An Explainer for Temporal Graph Neural Networks
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Abstract—Temporal graph neural networks (TGNNs) have
been widely used for modeling time-evolving graph-related tasks
due to their ability to capture both graph topology dependency
and non-linear temporal dynamic. The explanation of TGNNs
is of vital importance for a transparent and trustworthy model.
However, the complex topology structure and temporal depen-
dency make explaining TGNN models very challenging. In this
paper, we propose a novel explainer framework for TGNN
models. Given a time series on a graph to be explained, the
framework can identify dominant explanations in the form of a
probabilistic graphical model in a time period. Case studies on the
transportation domain demonstrate that the proposed approach
can discover dynamic dependency structures in a road network
for a time period.

Index Terms—TGNN, graph explanations, interpretable DL

I. INTRODUCTION

In the last several years, Graph Neural Networks (GNNs)
have been increasingly popular due to their ability to capture
the complex relationship and interactions in a system [1]-[9].
GNNs assume static graph data and operate by aggregating
information in the local neighborhood of a node. However,
many real-world systems are dynamic and evolving over time.
For example, in the transportation domain, accurate traffic
forecasting requires both temporal features (periodicity and
trend) and spatial dependency modeling (the topology of a
road network). A Temporal Graph Neural Network (TGNN)
combines both a GNN and a recurrent neural network (RNN)
to capture both the spatial dependency and temporal dynamics
in a system [10]-[12].

Although TGNNSs have achieved wide success in modeling
spatial networks with temporal dynamics, it is unclear why a
model makes certain predictions. Such explanation is crucial
because: (1) It improves the transparency and consequently the
trust of a TGNN model in a growing number of safety-related
applications when being deployed into the real world; (2) It
allows end-users to identify interesting dynamic dependency
structures in the system. For example, for traffic forecast-
ing, the spatial dependency structure can change due to the
evolving characteristics of the traffic flow. In a non-congestion
period, the traffic status at upstream roads impacts the traffic
status at downstream roads through the transfer effect, and
in a congestion period, the traffic status at downstream roads
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impacts the traffic status at upstream roads through the feed-
back effect [10], [13]. Such dependency dynamics are crucial
for a transportation domain expert to identify the influential
neighboring roads at different time periods when predicting
the traffic flow or speed for one road segment.

The problem of explaining TGNNs is challenging for sev-
eral reasons. First, to generate an accurate explanation for
the temporal predictions, we need to consider the network
structural and temporal dependency simultaneously, which
increases the problem complexity compared with the static
GNN explanations. Second, the explanations identified in some
time steps may be insignificant or redundant, it is non-trivial
to discover the dominant interesting dependency structure in
a time period and eliminate the redundant pattern. Third,
the computation complexity is high considering the high
complexity of the interpretable domain and quadratic potential
temporal windows for explanations.

We propose a novel explainer framework for the temporal
graph neural network interpretations based on the static graph
explainer. Specifically, the main contributions are:

e To reduce the interpretation complexity, we reformu-
late the temporal graph neural network model such that the
explanations at different temporal snapshots can be done
independently to leverage the static graph explainer.

e We propose a pruning approach to discover the temporal
dominant interesting explanations from the independent expla-
nations at each time step and eliminate the insignificant and
redundant explanations. The proposed pruning algorithms can
reduce the temporal search space and improve efficiency.

e The case studies of the TGNN explanations on the
transportation domain show that our proposed explainer frame-
work can provide interpretable explanations and discover the
dynamic dependency structure of the spatial network.

II. BACKGROUND ON GRAPH NEURAL NETWORK
EXPLANATION

This section provides some related background and prelim-
inaries of our paper. The following provides some highlights
on GNN and TGNN, the current landscape of explaining
predictions made by GNNs, and the PGM-Explainer, which
serves as an important component of our method.

GNNs and TGNNs: With the increasing availability of
modern graph data and the popularity of graph-related tasks,
many Graph-based Neural Networks have been introduced
in recent years, such as ChebNets [1], Graph Convolutional



Networks [2], GraphSage [3], Graph Attention Networks [4],
among others [5]-[9], [14]. At a high level, these models
exploit the non-linear transformation in conventional neu-
ral networks to transform input features and aggregate (or
propagate) those features via a graph’s connectivity. To con-
sider the time-varying features of graph-related tasks, TGNNs
combine GNN and RNN models together, e.g., Temporal
Graph Convolutional Neural Network (T-GCN) [10], Spatial-
Temporal Graph Social Network (STGSN) [12]. A TGNN
integrates the GNN architecture (to model the structural topol-
ogy dependency) and an RNN model (to capture the non-
linear temporal dependency for time series). Recent studies
have put significant attention into the TGNN model, such as
applications in traffic forecasting, social network analysis, and
human trajectory prediction [10], [12], [15].

Explanation methods for GNNs: Similar to some previ-
ously studied deep neural network architectures, the GNNs
are known to be black-boxes, i.e. it is unclear how they
generate predictions. To address this issue, several explanation
methods, called explainers, for GNNs have been introduced
recently [16]-[18]. The main objective of the explainers is to
identify some network components such as nodes, edges, or
sub-graphs, that explain, clarify or contribute the most to the
model’s predictions. The scope of explanations can also vary:
some methods focus on explaining the overall behaviors of
the model, while others aim to explain the model’s prediction
on a specific input instance. In this work, we focus on the
latter, which is known as the “local explanation” method.
Local explanation methods can also be classified based on
their methodology: gradients or features-based, perturbation-
based, decomposition, and surrogate methods.

Explaining the GNN using PGM-Explainer: This pa-
per aims to extend PGM-Explainer [17], a local explanation
method based on a probabilistic graphical model, from GNN
explanation to TGNN explanation. The main reason why we
choose PGM-Explainer as a base framework is that it can
capture the graph dependencies within TGNN’s variables. This
makes the explainer a strong candidate to explain models with
high temporal-spatial dependencies as TGNNs. In the next
paragraphs, we provide a more formal description of how
PGM-Explainer explains the static GNNs.

We consider the forwarding of a GNN or TGNN to be
explained as a function ®. In practice, since the output of
® can contain many predictions (for example as in node clas-
sification), we denote o the target prediction to be explained.
As such, the prediction to be explained can be written as the
function @, : G — K, where G is the set of input graphs and
K is the set of prediction’s outputs on that target.

PGM-Explainer represents the GNN’s variables via a di-
rected acyclic probabilistic graph, i.e. a Bayesian network [19].
Given a target prediction to be explained o, PGM-Explainer
solves the optimal Bayesian network B*:

arg%2§R¢7o(B), st. [V(B)| < M,0eV(B), (1)

where £ is the set of all Bayesian networks and o is the random
variable corresponding to the target prediction o. The set of

random variables in Bayesian network V(1) represents the set
of explanatory features in the input graph of the model, which
is typically a subset of nodes in the input graph. The objective
R »(B) measure the fitness of the Bayesian network B with
a set of perturbation data generated from the function ®,.
The constraints in the optimization is to encourage compact
solutions and guarantee the target prediction is included in the
explanations. One choice of the objective Rg ,(B) is the BIC
score, which is given as follows:

Ry o(B) = scoregrc(B : D,) = 105 : D,) — 10%Dim[[ﬁ’]
where D, is the perturbation data generated from ®, and
Dim[B] is the dimension of model B. 5 are the parameters
of B and function (05 : D,) is the log-likelihood between
the data D, and 0. ég in the score is parameters’ value that
maximizes the log-likelihood, which is called the maximum
likelihood estimator. This choice of objective has been proven
to be consistent with the data [20].

III. PROBLEM STATEMENT

This section provides a problem formulation for TGNN
explanation. Based on our previous introduction of PGM-
Explainer in case of static GNNs, we describe the formulation
for TGNN and highlight some key properties and challenges
of the problem compared to the static case.

The function learnt by a TGNN can be considered as a
mapping from a graph G and a sequence of feature matrices
to the predictions:

Y = ®(G; [ Xp, -, Xeyr-1]), 2)

where 7' is the time window of the model. In practice, the
total time interval [t1,¢2] is normally larger than the window
T. In that case, the interval [t1,¢5] is processed into to — tq —
T + 1 sequences of length T and feed into the TGNN. We
consequentially have t5 — ¢t; — T+ 1 predictions.

Therefore, the problem of explaining the TGNN’s predic-
tions is not only about explaining the function ® at some
specific input sequence [X¢,-- -, Xi1r—1] but also about ex-
plaining all predictions during the time interval [¢;, t2], which
includes to —t; — T+ 1 predictions.

Formally, given a trained TGNN model ¢ and the predic-
tions at the temporal interval to be explained, we define our
problems as discovering the crucial dependency structures for
the model making predictions on the interval. In the follow-
ings, we will first address how prediction of each sequence of
length T is explained. Then, we describe how all explanations
can be combined to explain all predictions on the interval.

IV. APPROACH

Our framework consists of two modules as shown in Fig-
ure 1. The first module leverages PGM-explainer to explain
TGNN model independently for each time step. Then the
second module aims to discovery the dominant interesting ex-
planations from the explanations identified in the first module.
In the following we will discuss the two modules and use T-
GCN [10] as an example of TGNN model.
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Fig. 1: Our proposed temporal graph neural network explainer framework

A. T-GCN Explanation

A naive way to explain the TGNN & on its input
[X¢, -+, Xepr—1] is to treat the sequence as a single feature
matrix and explain the model as in the case of non-temporal
models. One drawback of this approach is the temporal in-
formation and dependencies among model’s variables are not
considered and included in the explanations. Furthermore, the
number of input’s features would be scaled up with a factor
of the window T'. This introduces significant computation
complexity on the explaining process.

To overcome challenges in explaining the TGNN discussed
in Sect. III , we reformulate the TGNN equations based on its
sequential implementation [10] as follow:

Y = ®(G; Xyyr—1; Hipr—1), 3)
H¢+1:é(G;X¢;Hi),i:t,"'7t+T—2. (4)

Here, H; is the hidden features or configurations that the
TGNN computes during the sequential forwarding computa-
tion. With this formulation, we can consider the problem of
explaining the TGNN & as the problem of explaining ® at
its last computation with argument H;,7_;. On one hand,
the argument H;,r_; is the result of the aggregation of the
input features from the past time steps. On the other hand, it
can be considered as the configuration of the last computation
where the model makes the final prediction. That configura-
tion dictates how the graph’s components work together to
generate the model’s prediction. Thus, we rewrite (Eq. 3)
as Y = ®p,,, (G;Xi17_1). Then, for each sequence
[X¢, -+, Xyyr—1] the function ®p, ., can be explained by
PGM-Explainer as described in Eq. 1.

Specifically, for each time sequence starting with index ¢,
we generate a perturbation data D; of @, +r_1- Similar to
that in PGM-Explainer, D; contains two components. First
is a set of random seeds determining which nodes of the
input graph G is perturbed. Second is an indicator whether the
predictions on each nodes is changed by the perturbation on
the nodes. The predictions on the perturbations are computed
based on the function ® H,,.r_,> in which the value of H; 11
is computed based on the original input data by forwarding
the model using Eq. 4. For each D;, we use PGM-Explainer

to solve for an optimal Bayesian network B; explaining the
model at that snapshot.

Note that the explanation Bayesian network 3, can be
different among different snapshots. In analyzing temporal
predictions of TGNN, the network structures that can represent
many snapshots are much more favorable. Thus, we propose
a Temporal Bayesian Information Criterion (TBIC) score
measuring the fitness of a given Bayesian network B with
a temporal data D = {D;};<, :

1

SCOreTB[C(B : D) = m

te
Z scoregrc (B : D).

t=ts

To mitigate the impact of variations in the data D; at each
snapshot and grasp a better intuition on how much the edges
in the Bayesian network B help capture the data, we use a
normalized version of the TBIC score, called Fp(B). The
normalized TBIC is the different between the TBIC score of
B and the Bayesian network with no edge By:

Fp(B) :=scorerpro(B : D) — scorerpro(By : D) 5)

t

1 e
:m Z (scoreprc (B : D) —scoregre(Bo : Dy)) .

t=t,

We can see that each term in the sum of Eq. 5 captures the
gain of including the edges in B; to fit each data D,.

With the normalized TBIC score Fp, we now can define
the interesting Bayesian network and the temporal domi-
nant interesting Bayesian network. Specifically, the Bayesian
network B is an interesting Bayesian network on a given
temporal window [ts,t.] if Fp(B) > Binreshoids Where
Bihresnota 18 @ hyper-parameter as a threshold for selecting
the interesting Bayesian network. Furthermore, if the temporal
window [ts, t.] is not a subset of any other interesting Bayesian
network temporal window, then B is a temporal dominant
interesting Bayesian network on that temporal window. The
definition of “dominance” provides a compact explanation.

B. Discover dominant interesting Bayesian networks

In this section, given the independent explanation from
PGM-explainer {B;}ic ¢,» and the data in each time step
{Dl}z:ts’ we aim to discover interesting dominant Bayesian



graph in the temporal window. We first described a brute-force
approach for temporal pattern discovery. Then we described
our proposed pruning approach based on the antimonocity
property of dominant interesting Bayesian network.

1) Brute-force approach: The brute-force approach has two
phases, namely interesting Bayesian network discovery and
dominant interesting Bayesian network discovery. In the first
phase, for each candidate network, the algorithm scans every
possible temporal window and computes the interest score on
the window. There are n? possible temporal windows and n
candidate Bayesian networks. The computation cost is O(n?)
for the first phase. Then in the second phase, the algorithm
aims to find dominant interesting Bayesian network whose
temporal window is not a subset of that of any other interesting
Bayesian network. It scans every pair of interesting Bayesian
network’s temporal window and eliminates the one that is not
dominant. Due to the space limit, we omit the algorithm of
the brute-force approach.

2) Proposed pruning approach: The brute-force approach
does an exhaustive search on all temporal windows for all
Bayesian networks. There are lots of redundant computations
in this step and requires the second phase to eliminate the
redundant Bayesian network explanation. We propose to op-
timize the brute-force search by a top-down traversal search
[21] to leverage the temporal dominant relationship .

Specifically, given a temporal dominant Bayesian network
over the temporal window [t;,%5], we can conclude that no
other temporal dominant Bayesian graph exists in the sub-
temporal window [t],t5] C [t1,¢2]. Such property inspires a
top-down traversal search. We start to calculate the interest
measure of each Bayesian graph over the longest temporal
window [t1,ts]. The algorithm recursively reduces the tem-
poral window size if there is no temporal dominant Bayesian
network in the temporal window [t1, t2]. Otherwise, if it finds
temporal dominant Bayesian network over [t1, t2], the subset
of the temporal window of [t1,¢2] can be pruned out for other
Bayesian networks. The computation of interest measures for
all Bayesian network over the subset is eliminated.

Then we introduce the detailed implementation of the
algorithm. We first construct a directed acyclic graph (DAG)
to represent the dominant relationship between temporal win-
dows. Each node represents one temporal window [¢;,t;] and
has two child nodes that are sub-temporal windows and cover
one time step less, [t;+1,t;] and [t;, t;—1]. The algorithm uses
a queue to do breadth first search on the temporal window. For
each node, we evaluate the interest measure for all Bayesian
networks over the temporal window. If the node identifies
at least one temporal dominant Bayesian network, all the
successors of the node will be pruned, otherwise, the algorithm
continues evaluating the successors of the node.

Computational complexity analysis: The top-down search
approach can potentially eliminate redundant temporal search.
In the best case, the algorithm identifies the longest temporal
window [ts,t.] as the temporal dominant Bayesian network.
The computation for one Bayesian network is O(n) for all
Bayesian networks. In the worst case, no dominant Bayesian

graph is identified and the algorithm needs to evaluate all n?
temporal windows. The computational cost for n candidate
Bayesian networks is O(n?).

noend 1 The pruning approach

Input:
e Candidate Bayesian graph {Bi}ﬁlts
e Perturbed dataset from the model D
e Interest measure function Fp
Output:
e All the Interesting dominant Bayesian graph and its
dominant time window
Candset < (), Create a empty queue Q
Q.enque([ts, te])
while Q not empty do
W = [t1,t2] + Q.deque()
for each B; do
Scan the temporal window »V and compute
the interest measure of Bayesian network B
if Fp(B;) > Bihreshola then
Add {B; : [t1,t2]} to the CandSet
Prune all subtemporal window of W
Break
if W has sub-temporal window then
W, = [tl + l,tQ],WQ = [tl,tg — 1]

Q.enque(W;), Q.enque(Ws)
return CandSet

V. EXPERIMENT RESULTS

In this section, we aim to evaluate our proposed approach
on the temporal graph neural network model and present the
interpretation results on the transportation domain dataset.

A. Dataset Description

We use the datasets from transportation domain, which
contains the traffic speed information on the road network.
The dataset SZ-taxi contains the taxi trajectories of Shenzhen
from Jan.1, 2015 to Jan.30, 2015. Following the experiments
setup, we select 156 major roads of Lanzhou districts as
the study area. Each road segment is represented with one
node. The adjacency matrix describes the spatial relationship
between roads. The feature matrix describes the speed dynam-
ics overtime on each road. The traffic speed was aggregated
every 15 minutes. The dataset was split into 60% for training,
20% for validation and 20% for testing. We selected one day
(discretize into 96 temporal steps) to do the interpretation of
the prediction on the test dataset.

B. Experiment setup

We train T-GCN model [10] using Adam optimizer and set
the learning rate to 0.001, batch size to 64 and training epoch
to 3000. The accuracy of T-GCN on the test dataset is 0.71.
Then we generate the perturbation dataset using 1000 samples.
The perturbation threshold is set to 0.01, and perturbation
probability is 0.2. For dominant Bayesian network discovery,



the Bayesian score threshold is 1400 based on the validation
dataset. All experiments are done on the high performance
cluster using 1 NVIDIA A100 GPU with 80 GB GPU memory.

C. Interpretation of results

We present the interpretation results on some representative
nodes to visualize the results. The chosen target nodes have
around ten two-hop neighbors. The time series of the target
node contains both congestion (low speed) and non-congestion
(high speed) time slots in one day to be representative for the
traffic condition.

Figure 2(a) shows one target node speed ground-truth and
the prediction of T-GCN, as well as that of one neighbor
node. From the prediction trend, we can observe, the T-GCN
model predicts worse at the peak, because the GCN model
uses a smooth filter in the spatial network and capture the
spatial relationship by constantly moving the filter. Before
applying our method to explain the prediction of T-GCN
model, we inspect the dependency dynamic of the model
in each snapshot. We first construct a standard Bayesian
network, which contains all neighborhood nodes within 2-hop
and no edges. The Bayesian score of standard network on
each temporal snapshot data is shown in Figure 2(b). We can
observe in the time 3 to 4 and 11 to 12, the standard Bayesian
score is higher, it implies that the target node and neighbors
have a higher probability to be independent of each other. On
the contrary, around 20 to 22 the standard Bayesian score is
lower, meaning there exists an interesting dependency between
the target nodes and neighbors.

Secondly, we apply our approach to explain the predictions
of T-GCN on each temporal snapshot during a day and
obtain the Bayesian network {Bi}fgt‘;. Then, we measure
the fitness of the identified Bayesian network to the data in
other time slots using score(B : D;). To evaluate the relative
improvement of adding the dependency edges, we use the
difference of the Bayesian score between each network B;
and the standard Bayesian network Bj. Figure 3 shows the
score results of three dominant interesting Bayesian network.
We can observe around the time window 3 to 4, 6 to 8 and 19
to 23, the average score is higher. We show the explanation
results of the target node in Figure 4. Three dominant Bayesian
network were discovered in the time window [3, 4], [6, 8] and
[19, 23]. We can observe that in the early morning period, the
influential nodes to the target node is nodes 12,126, 145, while
in the evening period, more dependency structure is observed.
Almost all neighbor nodes within 2-hop have high influence
on the target node in the evening. Based on the discovery, it is
reasonable to hypothesize that the early morning period traffic
in this target node is less rush than in the evening.

As a comparison we provide the explanation results for
another target node in Figure 5. We can observe for this
target node, the dominant Bayesian network discovered around
[8,10] (Figure 5 (b)) has much more dependency structure
than the dominant Bayesian network in [21, 23] (Figure 5 (c)),
so we hypothesize that for this target node, the time window
[8,10] maybe rush-hour period.
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Fig. 2: Ground-truth and prediction of one target node and
neighbor (a), standard Bayesian score of the target node (b)
(The x axis represents the hour in one day).
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Fig. 3: The Bayesian score evaluated at the day for three
candidate Bayesian graph

Analysis of Bayesian score threshold: The selection of
interesting Bayesian network depends on the Bayesian score
threshold. A higher threshold can find more critical patterns
of the network dependency structure, but the related dominant
windows are shorter. On the other hand, a lower threshold can
find dominant Bayesian network with a longer time window
but there may be redundancy. The selection of the threshold
can be based on the above trade-off and domain knowledge.

Fig. 4: (a). Original two-hop neighbors of the target node (TN)
, (b-d). Interesting dominant Bayesian discovered in temporal
window: (b). [3, 41, (¢). [6, 8], (d). [19, 23]
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