian network discovery and

dominant interesting Bayesian network discovery. In the first

phase, for each candidate network, the algorithm scans every

possible temporal window and computes the interest score on

the window. There are n2 possible temporal windows and n

candidate Bayesian networks. The computation cost is O(n3)
for the first phase. Then in the second phase, the algorithm

aims to find dominant interesting Bayesian network whose

temporal window is not a subset of that of any other interesting

Bayesian network. It scans every pair of interesting Bayesian

network’s temporal window and eliminates the one that is not

dominant. Due to the space limit, we omit the algorithm of

the brute-force approach.

2) Proposed pruning approach: The brute-force approach

does an exhaustive search on all temporal windows for all

Bayesian networks. There are lots of redundant computations

in this step and requires the second phase to eliminate the

redundant Bayesian network explanation. We propose to op-

timize the brute-force search by a top-down traversal search

[21] to leverage the temporal dominant relationship .

Specifically, given a temporal dominant Bayesian network

over the temporal window [t1, t2], we can conclude that no

other temporal dominant Bayesian graph exists in the sub-

temporal window [t′1, t
′
2] ⊂ [t1, t2]. Such property inspires a

top-down traversal search. We start to calculate the interest

measure of each Bayesian graph over the longest temporal

window [t1, t2]. The algorithm recursively reduces the tem-

poral window size if there is no temporal dominant Bayesian

network in the temporal window [t1, t2]. Otherwise, if it finds

temporal dominant Bayesian network over [t1, t2], the subset

of the temporal window of [t1, t2] can be pruned out for other

Bayesian networks. The computation of interest measures for

all Bayesian network over the subset is eliminated.

Then we introduce the detailed implementation of the

algorithm. We first construct a directed acyclic graph (DAG)

to represent the dominant relationship between temporal win-

dows. Each node represents one temporal window [ti, tj] and

has two child nodes that are sub-temporal windows and cover

one time step less, [ti+1, tj] and [ti, tj−1]. The algorithm uses

a queue to do breadth first search on the temporal window. For

each node, we evaluate the interest measure for all Bayesian

networks over the temporal window. If the node identifies

at least one temporal dominant Bayesian network, all the

successors of the node will be pruned, otherwise, the algorithm

continues evaluating the successors of the node.

Computational complexity analysis: The top-down search

approach can potentially eliminate redundant temporal search.

In the best case, the algorithm identifies the longest temporal

window [ts, te] as the temporal dominant Bayesian network.

The computation for one Bayesian network is O(n) for all

Bayesian networks. In the worst case, no dominant Bayesian

graph is identified and the algorithm needs to evaluate all n2

temporal windows. The computational cost for n candidate

Bayesian networks is O(n3).

noend 1 The pruning approach

Input:

• Candidate Bayesian graph {Bi}
te
i=ts

• Perturbed dataset from the model D

• Interest measure function FD

Output:

• All the Interesting dominant Bayesian graph and its

dominant time window

Candset ← ∅, Create a empty queue Q

Q.enque([ts, te])
while Q not empty do

W = [t1, t2]← Q.deque()
for each Bi do

Scan the temporal window W and compute

the interest measure of Bayesian network B
if FD(Bi) > Bthreshold then

Add {Bi : [t1, t2]} to the CandSet

Prune all subtemporal window of W
Break

if W has sub-temporal window then

W1 = [t1 + 1, t2],W2 = [t1, t2 − 1]
Q.enque(W1), Q.enque(W2)

return CandSet

V. EXPERIMENT RESULTS

In this section, we aim to evaluate our proposed approach

on the temporal graph neural network model and present the

interpretation results on the transportation domain dataset.

A. Dataset Description

We use the datasets from transportation domain, which

contains the traffic speed information on the road network.

The dataset SZ-taxi contains the taxi trajectories of Shenzhen

from Jan.1, 2015 to Jan.30, 2015. Following the experiments

setup, we select 156 major roads of Lanzhou districts as

the study area. Each road segment is represented with one

node. The adjacency matrix describes the spatial relationship

between roads. The feature matrix describes the speed dynam-

ics overtime on each road. The traffic speed was aggregated

every 15 minutes. The dataset was split into 60% for training,

20% for validation and 20% for testing. We selected one day

(discretize into 96 temporal steps) to do the interpretation of

the prediction on the test dataset.

B. Experiment setup

We train T-GCN model [10] using Adam optimizer and set

the learning rate to 0.001, batch size to 64 and training epoch

to 3000. The accuracy of T-GCN on the test dataset is 0.71.

Then we generate the perturbation dataset using 1000 samples.

The perturbation threshold is set to 0.01, and perturbation

probability is 0.2. For dominant Bayesian network discovery,

