
Adaptive Sampling for Heterogeneous Rank Aggregation from Noisy

Pairwise Comparisons

Yue Wu1*, Tao Jin2*, Hao Lou2, Pan Xu3, Farzad Farnoud2†, Quanquan Gu1†
1University of California, Los Angeles 2University of Virginia 3California Institute of Technology

Abstract

In heterogeneous rank aggregation problems,
users often exhibit various accuracy levels
when comparing pairs of items. Thus, a uni-
form querying strategy over users may not be
optimal. To address this issue, we propose
an elimination-based active sampling strategy,
which estimates the ranking of items via noisy
pairwise comparisons from multiple users and
improves the users’ average accuracy by main-
taining an active set of users. We prove that
our algorithm can return the true ranking of
items with high probability. We also provide
a sample complexity bound for the proposed
algorithm, which outperforms the non-active
strategies in the literature and close to oracle
under mild conditions. Experiments are pro-
vided to show the empirical advantage of the
proposed methods over the state-of-the-art
baselines.

1 INTRODUCTION

To rank a set of items from noisy pairwise comparisons
or preferences is a widely studied topic in machine learn-
ing (Braverman and Mossel, 2008; Weng and Lin, 2011;
Ren et al., 2019; Jin et al., 2020). This is also referred
to as rank aggregation, which has many applications in
practice such as ranking online game players (Herbrich
et al., 2006), evaluating agents in games (Rowland
et al., 2019), recommendation systems (Valcarce et al.,
2017), etc. In the above cases, all data used in infer-
ence shares the assumption that each comparison has
the same credibility. However, in a heterogeneous set-
ting, the providers of subsets of data may have varying

*Equal Contribution
†Co-corresponding Authors

unknown accuracy levels. Thus, it is natural to take
advantage of the more accurate ones to obtain a more
accurate ranking using a smaller number of queries.

Nowadays, it is common to collect large-scale datasets
in order to facilitate the process of knowledge discov-
ery. Due to its scale, such data collection is usually
carried out by crowdsourcing (Kumar and Lease, 2011;
Chen et al., 2013), where different entities with di-
verse backgrounds generate subsets of the data. While
crowdsourcing makes it possible to scale up the size, it
also brings new challenges when it comes to the cost of
operation and cleanness of the data. For example, the
optimal ranking algorithm in the single-user setting
(Ren et al., 2019) may not be straightforwardly ex-
tended to the heterogeneous setting while maintaining
optimality. In particular, if we know the most accurate
user among the set of users providing comparisons, the
best we can do is to apply optimal single-user ranking
algorithms such as Iterative-Insertion-Ranking (IIR)
(Ren et al., 2019) by querying only the most accurate
user. Unfortunately, in practice, the accuracies of the
users are often unknown. A naive solution may be to
randomly select a user to query and use the compar-
isons provided by this user to insert an item into the
ranked list per IIR. However, as we show later, this
naive method usually bears a high sample complexity.
Therefore, it is of great interest to design methods that
can adaptively select a subset of users at each time to
query pairwise comparisons in order to insert an item
correctly into the ranked list.

In this paper, we study the rank aggregation prob-
lem, where a heterogeneous set of users provide noisy
pairwise comparisons for the items. We propose a
novel algorithm that queries comparisons for pairs of
items from a changing active user set. Specifically,
we maintain a short history of user responses for a
set of comparisons. When the inferred rank of these
comparisons is estimated to be true with a high con-
fidence, it is then used to calculate a reward based
on the recorded responses. Then an upper confidence
bound (UCB)-style elimination process is performed
to remove inaccurate users from active user set. We

Adaptive Sampling for Heterogeneous Rank Aggregation from Noisy Pairwise Comparisons

theoretically analyze the sample complexity of the pro-
posed algorithm, which reduces to the state-of-the-art
ranking algorithm (Ren et al., 2019) for a single user.
We conducted experiments on both synthetic and real-
world dataset, which demonstrate that our adaptive
sampling algorithm based on user elimination is much
more sample efficient than baseline algorithms and can
sometimes reach the performance of an oracle algo-
rithm.

Our contributions are summarized as follows:

• We propose a novel algorithm called Ada-IIR for het-
erogeneous rank aggregation, which uses a successive
elimination subroutine to adaptively maintain a set
of active users during the ranking process.

• We prove that Ada-IIR achieves the same order of
sample complexity as that of the oracle algorithm
which has access to the optimal user and uses the
state-of-the-art ranking approach designed for the
single-user setting.

• We conducted experiments for heterogeneous rank ag-
gregation problems on both synthetic and real-world
datasets to show that the proposed algorithm costs
significantly fewer samples than baseline algorithms
in order to recover the exact ranking.

Notation. We use lower case letters to denote scalars,
and lower and upper case bold letters to denote vectors
and matrices. We use k · k to indicate the Euclidean
norm. We also use the standard O and ⌦ notations.
The notations like eO are used to hide logarithmic fac-
tors. For a positive integer N , [N] := {1, 2, . . . , N}.

2 RELATED WORK

In this section, we discuss two closely related topics to
our work, which cover the two facets of heterogeneous
rank aggregation: active ranking to infer the rank and
best arm identification to select a subset of accurate
information sources (e.g., users). In addition to this,
we also introduce similar work bearing the idea that
ranking information can be heterogeneous.

Active ranking. For passive ranking problems, a
static dataset is given before hand. Inference of the
ranking often relies on models of ranked data, such
as the Bradley-Terry-Luce (BTL) model (Bradley and
Terry, 1952) and the Thurstone model (Thurstone,
1927). In contrast to passive algorithms, active algo-
rithms leverage assumptions embedded in the models
to identify the most informative pairs to query, thus re-
ducing the sample complexity of queries. For instance,
in Maystre and Grossglauser (2017), under the assump-
tion that the true scores for N items are generated by
a Poisson process, with O(Npoly(log(N)) comparisons,
an approximate ranking of n items can be found. Let

the probability of making a correct comparison between
item i and the most similar item to item i be 1

2 +di and
let dmin = mini2[n] di. An instance-dependent sample
complexity bound of O(n log(n)d�2

min log(n/(�dmin)) is
provided along with a QuickSort based algorithm by
Szörényi et al. (2015). In Ren et al. (2019), an anal-
ysis for a distribution agnostic active ranking scheme
is provided. To achieve a �-correct exact ranking,
O(

P
i2[n] d

�2
i (log log(d�1

i)+log(n/�))) comparisons are
required. The exact inference requirement results in re-
peated queries of the same pair, which costs a constant
overhead compared to approximate inference.

Best Arm Identification (BAI). BAI is a pure ex-
ploration method in multi-armed bandits (Audibert
et al., 2010; Chen et al., 2017). In the crowdsourc-
ing setting, every user can be queried with the same
question. Noting that some users can provide more
accurate answers than the others, the goal is to identify
the best user. We can regard the choice of which user
to ask as an action, and the correctness of the user’s re-
sponse as the reward (cost) of the taken action. A long
line of research has explored the identification of the
best action with stochastic feedback. Recently, Resler
and Mansour (2019) studied cases when the observed
binary action costs can be inverted with a probability
that is less than half. With a careful construction of
the estimated cost despite the noise, the regret of the
online algorithm suffers a constant order compared to
the noiseless setting even without the knowledge of the
inversion probability.

Heterogeneous Rank Aggregation. An early work
from Chen et al. (2013) explored the idea of user-specific
accuracy through a model that is equivalent to adding
noise to the comparisons produced by the BTL model.
More recently, Jin et al. (2020) proposed a natural
extension of BTL and Thurstone generative models
to heterogeneous population of users for pairwise com-
parisons and partial rankings. In addition to this line
of work that assumes a global true ranking, mixture
models (Zhao and Xia, 2019) were proposed for per-
sonal preference inference. These works output high
accuracy approximate rankings.

3 PRELIMINARIES AND
PROBLEM SETUP

3.1 Ranking from Noisy Pairwise
Comparisons

Suppose there are N items that we want to rank and M

users to be queried. An item is indexed by an integer
i 2 [N]. We assume there is a unique true ranking of the
N items. A user is also indexed by an integer u 2 [M].
For a subset of users, we use U ✓ [M] to denote the

Yue Wu
1*

, Tao Jin
2*

, Hao Lou
2
, Pan Xu

3
, Farzad Farnoud

2†
, Quanquan Gu

1†

index subset. In each time step, we can pick a pair of
items i and j and ask a user u whether item i is better
than item j. The comparison returned by the user may
be noisy. We assume that for any pair of items (i, j)
with true ranking i � j, the probability that the user
u answers the query correctly is pu(i, j) = �u + 1/2,
where �u 2 (0, 1

2] is referred to as the accuracy level
of user u. When some of the �u’s are different from
the others, we call the set of users heterogeneous. We
assume comparison results for item pairs, regardless
the queried user, are mutually independent. While this
independence assumption may not always hold for real
datasets, it is commonly adopted in the literature as it
facilitates the analysis (Falahatgar et al., 2017, 2018;
Jin et al., 2020).

In this paper, we aim to achieve the exact ranking for
a ranking problem defined as follows.
Definition 1 (Exact Ranking with Multiple Users).
Given N items, M users, and � 2 (0, 1), our goal is
to identify the true ranking among the N items with
probability at least 1��. An algorithm A is �-correct if,
for any instance of the input, it will return the correct
result in finite time with probability at least 1� �.

To actively eliminate the users in the user pool, we
define an ↵-optimal user as follows.
Definition 2. Let U ✓ [M] be an arbitrary subset of
users. If a user x 2 U satisfies �x + ↵ � maxu2U �u,
then x is called an ↵-optimal user in U . If a user is ↵-
optimal among all M users, then it is called an (global)
↵-optimal user.

3.2 Iterative Insertion Ranking with a Single
User

When there is only one user u to be queried (M = 1),
the problem defined in Section 3.1 reduces to the exact
ranking problem with a single user, for which Ren et al.
(2019) proposed the Iterative-Insertion-Ranking (IIR)
algorithm. The sample complexity (i.e., the total num-
ber of queries) to achieve exact ranking with probability
1� � is characterized by the following proposition:
Proposition 3 (Adapted from Theorems 2 and 12 in
Ren et al. (2019)). Given � 2 (0, 1/12) and an instance
of N items, the number of comparisons used by any
�-correct algorithm A on this instance is

⇥
�
N��2

u

�
log log��1

u + log(N/�)
��
. (1)

Moreover, the IIR algorithm proposed by Ren et al.
(2019) can output the exact ranking using this number
of comparisons, with probability 1� �.

The complexity above can be decomposed into the
complexity of inserting each item into a constructed
sorting tree.

In this paper, we consider a more challenging ranking
problem, where multiple users with heterogeneous levels
of accuracies can be queried each time. In the multi-
user setting, the optimal sample complexity in (1) can
be achieved only if we know which user is the best
user, i.e., u⇤ = argmaxu2[M] �u. The optimal sample
complexity can then be written as

Cu⇤(N) = ⇥
�
N��2

u⇤
�
log log��1

u⇤ + log(N/�)
��
. (2)

However, with no prior information on the users’ com-
parison accuracies, it is unclear whether we can achieve
a sample complexity close to (2). In this scenario,
the most primitive route is to perform no inference
on the users’ accuracy and randomly choose users
to query. This leads to an equivalent accuracy of
�̄0 = 1

M

P
u2[M] �u and a sample complexity given as

Cave(N) = ⇥
�
N�̄�2

0

�
log log �̄�1

0 + log(N/�)
��
. (3)

Compared with the best possible complexity (2), the
sample complexity (3) is larger by a factor (ignoring
logarithmic factors) up to M

2, because the ratio be-
tween �u⇤ and �̄0 could vary a lot for different set
of users and can be as large as M . This is certainly
undesirable, especially when there are a large num-
ber of items to be ranked. Therefore, an immediate
question is: Can we design an algorithm that has a
smaller multiplicative factor in its sample complexity
compared with the optimal sample complexity? What
we will propose in the following section is an algorithm
that can achieve a sublinear regret, where the regret is
defined as the difference between the sample complex-
ity of the proposed algorithm and the optimal sample
complexity.

4 ADAPTIVE SAMPLING AND
USER ELIMINATION

The main framework of our procedure is derived based
on the Iterative-Insertion-Ranking algorithm pro-
posed in Ren et al. (2019), which, to the best of our
knowledge, is the first algorithm that has matching
instance-dependent upper and lower sample complexity
bounds for active ranking problems in the single-user
setting. We assume that the strong stochastic transitiv-
ity (SST) assumption defined in Falahatgar et al. (2017,
2018) holds in our setting. The ranking algorithm com-
prises the following four hierarchical parts and operates
on a Preference Interval Tree (PIT) (Feige et al., 1994a;
Ren et al., 2019), which stores the currently inserted
and sorted items (the detailed definition is presented
in Appendix A):

1. Adaptive Iterative-Insertion-Ranking (Ada-
IIR): the main procedure which calls IAI to insert

Adaptive Sampling for Heterogeneous Rank Aggregation from Noisy Pairwise Comparisons

an item into a PIT with a high probability of cor-
rectness. It is displayed in Algorithm 1.

2. Iterative-Attempting-Insertion (IAI): the sub-
routine which calls ATI to insert the current item
z 2 [N] into the ranked list with an error ✏, and
iteratively calls ATI by decreasing the error until
the probability that the z-th item is inserted to the
correct position is high enough. It is displayed in
Algorithm 5.

3. Attempting-Insertion (ATI): the subroutine that
traverses the Preference Interval Tree using binary
search (Feige et al., 1994b) to find the node where
the item should be inserted with error ✏. To compare
the current item and any node in the tree, it calls
ATC to obtain the comparison result. It is displayed
in Algorithm 6.

4. Attempting-Comparison (ATC): the subroutine
that adaptively samples queries from a subset of
users for a pair of items (i, j), where i is the item cur-
rently being inserted and j is any other item. ATC
records the number of queries each user provides
and the results of the comparisons. It is displayed
in Algorithm 2.

In the heterogeneous rank aggregation problem, each
user may have a different accuracy level from the oth-
ers. Therefore, we adaptively sample the comparison
data from a subset of users. In particular, we maintain
an active set U ✓ [M] of users, which contains the
potentially most accurate users from the entire group.
We add a user elimination phase to the main proce-
dure (Algorithm 1) based on the elimination idea in
multi-armed bandits (Slivkins et al., 2019; Lattimore
and Szepesvári, 2020) to update this active set. In par-
ticular, we view each user as an arm in a multi-armed
bandit, where the reward is 1 if the answer from a
certain user is correct and 0 if wrong. After an item
is successfully inserted by IAI, we call Algorithm 3
(EliminateUser) to eliminate users with low accuracy
levels before we proceed to the next item.

To estimate the accuracy levels of users, a vector sz 2
RM , recording the counts of responses from each user
for every item, is maintained during the whole period of
inserting the z-th item . We further keep track of two
matrices Az, Bz 2 RN⇥M . When a pair (i, j) (where i

is the current item or in other words the z-th item being
inserted and j is an arbitrary item) is compared by user
u 2 RM in Algorithm 2, we increase A[j, u] by 1 if user
u thinks z-th item is better than j and increase B[j, u]
by 1 otherwise. We use w to record the total number of
times that the z-th item is deemed better by any users
and use the average bp = w/t to provide an estimation
of the average accuracy |U|�1

P
u2U p

u
ij . The variables

Az, Bz, and sz are global variables, shared by different
subroutines throughout the process. After the z-th

Algorithm 1 Main Procedure: Adaptive Iterative-
Insertion-Ranking (Ada-IIR)
Global Variables:
z 2 N: the index of the item being inserted into the
ranked list.
Az 2 RN⇥M : Az[j, u] is the number of times that user
u thinks the z-th item is better than item j.
Bz 2 RN⇥M : Bz[j, u] is the number of times that user
u thinks the z-th item is worse than item j.
sz 2 RM : total number of responses by each user so
far.
Input parameters: A list of items S to rank and
confidence �. S is a permutation of [N].
Initialize: n1 = s1 = 0

1: Ans the list containing only S[1]
2: for z 2 to |S| do
3: nz = nz�1, sz = sz�1, Az = 0, Bz = 0
4: IAI(S[z], Ans, �/(n� 1)) .Algorithm 5 (global

variables Az, Bz, sz are updated here)
5: for j 2 [z � 1] do
6: if S[z] > S[j] in PIT then
7: nz = nz +Az[S[j], ⇤]
8: else
9: nz = nz +Bz[S[j], ⇤]

10: end if
11: end for
12: Uz EliminateUser(Uz�1,nz, sz, �/(n � 1))

.Algorithm 3
13: end for
14: return Ans;

item is successfully inserted, Az, Bz will be discarded
and the space allocated can be used for Az+1, Bz+1

(See Line 3 of Algorithm 1).

We use the 0/1 reward for each user to indicate whether
the provided pairwise comparison is correct. Never-
theless, this reward is not known immediately after
each arm-pull since the correctness depends on the
ranking of items which is also unknown. But when IAI
returns inserted, the item recently inserted has a high
probability to be in the right place. Our method takes
advantage of this fact by constructing a fairly accurate
prediction of pairwise comparison for the item with all
other already inserted items in the PIT. Then an esti-
mate of the reward nz can be obtained with the help
of recorded responses Az and Bz, which are updated
in ATC as described in the preceding paragraph. At
last, in Algorithm 3 a UCB-style condition is imposed
on estimated accuracy levels µ = nz/sz.

Due to the space limit, we omit here the IAI and ATI
routines that are proposed in Ren et al. (2019). We
include them for completeness and ease of reference in
Appendix A.

Yue Wu
1*

, Tao Jin
2*

, Hao Lou
2
, Pan Xu

3
, Farzad Farnoud

2†
, Quanquan Gu

1†

Algorithm 2 Subroutine: Attempt-To-Compare
(ATC) (i, j,U , ✏, �)
Input: items (i, j) to be compared, where i is the
z-th item to be inserted, set of users U , confidence
parameter ✏, �. M is the number of users originally.
1: m = |U|, bp = 0, w = 0, by = 1. Number of rounds

r = 1. rmax = d 12✏
�2 log 2

� e.
2: while r rmax do
3: Choose u uniformly at random from U
4: Obtain comparison result from user u as y

u
ij

5: Increment the counter of responses collected from
this user sz[u] sz[u] + 1

6: if y
u
ij > 0 then

7: Az[j, u] Az[j, u] + 1, w w + 1
8: else
9: Bz[j, u] Bz[j, u] + 1

10: end if
11: bp w/r, r r + 1, cr

q
1
2t log(

⇡2r2

3�)

12: if |bp� 1
2 | � cr then

13: break
14: end if
15: end while
16: if bp 1

2 then
17: by = 0
18: end if
19: return: by

Algorithm 3 Subroutine: EliminateUser
Input parameters: (U , n, s, �).
1: Set S =

P
u2[M] su, smin = minu2U su, µu =

nu/su, r =
p
log(2|U|/�)/(2smin)

2: Set LCB = µ� r1 and UCB = µ+ r1.
3: if S � 2M2 log(NM/�) then
4: for u 2 U do
5: Remove user u from U if 9u0 2 U ,UCBu <

LCBu0 .
6: end for
7: end if
8: return U

5 THEORETICAL ANALYSIS

In this section, we analyze the sample complexity of the
proposed algorithm and compare it with other baselines
mentioned in Section 3.

5.1 Sample Complexity of Algorithm 1

We first present an upper bound on the sample com-
plexity of the proposed algorithm. Define �̄z =
1
Uz

P
u2Uz

�u to be the average accuracy of all users

in the current active set. Denote

F (x) = x
�2(log log x�1 + log(N/�)). (4)

Although F (x) depends on N and �
�1, the dependence

is only logarithmic, and it does not affect the validity
of reasoning via big-O notations.

Theorem 4. For any � > 0, with probability at least
1� �, Algorithm 1 returns the exact ranking of the N

items, and it makes at most CAlg(N) queries, where
CAlg(N) = O(

PN
z=2 �̄

�2
z (log log �̄�1

z + log(N/�))) =

O(
PN

z=2 F (�̄z)).

Proof. The analysis on the sample complexity follows a
similar route as Ren et al. (2019) due to the similarity in
algorithm design. In fact, since we randomly choose a
user from Ut and query it for a feedback, it is equivalent
to querying a single user with the averaged accuracy
1
2 + �̄z, where �̄z := 1

|Uz|
P

u2Uz
�u. This means most

of the theoretical results from Ren et al. (2019) can also
apply to our algorithm. In Appendix E.1, we present
more detailed reasoning.

5.2 Sample Complexity Comparison of
Different Algorithms

While Theorem 4 characterizes the sample complex-
ity of Algorithm 1 explicitly, the result therein is not
directly comparable with the sample complexity of
the oracle algorithm that only queries the best user
Cu⇤(N) or the complexity of the naive random-query
algorithm Cave(N). Based on Theorem 4, we can derive
the following more elaborate sample complexity for
Algorithm 1.

Theorem 5. Suppose there are N items and M users
initially. Denote Sz =

P
u2[M](sz)u to be the number

of all queries made before inserting the z-th item (Line 4
in Algorithm 1). The proposed algorithm has the
following sample complexity upper bound:

CAlg(N,M) = ⇥(NF (�u⇤))+

O

NX

z=2

1
�
Sz < 2M2 log(NM/�)

 �
F (�̄0)� F (�u⇤)

�
!

+O

L(U0)

p
log(2MN/�)

NX

z=2

1{Sz � 2M2 log(NM/�)}
r

M

Sz

!
, (5)

where L(U0) = F (c�3
u⇤)�F (�u⇤)

�u⇤�c�3
u⇤

is an instance-
dependent factor, with only logarithmic dependence on
N and �

�1(through F), and where c = 1/25 is a global
constant.

Adaptive Sampling for Heterogeneous Rank Aggregation from Noisy Pairwise Comparisons

Proof. The detailed proof can be found in Ap-
pendix E.2.

A few discussions are necessary to show the meaning
of the result. First, if the number of users M � N ,
then no user is eliminated because each user will be
queried so few times that no meaningful inference can
be made. Since the goal is to achieve the accuracy
of the best user, more inaccurate users only make the
task more difficult. Therefore, it is necessary to impose
assumptions on M with respect to N .

This intuition can be made more precise. Suppose we
loosely bound St as St � t log(t/�), which is reasonable
since for a very accurate user the algorithm will spend
roughly no more than O(log(t/�)) comparisons to insert
one item. This means the complexity can be bounded
as (ignoring log factors)

CAlg(N,M) = O
�
NF (�u⇤)

�

+ eO
�
M

2
�
F (�̄0)� F (�u⇤)

��

+ eO
�
L(U0)

�p
M(
p
N �M)

��
. (6)

If M = ⌦(
p
N), then this is not ideal because our

algorithm won’t eliminate any user until ⌦(N) items
are inserted with accuracy �̄0, which already leads to
a gap linear in N compared with the best complexity
Cu⇤ . In this case, our algorithm roughly makes the
same amount of queries as Cave.

In order to avoid the bad case, it is necessary to as-
sume M = o(

p
N) so that the last two terms become

negligible (notice that L(U0) is an instance-dependent
constant). Now we restate Theorem 5 with the addi-
tional assumption, and compare it with the baselines.

Proposition 6. Suppose we have M users and N

items to rank exactly, with M = o(
p
N). We have the

following complexity along with (2) and (3):

Cu⇤(N,M) = ⇥(NF (�u⇤)),

Cave(N,M) = ⇥(NF (�̄0)),

CAlg(N,M) = ⇥(NF (�u⇤))+

o(N
�
F (�̄0)� F (�u⇤)

�
) + o

�
N
�
.

The last two terms of CAlg(N,M) are negligible when
compared with the first term. Therefore, our algorithm
can perform comparably efficiently as if the best user
were known while enjoying an advantage over the naive
algorithm with sample complexity Cave(N,M).

Remark 7. Note that if we set U0 = {u⇤} for our
algorithm, it will achieve exactly the same complexity
as (2) indicates. Similarly, if we construct a new user
ū where �ū = �̄0 and set U0 = {ū}, our algorithm
will recover exactly (3). By this argument and the

fact that Big-O notations hide no M , the first term in
each equation actually has the same absolute constant
factor. Therefore, our algorithm is indeed comparable
with the best user.

Remark 8. Notice that F (x) ! +1 when x ! 0.
This means Cave is very sensitive to the initial average
accuracy margin �̄0. In the case where there is only
one best user u

⇤ and all other users have a near-zero
margin �u ! 0, Cave can be very large compared with
Cu⇤ .

Remark 9. In the experiments, we notice that even
with N = 10 and M = 9, after inserting the first item,
each user has already been queried for enough times so
that S2 � 2M2 log(NM/�), which makes the second
term in (5) vanish.

6 A TWO-STAGE ALGORITHM

In this section, we present an alternative simple scheme,
called two-stage ranking with a heterogeneous set of
users. This provides another baseline with which we
can compare Ada-IIR. Additionally, it can be useful
in situations with a large number of users, i.e., M =
⌦(
p
N), where Ada-IIR is less effective.

Two-stage ranking first performs user-selection and
then item-ranking. In the user-selection stage, we
search for an ↵-optimal user for some small ↵. Specifi-
cally, we first take an arbitrary pair of items (i, j) and
then run the Iterative-Insertion-Ranking (IIR) algo-
rithm (see Proposition 3) on them to determine the
order, e.g., i � j, with high probability. Note that at
this point, users have not been distinguished yet. So
we take each query from a randomly chosen user. As
discussed in Section 3.2, this is equivalent to query-
ing the user ū whose accuracy is �̄0. Given i � j,
the problem of finding an ↵-optimal user is reduced
to pure exploration of an ↵-optimal arm in the con-
text of multi-armed bandit: making queries about the
pre-determined item pair from user u is the same as gen-
erating outcomes from an arm with Bernoulli(12 +�u)
reward, e.g., if user u returns the answer i � j then
we get reward 1, otherwise we get reward 0. Hence,
an ↵-optimal user is equivalent of an ↵-optimal arm.
For determining an ↵-optimal arm, we can adopt the
Median-Elimination (ME) algorithm from Even-Dar
et al. (2002). After ME returns an ↵-optimal user
u↵, we discard all other users and rank items by only
querying u↵. Ranking with a single user can again be
done by the IIR algorithm.

It is clear that two-stage ranking is composed of three
procedures: IIR for determining the order of i and j,
ME for obtaining an ↵-optimal user, and IIR again
for producing the final ranking. The complexity of

Yue Wu
1*

, Tao Jin
2*

, Hao Lou
2
, Pan Xu

3
, Farzad Farnoud

2†
, Quanquan Gu

1†

two-stage ranking is therefore the sum of complexities
of the three procedures.

Theorem 10. For any ↵ 2 (0,�u⇤), two-stage ranking
outputs the exact ranking with probability at least 1��
using at most Ctsr(N,M) comparisons, where

Ctsr(N,M) = ⇥

✓
1

�̄2
0

✓
log log

1

�̄0
+ log

1

�

◆
+

M

↵2
log

1

�

+
N

(�u⇤ � ↵)2

✓
log log

1

�u⇤ � ↵
+ log

N

�

◆◆
.

(7)

A more formal statement of two-stage ranking as well as
the proof of Theorem 10 are presented in Appendix B.1.

Recall F (x) = x
�2(log log x�1 + log(N/�)) defined

in (4). From the preceding theorem, it is clear that for
any constant ↵, when M = o(N logN), Ctsr (N,M) is
dominated by ⇥ (NF (�u⇤ � ↵)). From Proposition 6,
when M = o(

p
N), Cave (N,M) = ⇥

�
NF

�
�̄0

��
and

CAlg (N,M) = ⇥ (NF (�u⇤)). Therefore, as long as ↵

is properly chosen, two-stage ranking has lower com-
plexity than the non-adaptive ranking. However, since
↵ > 0, there is a linear gap between two-stage ranking
to the proposed algorithm Ada-IIR. On the other hand,
two-stage ranking is less constrained than Ada-IIR as it
has an advantage over the non-adaptive scheme when
the number of users M is in the regime ⇥(

p
N) while

Ada-IIR does not. More detailed analysis about two-
stage ranking is presented in Appendices B.2 and B.3.

7 EXPERIMENTS

In this section, we study the empirical performance of
the following algorithms on both synthetic and real-
world datasets:

• IIR (Ren et al., 2019): The original single-user algo-
rithm adapted to the multi-user case by querying a
user selected uniformly at random.

• Ada-IIR: The proposed method.
• Two-stage ranking: A simple method described in

Section 6.
• Oracle: Query only the best user as if it is known.

Confidence parameter � = 0.25, ↵ = 0.05 is set if
required by algorithm. The code of our implementation
is available at https://github.com/ipsl/Ada-IIR.

7.1 Synthetic Experiment

In our experiment, we use a similar setup as that
of Jin et al. (2020), except that every pair has the
same disatnace. In particular, we consider a set of
users [M], whose accuracies are set by pu(i, j) =
(1+exp(�u(sj�si)))�1, for u 2 [M] and items i, j 2 [N],

where parameter �u determines the user accuracy and
si, sj are the utility scores of the corresponding items in
the BTL model. Larger values of �u lead to more accu-
rate users. We set si� sj = 3 if i � j and si� sj = �3
otherwise. Note that here we assume that the accuracy
of user u is the same for all pair of items (i, j) as long
as i � j. We assume that there are two distinct groups
of users: the high-accuracy group in which the users
have the same accuracy �u = �B 2 {0.5, 1.0, 2.5} in
three different settings; and the low-accuracy group in
which the users have the same accuracy �u = �A = 0.5
in all settings. This set of �u, si, sj is chosen so that
pu(i, j) for accurate users ranges from 0.55 to 0.99 and
inaccurate users have a value close to 0.55.

The number of items to be ranked ranges from 10 to
100. Each setting is repeated 100 times with randomly
generated data. To showcase the effectiveness of active
user selection, we tested a relatively adverse situation
where only 12 out of M = 36 users are highly accurate.

The average sample complexity and standard deviation
over 100 runs are plotted in Figure 1. Note that the
standard deviation is hard to see, given that it is small
compared to the average. In most cases, the proposed
method achieves nearly identical performance to the
oracle algorithm, with only a small overhead. For
two-stage ranking, we observe a constant overhead
regardless the accuracy of the users. It may outperform
the non-adaptive one (IIR) if there exist enough highly
accurate users such as in Figure 1(a). However, the
situation is less favorable for the two-stage algorithm
when the cost of finding the best user overwhelms the
savings of queries due to increased accuracy as shown
in Figure 1(b). It may even have an adverse effect when
accuracies are similar, as shown in Figure 1(c).

When we increase the total number of users and keep
their accuracy the same, as shown in Figure 2, the
Ada-IIR algorithm is able to tackle the increasing dif-
ficulty in finding more accurate users within a larger
pool. Although, the overhead increases, our proposed
method can adapt to each case and deliver near optimal
performance.

In our experiments every algorithm is able to recover
the exact rank with respect to the ground truth, which
is reasonable since the IIR algorithm is designed to
output an exact ranking. And due to the union bounds
used to guarantee a high probability correct output, the
algorithms tend to request more than enough queries
so we did not see a case in which a non-exact ranking
was produced.

7.2 Real-world Experiment

The above synthetic experiments serve as a proof of
concept. We add one more experiment based on the

https://github.com/ipsl/Ada-IIR

Adaptive Sampling for Heterogeneous Rank Aggregation from Noisy Pairwise Comparisons

20 40 60 80 100
Number of items to rank

0

100000

200000

300000

400000

500000

600000

700000

800000

S
am

pl
e

C
om

pl
ex

it
y

∞A = 0.5, ∞B = 2.5

IIR

Ada-IIR

Two-stage

Oracle

(a) �A = 0.5, �B = 2.5

20 40 60 80 100
Number of items to rank

0

100000

200000

300000

400000

500000

600000

700000

800000

S
am

pl
e

C
om

pl
ex

it
y

∞A = 0.5, ∞B = 1.0

IIR

Ada-IIR

Two-stage

Oracle

(b) �A = 0.5, �B = 1.0

20 40 60 80 100
Number of items to rank

0

100000

200000

300000

400000

500000

600000

700000

800000

S
am

pl
e

C
om

pl
ex

it
y

∞A = 0.5, ∞B = 0.5

IIR

Ada-IIR

Two-stage

Oracle

(c) �A = 0.5, �B = 0.5

Figure 1: Sample complexities v.s. number of items for all algorithms. (a) (b) and (c) are different heterogeneous
user settings where the accuracy of two group of users differs.

20 40 60 80 100
Number of items to rank

0

100000

200000

300000

400000

500000

600000

700000

800000

S
am

pl
e

C
om

pl
ex

it
y

∞A = 0.5, ∞B = 2.5

IIR

Ada-IIR

Two-stage

Oracle

(a) M = 18

20 40 60 80 100
Number of items to rank

0

100000

200000

300000

400000

500000

600000

700000

800000

S
am

pl
e

C
om

pl
ex

it
y

∞A = 0.5, ∞B = 2.5

IIR

Ada-IIR

Two-stage

Oracle

(b) M = 36

20 40 60 80 100
Number of items to rank

0

100000

200000

300000

400000

500000

600000

700000

800000

S
am

pl
e

C
om

pl
ex

it
y

∞A = 0.5, ∞B = 2.5

IIR

Ada-IIR

Two-stage

Oracle

(c) M = 72

Figure 2: Sample complexities v.s. number of items for all algorithms. (a) (b) and (c) are different settings where
the number of users differs. The accuracy of two groups of users are �A = 0.5, �B = 2.5.

real data, the setting is from the “Country Population”
dataset from Jin et al. (2020). In this dataset, the
population of 15 countries were ranked by workers.
Since the ground-truth �u is not available, we first used
the method described in the same work to infer the user
accuracy and item parameters. During the simulation,
the responses are generated according to their model
with these parameters. As we have discussed in 5.2,
the number of users should fall in a reasonable range.
Thus, we randomly sub-sample a set of 25 users since
the set of users provided by the dataset is excessive.
The results, shown in Table 1, suggest that the Ada-
IIR provides a moderate improvement over the non-
adaptive algorithm.

METHOD SAMPLE COMPLEXITY
IIR 59223 ± 3183

Two-stage 85027 ± 2619
Ada-IIR 52693 ± 2739
Oracle 43855 ± 2365

Table 1: Experiments on Country Population with 15
items and 25 users.

8 CONCLUSIONS

In this paper, we study the heterogeneous rank aggre-
gation problem, where noisy pairwise comparisons are
provided by a group of users with different accuracy
levels. We propose a new ranking algorithm based
on the idea of arm elimination from multi-armed ban-
dits. The algorithm can identify the best user and
utilize this information to efficiently perform the rank-
ing. Under the Bernoulli setting, we provide theoretical
guarantees that our algorithm is comparable with the
oracle algorithm that knows the best user, and the gap
between sample complexities of these two methods is
only sublinear in the number of items. We conduct
thorough experiments and show that the proposed algo-
rithm can perform as good as the oracle algorithm and
is significantly more sample efficient than all baseline
algorithms. One immediate and interesting future direc-
tion may be to extend our adaptive sampling algorithm
to more complicated models such as the heterogeneous
Bradley-Terry-Luce model and the heterogeneous Thur-
stone Case V model (Jin et al., 2020).

Yue Wu
1*

, Tao Jin
2*

, Hao Lou
2
, Pan Xu

3
, Farzad Farnoud

2†
, Quanquan Gu

1†

9 Acknowledgments

We would like to thank the anonymous reviewers for
their helpful comments. YW, PX and QG are sup-
ported in part by the NSF grants CIF-1911168 and
III-1904183. TJ and FF are supported in part by the
NSF grant CIF-1908544. The views and conclusions
contained in this paper are those of the authors and
should not be interpreted as representing any funding
agencies.

References

Audibert, J.-Y., Bubeck, S. and Munos, R. (2010).
Best arm identification in multi-armed bandits. In
COLT.

Bradley, R. A. and Terry, M. E. (1952). Rank
Analysis of Incomplete Block Designs: I. The Method
of Paired Comparisons. Biometrika 39 324–345.

Braverman, M. and Mossel, E. (2008). Noisy sort-
ing without resampling. In Proceedings of the nine-

teenth annual ACM-SIAM symposium on Discrete

algorithms.

Chen, J., Chen, X., Zhang, Q. and Zhou, Y. (2017).
Adaptive multiple-arm identification. In Interna-

tional Conference on Machine Learning.

Chen, X., Bennett, P. N., Collins-Thompson, K.
and Horvitz, E. (2013). Pairwise ranking aggrega-
tion in a crowdsourced setting. In Proceedings of the

sixth ACM international conference on Web search

and data mining. ACM.

Even-Dar, E., Mannor, S. and Mansour, Y.
(2002). Pac bounds for multi-armed bandit and
markov decision processes. In International Confer-

ence on Computational Learning Theory. Springer.

Falahatgar, M., Jain, A., Orlitsky, A., Picha-
pati, V. and Ravindrakumar, V. (2018). The
limits of maxing, ranking, and preference learning.
In International Conference on Machine Learning.

Falahatgar, M., Orlitsky, A., Pichapati, V. and
Suresh, A. T. (2017). Maximum selection and
ranking under noisy comparisons. arXiv preprint

arXiv:1705.05366 .

Feige, U., Raghavan, P., Peleg, D. and Upfal, E.
(1994a). Computing with noisy information. SIAM

J. Comput. 23 1001–1018.

Feige, U., Raghavan, P., Peleg, D. and Upfal, E.
(1994b). Computing with noisy information. SIAM

Journal on Computing 23 1001–1018.

Herbrich, R., Minka, T. and Graepel, T. (2006).
Trueskilltm: A bayesian skill rating system. In NIPS.

Jin, T., Xu, P., Gu, Q. and Farnoud, F. (2020).
Rank aggregation via heterogeneous thurstone prefer-
ence models. In Proceedings of the AAAI Conference

on Artificial Intelligence.
Kumar, A. and Lease, M. (2011). Learning to Rank

from a Noisy Crowd. In Proceedings of the 34th

International ACM SIGIR Conference on Research

and Development in Information Retrieval. SIGIR
’11, ACM, New York, NY, USA.

Lattimore, T. and Szepesvári, C. (2020). Bandit

algorithms. Cambridge University Press.
Maystre, L. and Grossglauser, M. (2017). Just

sort it! a simple and effective approach to active
preference learning. In Proceedings of the 34th Inter-

national Conference on Machine Learning-Volume

70. JMLR. org.
Ren, W., Liu, J. K. and Shroff, N. (2019). On

sample complexity upper and lower bounds for exact
ranking from noisy comparisons. In Advances in

Neural Information Processing Systems.
Resler, A. and Mansour, Y. (2019). Adversarial

online learning with noise. In Proceedings of the

36th International Conference on Machine Learning

(K. Chaudhuri and R. Salakhutdinov, eds.), vol. 97 of
Proceedings of Machine Learning Research. PMLR,
Long Beach, California, USA.

Rowland, M., Omidshafiei, S., Tuyls, K., Péro-
lat, J., Valko, M., Piliouras, G. and Munos,
R. (2019). Multiagent evaluation under incomplete
information. In NeurIPS.

Slivkins, A. et al. (2019). Introduction to multi-
armed bandits. Foundations and Trends® in Ma-

chine Learning 12 1–286.
Szörényi, B., Busa-Fekete, R., Paul, A. and

Hüllermeier, E. (2015). Online rank elicitation
for plackett-luce: A dueling bandits approach. In
Advances in Neural Information Processing Systems.

Thurstone, L. L. (1927). A law of comparative
judgment. Psychological Review 34 273–286.

Valcarce, D., Parapar, J. and Barreiro, Á.
(2017). Combining top-n recommenders with
metasearch algorithms. Proceedings of the 40th Inter-

national ACM SIGIR Conference on Research and

Development in Information Retrieval .
Weng, R. C. and Lin, C.-J. (2011). A bayesian

approximation method for online ranking. Journal

of Machine Learning Research 12.
Zhao, Z. and Xia, L. (2019). Learning mixtures of

plackett-luce models from structured partial orders.
In NeurIPS.

Adaptive Sampling for Heterogeneous Rank Aggregation from Noisy Pairwise Comparisons

A More Details About the Proposed Algorithm

We borrow the definition of Preference Interval Tree (PIT) (Feige et al., 1994a; Ren et al., 2019) based on which
we can insert items to a ranked list. Specifically, given a list of ranked items S the PIT can be constructed using
the following Algorithm 4.

Algorithm 4 Build PIT
Input parameters: S

Data structure: Node = {left,mid, right, lchild, rchild, parent}, left,mid, right holds index values,
lchild, rchild, parent points to any other Node.
Initialize: N = |S|
1: X = CreateEmptyNode returns an empty Node with above mentioned data structure
2: X.left = �1
3: X.right = |S|
4: X.mid = b(X.left+X.right)/2c
5: queue = [X]
6: while queue.NotEmpty do
7: X = queue.PopFront
8: X.mid = b(X.left+X.right)/2c
9: if X.right - X.left > 1 then

10: lnode = CreateEmptyNode
11: lnode.left = X.left
12: lnode.right = mid
13: X.lchild = lnode
14: rnode = CreateEmptyNode
15: queue.append(lnode)
16: rnode.left = X.mid
17: rnode.right = X.right
18: X.rchild = rnode
19: queue.append(rnode)
20: end if
21: end while
22: replace �1 with �1, |S| with 1 in each Node.left and Node.right.

For the completeness of our paper, we also present the subroutines Iterative-Attempting-Insertion (IAI) and
Attempting-Insertion (ATI) in this section, which are omitted in Section 4 due to space limit. In particular,
IAI is displayed in Algorithm 5 and ATI is displayed in Algorithm 6. Both algorithms are proposed by Ren et al.
(2019) for adaptive sampling in the single user setting.

Algorithm 5 Subroutine: Iterative Attempt To Insert (IAI)
Input parameters: (i, S, �)
Initialize: For all ⌧ 2 Z+, set ✏⌧ = 2�(⌧+1) and �⌧ = 6�

⇡2⌧2 ; t 0; Flag unsure;
1: repeat
2: t t+ 1;
3: Flag ATI(i, S, ✏t, �t);
4: until Flag = inserted

B Two-stage Ranking

In this section, we formally state and analyze the two-stage ranking presented in Section 6.

Yue Wu
1*

, Tao Jin
2*

, Hao Lou
2
, Pan Xu

3
, Farzad Farnoud

2†
, Quanquan Gu

1†

Algorithm 6 Subroutine: Attempt To Insert (ATI).
Input parameters: (i, S, ✏, �)
Initialize: Let T be a PIT constructed from S, h d1 + log2(1 + |S|)e, the depth of T
For all leaf nodes u of T , initialize cu 0; Set tmax dmax{4h, 512

25 log 2
� }e and q 15

16

1: X the root node of T ;
2: for t 1 to t

max do
3: if X is the root node then
4: if ATC(i,X.mid, ✏, 1� q) = i then
5: X X.rchild
6: else
7: X X.lchild
8: end if
9: else if X is a leaf node then

10: if ATC(i,X.left, ✏, 1�pq) = i ^ ATC(i,X.right, ✏, 1�pq) = X.right then
11: cX cX + 1

12: if cX > b
t := 1

2 t+
q

t
2 log

⇡2t2

3� + 1 then
13: Insert i into the corresponding interval of X and
14: return inserted

15: end if
16: else if cX > 0 then
17: cX cX � 1
18: else
19: X X.parent
20: end if
21: else
22: if ATC(i,X.left, ✏, 1� 3

p
q) = X.left _ ATC(i,X.right, ✏, 1� 3

p
q) = i then

23: X X.parent
24: else if ATC(i,X.mid, ✏, 1� 3

p
q) = i then

25: X X.rchild
26: else
27: X X.lchild
28: end if
29: end if
30: end for
31: if there is a leaf node u with cu � 1 + 5

16 t
max then

32: Insert i into the corresponding interval of u and
33: return inserted

34: else
35: return unsure

36: end if

B.1 Algorithm Outline

We present two-stage ranking in Algorithm 7. As described in Section 6, an arbitrary pair of items is first fed
to the IIR algorithm for determining the order using the ‘average’ user. Next, the Median-Elimination (ME)
algorithm Even-Dar et al. (2002) is used to find an ↵-optimal user. After that, the total ranking can be obtained
by applying the IIR algorithm on the selected user. IIR takes a set of items, the confidence level and a user as
inputs and outputs a ranking of the items. ME takes a set U of users, real numbers ↵, � and two ranked items as
inputs and outputs an ↵-optimal user in U with probability at least 1� �.

Theorem 10. For any ↵ 2 (0,�u⇤), two-stage ranking outputs the exact ranking with probability at least 1� �

Adaptive Sampling for Heterogeneous Rank Aggregation from Noisy Pairwise Comparisons

Algorithm 7 Two-stage Ranking(N ,U ,↵, �)
input: set of items N , set of users U , desired near-optimal level ↵, confidence level �.
Let i, j be two arbitrary items. Let ū be the ‘average’ user.
[i0, j0] Iterative-Insertion-Ranking({i, j}, �

3 , ū).
u↵ Median-Elimination(U ,↵, �

3 , [i
0
, j

0])
output: Iterative-Insertion-Ranking(N ,

�
3 , u↵)

using at most Ctsr(N,M) comparisons, where

Ctsr(N,M) = ⇥

✓
1

�̄2
0

✓
log log

1

�̄0
+ log

1

�

◆
+

M

↵2
log

1

�

+
N

(�u⇤ � ↵)2

✓
log log

1

�u⇤ � ↵
+ log

N

�

◆◆
. (7)

Proof of Theorem 10. It is clear that two-stage ranking is composed of three procedures: IIR for determining
the order of i, j, ME for obtaining an ↵-optimal user and IIR again for producing the final true ranking. The
probability guarantee of two-stage ranking follows from applying the union bound on the three procedures.

From Proposition 3, Iterative-Insertion-Ranking
�
{i, j}, �

3 , ū
�

takes number of queries at most

⇥

✓
2

�̄2
0

✓
log log

1

�̄0
+ log

✓
6

�

◆◆◆
, (8)

Iterative-Insertion-Ranking
�
N ,

�
3 , u↵

�
takes number of queries at most

⇥

N

(�u⇤ � ↵)2

✓
log log

1

�u⇤ � ↵
+ log

✓
3N

�

◆◆!
(9)

by noting that the accuracy of u↵ is at least �u⇤ � ↵. Moreover, it is shown in Even-Dar et al. (2002) that ME
outputs an ↵-optimal user using at most

⇥

✓
M

↵2
log

1

�

◆
(10)

comparisons.

The desired complexity bound thus follows from summing up (8), (9) and (10).

B.2 Complexity Analysis

In this subsection, we provide a more detailed discussion on the complexity of the two-stage algorithm described
in Algorithm 7. Recall that we define

F (x) = x
�2

�
log log x�1 + log (N/�)

�
.

When the average user accuracy �̄0 and the maximum accuracy �u⇤ are constants reflecting population statistics1,
the first term in (7) becomes negligible and we can write

Ctsr = ⇥

✓
M

↵2
log

1

�
+NF (�u⇤ � ↵)

◆
.

Noting that NF (�u⇤ � ↵) is of order N logN
(�u⇤�↵)2

, the following propositions can be made as M and ↵ take different
values.

1For instance, when user accuracies follow from a probability distribution, it is reasonable to let �̄0 and �u⇤ remain
constants as N,M grow.

Yue Wu
1*

, Tao Jin
2*

, Hao Lou
2
, Pan Xu

3
, Farzad Farnoud

2†
, Quanquan Gu

1†

Proposition 11. When M = !(N logN) or ↵ = o

⇣q
M

N logN

⌘
,

Ctsr (N,M) = !(N logN) +⇥ (NF (�u⇤ � ↵)) .

When M = !(N logN) or ↵ = o

⇣q
M

N logN

⌘
, the dominating term in Ctsr is M

↵2 log
1
� = ! (N logN), i.e., the

number of comparisons it takes in the user-selection stage can be more costly than ranking items. If particular,
when the number of users M is too large, even asking each user one question becomes unaffordable. When ↵ is
chosen too small, although the selected user is closer to optimal, the saving on ranking complexity is not obvious.
Both cases are undesirable.

Proposition 12. When M = O(N) and ↵ = !

⇣q
M

N logN

⌘
\ o(1), then

Ctsr (N,M) = ⇥ (NF (�u⇤)) + o(N logN) +O(1).

When M = O(N) and ↵ = !

⇣q
M

N logN

⌘
\ o(1), Ctsr is dominated by (9) and equals ⇥ (NF (�u⇤)) since

N

(�u⇤ � ↵)2

✓
log log

1

�u⇤ � ↵
+ log

3N

�

◆
= NF (�u⇤) (1 + o(1)) .

Therefore, when the number of users M is not much larger than the number of items N , two-stage ranking can
achieve order optimal by choosing ↵ sufficiently small. In particular, if there exists a universal constant D such
that the complexity of IIR with user accuracy � is D ·NF (�) (1 + o(1)), then (9) equals D ·NF (�u⇤) (1 + o(1)),
which implies that Ctsr = Cu⇤ (1 + o(1)), i.e., two-stage ranking is asymptotically optimal.

Proposition 13. When ↵ is a constant,

Ctsr(↵) = ⇥ (NF (�u⇤ � ↵)) +O(M).

When ↵ is a constant, (10) and (9) are the dominating terms of Ctsr. Moreover, if M = o(N logN), then
Ctsr (N,M) equals ⇥ (NF (�u⇤ � ↵)). Two-stage ranking in this case is equivalent of the complexity of IIR using
a single user with accuracy �u⇤ �↵. Therefore, as long as ↵ < �u⇤ � �̄0, two-stage ranking will be more efficient
than the non-adaptive baseline.

More generally, if we remove the assumption that �̄0 and �u⇤ are constants, Ctsr (N,M) can be in the worst case
as large as

⇥

M

2

�2
u⇤

✓
log log

M

�u⇤
+ log

1

�

◆
+

M

↵2
log

1

�
+

N

(�u⇤ � ↵)2

✓
log log

1

�u⇤ � ↵
+ log

N

�

◆!
, (11)

by noting that �̄0 � �u⇤
M . Again, the desired situation is when the first two terms are negligible so that Ctsr (N,M)

is equivalent to the complexity of ranking using an ↵-optimal user, as formulated in the following proposition.

Proposition 14. By (11), when M = O

⇣p
N

⌘
and M

↵2 = o (N logN),

Ctsr (N,M) = ⇥ (NF (�u⇤ � ↵)) .

Recall from (2), (3) and Proposition 6 that

Cu⇤(N,M) = ⇥(NF (�u⇤)), Cave(N,M) = ⇥(NF (�̄0)),

CAlg(N,M) = ⇥(NF (�u⇤)) + o(N
�
F (�̄0)� F (�u⇤)

�
) + o

�
N
�

when M = o(
p
N).

Therefore, when M = O

⇣p
N

⌘
, if there exists ↵ such that M

↵2 = o (N logN) and ↵ < �u⇤ � �̄0, two-stage
ranking can be more efficient than the non-adaptive baseline with this choice of ↵. Note that this choice of ↵
always exists as long as �u⇤ � �̄0 � !

⇣q
M

N logN

⌘
. The case when �u⇤ � �̄0 � O

⇣q
M

N logN

⌘
is not interesting

Adaptive Sampling for Heterogeneous Rank Aggregation from Noisy Pairwise Comparisons

in the context of heterogeneous ranking since the difference between users essentially does not exist. On the other
hand, as discussed in Section 5.2 that when M = o

⇣p
N

⌘
, the proposed Ada-IIR algorithm performs ranking

in an adaptive way and is comparably efficient as if the best user were known. While for two-stage ranking to
achieve the same complexity level, the value of ↵ needs to be properly chosen. If ↵ is set as a pre-determined
constant then Ctsr (N,M) can be larger than CAlg (N,M) by a constant multiplicative factor. Moreover, since we
have no access of �u⇤ , if ↵ is chosen to be larger than �u⇤ then the user-selection process can not provide any
benefit any more. However, two-stage ranking has a slightly milder constraint on M . While Ada-IIR would make
roughly the same amount of queries as the non-adaptive baseline Cave if M = ⌦

⇣p
N

⌘
, two-stage ranking can

still be more efficient than the non-adaptive baseline when M = ⇥
⇣p

N

⌘
.

B.3 User Selection in a Subset

As shown in Proposition 11, when M is much larger than N logN , even querying each user once costs time linear
in M which could be higher than the ranking complexity. Therefore, instead of selecting a global ↵-optimal user,
we devise a subroutine Subset-User-Selection (SUS) that randomly picks without replacement L (L M) users
and only search for an ↵-optimal user among them (see Algorithm 8). We use L to denote this L-subset of users.

Algorithm 8 Subroutine: Subset-User-Selection(U , L,↵, �i, �m, i, j)

input: set of users U , user subset size L, desired near-optimal level ↵, confidence level �i of initial ranking,
confidence level �m of user selection, two items i, j 2 N .
[i0, j0] Iterative-Insertion-Ranking({i, j}, �i, ū).
Randomly choose a subset L of L users from U .
output: Median-Elimination(L,↵, �m, [i0, j0])

The main procedure of the two-stage algorithm is also modified, shown in Algorithm 9.

Algorithm 9 Modified-Two-Stage-Ranking(N ,U , L,↵, �i, �m, �r)

input: set of items N , set of users U , user subset size L, desired near-optimal level ↵, confidence level �i of
initial ranking, confidence level �m of user selection, confidence level �r of final ranking.
Let i, j be two arbitrary items.
[i0, j0] Iterative-Insertion-Ranking({i, j}, �i, ū).
Randomly choose a subset L of L users from U .
u↵ Median-Elimination(L,↵, �m, [i0, j0])
output: Iterative-Insertion-Ranking(N , �r, u↵)

Generally, no guarantee can be made on how close is a subset ↵-optimal user to the global optimal user. So
analysis on the two-stage algorithm will be done under the assumption that the M user accuracies are iid samples
drawn from a probability distribution F (x) over the interval (0, 1

2] (F (x) is independent of any other quantities).
Let b = infx{x : F (x) = 1}.

Since �1,�2, . . . ,�M are iid samples from F (x) and L is drawn randomly, we assume without loss of generality
that L contains the first L users, i.e., L = {1, 2, . . . , L}. Let �� = maxu2L �u. Recall that �u⇤ = maxu2U �u.
We first show in the following lemma that �u⇤ ��� is independent of M .

Lemma 15. For any �
0 2 (0, 1

2),↵ 2 (0, b), if L � log(�0)/ log (F (b� ↵)), then with probability at least 1� �
0,

�� � �u⇤ � ↵.

Proof. Note that the claim becomes trivial when M log �0

log(F (b�↵)) . We consider the case when log �0

log(F (b�↵)) L
M .

Since �1,�2, . . . ,�L are iid samples from F (x), with probability (F (b� ↵))L,

�i b� ↵ for all 1 i L.

Yue Wu
1*

, Tao Jin
2*

, Hao Lou
2
, Pan Xu

3
, Farzad Farnoud

2†
, Quanquan Gu

1†

Hence, (F (b� ↵))L �
0 gives

�� = max
1iL

�i � b� ↵ � �u⇤ � ↵

with probability at least 1� �
0, where the last inequality follows from �u⇤ b with probability 1.

The preceding lemma states that when user accuracies follow a fixed distribution, at least one of the L users we
select randomly will be close to the global best user as long as L is large enough (but still independent of M).
Thus, even when the number of users M is huge, we do not need to collect information from every one of them.
A randomly chosen subset is able to accurately reflect the statistics of the larger group.

Next, we compute the number of comparisons needed for user selection. Our goal is to show that the complexity
of user selection becomes negligible compared with item ranking. In the following analysis, for simplification, we
assign the confidence levels �i, �m, �r in Two-Stage-Ranking as well as the confidence level �0 for the existence of
an ↵-optimal user equal values. Specifically, we let �

0 = �i = �m = �r = �
4 for some � 2 (0, 1).

Theorem 16. For any � 2 (0, 1
2),↵ 2 (0, b), L = min

⇣
d log(�/4)
log(F (b�↵/2))e,M

⌘
, with probability at least 1 � 3�

4 ,
subroutine Subset-User-Selection(U , L, ↵

2 ,
�
4 ,

�
4 , i, j) outputs a global ↵-optimal user after

⇥

✓
�̄�2

✓
log log �̄�1 + log

4

�

◆
+

4L

↵2
log

4

�

◆

comparisons.

Proof. By Lemma 15, letting L = min
⇣
d log(�/4)
log(F (b�↵/2))e,M

⌘
gives �� � �u⇤ � ↵

2 with probability at least 1� �
4 .

Moreover, IIR finds the correct order of items i, j with probability at least 1� �
4 and given that Median-Elimination

outputs an ↵
2 -optimal user in the L-subset with probability at least 1� �

4 . Therefore, by the union bound, with
probability 1� 3�

4 , the ↵
2 -optimal user found is a global ↵-optimal user.

The complexity is a sum of two terms: the complexity of IIR ranking two items and the complexity of Median-
Elimination outputting an ↵/2-optimal user among L users.

Theorem 17. For any � 2 (0, 1
2),↵ 2 (0, b), L = min

⇣
d log(�/4)
log(F (b�↵/2))e,M

⌘
, with probability at least 1 � �,

Modified-Two-Stage-Ranking(N ,U , L,↵, �
4 ,

�
4 ,

�
4) outputs the exact ranking of N , and consumes

Cmtsr(↵) = ⇥

✓
�̄�2

✓
log log �̄�1+log

4

�

◆
+
4L

↵2
log

4

�
+NF (�u⇤�↵)

◆

comparisons.

Proof. Modified-Two-Stage-Ranking being able to output the exact ranking of N is guaranteed by the algorithm
IIR.

It remains to compute the complexity. By Theorem 16, with probability at least 1� 3
4�, Subset-User-Selection

outputs a global ↵-optimal user. With a global ↵-optimal user, IIR outputs the exact ranking of N after

⇥ (NF (�u⇤ � ↵)) ,

comparisons with probability at least 1� �
4 . Therefore, the desired complexity follows from applying the union

bound and summing up the complexities of SUS and IIR.

From the preceding theorem, the modified-two-stage ranking can achieve complexity ⇥ (NF (�u⇤ � ↵)) even when
M is much larger than N logN . Specifically, with ↵ chosen as a constant, L = min

⇣
d log(�/4)
log(F (b�↵/2))e,M

⌘

is ⇥ (1). Plus that for M sufficiently large, �̄ equals the mean of F (x) with probability 1 and thus
�̄�2

�
log log �̄�1 + log 4

�

�
= O(1), we have the following proposition.

Proposition 18. When ↵ = ⇥ (1),

Cmtsr(↵) = ⇥ (NF (�u⇤ � ↵)) ,

regardless of how large M is.

Adaptive Sampling for Heterogeneous Rank Aggregation from Noisy Pairwise Comparisons

Table 2: Sample complexities on HistoryEvent dataset.
Method IIR Ada-IIR Two-stage Oracle

Full dataset 8826439 6543195 9736980 2910488

Diverse subset 9548635 4050986 9964645 3157220

C Additional Experiments on Synthetic Data

In this section, we provide additional numerical experiments to demonstrate the advantage of our method.
First we extend the accuracy of users to be generated in Section 7 to a wider range of parameters: �A 2
[0.25, 0.5, 1.0], �B 2 [0.5, 1.0, 2.5]. We also tested the performance of the algorithm when there are larger amount
of users as M = [9, 18, 36] and the result with different �u configurations are shown in Fig. 3, 4, 5. In each case, a
portion of 1

3 of the users have �u = �B, and the rest have �u = �A. Though the original ‘Medium Elimination’
order optimal, its constant factor penalty is too large to be practical. We turn to use the successive elimination
algorithm (Even-Dar et al., 2002) as we did in Algorithm 3 with ✏ = 0.15 to identify the best user in the given
result.

When comparing the same �u setting with different users such as in Fig 3(c), 4(c), 5(c). The adaptive algorithm
has similar performance with the two-stage one but without the overhead when there are smaller amount of
items. It also shows when M is increasing, the advantage of adaptive sampling is diminishing compared to the
non-adaptive one due to the fact that the queries are spread over more users thus it takes longer to find the better
set of more accurate users.

D Additional Experiments on Real-world Data

In this section, we provide additional experiments when the method is applied to crowdsourcing data. We applied
Ada-IIR to a crowdsourcing dataset2, with the results given in Table 2. To clean up the data, we first selected
users who provided more than 200 responses, resulting in the "Full dataset", where it can be observed that
Ada-IIR reduces the sample complexity of IIR by 26%. To further highlight the capabilities of the algorithm,
we created a more diverse dataset by selecting the top 25% and the bottom 25% of the workers from the“Full
dataset", resulting in the “Diverse subset". In this case, the sample complexity is almost 58% lower.

E Proof of Main Results

E.1 Query Complexity of the Proposed Algorithm

The following lemmas characterize the performance of each subroutine:

Lemma 19 (Lemma 9 in Ren et al. (2019)). For any input pair (i, j) and a set of users U , Algorithm 2 terminates
in drmaxe = d✏�2 log(2/�)e queries. If ✏ �̄, then the returned by indicates the preferable item with probability at
least 1� �.

Lemma 20 (Lemma 10 in Ren et al. (2019)). Algorithm 6 returns after O(✏2 log(|S|/�) queries and, with
probability 1� �, correctly insert or return unsure. Additionally, if ✏ �̄, Algorithm 6 will insert correctly with
probability 1� �.

Lemma 21 (Lemma 11 in Ren et al. (2019)). With probability 1� �, Algorithm 5 correctly insert the item and
makes O(�̄�2(log log �̄�1 + log(N/�))) queries at most.

Proof of Theorem 4. When inserting the z-th item, we makes at most �̄�2
z (log log �̄�1

z + log(N/�)) queries, for
z = 2, 3, . . . , N .

The number of total queries can be obtained by summing up the term above, which is

CAlg(N) = O

✓ NX

z=2

�̄�2
z (log log �̄�1

z + log(N/�))

◆
.

2https://doi.org/10.14778/2921558.2921559

https://doi.org/10.14778/2921558.2921559

Yue Wu
1*

, Tao Jin
2*

, Hao Lou
2
, Pan Xu

3
, Farzad Farnoud

2†
, Quanquan Gu

1†

20 40 60 80 100
Number of items to rank

0

100000

200000

300000

400000

500000

600000

700000

800000

S
am

pl
e

C
om

pl
ex

it
y

∞A = 0.25, ∞B = 0.5

IIR

Ada-IIR

Two-stage

Oracle

(a) �A = 0.25, �B = 0.5

20 40 60 80 100
Number of items to rank

0

100000

200000

300000

400000

500000

600000

700000

800000

S
am

pl
e

C
om

pl
ex

it
y

∞A = 0.25, ∞B = 1.0

IIR

Ada-IIR

Two-stage

Oracle

(b) �A = 0.25, �B = 1.0

20 40 60 80 100
Number of items to rank

0

100000

200000

300000

400000

500000

600000

700000

800000

S
am

pl
e

C
om

pl
ex

it
y

∞A = 0.25, ∞B = 2.5

IIR

Ada-IIR

Two-stage

Oracle

(c) �A = 0.25, �B = 2.5

20 40 60 80 100
Number of items to rank

0

100000

200000

300000

400000

500000

600000

700000

800000

S
am

pl
e

C
om

pl
ex

it
y

∞A = 0.5, ∞B = 0.5

IIR

Ada-IIR

Two-stage

Oracle

(d) �A = 0.5, �B = 0.5

20 40 60 80 100
Number of items to rank

0

100000

200000

300000

400000

500000

600000

700000

800000
S
am

pl
e

C
om

pl
ex

it
y

∞A = 0.5, ∞B = 1.0

IIR

Ada-IIR

Two-stage

Oracle

(e) �A = 0.5, �B = 1.0

20 40 60 80 100
Number of items to rank

0

100000

200000

300000

400000

500000

600000

700000

800000

S
am

pl
e

C
om

pl
ex

it
y

∞A = 0.5, ∞B = 2.5

IIR

Ada-IIR

Two-stage

Oracle

(f) �A = 0.5, �B = 2.5

20 40 60 80 100
Number of items to rank

0

100000

200000

300000

400000

500000

600000

700000

800000

S
am

pl
e

C
om

pl
ex

it
y

∞A = 1.0, ∞B = 0.5

IIR

Ada-IIR

Two-stage

Oracle

(g) �A = 1.0, �B = 0.5

20 40 60 80 100
Number of items to rank

0

100000

200000

300000

400000

500000

600000

700000

800000

S
am

pl
e

C
om

pl
ex

it
y

∞A = 1.0, ∞B = 1.0

IIR

Ada-IIR

Two-stage

Oracle

(h) �A = 1.0, �B = 1.0

20 40 60 80 100
Number of items to rank

0

100000

200000

300000

400000

500000

600000

700000

800000

S
am

pl
e

C
om

pl
ex

it
y

∞A = 1.0, ∞B = 2.5

IIR

Ada-IIR

Two-stage

Oracle

(i) �A = 1.0, �B = 2.5

Figure 3: When M = 9. Sample complexities v.s. number of items for all algorithms. The 3-by-3 grid shows
different heterogeneous user settings where the accuracy of two group of users differs.

E.2 Complexity Gap Analysis

The first lemma we will introduce is about the confidence interval:

Lemma 22. With probability 1� �, it holds for any z 2 [N]\{1} and u 2 Uz,

1

2
+�u 2

h
(LCBz)u, (UCBz)u

i
.

This also indicates that when inserting the z-th item, for any u 2 Uz,

�u⇤ ��u 4rz.

Proof of Lemma 22. Recall that (µz)u is the empirical mean of the Bernoulli variable with parameter 1
2 +�u.

Adaptive Sampling for Heterogeneous Rank Aggregation from Noisy Pairwise Comparisons

20 40 60 80 100
Number of items to rank

0

100000

200000

300000

400000

500000

600000

700000

800000

S
am

pl
e

C
om

pl
ex

it
y

∞A = 0.25, ∞B = 0.5

IIR

Ada-IIR

Two-stage

Oracle

(a) �A = 0.25, �B = 0.5

20 40 60 80 100
Number of items to rank

0

100000

200000

300000

400000

500000

600000

700000

800000

S
am

pl
e

C
om

pl
ex

it
y

∞A = 0.25, ∞B = 1.0

IIR

Ada-IIR

Two-stage

Oracle

(b) �A = 0.25, �B = 1.0

20 40 60 80 100
Number of items to rank

0

100000

200000

300000

400000

500000

600000

700000

800000

S
am

pl
e

C
om

pl
ex

it
y

∞A = 0.25, ∞B = 2.5

IIR

Ada-IIR

Two-stage

Oracle

(c) �A = 0.25, �B = 2.5

20 40 60 80 100
Number of items to rank

0

100000

200000

300000

400000

500000

600000

700000

800000

S
am

pl
e

C
om

pl
ex

it
y

∞A = 0.5, ∞B = 0.5

IIR

Ada-IIR

Two-stage

Oracle

(d) �A = 0.5, �B = 0.5

20 40 60 80 100
Number of items to rank

0

100000

200000

300000

400000

500000

600000

700000

800000
S
am

pl
e

C
om

pl
ex

it
y

∞A = 0.5, ∞B = 1.0

IIR

Ada-IIR

Two-stage

Oracle

(e) �A = 0.5, �B = 1.0

20 40 60 80 100
Number of items to rank

0

100000

200000

300000

400000

500000

600000

700000

800000

S
am

pl
e

C
om

pl
ex

it
y

∞A = 0.5, ∞B = 2.5

IIR

Ada-IIR

Two-stage

Oracle

(f) �A = 0.5, �B = 2.5

20 40 60 80 100
Number of items to rank

0

100000

200000

300000

400000

500000

600000

700000

800000

S
am

pl
e

C
om

pl
ex

it
y

∞A = 1.0, ∞B = 0.5

IIR

Ada-IIR

Two-stage

Oracle

(g) �A = 1.0, �B = 0.5

20 40 60 80 100
Number of items to rank

0

100000

200000

300000

400000

500000

600000

700000

800000

S
am

pl
e

C
om

pl
ex

it
y

∞A = 1.0, ∞B = 1.0

IIR

Ada-IIR

Two-stage

Oracle

(h) �A = 1.0, �B = 1.0

20 40 60 80 100
Number of items to rank

0

100000

200000

300000

400000

500000

600000

700000

800000

S
am

pl
e

C
om

pl
ex

it
y

∞A = 1.0, ∞B = 2.5

IIR

Ada-IIR

Two-stage

Oracle

(i) �A = 1.0, �B = 2.5

Figure 4: When M = 18. Sample complexities v.s. number of items for all algorithms. The 3-by-3 grid shows
different heterogeneous user settings where the accuracy of two group of users differs.

For a given z and u, by Hoeffding’s inequality we have

P
✓���(µz)u �

⇣1
2
+�u

⌘��� > rz

◆
 2e�2(sz)ur

2
u 2e�2(sz)minr

2
u �

|Uz|N
,

and applying union bound over z = 2, 3, . . . , N and u 2 Uz gives the claim.

Under this event, we have

�u⇤ ��u =

✓
1

2
+�u⇤

◆
�
✓
1

2
+�u

◆

 (UCBz)u⇤ � (LCBz)u

 (UCBz)u⇤ � (LCBz)u⇤ + (UCBz)u � (LCBz)u

= 4rz,

where the first inequality is clearly from the confidence interval, and the second inequality holds because the two
confidence intervals should intersect.

Yue Wu
1*

, Tao Jin
2*

, Hao Lou
2
, Pan Xu

3
, Farzad Farnoud

2†
, Quanquan Gu

1†

20 40 60 80 100
Number of items to rank

0

100000

200000

300000

400000

500000

600000

700000

800000

S
am

pl
e

C
om

pl
ex

it
y

∞A = 0.25, ∞B = 0.5

IIR

Ada-IIR

Two-stage

Oracle

(a) �A = 0.25, �B = 0.5

20 40 60 80 100
Number of items to rank

0

100000

200000

300000

400000

500000

600000

700000

800000

S
am

pl
e

C
om

pl
ex

it
y

∞A = 0.25, ∞B = 1.0

IIR

Ada-IIR

Two-stage

Oracle

(b) �A = 0.25, �B = 1.0

20 40 60 80 100
Number of items to rank

0

100000

200000

300000

400000

500000

600000

700000

800000

S
am

pl
e

C
om

pl
ex

it
y

∞A = 0.25, ∞B = 2.5

IIR

Ada-IIR

Two-stage

Oracle

(c) �A = 0.25, �B = 2.5

20 40 60 80 100
Number of items to rank

0

100000

200000

300000

400000

500000

600000

700000

800000

S
am

pl
e

C
om

pl
ex

it
y

∞A = 0.5, ∞B = 0.5

IIR

Ada-IIR

Two-stage

Oracle

(d) �A = 0.5, �B = 0.5

20 40 60 80 100
Number of items to rank

0

100000

200000

300000

400000

500000

600000

700000

800000
S
am

pl
e

C
om

pl
ex

it
y

∞A = 0.5, ∞B = 1.0

IIR

Ada-IIR

Two-stage

Oracle

(e) �A = 0.5, �B = 1.0

20 40 60 80 100
Number of items to rank

0

100000

200000

300000

400000

500000

600000

700000

800000

S
am

pl
e

C
om

pl
ex

it
y

∞A = 0.5, ∞B = 2.5

IIR

Ada-IIR

Two-stage

Oracle

(f) �A = 0.5, �B = 2.5

20 40 60 80 100
Number of items to rank

0

100000

200000

300000

400000

500000

600000

700000

800000

S
am

pl
e

C
om

pl
ex

it
y

∞A = 1.0, ∞B = 0.5

IIR

Ada-IIR

Two-stage

Oracle

(g) �A = 1.0, �B = 0.5

20 40 60 80 100
Number of items to rank

0

100000

200000

300000

400000

500000

600000

700000

800000

S
am

pl
e

C
om

pl
ex

it
y

∞A = 1.0, ∞B = 1.0

IIR

Ada-IIR

Two-stage

Oracle

(h) �A = 1.0, �B = 1.0

20 40 60 80 100
Number of items to rank

0

100000

200000

300000

400000

500000

600000

700000

800000

S
am

pl
e

C
om

pl
ex

it
y

∞A = 1.0, ∞B = 2.5

IIR

Ada-IIR

Two-stage

Oracle

(i) �A = 1.0, �B = 2.5

Figure 5: When M = 36. Sample complexities v.s. number of items for all algorithms. The 3-by-3 grid shows
different heterogeneous user settings where the accuracy of two group of users differs.

Next, we will introduce another lemma concerning the growth of (sz)u for each u 2 Uz.

Lemma 23. Denote Sz as all queries made till inserting the z-th item and M = |U0|. Suppose Sz �
2M2 log(NM/�). With probability 1� �, we have for any z 2 {2, 3, . . . , N},

(sz)min �
Sz

2M
.

Proof of Lemma 23. For fixed z and u 2 Uz, by Hoeffding’s inequality we have

P
✓
(sz)u
Sz
� 1

M
< � 1

2M

◆
 P

✓
(sz)u
Sz
� E

(sz)u
Sz

�
< � 1

2M

◆

 exp

✓
� Sz

2M2

◆
 �

NM
.

Applying union bound we know that with probability 1� �,

(sz)u �
Sz

2M
, 8z 2 {2, 3, . . . , N}, 8u 2 Uz.

Adaptive Sampling for Heterogeneous Rank Aggregation from Noisy Pairwise Comparisons

Since (sz)min := minu2Uz (sz)u, we have

(sz)min �
Sz

2M
, 8z 2 {2, 3, . . . , N}.

With the two lemmas above, we can control the accuracy gap as follows:

Lemma 24. Denote �̄z = 1
|Uz|

P
u2Uz

�u. Suppose Sz � 2|M |2 log(NM/�). With probability 1� 2�, we have
for any t 2 [N],

�u⇤ � �̄z polylog(N,M, �
�1) ·

r
M

Sz
.

Proof of Lemma 24. The proof has two steps:

From Lemma 23 we know that with probability 1� �,

(sz)min �
Sz

2M
, 8t 2 [N], 8u 2 Uz.

From Lemma 22, we know with probability 1� �(recall that (rz)u =
q

log(2|Uz|N/�)
2(sz)min

),

�u⇤ ��u 4rz

 4

s
M log(2MN/�)

Sz

= 4
p
log(2MN/�) ·

r
M

Sz
.

Define function F (x) = x
�2(log log(x�1) + log(N/�)) with x 2 (0, 1/2]. We care about the following term GAP

which characterize the query complexity gap between our algorithm and the optimal user.

GAP(N,M, �) =
NX

z=2

F (�̄z)� F (�u⇤).

The following lemma provide a way to linear bound the gap between function values:

Lemma 25. F (x) = x
�2(log log(x�1) + log(N/�)) with x 2 (0, 1/2] is a convex function over (0, 1/2], and for

any � 2 [a, b], we have

F (�)� F (b) F (a)� F (b)

b� a
· (b��) = L(a, b) · (b��).

Furthermore, under the event of Lemma 24, for any z 2 [N] such that Sz > 2M2 log(NM/�), we have �̄z 2
[c�3

u⇤ ,�u⇤] and therefore

F (�̄z)� F (�u⇤) F (c�3
u⇤)� F (�u⇤)

�u⇤ � c�3
u⇤

· (�u⇤ � �̄z) = L(U0) · (�u⇤ � �̄z).

Here we use L(U0) =
F (c�3

u⇤)�F (�u⇤)
�u⇤�c�3

u⇤
is indeed a instance-dependent factor, with only logarithmic dependent in

N and �
�1(in F). c is a global constant and in fact c = 1/25.

Yue Wu
1*

, Tao Jin
2*

, Hao Lou
2
, Pan Xu

3
, Farzad Farnoud

2†
, Quanquan Gu

1†

Proof. Differentiate F (x) twice and it can be verified that F
00(x) > 0. For any � 2 [a, b], the inequality above is

easy to prove via convexity.

The rest is to prove that 8t 2 [N], we have �̄z 2 [�u⇤/M,�u⇤]. It is clear that the upper bound holds because
�u⇤ := maxu2U0 �u.

The lower bound is proved as follows: We still have �̄z > �u⇤/M because at any time u
⇤ always remains in the

user set and by the assumption �u > 0.

Also, since Sz > 2M2 log(NM/�), by Lemma 24, we have

�u⇤ � �̄z 4

s
M log(2MN/�)

Sz

 4

s
M log(2MN/�)

2M2 log(NM/�)

 4p
M

.

Now we will prove that

max

⇢
�u⇤

M
,�u⇤ � 4p

M

�
� c�3

u⇤ .

Suppose �u⇤
M < c�3

u⇤ , then we have M > c
�1��2

u⇤ , this means

�u⇤ � 4p
M
� �u⇤ � 4

p
c�u⇤ � c�3

u⇤ .

The last inequality is due to �u⇤ 1/2 and c = 1/25.

Now we are ready to prove the main result:

Proof of Theorem 5. Based on our algorithmic design, we will not eliminate any user until the cumulative number
of queries Sz reach the threshold Sz � 2M2 log(NM/�). We have

GAP(N,M, �) =
NX

z=2

F (�̄z)� F (�u⇤)

=
NX

z=2

1{Sz < 2M2 log(NM/�)}
�
F (�̄z)� F (�u⇤)

�

| {z }
I1

+
NX

z=2

1{Sz � 2M2 log(NM/�)}
�
F (�̄z)� F (�u⇤)

�

| {z }
I2

.

For I1, no elimination is performed, so Uz = U0, and we have

I1 =
NX

z=2

1{Sz < 2M2 log(NM/�)}
�
F (�̄0)� F (�u⇤)

�
.

For each term in I2, we have F (�̄z)� F (�u⇤) L(U0) · 4
p

log(2MN/�) ·
q

M
Sz

due to Lemma 25 and Lemma 24.
Therefore,

I2 L(U0)4
p
log(2MN/�)

NX

z=2

1{Sz � 2M2 log(NM/�)}
r

M

Sz
.

Adaptive Sampling for Heterogeneous Rank Aggregation from Noisy Pairwise Comparisons

E.3 Proof and Discussions of Proposition 6

Suppose M = o(N1/2), since Sz � z log(z/�) � z(at least one comparison for an item), from (5) we have

NX

z=2

1
�
Sz < 2M2 log(NM/�)

NX

z=2

1
�
z < 2M2 log(NM/�)

= o(N).

The third term can be bounded with the fact 1
�
z < 2M2 log(NM/�)

 1,

L(U0)
p

log(2MN/�)
NX

z=2

1{Sz � 2M2 log(NM/�)}
r

M

Sz

 L(U0)
p
log(2MN/�)

NX

z=2

r
M

Sz

 L(U0)
p
log(2MN/�)

NX

z=2

r
M

z

 2L(U0)
p
log(2MN/�)

p
MN

= O(L(U0)
p
log(MN/�)

p
MN).

L(U0) is actually dominated by the minimal mean accuracy minz �̄z throughout the algorithm. In practice, L(U0)
is usually a constant, related to all users’ accuracy. In the worst theoretical case, L(U0) will be dominated by
F (�u⇤/M) = eO(M2), which further turns the last term into eO(M5/2

N
1/2), and requires M = o(N1/5) so that

this term becomes negligible.

