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Abstract

Seminal works by Cohn-Gordon, Cremers, Dowling, Garratt, and Stebila [EuroS&P 2017]
and Alwen, Coretti and Dodis [EUROCRYPT 2019] provided the first formal frameworks for
studying the widely-used Signal Double Ratchet (DR for short) algorithm.

In this work, we develop a new Universally Composable (UC) definition FDR that we show
is provably achieved by the DR protocol. Our definition captures not only the security and
correctness guarantees of the DR already identified in the prior state-of-the-art analyses of
Cohn-Gordon et al. and Alwen et al., but also more guarantees that are absent from one or both
of these works. In particular, we construct six different modified versions of the DR protocol,
all of which are insecure according to our definition FDR, but remain secure according to one
(or both) of their definitions. For example, our definition is the first to fully capture CCA-style
attacks possible immediately after a compromise — attacks that, as we show, the DR protocol
provably resists, but were not fully captured by prior definitions.

We additionally show that multiple compromises of a party in a short time interval, which
the DR is expected to be able to withstand, as we understand from its whitepaper, nonetheless
introduce a new non-trivial (albeit minor) weakness of the DR. Since the definitions in the
literature (including our FDR above) do not capture security against this more nuanced scenario,
we define a new stronger definition FTR that does.

Finally, we provide a minimalistic modification to the DR (that we call the Triple Ratchet,
or TR for short) and show that the resulting protocol securely realizes the stronger functionality
FTR. Remarkably, the modification incurs no additional communication cost and virtually
no additional computational cost. We also show that these techniques can be used to improve
communication costs in other scenarios, e.g. practical Updatable Public Key Encryption schemes
and the re-randomized TreeKEM protocol of Alwen et al. [CRYPTO 2020] for Secure Group
Messaging.

∗The authors grant IACR a non-exclusive and irrevocable license to distribute the article under the https:

//creativecommons.org/licenses/by-nc/3.0/
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1 Introduction

Background. The Signal protocol is by far the most popular end-to-end secure messaging (SM)
protocol, boasting of billions of users. Based on the Off-The-Record protocol [BGB04], the core
underlying technique of the Signal protocol is commonly known as the Double Ratchet (DR) al-
gorithm. The DR is beautifully explained in the whitepaper [MP16a] authored by the creators of
Signal, Marlinspike and Perrin. The whitepaper also outlines the desired security properties of
the DR, and provides intuition on the design rationale for achieving them. Indeed, in addition
to standard security against an eavesdropper who may modify ciphertexts, the DR attempts to
achieve (i) post-compromise security (PCS) and forward secrecy (FS) with respect to leakages of
secret state, (ii) resilience to bad randomness, and (iii) immediate decryption (all at the same time).
PCS requires the conversation to naturally and quickly recover security after a leakage on one of
the (or both) parties, as long as the affected parties have good randomness (and the adversary
remains passive while such recovery occurs) [CCG16]. FS requires past messages to remain secure
even after a leakage on one of the (or both) parties. Resilience to bad randomness requires that as
long as both parties’ secret states are secure (i.e., PCS has been achieved after any corruptions),
then the conversation should remain secure, even if bad randomness is used in crafting messages.
Finally, immediate decryption requires parties to — immediately upon reception of ciphertexts —
obtain underlying plaintexts and place them in the correct order in the conversation, even if they
arrive arbitrarily out of order and if some of them are completely lost by the network (the latter is
also known as message-loss resilience).

However, despite the elegance and simplicity of the Double Ratchet, capturing its security
turned out to be not so straightforward. The first formal analysis of the DR protocol (in fact, the
whole Signal protocol) was provided by Cohn-Gordon et al. in EuroS&P 2017 [CCD+17,CCD+20]
(referred to as CCD+ henceforth). However, this analysis left open several questions about the
cryptographic security and correctness achieved by the DR. Following in the footsteps of CCD+,
a more generic and comprehensive security definition of the DR was provided by Alwen et al.
in Eurocrypt 2019 [ACD19] (referred to as ACD henceforth), with close focus on the immediate
decryption property of the DR protocol. They provided a modular analysis with respect to game-
based definitions proposed therein. Indeed, they introduced new abstract primitives and composed
them into SM protocols (including the DR itself) that capture the above properties: Continuous Key
Agreement (CKA), Forward-Secure Authenticated Encryption with Associated Data (FS-AEAD),
and PRF-PRNGs. While the works of CCD+ and ACD significantly improved our understanding
of the DR, as we observe in this work, both definitional frameworks do not capture some of its
security and functionality properties.

1.1 Our Contributions

In this work, our key aim is to develop a formal definitional framework that captures the security
and correctness properties of the DR protocol as completely as possible. Moreover, we aspire for
definitions that are simple to state and easy to build on (e.g., imagine executing a Private Set
Intersection Protocol on top of the DR). More specifically:

• New Definitional Framework for the DR: We provide a new definition FDR for the DR

protocol, in the Universal Composability [Can01] (UC) framework. Our definition captures
all of the security and correctness guarantees of the DR provided by ACD’s and CCD+’s
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definitions, but also more guarantees that are absent from one or both of these works. To
demonstrate this, we construct six different (albeit somewhat contrived) modified versions
of the DR protocol, all of which are insecure according to our definition, but remain secure
according to ACD’s and/or CCD+’s definition. Some of these transformations are indeed
based on analyzed (weaker) DR variants in the literature, while others are based on novel
observations. For example, our definition is the first to fully capture CCA-style attacks that
become possible on the DR immediately after a party has been compromised — attacks that,
as we show, the DR provably resists, but were not fully captured by prior definitions. We
provide an overview of our new definition’s advantages in Section 1.3.

Finally, we prove that the DR protocol, as it is described in the whitepaper [MP16a]
(in its strongest form), securely realizes our ideal functionality FDR. Our proof is modular
and proceeds by expanding on ACD’s modular definitional framework (see Section 6). Note
that we model part of the underlying AEAD of the DR using a programmable ideal cipher to
prove security in the UC setting where an adversary can corrupt a party while a (heretofore
secure) ciphertext is in transit.

• Non-trivial (albeit minor) weakness of the DR: We find that multiple compromises of
a party in a short time interval, which the DR should be able to withstand, as we understand
from its whitepaper, nonetheless introduce a new non-trivial (albeit minor) weakness of the
DR. This weakness is allowed in the definitions of both ACD and CCD+, as well as FDR, so we
provide a new stronger definition FTR that does not allow it. We summarize this compromise
scenario in Section 1.4.

• Achieving stronger security: Finally, we complement the above weakness by providing a
minimalistic modification to the DR and prove the resulting protocol secure according to the
stronger definition FTR. We call this new protocol the Triple Ratchet (TR) as it adds another
“mini ratchet” to the public ratchet in the DR Protocol. Remarkably, the modification incurs
no additional communication cost and virtually no additional computational cost. We provide
an overview of the TR in Section 1.5.

We believe that the techniques realized here are also likely to find other applications. For
instance, in Section 7, we show that our techniques can be used to improve current practical
Updatable Public Key Encryption (UPKE) constructions [ACDT20,JMM19a], reducing their
communication cost by an additive factor of |G|, where |G| is the number of bits needed to
represent the size of the (CDH-hard) group used in the construction, without any additional
computational cost. Furthermore, the technique yields an improvement to the communica-
tion cost of the re-randomized TreeKEM (rTreeKEM) protocol of Alwen et al. [ACDT20] —
specifically, improving the communication cost by up to roughly an additive factor of |G| · n,
where n is the number of users in the group.

1.2 High-Level Summary of the Double Ratchet and its Security Properties

Before elaborating on our results in the subsequent sections, we first give a high-level overview
of the Signal Double Ratchet and its security properties which we capture in our definition. For
another detailed description we refer to the Double Ratchet whitepaper [MP16a]. Readers familiar
with the Double Ratchet algorithm could easily skip this section.
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We note that although we here describe the double ratchet specifically in terms of its real-
world implementation [MP16a], our paper still breaks it down into modular pieces which can be
instantiated in several different ways, as in ACD. For the purpose of our paper, we assume that the
two participants P1 and P2 share a common secret upon initialization. In Signal, this is achieved
via the X3DH key exchange protocol [MP16b], but we consider this out of scope for our study of
the double ratchet. Using their initial shared secret, P1 and P2 can derive the initial root key σ
which seeds the public ratchet. Furthermore, upon initialization P2 also holds some secret exponent
x0 and P1 holds the corresponding public value gx0 . Once the initialization process completes, the
ratcheting session begins.

At its core, the double ratchet has two key components: the outer public-key ratchet, and
the inner symmetric-key ratchet (often referred to as simply the public and symmetric ratchets,
respectively). ACD abstract out the symmetric ratchet as their FS-AEAD primitive, the update
mechanism of the public ratchet as their PRF-PRNG primitive, and the means by which shared
secrets are produced to update the public ratchet as their CKA primitive. The goal of the double
ratchet is to provide distinct message keys to encrypt/decrypt each new message. For each message
the same message key is derived by both parties using a symmetric chain key which itself is derived
from the aforementioned root key. Naturally, this results in a key hierarchy with the root key at
the top, chain keys at an intermediate layer, and message keys at the bottom. Observe a graphical
depiction of this hierarchy in Figure 1. In the Signal double ratchet, Diffie-Hellman key exchange is
used to “ratchet forward” the root key, which can then be used to establish corresponding symmetric
chain keys. Message keys are then derived from the current (newest) chain key, where chain keys
are updated deterministically such that multiple messages can be sent in a row before a response,
and no matter which of these messages is the first to arrive, the recipient can always compute its
corresponding message key immediately. We now introduce the concept of asynchronous epochs
before describing the two ratchets and the primary properties which they achieve:

Asynchronous Sending Epochs. In the double ratchet, the parties P1 and P2 asynchronously
alternate sending messages in epochs (as termed in [ACD19]): Assume that P1 starts the conver-
sation, sending in epoch 1 at least one message. Then once P2 receives one of these messages, she
sends messages in epoch 2. Furthermore, once P1 receives one of these message, she starts epoch
3, and so on. We emphasize that these sending epochs are asynchronous – for example, even if P2

has started sending in epoch 2, if P1 has not yet received any such epoch 2 messages and wants to
send new messages, she will still send them in epoch 1. Not until she finally receives one of P2’s
epoch 2 messages will she send new messages in epoch 3.

Public Ratchet. The public ratchet forms the backbone of the double ratchet algorithm. Parties
update the root key using public-key cryptography (i.e. Diffie-Hellman secrets) every time a new
epoch is initiated: if P1 wishes to start a new epoch, she must first update the root key using the
Diffie-Hellman public value from P2’s latest epoch (or initialization). After deriving a new chain
key from the root key, P1 can send multiple separate messages in a row—this involves deriving a
new message key for each message via the symmetric ratchet, as explained below.

We now describe the root key update process in more detail. To start a new epoch t, P1 samples a
new private exponent xt and corresponding public value gxt . Next, she uses the public value received
from P2’s latest epoch (or initialization), say gxt−1 , to compute a shared secret (gxt−1)xt = gxt−1xt .
Then, P1 uses a two-input Key Derivation Function (KDF) to update the current root key and
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Figure 1: Sample Double Ratchet key evolution. In this depiction, P1 sends and P2 receives in
epoch 1, followed by P2 sending and P1 receiving in epoch 2, and so on. As explained in the main
body, initial symmetric chain keys wi,1 for each epoch i are derived first by the sender, then also by
the receiver, using the shared root keys σi and asynchronously exchanged shared secrets (via DDH).
Then, updated symmetric chain keys wi,j and message keys Ki,j are derived deterministically from
wi,1.

derive a new chain key in one go. That is, she computes (σt, wt,1)← KDF(σt−1, g
xt−1xt). Observe

that even if P1’s state was leaked before this update, as long as the parties used good randomness in
sampling their Diffie-Hellman keys, the new root key and chain key will be secure. This is the key
to achieving PCS. Symmetrically, even if P1 uses bad randomness when performing this update, as
long as if σt−1 was secure, then the new root key and chain key will be secure. Furthermore, root
keys are clearly forward secret, from the security of the KDF and the fact that new Diffie-Hellman
secrets are sampled independently of past ones.

P1 includes in every message of the new epoch the fresh public share gxt to allow P2 to compute
the new shared secret gxt−1xt that is used to update the root key, no matter which message of the
epoch she receives first. This in part is what provides for immediate decryption (and message loss
resilience). When P2 receives a message in P1’s new epoch, she recomputes the same above steps, i.e.
she computes σt by first computing (gxt)xt−1 = gxt−1xt where xt−1 is P2’s own private share, followed
by the same KDF computation. Once P2 wishes to start her own new epoch, she generates another
Diffie-Hellman pair (xt+1, g

xt+1) to ratchet the root key forward (σt+1, wt+1,1)← KDF(σt, g
xtxt+1).

Essentially, P2 has refreshed her component of the Diffie-Hellman shared secret while reusing P1’s
value from the previous epoch. Now, when P1 receives a message for this epoch and again wishes to
start a new one, she would similarly need to sample a new Diffie-Hellman share xt+2. This process
can continue asynchronously for as long as the session is active.

Symmetric Ratchet. The main purpose of the symmetric ratchet is to produce single-use sym-
metric keys for message encryption. When a party wishes to send (or receive) the next (ith)
message in some epoch t, they derive a distinct message key Kt,i from the symmetric chain
key wt,i and simultaneously update the chain key. This is done by applying a KDF as follows:
(wt,i+1,Kt,i) ← KDF(wt,i) (if the KDF requires two inputs, a fixed value may be used to fill the
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other input). Observe that the symmetric ratchet is clearly forward secret from the security of the
KDF. Note however that the symmetric ratchet does not have PCS due to its deterministic nature.

So, if P1 just started a new epoch then she first computes initial symmetric chain key wt,1 for
the epoch as above. To derive a message key, P1 puts this new chain key through the KDF to
compute (wt,2,Kt,1) ← KDF(wt,1). If P1 wishes to send a second message, then she can derive
(wt,3,Kt,2) ← KDF(wt,2). When P2 receives these messages from P1, she can repeat the key
derivation in the same way as P1 and use the subsequent message keys to decrypt the messages, no
matter the order in which they arrive. The deterministic nature of the symmetric ratchet, along
with including the public ratchet values in every message as above, provides immediate decryption.

1.3 High-Level Summary of our DR Definition’s Strength over Prior Notions

In Section 3 we fully formalize our new definition for the DR in the UC framework, FDR, and
provide thorough discussion on it. Then in Section 6, we show that the DR UC-realizes FDR (in
the programmable ideal cipher model). Intuitively, FDR captures all of the properties described
in the last section, including all of those captured by the definitions of ACD and CCD+. Here
we emphasize several properties which FDR guarantees, but at least one of ACD’s and CCD+’s
definitions do not. We do so by providing six distinct transformations to the original DR protocol
(denoted as Ti(DR) for i ∈ [6]), showing their natural vulnerabilities here, and their insecurity
according to FDR, but security according to at least one of ACD’s (transformations 1 − 4) and
CCD+’s (transformations 4 − 6) definitions. We show this formally in Appendix A.2. Although
some of these transformations may be seen as artificial, they emphasize that our definition is
stronger than those of ACD and CCD+. Below we use the formalization of symmetric and public
ratchets as done by ACD and also adapted by us – the symmetric ratchet is abstracted out as an
FS-AEAD scheme and the public ratchet as a CKA scheme. We defer these definitions to Section 4.

T1: Postponed FS-AEAD Key Deletion: This transformation slightly modifies the handling of
symmetric ratchet secrets. In particular, when a party receives a new message for its counterpart’s
next epoch, it does not immediately delete its (no longer needed) symmetric ratchet secrets from its
previous sending epoch. Instead, it waits to delete these secrets until it starts its next sending epoch
(i.e., sends its next message). In that case, an injection attack can be launched as follows: only
focusing on the symmetric ratchet, suppose that for a sending epoch t, P1 derives (wt,2,Kt,1) ←
KDF(wt,1) and sends an encrypted message using Kt,1, that is then received by P2. Then P2 sends
a message in epoch t+1, which is received by P1. Observe that unlike in (the strongest version of)
the DR, T1(DR) keeps wt,2 in P1’s memory even after receiving this epoch t + 1 message from P2.
Now if P1 is compromised then the attacker obtains wt,2. Using this it can now launch an injection
attack for P1’s sending epoch t (not just P1’s next sending epoch, t+2) by encrypting any arbitrary
message of its choice using the next message key (·,Kt,2) ← KDF(wt,2) and sending that to P2.
Note that each time a sending epoch is started in the protocol, the information about how many
messages were sent in the immediately past sending epoch is included. Nonetheless, that does not
thwart this attack, because it is launched even before P1 starts the next sending epoch.

Although this transformation is perhaps artificial, one can imagine scenarios in which the rela-
tive timing of messages sent by the two parties is important. Perhaps more importantly, it is clearly
less secure than the standard (most secure version of) DR, but, remarkably, the version described
by ACD is indeed T1(DR). Furthermore, as evident by ACD’s security proof, their definition there-
fore does not require resistance against this attack; intuitively making our (and CCD+’s) definition
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stronger than theirs in this respect.

T2: Postponed CKA Key Deletion: A similar problem arises if the keys from the public ratchet
are kept for too long. The transformed protocol works as follows: suppose that in starting a new
sending epoch t, P2 samples a secret exponent xt and combines it with the public ratchet message
of P1’s prior sending epoch, gxt−1 , to compute It = gxt−1xt . Then, P2 proceeds to send several
messages using It (and the root key for the KDF, as described in Section 1.2) as normal. When
receiving a message for the first time in sending epoch t of P2, P1 uses her stored secret exponent
xt−1 and combines it with P2’s public ratchet message gxt to compute It. However, at this point,
instead of deleting It (as done in the normal DR protocol), P1 saves it in T2(DR). Now assume that
P1 receives all of P2’s epoch t messages. Then, when P1 again switches to a new sending epoch
she generates a new It+1 (deleting the old It). An attack can be executed on T2(DR), by simply
corrupting P1 before the start of epoch t+ 1, and then using the leaked It to decrypt the already
delivered messages sent by P2 in epoch t – thus breaking forward security. Note: this also requires
another corruption of P2 before she sends messages in the attacked epoch t, to obtain the root key
for the KDF. ACD’s definition explicitly prevents querying the challenge oracle immediately after
corruptions, and thus does not require resistance against this attack. CCD+’s model does explicitly
require resistance against this attack. This transformation may seem artificial, but clearly allowing
the adversary to decrypt old messages should not be allowed in any formal model of the DR, and
in fact is not allowed in FDR.

T3: Eager CKA Randomness Sampling: If the secret-exponent of a public-ratchet is sampled
too early, then that makes the protocol vulnerable. For example, consider T3(DR) in which P1

samples the exponent xt for the next sending epoch t when still in receiving epoch t − 1. An
attacker may compromise P1 to obtain xt (and the root key) at this stage and use that to decrypt
the messages sent in the next epoch t, thereby breaking PCS. ACD’s definition does not require
resistance against this attack, while FDR does, because their definition does not allow querying the
challenge oracle immediately after corruptions. It is worth pointing out that the Double Ratchet
whitepaper [MP16a] and CCD+ present T3(DR) and its early sampling as their primary description
of the DR, though the whitepaper later suggests deferring randomness sampling until actually
sending for better security, which we choose to model. However, the security model itself of CCD+

only analyzes the key exchange component of the DR and we believe that it could indeed be
composed with an AEAD scheme to avoid the weakness of T3(DR). However, this needs to be
carefully done, and not according to their description of the full DR protocol.

T4: Malleable Ciphertexts: If the protocol does not provide a strong non-malleability guar-
antee, then the DR protocol could suffer from a mauling attack according to our weaker definition
FDR. More specifically, if the root key is leaked, and T4(DR) uses a weak mechanism to update
the public ratchet (note: the DR public ratchet should provide PCS here), there may exist attacks
which, for example, can successfully maul DR ciphertexts encrypting m into new ones that decrypt
to m + 1. This becomes evident when we prove the DR protocol secure according to FDR, which
is required to protect against such an attack, as we need to rely on such a non-malleability prop-
erty. Indeed, the DR seems to require modelling the public ratchet KDF as a random oracle and
that the Strong Diffie-Hellman assumption (StDH) is secure (i.e., given random and independent
ga, gb, and oracle access to ddh(ga, ·, ·) which on input group elements X,Y checks if Xa = Y , it
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is hard to compute gab), in order to realize FDR. To provide evidence for this requirement: the
ciphertexts and key material known to the adversary in the above scenario are almost identical to
that of Hashed ElGamal encryption, for which all analyses of its CCA-security of which we are
aware use the same assumptions [ABR01,CS03,KM04]. We do not rule out a security proof from
weaker assumptions, however, it seems that using a group in which only DDH is hard, and not, for
example, StDH, for the public ratchet could lead to an attack like the above. ACD’s definition does
not require resistance against such an attack since it does not allow injections after corruptions;
therefore, their security proof only relies on DDH.

CCD+’s definition also does not completely cover mauling attacks, since it only analyzes the
key exchange component of the DR, not any actual message transmission. Therefore, if one com-
poses a key exchange protocol secure with respect to CCD+’s definition with a non-authenticated
encryption scheme, it would not provide the non-malleability guarantees required by FDR.

T5: CKA Bad Randomness Plaintext Trigger: The DR is very resilient to attacks against its
source of randomness. However, in T5(DR), if a party samples a certain string of random bits, say the
all-0 string, then it (rather artificially) sends the rest of its messages in the conversation as plaintext.
In our (and ACD’s) model, which require security even if the adversary can supply the parties with
random bits each time they attempt to sample randomness, such a protocol is clearly insecure.
However, CCD+’s model only allows randomness reveals of uniformly sampled random bits. Thus
sampling the all-0 string occurs with negligible probability (if we assume bit strings of poly(λ)
length), so security in CCD+’s model is retained. Although this attack is quite artificial, [BRV20]
note that attacks on randomness sources (e.g., [HDWH12]) and/or generators (e.g., [CNE+14,
YRS+09]) are not captured by randomness reveals, but are captured by randomness manipulation
as in our model. Furthermore, [BRV20] show that including randomness manipulations has a
concrete effect on protocol construction, particularly in Secure Messaging.

T6: Removed Immediate Decryption: Finally, T6(DR) changes the DR to include the public
ratchet message as part of only the first ciphertext of an epoch. It is thus pretty simple to violate
the immediate decryption property required by our ideal functionality: First have P1 send two
messages m1,m2 in a new epoch t, generating ciphertexts c1 and c2. Then, attempt to deliver c2 to
P2 (before c1). Since c2 does not include the public ratchet message of the epoch, P2 will be unable
to decrypt it to obtain m2. While FDR does in fact require immediate decryption, CCD+’s model
does not require it (nor correctness more generally), so T6(DR) satisfies all formal requirements of
their model. ACD’s model does in fact require immediate decryption.

Although this too may be an artificial transformation, immediate decryption is an important
practical property of the DR, and one of the DR’s main novelties is obtaining immediate decryption
at the same time as FS and PCS. Furthermore, properly modelling immediate decryption allows
subsequent work to understand it, and further improve upon the DR with the requirement in
mind. Indeed, many of the works which we are aware of [BSJ+17, DV17, JS18, JMM19a, PR18],
besides [ACD19], which try to improve the DR do not consider immediate decryption in their
security models or constructions, arguably thrusting these works outside of the practical realm.

1.4 High-Level Summary of the DR’s Minor Weakness

Here we show a scenario that introduces a new non-trivial (albeit minor) weakness of the DR which
demonstrates a gap between the security guarantees that the DR should achieve according to our
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understanding of its whitepaper, and those which it actually does achieve. The attack utilizes two
compromises of a party in a short time interval, and stems from the fact that a party needs to hold
on to the secret exponent xt for the public ratchet that it generates in a sending epoch t until it
receives a message from its counterpart’s next sending epoch t + 1. Indeed secret exponent xt is
needed until this point because the other party uses its public component to encrypt messages in
epoch t + 1. For example, consider a setting in that party P1 is about to start a sending epoch t.
At this point P1’s state has gxt−1 and P2 has xt−1. Now when the sending epoch commences, P1

samples fresh secret (random) exponent xt and combines that with gxt−1 to derive the CKA key
It = gxt−1xt , which she then combines with the root key σt to derive first the symmetric chain key
wt,1, followed by message key Kt,1. Note that if xt is truly random, then It and thus wt,1 and all
subsequent message keys Kt,i should be secure. In this epoch P1 sends gxt to P2, who then derives
the same key It by computing (gxt)xt−1 , and subsequently Kt,1. In the next epoch, P2 becomes a
sender. Then P2 samples a fresh xt+1 to derive a new CKA key It+1 = (gxt)xt+1 and sends gxt+1

to P1. Now, P1 needs to compute It+1 as (gxt+1)xt . To execute this step P1 must have stored
xt throughout its sending epoch. The attack exploits this by compromising P1 twice in a short
interval:

• first compromise P1 before starting the sending epoch t to obtain the root key σt;

• then compromise P1 at any time after she sends a few messages (at least one), but before she
receives any epoch t+ 1 messages, to obtain xt, and thus It;

and then combine σt and It to derive wt,1, given which all messages within P1’s sending epoch t are
vulnerable, including the ones that were sent between the two corruptions. Intuitively, this breaks
PCS with respect to the first corruption, since as noted above, if xt is truly random, then the
corresponding message keys should be secure, as well as FS with respect to the second corruption.
For more details we refer to Section 5.2.

In Section 3, we provide a new ideal functionality, FTR, that strengthens FDR in order to capture
security against the above compromise scenario. We note that both the definitions of ACD and
CCD+ also did not capture this scenario.

1.5 High-Level Summary of the Triple Ratchet

Finally, we provide a minimalistic modification of the DR, which we call the Triple Ratchet pro-
tocol, or simply TR, with virtually no overhead over the DR. This protocol is secure against the
compromise scenario provided in the previous section and thus realizes our stronger ideal function-
ality, FTR. The TR protocol modifies the underlying public ratchet in a way that the sampled secret
exponent is deterministically updated after starting a sending epoch; thus, adding a “mini ratchet”
on top of Signal’s public ratchet. In particular, using the notation from above, in the modified
public ratchet, a party (say P1) after sampling secret exponent xt, and deriving It = (gxt−1)xt ,
sends gxt as the public ratchet message, but stores x′t = xt · H(It) instead of xt. Once P2 receives
gxt , she also derives It and computes gx

′
t = gxt·H(It) that she uses for the next public ratchet. In

particular, in the next epoch when P2 becomes the sender, she samples a fresh secret exponent
xt+1, and uses the key It+1 = gx

′
txt+1 . P2 sends gxt+1 , upon receiving which P1 can compute It+1 as

(gxt+1)x
′
t , but P2 only stores x′t+1 = xt+1 · H(It+1), and so on. Assuming H to be a random oracle,

or instead, circular-security of ElGamal encryption, we can show that given x′t, It is completely
hidden, rendering the attack of the previous section useless. Note that the communication cost
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remains the same for the modified protocol, that is one group element. The computation cost
increases only slightly, specifically exactly once per epoch. We also note that, the alternate CKA
scheme based on generic KEMs proposed by [ACD19] seems to achieve this security too, albeit with
doubling the communication cost.

Furthermore, as we show in Section 7, our efficient modification can also be applied to practical
UPKE schemes, reducing their communication by an additive factor of |G|, where |G| is the number
of bits needed to represent the size of the (CDH-hard) group used in the schemes. Using the modified
UPKE scheme, we can reduce the communication of, e.g., the rTreeKEM scheme [ACDT20] used
for Secure Group Messaging by an additive factor of |G| · n, where n is the number of users in the
group.

1.6 Other Related Work

Canetti, Jain, Swanberg, and Varia [CJSV22] also recently studied the security of the Signal proto-
col in the UC framework. Kobeissi, Bhargavan, and Blanchet [KBB17] use automated verification
tools to provide symbolic and computational proofs for a simplified variant of the Signal protocol.

Following the first formal analysis of Signal by CCD+, researchers proposed a number of pro-
tocols that provided stronger security than the DR [BSJ+17,PR18,BRV20, JS18,DV19, JMM19a].
ACD however observed that in the process of strengthening security, all such protocols suffer from
steep efficiency costs and loss of immediate decryption, rendering these protocols impractical for
real-world use.

Jost, Maurer and Mularczyk [JMM19b] analyzed ratcheting with the Constructive Cryptogra-
phy framework [Mau11]. They aimed to capture the security and composability of various sub-
protocols, such as FS-AEAD, used in the construction of larger ratcheting protocols.

More recently, there has also been work on the X3DH key exchange protocol used in Signal,
providing generalized frameworks that allow for post-quantum secure versions [BFG+20,HKKP21,
BFG+22,DG21], and analyzing its offline deniability guarantees [VGIK20,UG15,UG18,HKKP21,
BFG+22,DG21].

1.7 Summary of the Rest of the Paper

In Section 2 we provide the preliminaries containing mostly definitions borrowed from literature.
In Section 3 we provide our UC-based ideal functionalities in Figure 3. We put a lot of discussions
around it for reader’s convenience, and along the way explain why the transformations of Section 1.3
are insecure according to our definitions. In Section 4 we provide the building blocks required for
the DR (and TR), i.e., (i) we explain the (informal) properties required from the KDF used for
the public ratchet (which we model as a random oracle to handle corruptions with messages in-
transit; see Section 4.1.1 for more discussion on this), (ii) we introduce FS-AEAD (formalizing the
symmetric ratchet part), and (iii) we define the CKA primitive (capturing the public ratchet) and
formally provide the details on the weaker public ratchet used in the DR, as well as the stronger
(virtually as efficient) public ratchet used in the TR, along with their security. In Section 5 we
detail the constructions, from the proper CKA and FS-AEAD notions, of protocols DR (Double
Ratchet) and TR (Triple Ratchet). We also formally demonstrate the weakness of the DR with
respect to our stronger functionality FTR. In Section 6 we provide the security analyses of the
Double Ratchet DR and Triple Ratchet TR, formalized in Theorem 4. In Section 7, we show how
the techniques used in the TR can also be used to reduce the communication costs of practical
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UPKE schemes. In Appendix A we provide the full technical details of our transformations to the
DR, their insecurity with respect to our functionality FDR, and their security with respect to ACD’s
and/or CCD+’s notion. Finally, Appendix B contains technical descriptions of the UC framework,
mostly borrowed from the literature, but adapted to our setting.

2 Preliminaries

2.1 Game-Based Security and Notation

In addition to our use of the UC framework to capture the security and functionality of the DR, we
also consider some game-based security definitions for the primitives that are used within the DR,
i.e., games executed between a challenger and an adversary. The games have one of the following
formats:

• Unpredictability games: First, the challenger executes the special init procedure, which
sets up the game. Subsequently, the attacker is given access to a set of oracles that allow it
to interact with the scheme in question. The goal of the adversary is to provoke a particular,
game-specific winning condition. The advantage of an adversary A against construction C in
an unpredictability game ΓC is

AdvCΓ (A) := Pr[A wins ΓC ] .

• Indistinguishability games: In addition to setting up the game, the init procedure samples
a secret bit b ∈ {0, 1}. The goal of the adversary is to determine the value of b. Once more,
upon completion of init, the attacker interacts arbitrarily with all available oracles up to the
point where it outputs a guess bit b′. The adversary wins the game if b = b′. The advantage
of an adversary A against construction C in an indistinguishability game Γ is

AdvCΓ (A) := 2 · |Pr[A wins ΓC ]− 1/2| .

• Recoverability games: In such games, the attacker is once more given access to a set of
oracles that allow it to interact with the scheme in question after the initial init procedure.
In this case, the goal of the adversary is to recover some secret value S (usually security
parameter-many bits long) that is used within the scheme. The adversary wins the game
if they guess that the secret value is S′ = S. The advantage of an adversary A against
construction C in a recoverability game Γ is

AdvCΓ (A) := Pr[A wins ΓC ] .

With the above in mind, to describe any security (or correctness) notion, one need only specify the
init oracle and the oracles available to A. The following special keywords are used to simplify the
exposition of the security games:

• req is followed by a condition; if the condition is not satisfied, the oracle/procedure containing
the keyword is exited and all actions by it are undone.

• win is used to declare that the attacker has won the game; it can be used for all types of
games above.
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• end disables all oracles and returns all values following it to the attacker.

Moreover, the descriptions of some games/schemes involve dictionaries. For ease of notation, these
dictionaries are described with the array-notation described next, but it is important to note that
they are to be implemented by a data structure whose size grows (linearly) with the number of
elements in the dictionary (unlike arrays):

• Initialization: The statement D[·]← ⊥ initializes an empty dictionary D.

• Adding elements: The statement D[i] ← v adds a value v to dictionary D with key i,
overriding the value previously stored with key i if necessary.

• Retrieval: The expression D[i] returns the value v with key i in the dictionary; if there are
no values with key i, the value ⊥ is returned.

• Deletion: The statement D[i]← ⊥ deletes the value v corresponding to key i.

Additionally, sometimes the random coins of certain probabilistic algorithms are made explicit. For
example, y ← A(x; r) means that A, on input x and with random tape r, produces output y. If r
is not explicitly stated, it is assumed to be chosen uniformly at random; in this case, the notation

y
$← A(x) is used.
Finally, many of the protocols in this work, including the DR itself, may consist of algorithms

which take in some party’s state. In this case, some such algorithms, upon failing, may throw an
exception (error), which causes the calling party’s state to be rolled back to where it was before
the algorithm was invoked.

2.2 Authenticated Encryption

Definition 1. An authenticated encryption with associated data (AEAD) scheme is a pair of
algorithms AE = (Enc,Dec) with the following syntax:

• Encryption: Enc takes a key K, associated data a, and a message m and produces a cipher-
text e← Enc(K, a,m).

• Decryption: Dec takes a key K, associated data a, and a ciphertext e and produces a message
m← Dec(K, a, e).

All AEAD schemes in this paper are assumed to be deterministic, i.e., all randomness stems from
the key K.

Correctness. An AEAD scheme is correct if for all keys K and all pairs (K, a),

Dec(K, a,Enc(K, a,m)) = m.
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Oracles for AEAD One-Time IND-CCA Game

init
K ← K
e∗ ← ⊥
b← {0, 1}

corr
if e∗ 6= ⊥ and b = 1

AEAD-Expl-Ct(K, a,m0, e
∗)

end K

encrypt (a,m0,m1)
e∗ ← Enc(K, a,mb)
return e∗

decrypt (a, e)
if e = e∗ or b = 1

return ⊥
return Dec(K, a, e)

Figure 2: Oracles of the one-time IND-CCA security game for an AEAD scheme (Enc,Dec), where
encrypt is a one-time oracle.

Security. In order to be used in the constructions in this paper, AEAD schemes need to satisfy
one-time IND-CCA security. This is captured by the game depicted in Figure 2. It provides access
to a one-time encryption oracle that on input associated data a and messages m0,m1, returns an
encryption of messagemb, depending on a randomly chosen bit b. Moreover, the attacker may query
a decryption oracle arbitrarily many times (except on the challenge ciphertext), which, however,
always returns ⊥ if b = 1.

An additional property that block-cipher-based AEAD schemes satisfy and which we require
(which ACD do not require since our AEAD notion is stronger than theirs) is the ability to “explain”
ciphertexts. That is, the ability to program any ciphertext so that given a chosen key, message and
associated data, the ciphertext decrypts with the key consistently to the message after the fact, and
furthermore so that encrypting the message under the key indeed results in the same ciphertext
(similar to non-committing encryption). It will later be seen that such explainability is required by
our ideal functionality for the DR (see Section 4.2.2).

For instance, by appropriately programming an ideal cipher after the fact, we can ensure that
a ciphertext generated ahead of time correctly decrypts to the chosen message with the chosen
key, and that the message encrypts to that ciphertext with the key. Indeed, it can easily be seen
that constructions used by the DR, such as AEAD based on CBC+HMAC and SIV, will satisfy
this property in the programmable ideal cipher model. We model this “explainability” aspect via an
additional algorithm called AEAD-Expl-Ct that is only used for security purposes, and does not exist
in the real-world. It takes an AEAD key, associated data, message, and ciphertext, and programs
them to be consistent. In the security game, the adversary can query oracle corr at which point if
b = 1 the challenger explains the ciphertext as an encryption of m0 under K and returns K, or if
b = 0, simply returns K. No matter the setting of bit b, after corruption the game ends without loss
of generality as the adversary can encrypt and decrypt on its own. All AEAD schemes considered
in this work are required to provide a AEAD-Expl-Ct algorithm.

The advantage of an adversary A attacking an AEAD scheme AE is denoted by AdvAEot-cca(A);
the attacker is parametrized by its running time t.

Definition 2. An AEAD scheme AE is (t, ε)-one-time-CCA-secure if for all t-attackers A,

AdvAEot-cca(A) ≤ ε .
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3 Defining Security of the Double Ratchet

In this section, we focus on obtaining an ideal functionality FDR that captures, as completely as
possible, the security provided by the Double Ratchet algorithm. We emphasize that we study the
security provided by the strongest implementation of the DR of which we are aware. For more on
this, see Appendix A. We also provide an ideal functionality FTR that captures the security of our
stronger TR protocol. Both functionalities are provided in Figure 3.

FDR and FTR

Notation: The ideal functionality interacts with two parties P1,P2, and an ideal adversary S. The ideal func-
tionality initializes lists of used message-ids P1.M, in-transit messages P1.T, adversarially injected message-ids

P1.I, and vulnerable messages P1.V sent by P1 to P2 to φ. Analogously, lists P2.M,P2.T,P2.I and P2.V are also

initialized to φ. The ideal functionality also initializes leakage flags of both P1 and P2 for their corresponding (i)
public ratchet secrets: P1.PLEK,P2.PLEK, (ii) current sending epoch symmetric secrets: P1.CUR SLEK,P2.CUR SLEK,
and (iii) previous sending epoch symmetric secrets: P1.PREV SLEK,P2.PREV SLEK, all to 0. Further, it initializes
bad-randomness flags P1.BAD,P2.BAD and takeover possible flags P1.TAKEOVER POSS,P2.TAKEOVER POSS to 0. Fi-
nally, it initializes the turn flag TURN as ⊥.

• On input (sid, SETUP) from P where P ∈ {P1,P2}: Send (sid, SETUP,P) to S. When S returns (sid, SETUP)
then set TURN ← P, and send (sid, INITIATED) to both P1 and P2. Ignore all future messages until this
step is completed for sid. Once this happens P can send the first message.

• On input (sid,mid, SEND,m) from P ∈ {P1,P2}:

1. Ignore if mid ∈ P.M.

2. If P̄.CUR SLEK ∨ (P.V 6= ∅) then P.V ∪ {(sid,mid,m)}

3. If New(P, TURN,P.T)a then set (i) P.PLEK← P.BAD, (ii) P.CUR SLEK← P̄.CUR SLEK∧(P.PLEK∨P̄.PLEK),
and (iii) P̄.TAKEOVER POSS← P.CUR SLEK.

4. Add mid to P.M; if mid /∈ P.I then add (sid,mid, IN TRANSIT,m,P.CUR SLEK, TURN) to P.T; and pass
(sid,mid, IN TRANSIT,P, |m|,m′) to S where m′ ← m if P.CUR SLEK and ⊥ otherwise.

• On input (sid,mid, DELIVER,P,m′) from S where P ∈ {P1,P2}:

1. Find (sid,mid, IN TRANSIT,m, β, γ) ∈ P.T and remove it from P.T. Skip rest of the steps if no such
entry is found.

2. If γ = P then set (i) TURN← P̄, (ii) P.T← Flip(P,P.T),b (iii) P.PREV SLEK← 0, (iv) P̄.PREV SLEK←

P̄.CUR SLEK, (v) P̄.CUR SLEK← 0, (vi) P̄.PLEK← 0, (vii) P.TAKEOVER POSS← 0, and (viii) P̄.V← ∅.

3. If β = 1 then set m← m′. Send (sid,mid, DELIVER,m) to P̄.

• On input (sid, LEAK,P) from S where P ∈ {P1,P2}:

1. If ¬New(P, TURN,P.T) then set P.CUR SLEK← 1, P.PLEK← 1, and P̄.TAKEOVER POSS← 1.

2. If ¬New(P̄, TURN, P̄.T) then set P̄.CUR SLEK← 1.

3. If TURN = P̄ then set P̄.PREV SLEK← 1.

4. If New(P, TURN,P.T) ∨ (¬New(P̄, TURN, P̄.T) ∧ TURN = P̄) then set P.TAKEOVER POSS← 1.

5. Execute P̄.T← Unsafe(P̄.T)c and P.T← Unsafe′(P.T,P.V).d then send P̄.T and P.V to S.

• On input (sid, BAD RANDOMNESS,P, ρ) from S where ρ ∈ {0, 1} and P ∈ {P1,P2}: Set P.BAD← ρ.

• On input (sid,mid, INJECT,P,m, δ, γ) from S:
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1. Skip if (mid ∈ P.I ∪ P.M) ∨ ¬(P.TAKEOVER POSS ∨ P.PREV SLEK ∨ P.CUR SLEK).

2. If P.TAKEOVER POSS∧ δ then forward all subsequent incoming messages from P̄ to S and from S for
P̄ directly to P̄. Also, remove from P.T all elements of the form (·, ·, IN TRANSIT, ·, ·,P) and drop all
subsequent incoming messages for P̄ generated by the ideal functionality (i.e., do not send them to
P̄), except the ones generated according to the DELIVER command.

3. Otherwise, addmid to P.I and add to P.T (i) if TURN = P̄∨¬P.CUR SLEK then (sid,mid, IN TRANSIT,m,
1,⊥), (ii) if TURN = P ∧ ¬P.PREV SLEK then (sid,mid, IN TRANSIT,m, 1,P), and (iii) else (sid,mid,
IN TRANSIT,m, 1, γ).

aNew(P, TURN,P.T) outputs 1 if we have TURN = P and for all (sid,mid, IN TRANSIT,m, β, γ) ∈ P.T we have
γ 6= P; otherwise output 0.

bFlip(P,P.T) for each (sid,mid, IN TRANSIT,m, β,P) ∈ P.T replaces it with (sid,mid, IN TRANSIT,m, β,⊥).
cUnsafe(P.T) for each (sid,mid, IN TRANSIT,m, β, γ) ∈ P.T replaces it with (sid,mid, IN TRANSIT,m, 1, γ).
dUnsafe′(P.T,P.V) for each (sid,mid,m) ∈ P.V, if there is a corresponding (sid,mid, IN TRANSIT,m, β, γ) ∈ P.T,

replaces it with (sid,mid, IN TRANSIT,m, 1, γ).

Figure 3: The ideal functionalities FDR and FTR, respectively.

3.1 Honest Execution

We start with a simplified view of the functionality where only the first three commands, namely
SETUP, SEND, and DELIVER are executed. In other words, we consider a restricted view of the ideal
functionality where leakage, bad randomness and injection attacks are not allowed. The adversary
is still allowed to delay, reorder, and drop messages at will.

SETUP Command. This command can be initiated by either P = P1 or P = P2, and allows
for initializing the communication channel between P and P̄. Looking ahead, in the real-world
protocol, this initialization will involve sharing cryptographic secrets between the real-world P and
real-world P̄, then properly initializing their states using these secrets. While the actual Signal
protocol uses the X3DH key exchange [MP16b] for this, the focus of our work is to analyze the
security and functionality of the double ratchet algorithm, and not X3DH. Therefore, we present a
simple description for the SETUP command, that may be stronger than what X3DH achieves, but
nonetheless suffices for our purposes.

We note that both P1 and P2 must receive (sid, INITIATED) before the communication between
them can proceed. Turn status flag TURN is set to the initiator P to denote that P will be the first
party to send a message.

SEND Command. This command allows P ∈ {P1,P2} to send a message m, under a unique
assigned message id mid, to P̄. Naturally, the ideal functionality only allows P to send one message
under each such mid, which it ensures by aborting in Step 1 if mid is already in list P.M, and
subsequently adding mid to P.M in Step 4 otherwise. Now, this message might be dropped or
delayed while in transit. Thus, at this point, the message is only added to the in-transit list P.T
(Step 4) and the ideal-functionality waits for the instruction from the ideal-world adversary on
when this message is to be delivered (if at all).

Observe that the last element of each tuple in P.T is TURN: the turn status when P attempted
to send this message (i.e., when it was added to P.T). Looking ahead, this element is used in
helper function New(P, TURN,P.T) within SEND (Step 3) to determine whether P is initiating a new
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epoch when sending a message and, if so, the (in)security of the new epoch. When discussing the
DELIVER command below, we will explain the role the last element of P.T plays in the logic of
New(P, TURN,P.T) and further understand its role elsewhere in the functionality.

Finally, as typical with encryption, in the real-world the length of the encrypted message is
often leaked by the ciphertext. Thus, the ideal functionality leaks the length of sent messages to
the ideal adversary.

DELIVER Command. This command allows the ideal adversary to instruct the ideal functionality
that a certain message, with unique message id mid, is no longer in-transit, and must be delivered
to the recipient immediately, whether or not previously sent messages have already been delivered
(thus transformation T6(DR) cannot realize the ideal functionality). The ideal functionality restricts
the ideal adversary to delivering the message associated with this mid only once, which reflects the
forward security of the DR – once a message is delivered, the recipient should no longer be able to
decrypt it (in case she is leaked on afterwards). This is done by removing the entry for mid from
P.T when it is delivered, so that subsequent deliveries cannot occur (Step 1).

As part of the delivery process (Step 2), the ideal functionality also checks if TURN was set to
P when this message was sent. If so, the message was indeed the first of P’s newest epoch that is
delivered to P̄ (out of possibly many messages that can be the first delivered in the epoch). Thus,
subsequently, it will next be P̄’s turn to start a new epoch. So, if this is the case, then TURN is
flipped to P̄. Additionally, helper function Flip(P,P.T) flips the last entry of each message from
P to P̄ in P.T to ⊥. This is done so that subsequently, when P starts its next sending epoch,
New(P, TURN,P.T) will return 1: TURN will flip back to P once a message of P̄’s next sending epoch
is delivered to P for the first time, and there will be no element in P.T whose last entry is P. (Note:
before P receives a message for P̄’s next sending epoch, P’s sent messages will not start a new
epoch, as captured by New(P, TURN,P.T), since TURN will be set to P̄.)

We also note that since UC modelling typically allows the adversary to control the commu-
nication network [Can01] (and thus decide when ciphertexts should be delivered), there are some
useless protocols that may realize FDR and FTR. We define useless protocols as those in which
with any PPT environment and adversary, parties do not generate output (i.e., not even a special
reject symbol, like ⊥, representing failed authentication) for at least one ciphertext delivery, with
non-negligible probability. However, we can trivially rule out such useless protocols, so that all
protocols that do realize FDR or FTR and that are not useless indeed generate the correct out-
put immediately upon every delivery of a ciphertext from the adversary, with all-but-negligible
probability.

3.2 Execution with an Unrestricted Adversary

In addition to delaying, reordering, and dropping messages, we assume that the real-world adversary
can: (i) provide bad randomness for both parties, (ii) leak their secret states; possibly multiple times
at various points in the execution, (iii) tamper with in-transit messages between the parties, and (iv)
attempt to inject messages on behalf of both parties. Here, we explain how the ideal functionality
captures this behavior.

The Ideal Functionality’s Flags. The ideal functionality uses several binary flags to properly
capture adversarial behavior. The functionality initializes all of them to 0. Binary flag P.BAD cap-
tures bad randomness for party P ∈ {P1,P2}. Naturally, P.BAD is set to 0 or 1 when the ideal-world
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adversary issues a (sid, cmdBAD RANDOMNESS,P, ρ) command to the ideal functionality, de-
pending on the the value of ρ. If P.BAD is set to 1 then P is provided with bad randomness (by the
adversary, c.f. Appendix B) when she tries to sample some (thus rendering transformation T5(DR)
insecure). Otherwise, P samples fresh randomness.

The ideal functionality further utilizes the following binary flags for each party P ∈ {P1,P2} to
capture the rest of the possible adversarial behavior. We first introduce their real-world semantic
meaning here before explaining (i) their evolution within the ideal functionality as a result of the
ideal world adversary’s behavior, then (ii) how they thus allow the ideal functionality to determine
security for the session.

• P.PLEK (Public Ratchet Secrets Leakage): If P.PLEK is set to 1 then P’s public ratchet secrets
are leaked to the real-world adversary. Otherwise, they should be hidden from the real-world
adversary.

• P.CUR SLEK (Current Sending Symmetric Ratchet Secrets Leakage): If P.CUR SLEK is set to 1
then the symmetric ratchet secrets of P’s current sending epoch are leaked to the real-world
adversary. Otherwise, they should be hidden from the real-world adversary

• P.PREV SLEK (Previous Sending Symmetric Ratchet Secrets Leakage): If P.PREV SLEK is set
to 1 then the symmetric ratchet secrets of the previous sending epoch of P are leaked to the
real-world adversary. Otherwise, they should be hidden from the real-world adversary.

• P.TAKEOVER POSS (Takeover Possible): If P.TAKEOVER POSS is set to 1 then the real-world
adversary has the option to take over the role of P in the conversation with P̄. Otherwise,
the real-world adversary should not have this option.

How the Flags are Affected by Leakages. We first describe how a leakage on one of the
parties P ∈ {P1,P2} affects the above flags. For P.PLEK, when New(P, TURN,P.T) = 1, it is P’s turn
to start her next sending epoch, but she has not yet started it. Thus she does not currently have
any public ratchet secret state (just P̄’s public value), so there is no effect on P.PLEK if leakage on
P occurs in this case. If New(P, TURN,P.T) = 0 when leakage on P occurs, P of course does have a
public ratchet secret state, as she needs to be able to receive a message for P̄’s next sending turn;
thus in command LEAK, the ideal functionality sets P.PLEK to 1 (Step 1). Since P never stores P̄’s
public ratchet secrets, there is never any effect on P̄.PLEK when P’s state is leaked.

For P.CUR SLEK, the functionality has similar behavior. If New(P, TURN,P.T) = 1 when leakage
on P occurs, P has not yet generated the secrets for her next sending epoch, so P.CUR SLEK is not
modified. Otherwise, P has started the epoch, and so she stores the corresponding secrets in order
to send new messages for the epoch; thus in command LEAK, we set P.CUR SLEK to 1 (Step 1).
Additionally, if New(P̄, TURN, P̄.T) = 1 then P̄ has not yet generated the secrets for her next sending
epoch, so P̄.CUR SLEK is not modified. Otherwise, P̄ has indeed started the epoch, in which case
P must be able to derive the epoch’s symmetric secrets (possibly using in-transit messages, which
the adversary has), and thus in command LEAK we set P̄.CUR SLEK to 1 (Step 2).

For P.PREV SLEK, since in the most secure version of the DR, P only ever stores the secrets for
her current sending epoch (if she has indeed started it), leakage on P has no effect on P.PREV SLEK.
However, once it is P̄’s turn to start a new sending epoch, P still stores the secrets of P̄’s previous
sending epoch (in case she needs to receive messages for it; she does not yet know P̄ will never
again send a message for that epoch), until she receives a message in P̄’s new epoch for the first
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time. Therefore, if TURN = P̄ then in command LEAK, we set P̄.PREV SLEK to 1 (Step 3); otherwise,
if TURN = P, P̄.PREV SLEK is not modified.

Finally, for P.TAKEOVER POSS, if it is P’s turn to start a new sending epoch, then of course
a leakage on P will enable the adversary to forge the first message of this new epoch and thus
influence the subsequent state of P̄ upon delivery such that the adversary can take over P’s role in
the conversation (if it wishes). This is because the adversary will obtain the double ratchet root
key, and can thus send such a message herself. Also, note that this key is derived from (i) P’s
previous state before she received any message for P̄’s newest epoch and (ii) any message of P̄’s
newest sending epoch. Thus, additionally, if P is leaked while any message from P̄’s newest epoch
is in-transit, but before P receives any such message, then the adversary can obtain the root key as
above, and so will have the ability to forge the first message of P’s next sending epoch. Therefore,
in command LEAK, if New(P, TURN,P.T) = 1, or New(P̄, TURN, P̄.T) = 0 and TURN = P̄, then we set
P.TAKEOVER POSS to 1 (Step 4). Otherwise, if P has already sent the first message of the epoch,
and P̄ has not yet started her next sending epoch, leakage on P does not reveal the root key, so
P.TAKEOVER POSS is not modified. In the former case, this is because P deletes the key after sending
the message, and in the latter case, this is because the key does not yet exist. Furthermore, if P
has indeed sent a message for her current sending epoch, then a leakage on P will provide the
adversary with the new root key. The adversary will therefore be able to forge the first message
for P̄’s next sending epoch. So, if New(P, TURN,P.T) = 0 then in command LEAK, we additionally
set P̄.TAKEOVER POSS to 1 (Step 1). Otherwise, if it is P’s turn to start a new epoch, and she has
not yet started it, then the new root key has not yet been generated, so P̄.TAKEOVER POSS is not
modified.

How the Flags are Affected by Epoch Initialization. The effects on the ideal functionality’s
flags of epoch initialization via a SEND command are determined in Step 3 of the command. First,
if P.BAD = 1 when starting a new epoch (i.e. P uses bad randomness to start it), then we of course
set P.PLEK to 1 (In the TR we may still here have security of P’s public ratchet secret state, but
we choose to capture slightly weaker security for simplicity); otherwise we set P.PLEK to 0. Now,
consider the privacy of the root key when P̄.CUR SLEK is 1 and P is initializing a new epoch:

• If P̄.CUR SLEK was set to 1 when P̄ initialized her newest epoch (as we explain below), then the
root key must have been leaked in addition to the corresponding symmetric ratchet secrets,
since they are both part of the same KDF output.

• If P̄.CUR SLEK was set to 1 as a result of a leakage on P, then the root key must have been
also leaked, since P needs it to start her new sending epoch.

• Finally, if P̄.CUR SLEK was set to 1 as a result of a leakage on P̄, then the root key must have
been also leaked, since P̄ needs it to receive a message for P’s new sending epoch.

So, if P̄.CUR SLEK is 1 when P initializes her new sending epoch, then it must be that the root key
is leaked. Thus, only if P and P̄ have a secure key exchange can security for the DR be recovered,
which only happens if both P.PLEK and P̄.PLEK are 0, i.e., their public ratchet secrets are both
hidden from the adversary. In this case, we set P.CUR SLEK to 0; otherwise, we set it to 1. If
P̄.CUR SLEK is 0 at the time of initialization, then the root key must be hidden. This is because if
not, then the current symmetric ratchet secrets of P̄ would also not be hidden, since they were part
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of the same KDF output when P̄ started her latest sending epoch, and there were no subsequent
leakages on either party. So we set P.CUR SLEK to 0 upon initialization, in this case.

Finally, if we do indeed set P.CUR SLEK to 1 at this time, as we noted above, this means that
the new root key is known by the adversary, and thus the adversary could forge the first message
for P̄’s next turn; otherwise the root key is hidden, and so the adversary does not have this ability.
So, we set P̄.TAKEOVER POSS← P.CUR SLEK.

How the Flags are Affected by Epoch Termination. When the ideal adversary issues a
DELIVER command for the first message of P’s newest sending epoch, the ideal functionality needs
to properly evolve the flags it uses to capture adversarial behavior (Step 2). First, when such a
delivery occurs, P̄’s latest sending epoch terminates, as her next message will be sent in a new epoch.
To reflect this, upon such a delivery, the ideal functionality sets P̄.PREV SLEK← P̄.CUR SLEK. Also,
since P̄ deletes her public ratchet secrets upon reception of such a message, and her newest epoch
has not actually started at this point, the functionality sets P̄.CUR SLEK← 0 and P̄.PLEK← 0.

Furthermore, in the DR, P includes in each message of an epoch the number of messages she
sent in her previous epoch (see Section 5). Thus, once P̄ receives such a message in the DR, she
knows exactly how many messages P sent in her previous epoch. So, the adversary can no longer
inject messages in P’s previous epoch (just modify them) and there is no more adversarial action
possible for that epoch, so the functionality sets P.PREV SLEK← 0. Finally, since a message for P’s
newest sending epoch has indeed been delivered at this point, the secrets needed to start her next
sending epoch are yet to be determined. Thus, the adversary cannot yet forge a message to start
her next sending epoch, so the functionality sets P.TAKEOVER POSS← 0.

Determining New Messages’ Privacy and Authenticity. We know from above that if
P.CUR SLEK = 1, then P’s current symmetric ratchet secrets are leaked to the adversary. Thus,
if P issues a SEND command for message m with id mid, and P.CUR SLEK = 1, then the ideal func-
tionality leaks the corresponding message to the ideal adversary (Step 4). Additionally, the ideal
functionality sets the penultimate element of mid’s entry in P.T to 1. This will allow the ideal
adversary to modify the message associated with mid upon delivery: the adversary will issue a
DELIVER command for mid to the functionality with input modified message m′, which will then be
delivered P̄, instead of m (Step 3).

Otherwise, if P.CUR SLEK = 0 when P issues the SEND command, then the ideal functionality only
leaks the message length to the adversary and sets the penultimate element of the corresponding
entry of P.T to 0, ensuring (for now) privacy and authenticity of m.

The Consequences of Leakages. When the adversary leaks on P in the real-world, the privacy
of in-transit messages from P̄ to P is no longer guaranteed, since P must preserve all keys that
will be necessary for authenticating and decrypting them. Therefore, when the ideal adversary
issues a LEAK command on P, the ideal functionality leaks the in-transit messages from P̄ to P,
P.T, to the ideal adversary, and allows the ideal adversary to modify them in the future (Step 5).
The ideal functionality accomplishes the latter using helper function Unsafe(P̄.T) which sets the
penultimate element of each in-transit message of P̄.T to 1. As a result, the ideal adversary can
modify these in-transit messages in the DELIVER command, as described above. Note that only
in-transit messages from P̄ to P are affected (thus rendering transformation T2(DR) insecure).
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Vulnerable Messages in the DR. As explained in Section 1.4, if in the DR, the root key is leaked
when it is P’s turn to start a new sending epoch, but P has not yet started it, then the messages
of that epoch are vulnerable. This means that if P is leaked on before P receives a message of P̄’s
next sending epoch for the first time, the messages that P sent in her own epoch become insecure.

To capture this, the ideal functionality in the SEND command adds messages to list P.V if they
are indeed vulnerable (Step 2). At the start of the epoch, this is the case if P̄.CUR SLEK = 1 (as
explained above); in the middle of the epoch, this is the case if P.V is non-empty. Hence, if the
adversary issues a LEAK command on P, in addition to the consequences of the above paragraph,
the ideal functionality also leaks P.V and allows for future modification of its elements that are
still in-transit (Step 5). The latter is accomplished via helper function Unsafe′(P.T,P.V), similarly
as in Unsafe(P̄.T). Note that this scenario, and the one above, are the only ones in which secure,
in-transit messages are leaked to the adversary and/or subject to modification (thus transformation
T4(DR) is insecure). Finally, if the adversary issues a DELIVER command for the first message of
P̄’s next sending epoch, the ideal functionality sets P.V = ∅: P properly deletes the secrets which
make those messages vulnerable at this time.

Injections and Takeovers. If P.CUR SLEK = 1 or P.PREV SLEK = 1, then the adversary has the
secrets required to inject its own messages into P’s current or previous sending epoch, respectively.
Also, if P.TAKEOVER POSS = 1, then the adversary can forge the first message to be delivered in
P’s next sending epoch to P̄. In either case, the ideal adversary issues the INJECT command to
inject message m under unique message id mid on behalf of P. Of course, the ideal functionality
only allows the adversary to inject one message under each such mid, which it ensures by aborting
in Step 1 if mid is already in P.I, and adding it to P.I in Step 3 if not. The ideal functionality
also aborts if a message with message id mid was already sent by P, i.e., it is in P.M, in which
case injection of mid is not allowed, only modification. If the ideal adversary injects a message
with id mid that is not a takeover forgery, then before actual delivery of the injection occurs, a
corresponding entry is added to P.T.

Now, if P.TAKEOVER POSS = 1, and the ideal adversary inputs δ = 1 to the INJECT command,
indicating that it wishes to takeover for P, then the ideal functionality thereafter directly forwards
messages sent from P to the ideal adversary, and vice versa (Step 2).

If the ideal adversary injects a message with id mid that is not a takeover forgery, then before
actual delivery of the injection occurs, a corresponding entry is added to P.T. However, the ideal
functionality has to be careful to set the last element of this entry correctly:

• If TURN = P̄, then the first message of P’s current sending epoch has already been delivered to
P̄. Thus, the last element of the entry is set to ⊥, so that if TURN is flipped to P, the entry’s
subsequent delivery does not prematurely flip TURN back. Moreover, if P.CUR SLEK = 0, then
the adversary must be injecting into P’s previous sending epoch, so for the same reason as
above, we set its last entry to ⊥.

• If P.PREV SLEK = 0 and TURN = P, then the adversary must be injecting into P’s current
sending epoch, and moreover, it might be that the injected message could be the first of the
epoch delivered to P̄. Therefore, we set TURN to P.

• If neither of the above are true, i.e., TURN = P, P.PREV SLEK = 1, and P.CUR SLEK = 1, then
it could be that the adversary is injecting into either P’s previous or current sending epoch.
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Therefore, the ideal adversary specifies its choice of the last element with the last input γ to
the INJECT command.

Actual delivery of injections is then handled in the DELIVER command, in the same simple
manner as specified in the Honest Execution Section (Section 3.1). Namely, delivery of injected
message with message id mid is done by removing it from P.T (if such an entry exists), and sending
it to P̄. The functionality works this way in order to capture the scenario in which the real-world
adversary modifies the first message of a new sending epoch for P to inform P̄ that P’s last sending
epoch contains more messages than it actually does. Therefore, the real-world adversary will be
able to in the future inject such additional messages whenever it wants. The ideal-world adversary
thus issues an INJECT command for all of these message ids at the time of the first modification,
so that later it can actually send them to P̄ using DELIVER commands (regardless of the status of
the functionality’s flags at that time).

If an injected message with id mid is indeed added to P.T, then the ideal functionality needs to
also make sure that P can send a message with the same mid (since it does not know about the
injection), but not allow the ideal adversary to deliver two messages with the same mid (since P̄ will
only accept one such message in the DR). Therefore, in the SEND command, the ideal functionality
checks if mid /∈ P.I and if so adds the corresponding message to P.T as in the honest execution.
However, if mid is in P.I, the ideal functionality does not add the corresponding message to P.T,
but still sends the length of the message (and the message itself if P.CUR SLEK = 1) to the ideal
adversary, mirroring that a ciphertext is still created in the real-world.

4 Building Blocks

In this work, we present the DR and our stronger TR protocols as modular constructions that
use three components (following ACD): Key Derivation Function Chains (KDF Chains)—used
to advance forward the public ratchet; continuous key-agreement (CKA)—used to generate the
secrets that advance forward the public ratchet; and forward-secure authenticated encryption with
associated data (FS-AEAD)—the symmetric ratchet itself. These components are presented in
isolation in this section before combining them into the DR and TR schemes in Section 5. For FS-
AEADand CKA we first provide security definitions for the two primitives and then constructions
achieving them. Note that the DR and TR schemes we show later can use any CKA and FS-AEAD
construction which satisfy their corresponding definitions. For KDF chains, we do not provide any
definitions but rather achieve their security and functionality by modelling the underlying KDF as a
(programmable) Random Oracle in Section 5. For a concrete instantiation of the underlying KDF,
we point to that which the DR protocol uses: HKDF [KE10] with SHA-256 or SHA-512 [FIP95].
This section often follows the work of ACD verbatim.1

4.1 Key Derivation Function Chains

The DR protocol makes use of Key Derivation Function (KDF) Chains for the public ratchet. We
take (almost) verbatim from its whitepaper by Marlinspike and Perrin [MP16a] the desired syntax
and security properties of KDFs and KDF Chains: A KDF is a cryptographic function that takes
as input a secret and random KDF key σ and some input data I and returns output data R (i.e.,

1ACD use A and B to refer to the two parties of CKA and FS-AEAD. To remain consistent with the notation of
our ideal functionality for Secure Messaging, we instead use P1 and P2.
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R ← KDF(σ, I)). The output data R is indistinguishable from random provided the key isn’t
known (i.e. a KDF satisfies the requirements of a cryptographic “PRF”). If the key is not secret
and random, the KDF should still provide a secure cryptographic hash of its key and input data.

To build a KDF Chain, Marlinspike and Perrin use iterated computations of a KDF, where one
part of the output is used as a separate output key k and the other part is used to replace the KDF
key σ, which can then be used with another input (i.e., (σ′, k) ← KDF(σ, I)). KDF chains have
the following intuitive properties:

• Resilience: The output keys appear random to an adversary without knowledge of the KDF
keys. This is true even if the adversary can control the KDF inputs.

• FS: Output keys from the past appear random to an adversary who learns the KDF key at
some point in time.

• PCS: Future output keys appear random to an adversary who learns the KDF key at some
point in time, provided that future inputs have added sufficient entropy.

As stated earlier, we simply model the KDF that underlies the KDF chain in the DR and TR as
a (programmable) Random Oracle H. Thus, provided that either the KDF key or the input data
is unknown to the adversary, the output will be random and unknown to the adversary, and thus
both resilience as well as PCS are achieved. Likewise, FS is easily seen to be achieved.

4.1.1 Differences from ACD

Alwen et al. capture the above security properties of a KDF Chain in a primitive which they
call PRF-PRNGs. They also provide a corresponding (deterministic) construction in the standard
model. We refer the reader to Section 4.3 of their work for more details. However, we emphasize that
a standard model PRF-PRNG construction suffices in their work only because in their SM security
definition, leakages are not allowed during challenge epochs. On the other hand, our functionality
requires the simulator to generate fake ciphertexts for an epoch, even if the adversary may later
leak on the parties to reveal the keys for these ciphertexts. So, while these fake ciphertexts need to
be at first indistinguishable from the real ciphertexts, and thus the keys used to encrypt them need
to be sampled randomly, the adversary can later obtain the root KDF chain key and CKA shared
secret for that epoch, from which the FS-AEAD initialization key is derived using the function
underlying the KDF chain. Thus, we need to be able to properly program this function to output
the correct (random) key, and so we model it as a (programmable) random oracle.

This is similar to the necessity of (programmable) random oracles for non-committing encryp-
tions, as shown by a separation by Nielsen [Nie02] as opposed to just semantically secure encryption.
Intuitively, to simulate a corruption that happens after “committing” the ciphertext one must use
the random oracle programmability at its full extent – this common simulation paradigm also comes
up naturally in our security analysis.

4.2 Forward-Secure AEAD

4.2.1 Defining FS-AEAD

Forward-secure authenticated encryption with associated data is a stateful primitive between a
sender P1 and a receiver P2 and can be considered a single-epoch variant of the DR, a fact that is
also evident from its security definition.
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Definition 3. Forward-secure authenticated encryption with associated data (FS-AEAD) is a tuple
of algorithms FS-AEAD = (FS-Init-S,FS-Init-R,FS-Send,FS-Rcv), where

• FS-Init-S (and similarly FS-Init-R) takes a key k and outputs a state vP1
← FS-Init-S(k),

• FS-Send takes a state v, associated data a, and a message m and produces a new state and a
ciphertext (v′, e)← FS-Send(v, a,m), and

• FS-Rcv takes a state v, associated data a, and a ciphertext e and produces a new state, an
index, and a message (v′, i,m)← FS-Rcv(v, a, e).

Observe that all algorithms of an FS-AEAD scheme are deterministic.

Memory management. In addition to the basic syntax above, it is useful to define the following
two functions FS-Stop (called by the sender) and FS-Max (called by the receiver) for memory
management:

• FS-Stop, given an FS-AEAD state v, outputs how many messages have been sent (sic) and
then “erases” the FS-AEAD session corresponding to v from memory; and

• FS-Max, given a state v and an integer ℓ, remembers ℓ internally such that the session corre-
sponding to v is erased from memory as soon as ℓ messages have been received.

These features will be useful in the full protocol (cf. Section 5) to be able to terminate individual
FS-AEAD sessions when they are no longer needed. Providing a formal requirement for these
additional functions is omitted. Moreover, since an attacker can infer the value of the message
counter from the behavior of the protocol anyway, there is no dedicated oracle included in the
security game below.

Correctness and security. Both correctness and security are built into the security game de-
picted in Figure 4. One can observe that it corresponds to a single epoch of the DR and it thus
inherits those properties. When messages are sent, they are identified by a simple counter. Thus,
for correctness, all honestly generated ciphertexts should be decrypted by the recipient to their
corresponding messages with their corresponding indices.

For security, the chall-P1(a,m0,m1) oracle on input messages m0 and m1 of the same length
returns an encryption of mb, depending on a randomly chosen bit b. FS with respect to corruptions
of either party is required: If P1 is corrupted then the adversary still should not know the underlying
plaintext of previously generated ciphertexts. Moreover, if P1 has sent iP1

messages thus far, no
messages with lower indices can be modified or injected. If P2 is corrupted then the adversary
still should not know the underlying plaintext of previously generated and delivered ciphertexts.
Moreover, for challenge ciphertexts that are in-transit at the time of such a corruption, we require
the FS-AEAD scheme to “explain” them. That is, we require the ability to program ciphertexts
so that they decrypt consistently to any chosen message after the fact, and furthermore so that
encrypting the message under the corrupted state in the same manner as P1 would have honestly
done indeed results in the same ciphertext (similar to non-committing encryption). As discussed in
Section 2.2, constructions used by the DR, which use an underlying AEAD based on CBC+HMAC
and SIV, will indeed satisfy this property in the programmable ideal cipher model. We model this
explicitly as an algorithm FS-Expl-In-Trans-Cts that is only used for security purposes and does
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Security Game for FS-AEAD

init

k
$← K

vP1
← FS-Init-S(k)

vP2
← FS-Init-R(k)

iP1
← 0

corr← false

trans, comp, sent← ∅
RCVD← ∅
b

$← {0, 1}

corr-P1

corr← true

if comp = ∅
comp

+← iP1

return vP1

corr-P2

corr← true

chall = {(i, a,m, e) :
(i, chall, a, ∗,m, e) ∈ trans}

if b = 1
FS-Expl-In-Trans-Cts(vP2

, chall)

set-comp()

return vP2

transmit-P1 (a,m)
iP1

++
(vP1

, e)←
FS-Send(vP1

, a,m)
record(non-chall, a,m,⊥, e)

return e

chall-P1 (a,m0,m1)
req ¬corr and
|m0| = |m1|
iP1

++
(vP1

, e)←
FS-Send(vP1

, a,mb)
record(chall, a,mb,m0, e)

return e

corr-init-key
corr← true

chall = {(i, a,m, e) :
(i, chall, a, ∗,m, e) ∈
sent}
if b = 1

FS-Expl-Vul-Cts(k, chall)

comp = {1}
return k

deliver-P2 (a, e)
req (i, flag, a,m, ∗, e) ∈ trans

for some i,m
(vP2

, i′,m′)← FS-Rcv(vP2
, a, e)

if (i′,m′) 6= (i,m)
win

if flag = chall

m′ ← ⊥
RCVD

+← i
delete(i)
return (i′,m′)

inject-P2 (a, e)
req (∗, ∗, a, ∗, ∗, e) /∈ trans

(vP2
, i′,m′)← FS-Rcv(vP2

, a, e)

if m′ 6= ⊥ and (i′ ∈ RCVD or
(i′ /∈ comp and i′ < max{comp}))

win

RCVD
+← i′

delete(i′)
return (i′,m′)

set-comp ()
mr← max{RCVD}a
if comp = ∅

comp
+← mr

else if max{comp} > mr

comp
−← max{comp}

comp
+← mr

for i : ((i, ∗, ∗, ∗, ∗, ∗) ∈ trans)
and (i < max{comp})

comp
+← i

amax{RCVD} = 0 if RCVD = ∅

record (flag, a,m, e)
rec← (iP1

, flag, a,m,m′, e)

trans, sent
+← rec

delete (i)
rec← (i, flag, a,m,m′, e) for m,m′, a, e

s.t. (i, flag, a,m,m′, e) ∈ trans

trans
−← rec

Figure 4: Oracles corresponding to party P1 of the FS-AEAD security game for a scheme
FS-AEAD = (FS-Init-S,FS-Init-R,FS-Send,FS-Rcv).

not exist in the real world. It takes the corrupted state, as well as the list of in-transit challenge
messages and their corresponding associated data and ciphertexts, and programs the messages and
ciphertexts to be consistent. Furthermore, we allow the initialization key k to be corrupted, in which
case we require all challenge ciphertexts to be “explained” in the same way (which again, can easily
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be done in the programmable ideal cipher model for the constructions used by the DR). We model
this explicitly as an algorithm FS-Expl-Vul-Cts that also is only used for security purposes and does
not exist in the real world. It takes the initial key k, as well as all sent challenge messages and their
corresponding associated data and ciphertexts, and programs the messages and ciphertexts to be
consistent. All FS-AEAD schemes considered in this work are required to provide both algorithms
(really FS-Expl-Vul-Cts is only required for the proof of the DR and not TR).

The advantage of an attacker A against an FS-AEAD scheme FS-AEAD is denoted by the
expression AdvFS-AEADfs-aead (A). The attacker is parameterized by its running time t and the total
number of queries q it makes.

Definition 4. An FS-AEAD scheme FS-AEAD is (t, q, ε)-secure if for all (t, q)-attackers A,

AdvFS-AEADfs-aead (A) ≤ ε .

Definition 5. An FS-AEAD scheme is simply called ε-secure if for every t, q ∈ poly(κ) and
ε ∈ negl(κ), where κ is the security parameter

AdvFS-AEADfs-aead (A) ≤ ε.

4.2.2 Differences from ACD

Explaining ciphertexts and init key corruption. Our ideal functionalities FDR and FTR of
course allow the adversary to leak on either party at all times (unlike the Secure Messaging definition
of ACD). Thus, although the ideal adversary may at first only get the length of a message when it is
sent and still need to simulate the corresponding ciphertext, if a leak occurs on the recipient while
the ciphertext is still in-transit, the ideal adversary needs to be able to explain the ciphertext as the
real message. Thus, the underlying FS-AEAD security game must also require such explanation of
in-transit challenge ciphertexts for our security proofs of the DR and TR. Furthermore, in (only)
the DR, state leakages on the sender of an epoch may leak all vulnerable messages of the epoch to
the adversary, and thus the FS-AEAD must explain all challenge ciphertexts sent. The above is
why we need (programmable) ideal ciphers in our instantiation below (recall Section 4.1.1 for more
discussion).

Continuing the game if P2 is corrupted. In the FS-AEAD definition of ACD, the game ends
once P2 is corrupted. However, even if such a corruption occurs, if the adversary chooses to still
deliver honest ciphertexts, then we must still require correctness of the FS-AEAD.

Fixing comp. Intuitively, if an attacker corrupts P1 then it can successfully inject messages for
a later index i > iP1

. However, the ACD definition declares that the attacker wins if this happens
(since for their differently defined dictionary comp in this situation, i /∈ comp if the attacker did
not make any transmit-P1 or chall-P1 queries, which triggers win in the inject-P2 oracle of
their game). Thus, we use our own logic for defining comp. (We also explicitly require FS-Rcv to
only accept one message per index and output ⊥ if it does receive more than one, in order to be
properly used for our ideal functionalities. The security game uses set RCVD for this purpose.)
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4.2.3 Instantiating FS-AEAD

An FS-AEAD scheme can be easily constructed from two components:

• an AEAD scheme AE = (Enc,Dec), and

• a KDF H :W →W ×K, where K is the key space of the AEAD scheme.

The scheme is described in Figure 5. For simplicity the states of sender P1 and receiver P2

are not made explicit; it consists of the variables set during initialization. The main idea of the
scheme, is that P1 and P2 share KDF key w. KDF key w is initialized with a pre-shared key
k ∈ W, which is assumed to be chosen uniformly at random. Both parties keep local counters iP1

and iP2
, respectively.2 P1, when sending the ith message m with associated data (AD) a, uses H

to expand the current state to a new state and an AEAD key (w,K) ← H(w) and computes an
AEAD encryption under K of m with AD h = (i, a).

Since P2 may receive ciphertexts out of order, whenever he receives a ciphertext, he first checks
whether the key is already stored in a dictionary D. If the index of the message is higher than
expected (i.e., larger than iP2

+ 1), P2 skips the KDF chain ahead and stores the skipped keys in
D. In either case, once the key is obtained, it is used to decrypt. If decryption fails, FS-Rcv throws
an exception (error), which causes the state to be rolled back to where it was before the call to
FS-Rcv.

Algorithms FS-Expl-In-Trans-Cts and FS-Expl-Vul-Cts. Lastly, we explain the algorithms
FS-Expl-In-Trans-Cts(vP2

, chall) and FS-Expl-Vul-Cts(k, chall) provided by our FS-AEAD. In order
to explain ciphertexts correctly, they rely on the explanation algorithm AEAD-Expl-Ct of the un-
derlying AEAD scheme. Formally, for every (i, a,m, e) ∈ chall, FS-Expl-In-Trans-Cts executes
AEAD-Expl-Ct(Ki, a,m, e), where Ki ← D[i] for all i < iP2

and for all i > iP2
, Ki is computed

directly via i − iP2
KDF invocations on current KDF key wiP2

in vP2
. Algorithm FS-Expl-Vul-Cts

proceeds similarly, instead computing Ki directly via i KDF invocations on initial KDF key w0.

Theorem 1. Assume AE is a (t′, εaead)-OT-CCA secure AEAD scheme and H is modelled as a
(programmable) random oracle. Then, the above FS-AEAD scheme FS-AEAD is (t, q, ε)-secure for
t ≈ t′ and

ε ≤ q · εaead .

Proof. The proof is a straight-forward hybrid argument: Let H0 denote the actual FS-AEAD
security game.

• In hybrid experiment H1, the win condition inside the deliver-P2 oracle is removed. The
perfect correctness of the proposed FS-AEAD scheme is easily seen by inspection and the
correctness of the underlying AEAD scheme. Hence H0 and H1 are indistinguishable.

• Now, the security of H1 follows from that of the underlying AEAD. It is obvious that injec-
tions for already received indices fail, since the FS-AEAD clearly outputs error. Moreover,
injections for uncompromised indices (i /∈ comp and i < max{comp}) fail by the security of
the underlying AEAD (since the attacker does not have the corresponding key). Also, we
program the random oracle so that all corrupted (random) AEAD keys (and subsequent KDF

2For ease of description, the FS-AEAD state of the parties is not made explicit as a variable v.

28



Forward-Secure AEAD

Init-P1 (k)
w ← k
iP1
← 0

Init-P2 (k)
w ← k
iP2
← 0

D[·]← ⊥
M[·]← ⊥

try-skipped (i)
K ← D[i]
D[i]← ⊥
return K

FS-Send (a,m)
iP1

++
(w,K)← H(w)
h← (iP1

, a)
e← Enc(K,h,m)
return (iP1

, e)

skip (u)
while iP2

< u− 1
iP2

++
(w,K)← H(w)
D[iP2

]← K

FS-Rcv (a, c)
(i, e)← c
K ← try-skipped(i)
if K = ⊥ and i ≤ iP2

error

else if K = ⊥ and i > iP2

skip(i)
(w,K)← H(w)
iP2
← i

h← (i, a)
m← Dec(K,h, e)
if m = ⊥

error
return (i,m)

Figure 5: FS-AEAD scheme based on AEAD and a KDF H.

keys) are simulated correctly to the attacker (for example if the attacker queries chall-P1,
followed by corr-P1 then corr-P2). Explainability follows from that of the AEAD.

4.3 Continuous Key Agreement

As in the work of Alwen et al. ACD, we separate out the primitive that generates the secrets
for public-ratchet updates in the DR and TR, and call it continuous key agreement (CKA). In
this section, we present our definitions of CKA and instantiations from the strong-DH (StDH)
assumption [ABR01].3 The StDH assumption is: given random and independent group elements
ga, gb, and access to oracle ddh(ga, ·, ·), which on input X,Y returns 1 if Xa = Y and 0 otherwise,
it is hard to compute gab.

4.3.1 Defining CKA

At a high level, CKA is a synchronous two-party protocol between P1 and P2. Odd rounds i consist
of P1 sending and P2 receiving a message Ti, whereas in even rounds, P2 is the sender and P1 the
receiver. Each round i also produces a key Ii, which is output by the sender upon sending Ti and
by the receiver upon receiving Ti.

Definition 6. A continuous-key-agreement (CKA) scheme is a quadruple of algorithms CKA =
(CKA-Init-P1,CKA-Init-P2,CKA-S,CKA-R), where

• CKA-Init-P1 (and similarly CKA-Init-P2) takes a key k and produces an initial state γP1 ←
CKA-Init-P1(k) (and γP2),

3We do not provide CKA schemes secure according to our definitions based on LWE or generic KEMs, as in ACD.
However, we note that our stronger scheme CKA+ is intuitively at least as strong as their construction from generic
KEMs, but more efficient.
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• CKA-S takes a state γ, and produces a new state, message, and key (γ′, T, I)
$← CKA-S(γ),

and

• CKA-R takes a state γ and message T and produces new state and a key (γ′, I)← CKA-R(γ, T).

Denote by K the space of initialization keys k and by I the space of CKA keys I.

Correctness. A CKA scheme is correct if in the security game in Figure 6 (explained below), P1

and P2 always, i.e., with probability 1, output the same key in every round.

Security. The security property we will require a CKA scheme to satisfy is that conditioned on
the transcript T1, T2, . . ., the keys I1, I2, . . . are unrecoverable. An attacker against a CKA scheme
is required to be passive, i.e., may not modify the messages Ti. However, it is given the power
to possibly (1) control the random coins used by the sender and (2) leak the current state of
either party. Given the capabilities of the adversary, it is easy to see that some keys Ii would be
recoverable. The security guarantee offered by the CKA scheme would then be that even given
the transcript T1, T2, . . ., assuming certain “fine-grained” conditions around when the adversary
controls the randomness used by parties and when the adversary learns the state of parties, most
keys I1, I2, . . . are unrecoverable. It will also be the case that parties thus recover from such bad
randomness and leakage issued by the adversary.

The formal security game for CKA is provided in Figure 6. It begins with a call to the init
oracle, which initializes the states of both parties, and defines epoch counters tP1

and tP2
. Procedure

init takes a value t∗, which determines in which round the challenge oracle may be called; the task
of the adversary will be to recover the key It∗ for that round.

Upon completion of the initialization procedure, the attacker gets to interact arbitrarily with
the remaining oracles, as long as the calls are in a “ping-pong” order, i.e., a call to a send oracle
for P1 is followed by a receive call for P2, then by a send oracle for P2, etc. The attacker only gets
to use the challenge oracle for epoch t∗. The attacker additionally has the capability of testing the
consistency of Tt and It (i.e., whether the corresponding receiver in epoch t would produce key It
on input message Tt).

The security game of Alwen et al. ACD is parametrized by ∆CKA, which stands for the number
of epochs that need to pass after t∗ until the states do not contain secret information pertaining to
the challenge. Once a party reaches epoch t∗+∆CKA, its state may be revealed to the attacker (via
the corresponding corruption oracle). We avoid this and define two levels of security, the former
weaker than the latter. At the bottom of Figure 6, the conditions allow-corrP and allow-bad-randP
for the weaker version are presented to the left of those of the stronger version. We define two
levels of security in order to capture a stronger, more fine-grained security guarantee for CKA
which will be useful in providing stronger security guarantees for the DR and TR as a whole when
one considers the composition of all its building blocks, CKA being one of them. In the former, bad
randomness is not allowed in the epochs t∗ and t∗−1, and corruptions are not allowed in the epoch
t∗ after invoking CKA-S (for the sender of epoch t∗) and before invoking CKA-R (for the receiver of
epoch t∗). In the latter, bad randomness is not allowed in the epochs t∗ and t∗− 1, and corruption
of the receiver of epoch t∗ is not allowed before invoking CKA-R (for epoch t∗). There is no other
difference between the two notions.

The game ends (not made explicit) once both states are revealed after the challenge phase.
The attacker wins the game if it eventually outputs the correct secret key It∗ corresponding to the
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Security Games for CKA

init (t∗)

k
$← K

γP1

0 ← CKA-Init-P1(k)

γP2

0 ← CKA-Init-P2(k)
tP1

, tP2
← 0

Recv-State[∗]← ⊥

corr-P1

req allow-corrP1

return γP1

tP1

send-P1

tP1
++

(γP1

tP1
, T, I)

$← CKA-S(γP1

tP1
)

Recv-State[tP1
+ 1]← γP1

tP1

return (T, I)

send-P1’ (r)
tP1

++
req allow-bad-randP1

(γP1

tP1
, T, I)←

CKA-S(γP1

tP1−1; r)

Recv-State[tP1
+ 1]← γP1

tP1

return (T, I)

receive-P1

tP1
++

(γP1

tP1
, ∗)← CKA-R(γP1

tP1−1, T)

chall-P1

tP1
++

req tP1
= t∗

(γP1

tP1
, T, I)

$← CKA-S(γP1

tP1−1)

return T

test (t, T, I)
req Recv-State[t] 6= ⊥
if (∗, I)← CKA-R(Recv-State[t], T)

return 1
else

return 0

allow-corrP1
, allow-bad-randP1

:⇐⇒
{

tP1
6= t∗ t∗ is odd

tP1
6= t∗ − 1 t∗ is even

allow-corrP2
, allow-bad-randP2

:⇐⇒
{

tP2
6= t∗ − 1 t∗ is odd

tP2
6= t∗ t∗ is even

allow-corrP1
:⇐⇒ tP1

6= t∗ − 1 ∨ t∗ is odd

allow-bad-randP1
:⇐⇒ tP1

6= t∗ ∨ tP1
6= t∗ − 1

allow-corrP2
:⇐⇒ tP2

6= t∗ − 1 ∨ t∗ is even

allow-bad-randP2
:⇐⇒ tP2

6= t∗ ∨ tP2
6= t∗ − 1

Figure 6: Oracles corresponding to party P1 of the CKA security game for a scheme CKA =
(CKA-Init-P1,CKA-Init-P2,CKA-S,CKA-R); the oracles for P2 are defined analogously. Conditions
for the weaker security game, i.e., ε-security, are presented to the left of those for the stronger
game, i.e., (ε,+)-security.

challenge message Tt∗ . The advantage of an attacker A against a CKA scheme CKA is denoted
by AdvCKA(A) and AdvCKA

+

(A) for the weaker and stronger security guarantees, respectively. The
attacker is parameterized by its running time t.

Definition 7. A CKA scheme CKA is (t, ε)-secure if for all t-attackers A,

AdvCKA(A) ≤ ε.

Definition 8. A CKA scheme CKA is (t, ε,+)-secure if for all t-attackers A,

AdvCKA
+

(A) ≤ ε.

Definition 9. A CKA scheme CKA is simply called ε-secure (resp. (ε,+)-secure) if for every

t ∈ poly(κ), AdvCKA(A) ≤ ε (resp. AdvCKA
+

(A)) ≤ ε) and ε ∈ negl(κ), where κ is the security
parameter.
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Observe that since the TR uses a CKA with the latter, stronger security, the attack described
in Section 1.4 is thwarted. This is because even if the epoch t∗ sender is corrupted after invoking
CKA-S, It∗ should remain hidden.

Remark 1. Many natural CKA schemes satisfy an additional property that given a CKA message
T and key I for a given round, it is possible to deterministically compute the corresponding state of
the receiving party after her execution of CKA-R in that round. We model this explicitly by requiring
a deterministic algorithm CKA-Der-R that takes a message T and key I and produces the correct
state γ′ ← CKA-Der-R(T, I). All CKA schemes in this work are required to be natural (including
the public-ratchet update mechanism of the DR).

4.3.2 Differences from ACD

Fine-grained security guarantees. Recall the “CKA from DDH” scheme from ACD (which
is the public ratchet used in the DR), CKA = (CKA-Init-P1,CKA-Init-P2,CKA-S,CKA-R), that is
instantiated in a cyclic group G = 〈g〉 as follows:

• The initial shared state k = (h, x0) consists of a (random) group element h = gx0 and its
discrete logarithm x0. The initialization for P1 outputs h ← CKA-Init-P1(k) and that for P2

outputs x0 ← CKA-Init-P2(k).

• The send algorithm CKA-S takes as input the current state γ = h and proceeds as follows: It

1. chooses a random exponent x;

2. computes the corresponding key I ← hx;

3. sets the CKA message to T ← gx;

4. sets the new state to γ ← x; and

5. returns (γ, T, I).

• The receive algorithm CKA-R takes as input the current state γ = x as well as a message
T = h and proceeds as follows: It

1. computes the key I = hx;

2. sets the new state to γ ← h; and

3. returns (γ, I).

Now, let x0 be the random exponent that is part of the initial shared state, and for i > 0, let
xi be the random exponent picked by CKA-S (which was run by P1 for odd i, and P2 for even i) in
round i. Then, we have the following:

• The key for round i is Ii = gxi−1xi .

• The message for round i is Ti = gxi .

• If i is odd, and P1 has yet to invoke CKA-S, γP1 = gxi−1 and γP2 = xi−1.

• If i is odd, and P1 has invoked CKA-S, but P2 has yet to invoke CKA-R, γP1 = xi and
γP2 = xi−1.
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• If i is odd, and P1 has invoked CKA-S, and P2 has invoked CKA-R, γP1 = xi and γP2 = gxi .

• If i is even, and P2 has yet to invoke CKA-S, γP1 = xi−1 and γP2 = gxi−1 .

• If i is even, and P2 has invoked CKA-S, but P1 has yet to invoke CKA-R, γP1 = xi−1 and
γP2 = xi.

• If i is even, and P2 has invoked CKA-S, and P1 has invoked CKA-R, γP1 = gxi and γP2 = xi.

Based on the above, we make the following observations:

• If i is odd and P1 is corrupted after invoking CKA-S, the adversary learns γP1 = xi and since
it also has access to gxj for all j ≥ 1, the adversary learns Ii and Ii+1.

• If i is even and P1 is corrupted after invoking CKA-R, and P2 used good randomness in
picking xi while invoking CKA-S in round i, the adversary learns γP1 = gxi , but since it only
(assuming no other corruptions) has access to gxj for all j ≥ 1, the adversary does not learn
Ii (if P1 also used good randomness in picking xi−1 while invoking CKA-S in round i− 1) or
Ii+1 (if P1 also uses good randomness in picking xi+1 while invoking CKA-S in round i+ 1).

Thus, the CKA keys for two rounds are compromised only in the case where the party that has
last sent a message is corrupted, and not if the party has last received a message. This allows us
to consider a more fine-grained version of the CKA security game than the one described in ACD.

Non-malleability. Consider the following scenario in the DR or TR: It is P1’s turn to start a
new sending epoch, but she has not yet. Then her state is leaked, and afterwards, she sends the
first message m1 of the epoch with good randomness. Then, if P2 started her last epoch with
good randomness, and there are no other leakages, m1 is required to remain private by FDR and
FTR, respectively. However, all authenticity for m1 is lost—the adversary leaked on P1 beforehand
and thus could have generated the message herself. Therefore, we replace the indistinguishability
definition of ACD with our recoverability definition and require non-malleability of CKA messages
via the test oracle—the adversary should not be able to maul them in order to learn about the
actual session messages sent in the DR or TR. Note that this modification makes our CKA definition
incomparable in strength to that of ACD, but allows us to prove stronger security for the DR

protocol. See the full security proof of Theorem 4 for the DR and TR, as well as Appendix A.2.4,
for more details.

4.3.3 Instantiating CKA

Note that the above scheme is natural, i.e., it supports a CKA-Der-R algorithm, namely, CKA-Der-R(T, I) =
T. Now, we will show that the above scheme is secure. Before we do so, we introduce the
Square-Diffie-Hellman (SqDH) assumption. The SqDH assumption is given random ga, it is hard
to compute ga

2

. We will use the SqDH assumption in the presence of a ddh(ga, ·, ·) oracle as
an intermediary to prove security of the above scheme from StDH. For the theorem below, let
a group G be (t, ε)-SqDH-secure (resp. (t, ε)-StDH-secure) if every attacker with running time
at most t has advantage at most ε at solving SqDH (resp. StDH) challenges. It has been
shown [MW96, Kil01, BFGJ17, BDZ03, Gal12] that if a group G is (t, ε)-StDH-secure then it is
(t′/2,

√
ε)-SqDH-secure in the presence of a ddh(ga, ·, ·) oracle, for t′ ≈ t.
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Theorem 2. Assume group G is (t, ε)-StDH-secure. Then, the above CKA scheme CKA is (t′/2,
√
ε)-

secure for t ≈ t′.

Proof. Assume w.l.o.g. that t∗ is odd, i.e., P1 sends the challenge; the case where t∗ is even is
handled analogously. Let ga be a SqDH challenge. The reduction simulates the CKA protocol in
the straight-forward way but embeds the challenge into the CKA as follows:

• in epoch t∗ − 1, it uses Tt∗−1 = ga and It∗−1 = gxa, where x is the exponent used to simulate
Tt∗−2 = gx.

• in epoch t∗, it samples a random exponent r and uses Tt∗ = (ga)r and It∗ = ga
2r which is the

key the adversary is to recover; and

• in epoch t∗ + 1, for exponent x′ (possibly generated using adversarial randomness), it uses
Tt∗+1 = gx

′
and It∗+1 = garx

′
.

It is easy to verify that this correctly simulates the CKA experiment. Also note that the test oracle
can be perfectly simulated with the help of a DDH oracle: if test(t∗, T, I) is queried, the reduction
simply queries the DDH oracle on (ga, T, I); if test(t∗ + 1, T, I) is queried, the reduction simply
queries the DDH oracle on (ga, T r, I); all other test() queries can be directly simulated. Finally,
if the CKA adversary outputs correct guess I∗t = ga

2r, the reduction correctly returns the SqDH
challenge (I∗t )

1/r = ga
2

.

4.3.4 Instantiating CKA+

A CKA scheme CKA+ = (CKA-Init-P1,CKA-Init-P2,CKA-S,CKA-R) can be obtained assuming ran-
dom oracles or circular-secure ElGamal in a cyclic group G = 〈g〉 (with exponent space X ) using a
function H : I → X as follows:

• The initial shared state k = (h, x0) consists of a (random) group element h = gx0 and its
discrete logarithm x0. The initialization for P1 outputs h ← CKA-Init-P1(k) and that for P2

outputs x0 ← CKA-Init-P2(k).

• The send algorithm CKA-S takes as input the current state γ = h and proceeds as follows: It

1. chooses a random exponent x;

2. computes the corresponding key I ← hx;

3. sets the CKA message to T ← gx;

4. sets the new state to γ ← x · H(I); and
5. returns (γ, T, I).

• The receive algorithm CKA-R takes as input the current state γ = x as well as a message
T = h and proceeds as follows: It

1. computes the key I = hx;

2. sets the new state to γ ← hH(I); and

3. returns (γ, I).
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Note that the above scheme is natural, i.e., it supports a CKA-Der-R algorithm, namely, CKA-Der-R(T, I) =
TH(I). Now we show its security in the theorem below.

Theorem 3. Assume group G is (t, ε)-StDH-secure. Additionally, assume the existence of a ran-
dom oracle H. Then, the above CKA scheme CKA is (t′, ε,+)-secure for t ≈ t′. Furthermore, this
CKA scheme also has dense transcripts.

Proof. Assume w.l.o.g. that t∗ is odd, i.e., P1 sends the challenge; the case where t∗ is even is
handled analogously. Let ga, gb be a StDH challenge. The reduction simulates the CKA protocol
in the straight-forward way but embeds the challenge into the CKA as follows:

• in epoch t∗ − 1, it uses Tt∗−1 = ga and It∗−1 = gxaH(It∗−2), where x is the exponent used to
simulate Tt∗−2 = gx.

• in epoch t∗, it uses Tt∗ = gb and It∗ = gabH(It∗−1) which is the key the adversary is to recover,
as well as sets γP1

t∗ ← y, for random y in X ; and

• in epoch t∗ + 1, for exponent x′ (possibly generated using adversarial randomness), it uses
Tt∗+1 = gx

′
and It∗+1 = gyx

′
.

It is easy to verify that this correctly simulates the CKA experiment since H is a random oracle. In
particular, randomly sampled y properly simulates ar ·H(It∗): If the adversary does not query the
random oracle on It∗ then y is properly distributed. Moreover, when she makes a random oracle
query for any I, the reduction can use the DDH oracle on (ga, gbH(It∗−1), I) so that if indeed I = It∗ ,

the reduction will know, and will then forward to its challenger gab = I
1/H(It∗−1)
t∗ before answering

the CKA+ attacker’s query.
Similarly, the test oracle can be perfectly simulated with the help of the DDH oracle: if

test(t∗, T, I) is queried, the reduction simply queries the DDH oracle on (ga, TH(It∗−1), I); all other
test() queries can be directly simulated.

Remark 2. The above theorem can also be proved without assuming that H is a random oracle, but
by assuming rather that El-Gamal is circularly-secure in G (also in the presence of a ddh(ga, ·, ·)
oracle). Specifically, we assume that for uniformly random and independent exponents a and b, the
distributions (g, ga, gb, b·H(gab)) and (g, ga, gb, y) are indistinguishable, where y is uniformly random
in the exponent space X . Based on this assumption (as opposed to H being a random oracle), we
see that the embedding above still correctly simulates the CKA experiment, and essentially the same
proof works for the security of the CKA scheme.

4.3.5 Even stronger security for CKA+

One can observe that CKA+ is in fact even more secure than the (t, ε,+)-security that we proved
for it. Although formalizing its full security is quite complex and does not have too much of an
impact on our stronger TR protocol (see Section 6.5 for an informal description of the impact that
it does have, based on the below) we here informally describe a scenario in which CKA+ does indeed
achieve stronger security.

Consider the scenario in which element x0 of the initial shared state k = (gx0 , x0) is secure, P2

never has good randomness during the session (of course for x0 to be secure, if P2 generated it, then
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she must have had good randomness at that point, but in the real-world, this may have happened
a long time ago), and P1 has good randomness for sampling her first exponent x1, but then never
again. Moreover, assume that both P1 and P2 are never corrupted. Then every shared secret It
will still be secure: I1 = gx0x1 is secure by StDH since the adversary only has gx1 (and maybe gx0),
but not x0 nor x1. Shared secret I2 = gx1H(I1)·x2 is also secure by StDH if we model H as a random
oracle. First, observe that in order to compute I2, the adversary needs to query the random oracle
on I1 (for otherwise, I2 is information-theoretically hidden). Now, since a reduction given gx0 and
gx1 can give the adversary the same, then when the adversary queries the random oracle on I1,
the reduction can query the DDH oracle on (gx0 , gx1 , I1) and submit I1 = gx0x1 to its challenger.
Further observe that in order to compute any It, the adversary needs to query the random oracle
on I1 (for otherwise, all of I2, . . . , It, where t is of course polynomial, are information-theoretically
hidden). Thus, we can use the same reduction as above for every t.

Furthermore, even if P1 is corrupted after she receives P2’s epoch t∗ − 1 message, for some t∗,
then we can still guarantee security of It∗−1 from StDH, if we model H as a random oracle (of course,
all preceding epochs are secure too, from the above). When leaking γP1

t∗−1, the reduction can simply

sample random r and give gr, in place of gxt∗−1H(It∗−1). If the adversary never queries the random
oracle on H(It∗−1), then of course this is a perfect simulator. Now, as above, in order to compute
It∗−1, the adversary still needs to query the random oracle on I1, so our same reduction will still
go through. Moreover, if in this situation P1 uses good randomness for her epoch t∗ message Tt∗ ,
then It∗ will be secure too. We just showed that for the adversary to query the random oracle
on It∗−1, meaning she has already computed It∗−1, the adversary needs to still query I1, which by
our original reduction, we know it cannot. Given this information, a StDH reduction given gr and
gx

∗
t can simply give γP1

t∗−1 = gr instead of gxt∗−1·H(It∗−1) for the leak on P1 before epoch t∗, then
send Tt∗ = gx

∗
t . Then, when the adversary submits It∗ , the reduction can simply forward it to its

challenger.
Using similar arguments as above, if both parties use bad randomness for all subsequent epochs,

and there are no more corruptions, then also all subsequent shared secrets It (and therefore all of
them) will remain secure. Intuitively, this is because It∗−1 is secure, so γP2

t∗−1 is as well, and P1 used
good randomness in epoch t∗, thus of course γt∗ is secure too, so we can use the above argument
thereafter.

5 Composition

In this section, we show how to compose the building blocks of Section 4 to construct Secure
Messaging protocols DR and TR that UC-realize our two ideal functionalities of Figure 3. This
section again often closely follows the work of [ACD19].

Initial Key Exchange Ideal Functionality. Before constructing the DR and TR we must in-
troduce an ideal functionality for an initial key exchange to be used upon initialization of a session
of one of our protocols. While the actual DR protocol uses the X3DH key exchange [MP16b], the
focus of our work is to analyze the security and functionality of the double ratchet algorithm, and
not X3DH. Therefore, we choose to present the following simple ideal functionality FCKA

KE for key
exchange that may be stronger than what X3DH offers, but nonetheless suffices for our purposes.
The functionality is parameterized by a CKA protocol CKA.
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On input (sid, SETUP) from P where P ∈ {P1,P2}: Send (sid, SETUP,P) to S. When S re-

turns (sid, SETUP) then (i) sample (σroot, k)
$← {0, 1}2λ, (ii) execute γP1 ← CKA-Init-P1(k), γ

P2 ←
CKA-Init-P2(k), (iii) set k

P1 ← (σroot, γ
P1), kP2 ← (σroot, γ

P2), and (iv) send (sid, EXCHANGE, kP1) to
P and (sid, EXCHANGE, kP2) to P̄.

5.1 Constructions

We now provide constructions of the DR and our modified TR in the FCKA
KE -hybrid model. As in

the analysis of Alwen et al., our presentation of the DR differs from the actual DR protocol in a few
minor aspects (see [ACD19, §5.2]), but the two are logically equivalent (and almost precisely the
same otherwise). Indeed, the claim that the true DR protocol UC-realizes FDR in the FCKA

KE -hybrid
model follows from Theorem 4. Importantly, we consider the version of the true DR protocol in
which to increase security, parties defer new CKA secret key generation for their next sending epoch
until they actually start that epoch, as opposed to when they receive the first message of the prior
epoch [MP16a, §6.5]. Recall: we show in Appendix A.2.3 that while [ACD19] do the same, in their
model it does not actually provide the DR any extra security.

As explained in the introduction, the main idea of the two schemes is that the two parties P1

and P2 keep track of the same root KDF Chain key σroot and refresh it using the secrets of a CKA
protocol that is run “in parallel”. The corresponding outputs of the root KDF Chain are used to
generate initialization keys for FS-AEAD instances. The only difference between the DR and TR

is that the former uses a (t, ε)-secure CKA protocol while the latter uses a (t, ε,+)-secure CKA
protocol.

State. In the DR and TR, party P1 (resp. P2) keeps an internal state sP1
(resp. sP2

), which is
initialized by Init-P1 (resp. Init-P2) and used as well as updated by Send and Rcv. The state sP1

of
SM consists of the following values:

• The current key σroot of the root KDF chain,

• States v[0], v[1], v[2], . . . of the various FS-AEAD instances,

• The state γ of the corresponding CKA scheme,

• The current CKA message Tcur,

• The number of messages sent in the last completed sending epoch of P1 ℓprv, and

• An epoch counter tP1
.

We may refer to some such components of the state of P1 throughout (e.g., in the proof of Theorem 4
in Section 6) using “dot-notation”. For example, to refer to the epoch counter of party P1, we will
write “sP1

.tP1
”. Recall (cf. Section 4.2) that once the maximum number of messages has been

received for an epoch according to FS-Max, a session “erases” itself from the memory, and similarly
when FS-Stop is called on a particular FS-AEAD session, it is erased. For simplicity, removing
the corresponding v[t] from memory is not made explicit in either case. The state sP2

is defined
analogously.
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DR and TR

Init-P1 (k
P1)

(σroot, γ)← kP1

v[·]← ⊥
Tcur ← ⊥
ℓprv ← 0

tP1
← 0

Send-P1 (m)
if tP1

is even
tP1

++

(γ, Tcur, I)
$← CKA-S(γ)

(σroot, k)← H(σroot, I)
v[tP1

]← FS-Init-S(k)

h← (tP1
, Tcur, ℓprv)

(v[tP1
], e)← FS-Send(v[tP1

], h,m)

return (h, e)

Rcv-P1 (c)
(h, e)← c
(t, T, ℓ)← h
req t even and t ≤ tP1

+ 1

if t = tP1
+ 1

ℓprv ← FS-Stop(v[tP1
])

tP1
++

FS-Max(v[t− 2], ℓ)

(γ, I)← CKA-R(γ, T)
(σroot, k)← H(σroot, I)

v[t]← FS-Init-R(k)

(v[t], i,m)← FS-Rcv(v[t], h, e)

if m = ⊥
error

return (t, i,m)

Figure 7: Secure-messaging schemes DR and TR in the FCKA
KE -hybrid model based on (i) an FS-

AEAD scheme FS-AEAD, (ii) (t, ε)- and (t, ε,+)-secure CKA schemes, respectively, and (iii) a KDF
Chain using HKDF H. We assume w.l.o.g. that P1 initializes the session. The initialization keys
kP1 and kP2 are provided by a session of FCKA

KE , which is also initialized by P1. The figure only
shows the algorithms for P1; P2’s algorithms are analogous, with “even” replaced by “odd”.

The algorithms. The algorithms of schemes DR and TR are depicted in Figure 7 and described in
more detail below. For ease of description, the algorithms Send and Rcv are presented as Send-P1

and Rcv-P1, which handle the case where the algorithm is invoked by P1; the case where the
algorithm is invoked by P2 works analogously. Moreover, to improve readability, the state sP1

is
not made explicit in the description: it consists of the variables set by the initialization algorithm.
We also assume w.l.o.g. that P1 initializes the session.

• Initialization: In the initialization procedure Init-P1, P1 initializes a session of FCKA
KE to

obtain initialization key kP1 = (σroot, γ
P1). It consists of the initial root KDF Chain key σroot

and the initial CKA state of P1, γ
P1 . Furthermore, Init-P1 also sets the initial epoch tP1

← 0,
ℓprv ← 0, and Tcur to a default value.

As pointed out above, in the DR and TR, P1 and P2 run a CKA protocol in parallel to sending
their messages; the DR uses a (t, ε)-secure CKA protocol while the TR uses a (t, ε,+)-secure CKA
protocol. To that end, P1’s first message includes the first message T1 output by CKA-S. All
subsequent messages sent by P1 include T1 until some message received from P2 includes T2. At that
point P1 would run CKA-S again and include T3 with all her messages, and so on (cf. Section 4.3).

Upon either sending or receiving Ti for odd or even i, respectively, the CKA protocol also
produces a random value Ii, which P1 absorbs into the root KDF Chain. The resulting output k is
used as key for a new FS-AEAD epoch.

• Sending messages: Procedure Send-P1 allows P1 to send a message to P2. As a first step,
Send-P1 determines whether it is P1’s turn to send the next CKA message, which is the case if
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tP1
is even. Whenever it is P1’s turn, Send-P1 runs CKA-S to produce her next CKA message

T and key I, which is absorbed into the root KDF Chain. The resulting value k is used as a
the key for a new FS-AEAD epoch, in which P1 acts as sender.

Irrespective of whether it was necessary to generate a new CKA message and generate a
new FS-AEAD epoch, Send-P1 creates a header h = (tP1

, Tcur, ℓprv) (see below for how ℓprv
is computed in Rcv), and uses the current epoch v[tP1

] to compute a ciphertext for (h,m)
(where h is treated as associated data).

• Receiving messages: When a ciphertext c = (h, e, ℓ) with header h = (t, T, ℓ) is processed
by Rcv-P1, there are two possibilities:

– t ≤ tP1
(and t even): In this case, ciphertext c pertains to an existing FS-AEAD epoch,

in which case FS-Rcv is simply called on v[t] to process e. If the maximum number of
messages has been received for session v[t], the session is removed from memory.

– t = tP1
+ 1 and tP1

odd: Here, the receiver algorithm advances tP1
by incrementing it

and processes T with CKA-R. This produces a key I, which is absorbed into the root
KDF chain to obtain a key k with which to initialize a new epoch v[tP1

] as receiver.
Then, e is processed by FS-Rcv on v[tP1

]. Note that Rcv also uses FS-Max to store ℓ as
the maximum number of messages in the previous receive epoch. It also terminates its
most recent sending epoch by calling FS-Stop and stores the number of messages in the
old epoch in ℓprv, which will be sent along inside the header for every message of the
next sending epoch.

Irrespective of whether a new CKA message was received and a new epoch created, if e is
rejected by FS-Rcv, the algorithm raises an exception (error), which causes the entire state
sP1

to be rolled back to what it was before Rcv-P1 was called.

5.2 Vulnerability of the DR with Respect to FTR

Recall that the only difference between the DR and TR is that the former uses a (t, ε)-secure CKA
protocol while the latter uses a (t, ε,+)-secure CKA protocol. As we will show in the next section,
the DR UC-realizes functionality FDR, whereas TR UC-realizes stronger functionality FTR.

Here, we will explicitly show the vulnerability of the DR with CKA protocol CKA which prevents
it from realizing the stronger FTR functionality. Briefly recall from Section 4.3.2 how CKA protocol
CKA works: When P1 sends a new CKA message, she generates random exponent x then sends
message T1 ← gx and computes shared secret I1 ← T x

0 , where T0 is the message P2 sent in the
previous epoch. Then, when P2 sends the next message, she generates random exponent y and
sends message T2 ← gy so that the shared secret for that round is I2 ← T y

1 = gxy. Thus, P1

needs to save exponent x after sending T1 so that when she receives T2, she can compute I2 = T x
2 .

Therefore, if she is corrupted after she sends T1, but before she receives T2, then the adversary
obtains x, rendering I1 insecure since the adversary itself can compute I1 ← T x

0 .
The insecurity of I1 in the above scenario is at the root of the vulnerability in the DR. If P1

starts a new sending epoch, then she computes CKA message T1 and secret I1 as above, then FS-
AEAD initialization key k for the epoch as (·, k)← H(σroot, I1), using the current root KDF chain
key σroot that she has in her state. She may then proceed to use the FS-AEAD initialized with
key k to encrypt and send several messages m1, . . . ,mℓ. As highlighted above, before P1 receives
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a message for P2’s next sending epoch, she needs to keep exponent x that she used to generate
CKA message T1 in her state, so that she can compute the CKA shared secret I2 that P2 uses to
compute the FS-AEAD initialization key for her next epoch. Therefore, consider the following two
state leakages of P1: (i) before she starts her new epoch and (ii) before she receives a new message
for P2’s next epoch. The first leakage will indeed give the adversary σroot and the second leakage
will give the adversary x so that it can first compute I1 as above, then FS-AEAD initialization key
for that epoch as (·, k) ← H(σroot, I1), and finally decrypt all of the messages P1 has sent in her
epoch.

Notice that FDR will indeed provide the ideal adversary with these vulnerable messages upon the
second leakage (the dashed part of Figure 3), while FTR will not. Thus, while the DR can UC-realize
FDR, it cannot UC-realize FTR. TR’s use of CKA+ allows it to UC-realize stronger functionality
FTR, because even with both leakages on P1 described above, the shared secret I1 remains secure,
as long as good randomness is used in the generation of T0 and T1 (c.f. Section 4.3.4).

We emphasize that while our improved TR protocol does UC-realize FTR (without any addi-
tional communication and only small additional computation to that of the DR), the DR itself
should already, as understood by the Double Ratchet whitepaper [MP16a]: As a result of PCS, the
messages in the new epoch which P1 starts should be secure, despite only the leakage before she
starts the epoch. Moreover, as a result of FS, the messages which P1 already sent in her new epoch
should remain secure despite only the second leakage of P1. In reality, we however show that PCS
and FS of the DR with respect to these two leakages no longer hold when both of them occur.

6 UC Security of the DR and TR

In this section, we show that the DR and TR UC-realize FDR and FTR in the FCKA
KE - and FCKA+

KE -
hybrid models (introduced in Section 5), respectively.

St∗
Notation: The simulator algorithm interacts with the functionality FDR and the hybrid algorithm Ht∗ . The

algorithm initializes lists of in-transit ciphertexts P1.T, and vulnerable ciphertexts P1.V sent by P1 to P2 to

φ. Analogously, lists P2.T and P2.V are also initialized to φ. The algorithm also initializes leakage flags

of both P1 and P2 for their corresponding (i) public ratchet secrets: P1.PLEK,P2.PLEK, (ii) current send-
ing epoch symmetric secrets: P1.CUR SLEK,P2.CUR SLEK, and (iii) previous sending epoch symmetric secrets:
P1.PREV SLEK,P2.PREV SLEK, all to 0. Further, it initializes bad-randomness flags P1.BAD,P2.BAD to 0. Finally, it
initializes the turn flag TURN as ⊥. St∗ also keeps track of St∗ .kt; the FS-AEAD initialization key for each epoch
t once it is generated by the corresponding sender of that epoch.

• On input (sid, SETUP,P) from Ht∗ where P ∈ {P1,P2}: Sample initialization keys kP, kP̄ according to

FCKA
KE and once A approves the interaction (i) run sP ← Init-P1(k

P), sP̄ ← Init-P2(k
P̄), (ii) set TURN ← P,

and (iii) return (sP, sP̄).

• On input (sid,mid, IN TRANSIT,P, |m|,m′) from Ht∗ where P ∈ {P1,P2}:

1. Set r ← ⊥.

2. If New(P, TURN,P.T)a then:

(a) Set (i) β ← P̄.CUR SLEK, (ii) P.PLEK ← P.BAD, and (iii) P.CUR SLEK ← P̄.CUR SLEK ∧ (P.PLEK ∨
P̄.PLEK).

(b) If P.BAD = 0 then sample random r
$
← R; otherwise ask A for random r′ and set r ← r′.

3. If m′ = ⊥ then set m← 0|m|; otherwise, set m← m′.
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4. Run (sP, c)← Send(sP,m; r), add (sid,mid, sP.t, sP.v[sP.t].i, IN TRANSIT, c, TURN) to P.T,

and if β ∨ (P.V 6= ∅) then add (sid,mid, sP.v[sP.t].i, c) to P.V . Finally return (sP, c).

• On input (sid, DELIVER,P, c) from Ht∗ :

1. Set tprev ← sP̄.t and run (sP̄, t, i,m)← Rcv(sP̄, c). If m = ⊥ then return ⊥.

2. If t = tprev + 1 then set (i) TURN = P̄, (ii) P.T ← Flip(P,P.T),b (iii) P.PREV SLEK ← 0, (iv)

P̄.PREV SLEK← P̄.CUR SLEK, (v) P̄.CUR SLEK← 0, (vi) P̄.PLEK← 0, and (vii) P̄.V← ∅ .

3. Find (sid,mid, t, i, IN TRANSIT, c, γ) in P.T, remove it from P.T, and return (sP, sid,mid, DELIVER,P,m,
0,⊥,⊥). If no such entry is found:

(a) If t = tprev + 1 then:

i. If ∄(sid, ·, t, ·, IN TRANSIT, ·,P) ∈ P.T or for (sid, ·, t, ·, IN TRANSIT, c′,P) ∈ P.T,(h′, e′)← c′,
(t′, T ′, ℓ′)← h′, T ′ 6= T, return (sP̄, sid, (t, i), INJECT,P,m, 1,⊥,⊥).

ii. Otherwise, return (sP̄, sid, (t, i), INJECT,P,m, 0,P, ℓ′), where ℓ′ is as above.

(b) Otherwise return (sP̄, sid, (t, i), INJECT,P,m, 0,⊥,⊥).

• On input (sid, LEAK,P, α) from Ht∗ where P ∈ {P1,P2}:

1. Forward the input to FDR and receive back P.V′ and P̄.T′.

2. For receiving epochs t ∈ [1, t∗] of P, run FS-Expl-In-Trans-Cts(sP.v[t], trans).
c

3. If α = 1 then run FS-Expl-Vul-Cts(St∗ .ksP.t, vul).
d

4. If ¬New(P, TURN,P.T) then set P.CUR SLEK ← 1 and P.PLEK ← 1. If ¬New(P̄, TURN, P̄.T) then set
P̄.CUR SLEK← 1. If TURN = P̄ then set P̄.PREV SLEK← 1.

• On input (sid, BAD RANDOMNESS,P, ρ) from Ht∗ where ρ ∈ {0, 1} and P ∈ {P1,P2}: Set P.BAD ← ρ and
forward the input to FDR.

aNew(P, TURN,P.T) outputs 1 if we have TURN = P and for all (sid,mid, t, i, IN TRANSIT, c, γ) ∈ P.T we have
that γ 6= P; otherwise output 0.

bFlip(P,P.T) for each (sid,mid, t′, i′, IN TRANSIT, c,P) ∈ P.T replaces it with (sid,mid, t′, i′, IN TRANSIT,m,⊥).
ctrans = {(i, h,m, e) : (sid,mid, t, i, IN TRANSIT, (h, e), γ) ∈ P̄.T and (sid,mid, IN TRANSIT,m, β, γ) ∈ P̄.T′}. If

sP.v[t] = ⊥ but trans 6= ∅ then replace sP.v[t] with FS-Init-R(St∗ .kt).
dvul = {(i, h,m, e) : (sid,mid, i, (h, e)) ∈ P.V and (sid,mid,m) ∈ P.V′}.

Figure 8: Simulator algorithm St∗ .

Theorem 4. Assume that

• CKA is a εCKA-secure natural CKA scheme,

• CKA+ is a (εCKA,+)-secure natural CKA scheme,

• FS-AEAD is a εFS-AEAD-secure FS-AEAD scheme, and

• H is modelled as a (programmable) random oracle.

Then protocols DR and TR UC-realize functionalities FDR and FTR in the FCKA
KE -hybrid and FCKA+

KE -
hybrid models, respectively, with security loss ε = T · (εCKA + εFS-AEAD), where T is the number of
epochs the attacker initiates.

Recall that in Section 4.1.1 we discuss why it seems necessary to model H as a programmable
random oracle. Also recall that to prove that the actual FS-AEAD that the DR uses in practice is

41



secure according to our definition, we require the ideal cipher model. See Section 2.2 for a discussion
on this.

In the following, we may simply refer to the ideal functionality as FDR, but such statements
will hold for FTR too.

6.1 Hybrid Algorithms Ht∗ and the Simulator S
To prove the theorem, we proceed in a series of hybrids H0, H1, . . . , HT , where T is the number of
epochs which the adversary initiates. Hybrid H0 is the real world protocol DR or TR which interacts
with the real world adversary A. Hybrid Ht∗ runs stateful simulator algorithm St∗ for (i) setup, (ii)
generation of messages from epochs 1 through t∗ using input from FDR, (iii) delivery of messages
from epochs 1 through t∗, and (iv) for leakages of parties, the explanation of in-transit messages for

epochs 1 through t∗ and vulnerable messages if the party is not in an epoch after t∗ . For gener-
ation of messages from epochs after t∗, hybrid Ht∗ uses the corresponding information written to
the input tapes of P1 and P2 in the real world and executes as in the real world. Also for delivery
of messages for epochs later than t∗ and leakages of states at any point, hybrid Ht∗ behaves as in
the real world. Formally, hybrid Ht∗ (for t∗ > 0) is defined as follows:

• On input (sid, SETUP,P) from FDR where P ∈ {P1,P2}: Forward the input to St∗ and once
(sP, sP̄) is received back, send (sid, SETUP) back to FDR.

• On input (sid,mid, IN TRANSIT,P, |m|,m′) from FDR where P ∈ {P1,P2}: Forward the
input to St∗ , receive back (sP, c), and send c to A.

• On input (sid,mid, SEND,m) from Z to P ∈ {P1,P2}: Run (sP, c) ← Send(sP,m) (asking
A for randomness if necessary) and send c to A.

• On input (sid, DELIVER,P, c) from A:

1. Parse (h, e)← c, (t, T, ℓ)← h.

2. If t ≤ t∗ then forward the input to St∗ and:

(a) If St∗ returns ⊥ then skip.

(b) Otherwise, parse the return as (s′
P̄
, sid,mid, INSTRUCTION,P,m, δ, γ, ℓ′).

(c) If sP̄.t ≤ t∗, then set sP̄ ← s′
P̄
.

(d) If sP̄.t > t∗ then set sP̄.v[t]← s′
P̄
.v[t].

(e) If INSTRUCTION = DELIVER then forward (sid,mid, DELIVER,P,m) to FDR. Other-
wise, forward (sid,mid, INJECT,P,m, δ, γ) to FDR and if δ = 0 then when FDR passes
activation back to Ht∗ , send (sid,mid, DELIVER,P,m) to FDR. Also, if ℓ′ 6= ⊥ then
while ℓ′ < ℓ: ℓ′++ and send (sid, (t− 2, ℓ′), INJECT,P,⊥, 0,⊥) to FDR. If δ = 1 then
Ht∗ will use sP̄ to communicate directly with A on behalf of P̄: It will generate all
messages from P̄ directly using the normal Send algorithm and receive all messages
for P̄ directly using the normal Rcv algorithm (starting with this one).

3. Otherwise, run (sP̄, t, i,m) ← Rcv(sP̄, c) and write (sid, (t, i),m) to the output tape of
P̄ .

• On input (sid, LEAK,P) from A where P ∈ {P1,P2}:
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1. If sP.t ≤ t∗ then set α← 1; otherwise, set α← 0.

2. Forward (sid, LEAK,P, α) to St∗ and send sP to A.

• On input (sid, BAD RANDOMNESS,P, ρ) from A where ρ ∈ {0, 1} and P ∈ {P1,P2}: If sP.t ≤ t∗

then forward the input to St∗ .

Observe that HT is the simulator S for the ideal world (it simply uses ST for everything).

Lemma 1. If we make the same assumptions as in Theorem 4, then for t∗ ∈ [T ], hybrids Ht∗−1

and Ht∗ are indistinguishable with security loss ε = εFS-AEAD + εCKA.

To show Ht∗−1 and Ht∗ are indistinguishable, we first make the simplifying assumptions that
(i) P1 initializes the session and (ii) P1 sends in epoch t∗. The other cases are handled analogously.
Now, for those adversaries A that leak on parties P1 and P2 and/or give them bad randomness
such that after P1 sends the first message in epoch t∗, it will be that P1.CUR SLEK = 1: it is clear
that from the correctness of CKA and FS-AEAD that Ht∗−1 ≡ Ht∗ , so we are done. We omit an
explicit reduction to the security game of FS-AEAD (which captures its correctness guarantees) for
brevity. Otherwise, we divide the types of adversaries such that the above does not hold into the
three types of the following subsections.

6.2 Type 1 Adversaries

Type 1 adversaries A are those adversaries such that:

1. Before P2 has accepted any epoch t∗ message, A successfully forges an epoch t∗ message with
CKA message T in the header such that either

(a) P1 has not sent any epoch t∗ ciphertext yet, or

(b) For the CKA message Tt∗ that is contained in the ciphertexts P1 has sent in epoch t∗,
Tt∗ 6= T;

and A has not queried the random oracle on (σt∗−1
root , I), where I is the corresponding CKA

secret that P2 would output upon receiving message with T; or

2. Before P1 has accepted any epoch t∗ + 1 message, A successfully forges

an epoch t∗ + 1 message with CKA message T in the header such that either

(a) P2 has not sent any epoch t∗ + 1 ciphertext yet, or

(b) For the CKA message Tt∗+1 that is contained in the ciphertexts P2 has sent in epoch
t∗ + 1, Tt∗+1 6= T;

and A has not queried the random oracle on (σt∗
root, I), where I is the corresponding CKA

secret that P1 would output upon receiving message with T.

Lemma 2. If we make the same assumptions as in Theorem 4, then Type 1 adversaries only succeed
with probability εFS-AEAD.
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Proof. We provide a reduction to the security of the underlying FS-AEAD scheme FS-AEAD to
show that successful Type 1 adversaries only exist with negligible probability. Specifically, assuming
that there is some successful Type 1 adversary A, we construct reduction algorithm BFS-AEAD,1 that
has non-negligible probability against FS-AEAD in the FS-AEAD security game, thus reaching a
contradiction. BFS-AEAD,1 simulates hybrid Ht∗−1 or Ht∗ for A, using the FS-AEAD security game

oracle init to initialize the FS-AEAD state of P2 or P1 for injection in epoch t∗ or t∗ + 1 , and
oracle inject-P2 for the corresponding injections.

More formally, BFS-AEAD,1 first samples random b
$← {0, 1} and inj-guess

$← {P1,P2} corresponding
to the party to whom A will successfully inject a message. It then proceeds as in Ht∗−1 with the
following exceptions:

• On input (sid,mid, SEND,m) from Z to P ∈ {P1,P2}: If (i) sP.t = t∗ before (sP1
.v[t∗], e)←

FS-Send(sP.v[t], h,m) would normally be executed within Send, (ii) P1.CUR SLEK = 0, and
(iii) b = 1; then replace m with m← 0|m|. Otherwise, proceed as in Ht∗−1.

• On input (DELIVER,P, c) from A:

1. Parse (h, e)← c, (t, T, ℓ)← h.

2. If t = t∗ ∧ T 6= Tt∗ ∧inj-guess = P2 then query inject-P2(h, e). If there are no more

queries of this form then send random b′
$← {0, 1} to the challenger.

3. If t = t∗ + 1 ∧ T 6= Tt∗+1 ∧ inj-guess = P1 then query init followed by inject-P2(h, e).

4. Otherwise proceed as in Ht∗−1+b.

• On input (sid, LEAK,P) from A: If b = 1 then proceed as in Ht∗ ; otherwise proceed as in
Ht∗−1

Now, before epoch t∗, Ht∗−1 and Ht∗ do not diverge and thus we simulate them perfectly. In
epoch t∗, before any additional leakage, if b = 0 we encrypt the real message m and thus simulate
Ht∗−1 perfectly; if b = 1 we encrypt the all 0 message and thus simulate Ht∗ perfectly. Since A does
not query the random oracle on (σt∗−1

root , I), for I corresponding to T, the corresponding FS-AEAD
intialization key k used in both Ht∗−1 and Ht∗ is uniformly random and unknown to A and thus the
key sampled by the FS-AEAD challenger is distributed correctly. So, when A eventually submits
a successful forgery, BFS-AEAD,1 will pass it to the challenger and the challenger will declare that
BFS-AEAD,1 has won the game, a contradiction.

If A waits until epoch t∗ + 1 to submit a successful forgery then to deliver any well-formed

epoch t∗ message (either honest or an injection for which A has queried the random oracle on
the corresponding (σ, I)), BFS-AEAD,1 acts as in Ht∗−1 or Ht∗ according to the sampled bit b. Fi-
nally, it will act as above for epoch t∗ + 1 attempted forgeries and pass the successful forgery to
the challenger, a contradiction.

6.3 Type 2 Adversaries

Type 2 adversaries A are those that are not Type 1 and query the random oracle on (σt∗−1
root , It∗)

without beforehand:
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1. Any leak on P2 after P1 sends the first message in epoch t∗, but before P2 receives any message
that causes it to advance to epoch t∗; or

2. Any leak on P1 after P1 sends the first message in epoch t∗, but before P1 receives any

message that causes it to advance to epoch t∗ + 1.

Lemma 3. If we make the same assumptions as in Theorem 4, then Type 2 adversaries only succeed
with probability εCKA.

Proof. We provide a reduction to the security of the underlying CKA scheme CKA to show that suc-
cessful Type 2 adversaries only exist with negligible probability. Specifically, assuming that there is
some successful Type 2 adversary A, we construct reduction algorithm BCKA that has non-negligible
probability against CKA in the corresponding CKA security game, thus reaching a contradiction.
BCKA simulates hybrid Ht∗−1 or Ht∗ for A, using the CKA security game oracle init to initialize
the CKA states of P1 and P2, oracles corr-P1, corr-P2 to handle leakages of CKA states, ora-
cle receive-P1, receive-P2 to handle CKA message reception, and oracles send-P1, send-P2 and
send-P1’, send-P2’ to handle CKA secret and message generation, except for in epoch t∗, in which
chall-P1 is used instead.

More formally, BCKA first samples random b
$← {0, 1} and sets RODict[·]← ⊥, then proceeds as

in Ht∗−1, with the following exceptions:

• On input (sid, SETUP,P) from FDR: Replace the executions of CKA-Init-P1 and CKA-Init-P2

within the executions of Init-P1 and Init-P2, respectively, in St∗ with (i) an oracle query to
init(t∗), (ii) set γP ← corr-P1, and (iii) if t∗ 6= 1 then set γP̄ ← corr-P2.

• On input (sid,mid, IN TRANSIT,P, |m|,m′) from FDR: Replace the execution of CKA-S(γP; r)
within the Send execution of St∗ with the following:

1. If P.BAD = 0 then an oracle call to (Tt, It)← send-P.

2. Else if P.BAD = 1 ∧ sP.t = t∗ − 2 (before sending) then abort.

3. Else if P.BAD = 1 then an oracle call to (Tt, It)← send-P’(r′), where r′ is the randomness
acquired from A in St∗ .

4. In both non-abort cases: (i) if sP.t < t∗ − 1 after sending, set γP ← corr-P and (ii) use
the output Tt, It of send-P or send-P’ as in Ht∗−1.

• On input (sid,mid, SEND,m) from Z to P ∈ {P1,P2}:

1. If sP.t = t∗ − 1 (before sending) then if P.BAD = 1, abort; otherwise, execute Send

normally with the following exceptions:

(a) Instead of executing (sP.γ, Tt∗ , I) ← CKA-S(sP.γ), query oracle Tt∗ ← chall-P and
set sP.γ ← corr-P.
Note: if we are analyzing the DR, then corr-P will simply exit with no return.

(b) Instead of executing (sP.σroot, k)← H(sP.σroot, I), simply sample σ and k uniformly
at random and set sP.σroot ← σ.

(c) If b = 1 ∧ P1.CUR SLEK = 0 then set m = 0|m|.

2. If sP.t = t∗ (before sending) and b = 1 ∧ P1.CUR SLEK = 0 then set m = 0|m|.
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3. Proceed as in Ht∗−1.

• On input (DELIVER,P, c) from A: Parse (h, e)← c, (t, T, ℓ)← h then:

1. If t < t∗ then execute (γ′
P̄
, I) ← CKA-R(γP̄, T ) as in Ht∗−1 (inside St∗) normally. If the

state is not rolled back within St∗ then additionally make an oracle call to receive-P̄
and set γP̄ ← γ′

P̄
(otherwise, γP̄ stays the same as before).

2. If t = t∗∧T = Tt∗ then run Rcv(sP̄, c) except instead of executing (sP̄.γ, I)← CKA-R(sP̄.γ, T )
and (sP̄.σroot, k)← H(sP̄.σroot, It∗):

(a) Query receive-P2 (if BCKA has not yet for Tt∗),

(b) Use k sampled by BCKA above for FS-AEAD initialization, and

(c) If sP̄ is not rolled back, then set sP̄.γ ← corr-P2 and sP̄.σroot ← σ, where σ is that
which was sampled by BCKA above.

3. If t = t∗∧T 6= Tt∗ then run Rcv(sP̄, c) except instead of executing (sP̄.γ, I)← CKA-R(sP̄.γ, T )
and (sP̄.σroot, k)← H(sP̄.σroot, It∗); for every (sP̄.σroot, I) such that RODict[(sP̄.σroot, I)] 6=
⊥:
(a) Query test(t∗, T, I).

(b) If the challenger returns 1 then (i) parse (σ, k) ← RODict[(sP̄.σroot, I)] (ii) set
sP̄.σroot ← σ, (iii) set sP̄.γ ← CKA-Der-R(T, I) and (iv) use k for the rest of
Rcv(sP̄, c).

If no test query returns 1 then skip.

4. If t = t∗ + 1 ∧ T = Tt∗+1 then run Rcv(sP̄, c) except instead of executing (sP̄.γ, I) ←
CKA-R(sP̄.γ, T ) and (sP̄.σroot, k)← H(sP̄.σroot, It∗+1):

(a) Query receive-P1 (if BCKA has not yet for Tt∗+1),

(b) Use k that BCKA naturally computes when sending the first message of epoch t∗ +1
for P2, and

(c) If sP̄ is not rolled back, then set sP̄.γ ← corr-P2 and sP̄.σroot ← sP.σroot.

5. If t = t∗ + 1 ∧ T 6= Tt∗+1 then run Rcv(sP̄, c) except instead of executing (sP̄.γ, I) ←
CKA-R(sP̄.γ, T ) and (sP̄.σroot, k) ← H(sP̄.σroot, It∗+1); for every (sP̄.σroot, I) such that
RODict[(sP̄.σroot, I)] 6= ⊥:
(a) Query test(t∗ + 1, T, I).

(b) If the challenger returns 1 then (i) parse (σ, k) ← RODict[(sP̄.σroot, I)] (ii) set
sP̄.σroot ← σ, (iii) set sP̄.γ ← CKA-Der-R(T, I), and (iv) use k for the rest of
Rcv(sP̄, c).

If no test query returns 1 then skip.

6. Otherwise, proceed as in Ht∗−1+b

• On input (sid, LEAK,P) from A: If b = 1 then proceed as in Ht∗ ; otherwise proceed as in
Ht∗−1

• On input (RO QUERY, (σ, I)) from A: If sP1
.t ≥ t∗ and test(t∗, Tt∗ , I) = 1 then send I to the

challenger (and the game ends). Otherwise,
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1. If RODict[(σ, I)] = ⊥ then sample random (σ′, k) and set RODict[(σ, I)]← (σ′, k).

2. Return RODict[(σ, I)].

First note that since we model H as a random oracle, while A has not queried the random oracle
on (sP.σ

t∗−1
root , It∗), the output (sP.σ

t∗
root, k) is always uniformly random to A. Moreover, if A does

make that query, BCKA forwards It∗ to the challenger and the game ends. Therefore, BCKA properly
simulates both Ht∗−1 and Ht∗ in the view of A when it samples uniformly random (sP.σ

t∗
root, k) in

epoch t∗. Before epoch t∗, we send messages just as in the two hybrids and are able to corrupt
the sender right afterwards (except for after sending the first message of epoch t∗ − 1) in the CKA
game to obtain the CKA state of the sender by definition. Thus, when the other party receives
a message for the first time in an epoch, we are able to use the real state to see how they would
act in both hybrids. And if the receiver’s state is not rolled back, this must mean that the CKA
message is the same as the honestly generated one for that epoch by the sender, and so we can
query the receive-P̄ oracle to advance their state in the CKA game (since, by definition of Type
2 adversaries, P1 must make it to t∗ without a takeover of either party).

Note that Type 2 adversaries that make BCKA abort in Step 2 of an IN TRANSIT instruction or
Step 1 of a SEND instruction only exist with negligible probability. This is because if P2.BAD = 1
before P2 sends the first message of epoch t∗ − 1 or P1.BAD = 1 before P1 sends the first message
of epoch t∗ then for P1.CUR SLEK to be 0 after P1 sends, it must be that P2.CUR SLEK = 0 before-
hand. Therefore, it must also be the case that after P2 sent the first message of epoch t∗ − 1,
P2.CUR SLEK = 0, and no leakages on either party occurred in the interim. So, we know from the
proof of indistinguishability of Ht∗−2 and Ht∗−1 that A could not have queried the random oracle
on (σt∗−2

root , It∗−1) (since if it did then P2.CUR SLEK would not be 0), and thus σt∗−1
root is uniformly ran-

dom and unknown to A. Hence, the probability of a Type 2 adversary later querying the random
oracle on (σt∗−1

root , It∗) is negligible. If BCKA does not abort then in epoch t∗: before any additional
leakages, if b = 0, BCKA encrypts m and thus properly simulates Ht∗−1; otherwise, it encrypts 0

|m|

and thus properly simulates Ht∗ . Also, all message deliveries are directly simulated as in Ht∗−1+b.
It is clear that BCKA handles bad randomness appropriately and further for corruptions, BCKA

can always provide the correct state to A since Type 2 adversary A never attempts to leak on P2

when she is in epoch t∗ − 1 or P1 when she is in epoch t∗ . It is furthermore clear that once BCKA
gets the random oracle query (σroot, It∗) from A, test will return 1 and BCKA will win the CKA
game, a contradiction.

6.4 Type 3 Adversaries

Type 3 adversaries are all other adversaries that are not type 1 or 2.

Lemma 4. If we make the same assumptions as in Theorem 4, then Type 3 adversaries only succeed
with probability εFS-AEAD.

Proof. For Type 3 adversaries, to show Ht∗−1 ≈ Ht∗ , we provide a reduction to the security of the
underlying FS-AEAD scheme FS-AEAD. Specifically, assuming that there is some Type 3 adversary
A that distinguishes between hybrids Ht∗−1 and Ht∗ with non-negligible probability, we construct
reduction algorithm BFS-AEAD,2 that has non-negligible probability against FS-AEAD in the FS-
AEAD security game, thus reaching a contradiction. BFS-AEAD,2 simulates hybrid Ht∗−1 or Ht∗ for
A, using the FS-AEAD security game oracle init to initialize the FS-AEAD states of P1 and P2

in epoch t∗; oracles corr-P1, corr-P2, and corr-init-key to handle leakages of FS-AEAD states
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of P1, P2, and the initialization key; and oracles chall-P1 and transmit-P1 to handle FS-AEAD
message transmission.

More formally, BFS-AEAD,2 proceeds as in Ht∗−1, with the following exceptions:

• On input (sid,mid, SEND,m) from Z to P ∈ {P1,P2}:

1. If sP.t = t∗ − 1 before Send would normally be executed then replace the execution of
(sP.σroot, k) ← H(sP.σroot, It∗) and sP1

.v[t∗] ← FS-Init-S(k) with (i) oracle query init,
(ii) sample uniformly random σ, and (iii) set sP.σroot ← σ.

2. If sP.t = t∗ before (sP1
.v[t∗], e) ← FS-Send(sP.v[t], h,m) would normally be executed

within Send, and BFS-AEAD,2 has not yet queried corruption oracles of the FS-AEAD
game, then replace its execution with e← chall-P1(h,m, 0|m|) and use the output as in
Ht∗−1.

3. If sP.t = t∗ before (sP1
.v[t∗], e)← FS-Send(sP.v[t], h,m) would normally be called within

Send, and BFS-AEAD,2 has queried corruption oracles of the FS-AEAD game, then replace
its execution with e← transmit-P1(h,m) and use the output as in Ht∗−1.

4. Otherwise, proceed as in Ht∗−1.

• On input (DELIVER,P, c) from A:

1. Parse (h, e)← c, (t, T, ℓ)← h.

2. If t = t∗ then:

(a) If sP2
.t = t∗ − 1 before Rcv would normally be called and T 6= Tt∗ then proceed

as in Ht∗−1; otherwise replace the execution of (sP2
.σroot, k)← H(sP2

.σroot, It∗) and
sP2

.v[t∗]← FS-Init-R(k) with set sP2
.σroot ← σ.

(b) If ∃(sid, ·, t∗, ·, IN TRANSIT, c, ·) ∈ P1.T then query oracle (i,m) ← deliver-P2(h, e)
and use the output as in Ht∗−1 (including possibly rolling back the state of P2).

(c) Otherwise, query oracle (i,m) ← inject-P2(h, e) and use the output as in Ht∗−1

(including possibly rolling back the state of P2).

(d) If sP2
.v[t∗] 6= ⊥ ∧m 6= ⊥ then additionally execute sP2

.v[t∗]← corr-P2.

3. Otherwise proceed as in Ht∗−1 (which is the same as in Ht∗).

• On input (sid, LEAK,P) from A:

1. If (P = P1∧sP1
.t = t∗∧P.V 6= ∅)∨(P = P2∧sP2

.t = t∗−1) then query k ← corr-init-key
and program the random oracle so that (σ, k)← H(σt∗−1

root , It∗).

2. If P = P1 ∧ sP1
.t = t∗ ∧ P.V = ∅ then query sP1

.v[t∗]← corr-P1.

3. If P = P2 ∧ sP2
.t = t∗ then query sP2

.v[t∗]← corr-P2.

4. Otherwise proceed as in Ht∗−1.

• On input bit b from A: Forward b to the challenger.

We now show that when the challenge bit b of the FS-AEAD security game is 0, BFS-AEAD,2

properly simulates Ht∗−1 and when it is 1, BFS-AEAD,2 properly simulates Ht∗ . Since A is a Type
3 adversary, she either does not query the random oracle on (sP.σ

t∗−1
root , It∗), or before she makes
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such a query she leaks on P2 when sP2
.t = t∗ − 1 or leaks on P1 when sP1

.t = t∗. Before such a

leakage (and thus such a random oracle query), in both Ht∗−1 and Ht∗ the corresponding output
(sP.σ

t∗
root, k) is uniformly random and unknown to A. Thus implicitly using uniformly random k

for FS-AEAD initialization via the challenger and using randomly sampled σ for the updated σroot
of epoch t∗ properly simulates both hybrids. Furthermore, of course encrypting in epoch t∗ before
this point using the FS-AEAD chall-P1() oracle of course properly simulates Ht∗−1+b, where b is
the challenge bit of the FS-AEAD security game. If such a leakage does happen then we properly
program the random oracle on (σt∗−1

root , It∗) if needed, and properly explain the FS-AEAD states and
ciphertexts using FS-Expl-In-Trans-Cts and FS-Expl-Vul-Cts.

It is clear that delivery of epoch t∗ messages by BFS-AEAD,2 simulates Ht∗−1 properly. If A
unsuccessfully forges an epoch t∗ message (before P2 accepts a message for the epoch) then the
behavior of Ht∗−1 and Ht∗ are identical (both reject the message). Since A is a Type 3 adversary, if
she does successfully forge the first message that P2 receives in epoch t∗ with CKA message T 6= Tt∗ ,
then it must be that A queried the random oracle on (σt∗−1

root , I), where I is the corresponding CKA
secret associated with T. As in the proof of Lemma 3, in order for A to do this with non-negligible
probability, then it must be that of course P1.TAKEOVER POSS = 1; for otherwise, after P2 sent
the first message of epoch t∗ − 1, P2.CUR SLEK = 0 and so σt∗−1

root would be uniformly random and
unknown to A. Thus such forgeries are also successful in Ht∗ . Furthermore, if P2 accepts the
first message of epoch t∗ with proper CKA message Tt∗ , then the reduction simulates delivery for
Ht∗ properly due to the underlying correctness and security of FS-AEAD: namely, messages are
correctly decrypted with the correct index i, only one message for each index i successfully decrypts
(even with injections), and injections/modifications of in-transit messages can only happen if the
FS-AEAD secret state is leaked.

If the challenger declares win or A guesses the challenge bit b and BFS-AEAD,2 passes it along,
then BFS-AEAD,2 wins the FS-AEAD security game, a contradiction.

Proof of Lemma 1. Follows immediately from Lemmas 2, 3, and 4.

Proof of Theorem 4. Follows immediately from Lemma 1.

6.5 Even Stronger Security of the TR with CKA
+

We observe that the TR instantiated with our specific CKA scheme CKA+ actually has even stronger
security, but do not write FTR to reflect it, in order to tame the ideal functionality’s complexity.
Roughly, in FTR (Figure 3), if P2 starts a new epoch t∗ − 1 with bad randomness, then the func-
tionality sets P2.PLEK ← 1. Next, if P1 receives a message in P2’s new epoch t∗ − 1 and then the
adversary leaks her state, the functionality of course sets P2.CUR SLEK ← 1. So, when P1 starts
new epoch t∗, the functionality will set P1.CUR SLEK← 1, since both P2.CUR SLEK and P2.PLEK are
1. Therefore, all messages of epoch t∗ are deemed insecure by FTR.

However, recall the stronger security of CKA+, which we informally highlighted in Section 4.3.5.
If we assume secure initialization, good randomness when P1 sends the first message of epoch 1, no
leakage except that of epoch t∗ − 1 on P1 above, and again good randomness when P1 sends the
first message of epoch t∗, then the CKA secret It for every epoch t remains secure. This is true
even if P2 always uses bad randomness, and besides from epochs 1 and t∗, P1 also always uses bad
randomness. Thus, the symmetric ratchet of every epoch except t∗ − 1 remains secure (in-transit
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messages at the time of corruption are also insecure), and so notably the above messages of epoch
t∗ that FTR deems insecure, are indeed secure.

We remark that if P2 is leaked before receiving a message for epoch t∗ − 1, then all security is
lost: the adversary by correctness learns It∗−1 and can thus also compute the CKA state of P2,
γP2

t∗−1 = xt∗−1 · H(It∗−1), where xt∗−1 is the CKA exponent that P2 samples for epoch t∗ − 1. So,

along with σt∗−1
root , the adversary will also have all future CKA shared secrets, and so all future

messages will be insecure.
However, in the (not completely far-fetched) scenario in which initialization is secure, P2 never

has good randomness, and P1 is leaked after receiving an epoch t∗ − 1 message; if P1 at least uses
good randomness for epochs 1 and t∗, then all messages remain secure. On the other hand, in the
DR, all CKA secrets It are of course leaked in this situation, so once P1 is corrupted, all security is
lost.

We also note that for further stronger security, after P sends the first message of an epoch t,
instead of setting γPt ← xt · H(It), where xt is the sampled exponent of epoch t, one could set
γPt ← xt · H(σt−1

root, It) (or just expand the root KDF computation (σt
root, k) ← H(σt−1

root, It) that is
already in the TR). Intuitively, this should provide even stronger security, but we did not find any
simple examples where security is stronger, other than the above.

7 More Efficient Updatable Public-Key Encryption

Motivated by applications in Secure (Group) Messaging, Jost et al. [JM20], Alwen et al. [ACDT20],
and Dodis et al. [DKW21] recently utilized and built constructions of a primitive, similar to CKA,
called Updatable Public Key Encryption (UPKE) (itself a relaxation of the stronger forward-secure
public key encryption primitive [CHK04]). UPKE is an enhancement to PKE wherein beginning
with an initially sampled key-pair (sk0, pk0), a sender can securely communicate with the receiver,
such that with each ciphertext ci, the sender updates pki to pki+1 and further embeds within ci
information for the receiver to update the secret key ski to ski+1 so that the next message can be
encrypted under pki+1 and decrypted using ski+1 correctly.

4 Furthermore, if some skj is corrupted,
the messages of all ciphertexts ci for all i < j should be hidden. This security property should
be maintained even if the randomness for all such ciphertexts ci is adversarially chosen (but that
for cj is chosen uniformly at random and hidden from the adversary). UPKE is used in, e.g., the
re-randomized TreeKEM (rTreeKEM) protocol of [ACDT20], for Secure Group Messaging. We
refer the reader to that paper for the full details of the application, as they are not directly relevant
to our analysis of the DR.

In this section, we optimize the (more efficient) UPKE scheme of [ACDT20], reducing the length
of ciphertexts by |G| bits, where |G| is the number of bits needed to represent the size of the (CDH-
hard) group used in the scheme. As a result, communication of the rTreeKEM protocol used in
Secure Group Messaging by [ACDT20] is reduced by up to a |G| · n additive factor, where n is the
number of users in the group. We now formally define UPKE:

Definition 10. An updatable public-key encryption (UPKE) scheme is a triple of algorithms
UPKE = (Gen,Enc,Dec) with the following syntax:

4We use the notion introduced by [ACDT20], which is slightly different from those introduced by [JMM19a,
DKW21], wherein update ciphertexts used to update the keypair are separated from the actual message ciphertexts.
Our optimization of this section does not apply to this separated notion.
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• Key generation: Gen receives a uniformly random key sk0 and outputs a fresh initial public
key pk0 ← Gen(sk0).

• Encryption: Enc receives a public key pk and a message m and produces a ciphertext c and a
new public key pk′.

• Decryption: Dec receives a secret key sk and a ciphertext c and outputs a message m and a
new secret key sk′.

Correctness. A UPKE scheme must satisfy the following correctness property. For any sequence
of randomness and message pairs {ri,mi}qi=1,

Pr[sk0
$← SK; pk0 ← Gen(sk0); For i ∈ [q], (ci, pki)← Enc(pki−1,mi; ri);

(m′
i, ski)← Dec(ski−1, ci) : mi = m′

i] = 1.

IND-CPA* security for UPKE. For any adversary A with running time t we consider the
IND-CPA* security game:

• Sample sk0
$← SK, pk0 ← Gen(sk0)

• A on input pk0 outputs (m∗
0,m

∗
1), {ri,mi}qi=1

• For i = 1, . . . , q, compute (ci, pki)← Enc(pki−1,mi; ri); (mi, ski)← Dec(ski−1, ci)

• Compute b
$← {0, 1}, (c∗, pk∗)← Enc(pkq,m

∗
b), (·, sk∗)← Dec(skq, c

∗)

• b′ ← A(pk∗, sk∗, c∗)

A wins the game if b = b′. The advantage ofA in winning the above game is denoted by AdvUPKEcpa∗ (A).

Definition 11. An updatable public-key encryption scheme UPKE is (t, ε)-CPA*-secure if for all
t-attackers A,

AdvUPKEcpa∗ (A) ≤ ε.

7.1 UPKE Construction from [JMM19a,ACDT20]

Here we first present the UPKE construction of [ACDT20] (itself inspired by [JMM19a]). We focus
on this construction (in the Random Oracle model) since the construction of [DKW21] (in the Stan-
dard model) may not be efficient enough for practical use cases. The ROM construction is formally
presented in Figure 9. A proof of the construction’s IND-CPA* security is given in [ACDT20].
Note that c consists of one group element and |m|+ |G| bits.

7.2 More Efficient Construction

In Figure 10, we present our more efficient UPKE construction. We use a similar trick as that
which was deployed in our construction of CKA+. In our scheme, c consists of one group element
and |m| bits, eliminating an additional |G| bits. As this is the same size as regular ElGamal
PKE ciphertexts, our construction shows that we can lift the CPA-security of ElGamal PKE to
CPA*-security without any additional communication.
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UPKE of [JMM19a,ACDT20]

Gen (sk)
return gsk

Enc (pk,m)

(r, δ)
$← Zp × Zp

c← (gr, H(pkr)⊕ (m||δ))
return (c, pk · gδ)

Dec (sk, (c1, c2))
m||δ ← H(csk1 )⊕ c2
sk′ ← sk + δ mod p
return (m, sk′)

Figure 9: UPKE construction of [JMM19a,ACDT20] assuming Random Oracles and the hardness
of Computational Diffie-Hellman. g is the generator of a group G of prime order p and sk is in Zp.

More Efficient UPKE

Gen (sk)
return gsk

Enc (pk,m)

r
$← Zp

δ ← H(pkr)
c← (gr, δ ⊕m)

return (c, pk · gδ)

Dec (sk, (c1, c2))
δ ← H(csk1 )
m← δ ⊕ c2
sk′ ← sk + δ mod p
return (m, sk′)

Figure 10: More efficient UPKE construction assuming hash function H is modelled as a Random
Oracle and the hardness of Computational Diffie-Hellman. g is the generator of a group G of prime
order p and sk is in Zp.

Theorem 5. Assuming the hardness of CDH over the group G, the UPKE scheme of Figure 10 is
CPA*-secure if H is modelled as a Random Oracle.

Proof. Our proof follows those of [ACDT20,JMM19a] for their less efficient UPKE schemes. Given
an adversary A that breaks the CPA* security of the UPKE scheme of Figure 10, we define an
adversary B against the CDH problem (given challenge (A,B) = (ga, gb)) assuming H is modelled
as a random oracle. B is defined below.

B(A,B):

1. Sample b
$← {0, 1}, δ $← Zp and set pk0 ← A · gδ.

2. Execute A on input pk0 and receive (m∗
0,m

∗
1), {ri,mi}qi=1.

3. For i = 1, . . . , q, compute (ci, pki)← Enc(pki−1,mi; ri).

4. Let pkq = ga+
∑q

i=1 δi+δ and ∆ =
∑q

i=1 δi + δ, where each δi is chosen randomly as the
output of H, based on the randomness ri chosen by A (and ensuring consistency with the
random oracle queries of A).

5. Set pk∗ = pkq ·A−1 and sk∗ = ∆.
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6. Compute R
$← {0, 1}|m|, set c∗ ← (B,R), and output (pk∗, sk∗, c∗) to A.

7. Let Q be the list of queries made to the random oracle by A. Run the Diffie-Hellman
self-corrector of [Sho97] with respect to Q and multiply the output by B−∆ to obtain a
solution.

Observe that, given the computation of steps 1-5, A should receive in step 6 the triple,
(

pk∗ = g∆, sk∗ = ∆, c∗ =
(

B,H
(

g(a+∆)b
)

⊕m∗
b

))

.

However, in the above execution it receives,

(

pk∗ = g∆, sk∗ = ∆, c∗ = (B,R)
)

,

for uniformly random R. The only way for A to distinguish between the above is by querying the
random oracle with g(a+∆)b, thus by multiplying g(a+∆)bB−∆, B obtains gab.
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A Comparison to the ACD and CCD+ Secure Messaging Security
Notions

In this section we demonstrate the following six distinct (sometimes contrived) modifications to the
DR secure messaging protocol (c.f. Figure 7) which, when instantiated with correct and secure
underlying FS-AEAD and CKA schemes, are vulnerable to natural attacks – formally, we show that
they are insecure with respect to our (weaker) ideal functionality FDR. Despite this, we show that
some of the modified protocols remain ACD-secure (transformations 1-4) and/or CCD+-secure
(transformations 4-6).5

1. Postponed FS-AEAD Key Deletion.

2. Postponed CKA Key Deletion.

3. Eager CKA Randomness Sampling.

4. Malleable Ciphertexts.

5. CKA Bad Randomness Plaintext Trigger.

6. Removed Immediate Decryption.

Transformations 1-5 satisfy the correctness while affect the security – intuitively breaking either
forward security or post-compromise security. Transformation 6 preserves security, while affecting
correctness – specifically immediate decryption.

Before we present the transformations and prove their (in)security, we recall the definitions of
ACD [ACD19]. Although their main SM definition is game-based, the definitions of their building
blocks are quite similar to ours. Since the definition of CCD+ [CCD+20] is quite complex and
different from ours, we do not include it in our paper, and instead refer the reader to their paper.
The aspects of their definition which we exploit are quite simple and do not require complete under-
standing of their definition. We will additionally describe the relevant specifics of their definition
which our transformations exploit.

A.1 Definitions from ACD

To formally show that the transformed protocols continue to satisfy ACD’s definitions we need to
borrow definitions from ACD. While ACD’s game-based secure message definition is completely
different than our simulation based definition (Figure 3), our FS-AEAD and CKA definitions are
quite similar to theirs. The differences are discussed in the respective sections (c.f. Section 4.2 and
Section 4.3). To distinguish from our definitions, we refer to the a scheme which is secure according
to ACD’s definition as ACD-secure. Next we present ACD’s definitions, often taken verbatim from
ACD.

5We believe the rest to be insecure in ACD (transformations 5 and 6) and CCD+ (transformations 1, 2, and 3).
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A.1.1 Secure Messaging (ACD)

ACD’s game-based definition of secure messaging consists of (potentially asymmetric) initialization
algorithms Init-A and Init-B, a generic sending algorithm Send, and a generic receiving algorithm
Rcv. Each party maintains a state to use across invocations of the sending and receiving algorithms.
Importantly, the receiving algorithm additionally outputs an epoch number and message index
which is used to determine the order in which the sending party transmitted their messages. We
present these algorithms formally in Definition 12.

Definition 12. A secure-messaging (SM) scheme consists of four probabilistic algorithms SM =
(Init-A, Init-B, Send,Rcv), where

• Init-A (and similarly Init-B) takes a key k and outputs a state sA ← Init-A(k),

• Send takes a state s and a message m and produces a new state and a ciphertext (s′, c)
$←

Send(s,m), and

• Rcv takes a state s and a ciphertext c and produces a new state, an epoch number, an index,
and a message (s′, t, i,m)← Rcv(s, c).

Game-Based Secure Messaging. We reproduce the game-based secure messaging security
notion from ACD in Figure 11. The security game consists of an initialization procedure init,
two sending oracles transmit-P1 (normal transmission) and chall-P1 (challenge transmission),
two receive oracles deliver-P1 (honest delivery) and inject-P1 (for forged ciphertexts), and a
corruption oracle corr-P1. These oracles (with the exception of init) are defined with respect to
party P1. The oracles for P2 are defined analogously. We remark that, ACD’s definition considers
Alice (A) and Bob (B) instead of parties P1 and P2.

Due to the complexity of capturing secure messaging with game-based definitions, a num-
ber of game management functions are provided. These consist of a epoch management function
ep-mgmt, randomness sampling function sam-if-nec, and record keeping functions record and
delete which can be called by the attacker. Additionally, the safe-chP and safe-inj control the
adversary’s ability to make challenges and inject respectively.

The game is parametrized by an integer ∆SM which relates to how fast parties recover from
state compromise. The advantage of A against an SM scheme SM is denoted by AdvSMsm,∆SM

(A).
The attacker is parameterized by its running time t, the total number of queries q it makes, and
the maximum number of epochs qep it runs for. We define SM security in Definition 13.

Definition 13. A secure-messaging scheme SM is (t, q, qep,∆SM, ε)-secure if for all (t, q, qep)-at-
tackers A,

AdvSMsm,∆SM
(A) ≤ ε .

Definition 14. A secure-messaging scheme SM is called simply secure with ∆SM if it is (poly(κ),
poly(κ), poly(κ),∆SM, negl(κ))-secure.

For more details regarding the secure messaging game-based definition, we refer the reader to
Section 3 of the full version of ACD [ACD18].
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Security Game for Secure Messaging

init

k
$← K

sP1
← Init-P1(k)

sP2
← Init-P2(k)

(tP1
, tP2

)← (0, 0)
iP1

, iP2
← 0

tL ← −∞
trans, chall, comp← ∅
b

$← {0, 1}

corr-P1

req P2 /∈ chall

comp
+← trans(P2)

tL ← max(tP1
, tP2

)
return sP1

transmit-P1 (m, r)
(r, flag)← sam-if-nec(r)
ep-mgmt(P1, flag)
iP1

++
(sP1

, c)← Send(sA,m; r)
record(P1, norm,m, c)
return c

chall-P1 (m0,m1, r)
(r, flag)← sam-if-nec(r)
ep-mgmt(P1, flag)
req safe-chP1

and
|m0| = |m1|

iP1
++

(sP1
, c)← Send(mb; r)

record(P1, chall,mb, c)
return c

deliver-P2 (c)
req (B, t, i,m, c) ∈ trans

for some t, i,m
(sP1

, t′, i′,m′)← Rcv(sP1
, c)

if (t′, i′,m′) 6= (t, i,m)
win

if (t, i,m) ∈ chall

m′ ← ⊥
tP1
← max(tP1

, t)
delete(t, i)
return (t′, i′,m′)

inject-P2 (c)
req (P2, c) /∈ trans and safe-inj

(sP1
, t′, i′,m′)← Rcv(sP1

, c)

if m′ 6= ⊥ and (P2, t
′, i′) /∈ comp

win

tA ← max(tP1
, t′)

delete(t′, i′)
return (t′, i′,m′)

ep-mgmt (P, flag)

if P = P1 and tP even or
P = P2 and tP odd
if flag = bad and
¬safe-chP
tL ← tP + 1

tP ++
iP ← 0

sam-if-nec (r)

flag← bad

if r = ⊥
r

$← R
flag← good

return (r, flag)

record (P, flag,m, c)
rec← (P, tP, iP,m, c)

trans
+← rec

if ¬safe-chP
comp

+← rec

if flag = chall

chall
+← rec

delete (t, i)
rec← (P, t, i,m, c)

for some P,m, c

trans, chall, comp
−← rec

safe-chP :⇐⇒ tP ≥ tL +∆SM

safe-inj
:⇐⇒ min(tA, tB) ≥ tL +∆SM

Figure 11: Game-based notion of secure messaging (SM) security from [ACD19]. Oracles correspond
to party P1 of the SM security game for a scheme SM = (Init-P1, Init-P2, Send,Rcv). The oracles
for P2 are defined analogously. We note that the syntax above is slightly changed to parties P1/P2

from A/B for consistency with our own definitions.

A.1.2 ACD’s CKA Definition

The syntax and the correctness of ACD’s CKA is exactly the same as ours (c.f. Definition 6). The
security notion, however, diverges as we attempt to capture a more fine-grained notion. Neverthe-
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ACD’s Security Game for CKA

init (t∗)

k
$← K

γP1

0 ← CKA-Init-P1(k)

γP2

0 ← CKA-Init-P2(k)
tP1

, tP2
← 0

b
$← {0, 1}

corr-P1

req allow-corr or
finishedP1

return γP1

tP1

send-P1

tP1
++

(γP1

tP1
, T, I)

$← CKA-S(γP1

tP1
)

return (T, I)

send-P1’ (r)
tP1

++
req allow-corr

(γP1

tP1
, T, I)← CKA-S(γP1

tP1−1; r)

return (T, I)

receive-P1

tP1
++

(γP1

tP1
, ∗)← CKA-R(γP1

tP1−1, T)

chall-P1

tP1
++

req tP1
= t∗

(γP1

tP1
, T, I)

$← CKA-S(γP1

tP1−1)

if b = 0
return (TtP1

, ItP1 )

else

I
$← I

return (TtP1
, I)

allow-corrP1
, :⇐⇒ max(tP1

, tP2
) ≤ t∗ − 2

finishedP1
, :⇐⇒ tP ≥ t∗ +∆CKA

Figure 12: Oracles corresponding to party P1 of the CKA security game for a scheme CKA =
(CKA-Init-P1,CKA-Init-P2,CKA-S,CKA-R); the oracles for P2 are defined analogously.

less, we stick to the game-based notion analogous to ACD. We present ACD’s game-based definition
in Figure 12, which is adjusted to our notations of parties P1/P2 in contrast with ACD’s A/B. The
differences with our CKA definition are discussed in Section 4.3. Among them, two main differences
are: (i) their definition is a indistinguishability-based definition and hence has a challenge bit in
the game, whereas our definition (c.f. Definition 9) is a recoverability-based definition; (ii) their
definition is parameterized by a ∆CKA for the recovery period after a corruption whereas we capture
recovery in a more fine-grained manner without such parameter. The parameter ∆CKA stands for
the number of epochs that need to pass after the challenge epoch t∗ until the states do not contain
secret information pertaining to the challenge. Once a party reaches epoch t∗+∆CKA, its state may
be revealed to the attacker (via the corresponding corruption oracle). The game ends (implicitly
captured above) once both states are revealed after the challenge phase. The attacker wins the
game if it eventually outputs a bit b′ = b. The advantage of an attacker A against the above game
is denoted by AdvCKAACD,∆CKA

(A). We define the ACD-security as follows:

Definition 15. A CKA scheme CKA is (t,∆CKA, ε)-ACD-secure if for all attackers A:

AdvCKAACD,∆CKA
(A) ≤ ε

and whenever t ∈ poly(κ) and ε ∈ negl(κ) then we say that the scheme is simply ACD-secure with
∆CKA.

For more details regarding the ACD’s CKA definition we refer the reader to Section 4.1 of the
full version of ACD [ACD18].
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ACD’s Security Game for FS-AEAD

init

k
$← K

vP1
← FS-Init-S(k)

vP2
← FS-Init-R(k)

iP1
← 0

corrP1
← false

trans, chall, comp← ∅
b

$← {0, 1}

corr-P1

corrP1
← true

return vP1

corr-P2

req chall = ∅
end (vP1

, vP2
)

transmit-P1 (a,m)
iP1

++
(vP1

, e)←
FS-Send(vP1

, a,m)
record(good, a,m, e)
return e

chall-P1 (a,m0,m1)
req ¬corrP1

and
|m0| = |m1|
iP1

++
(vP1

, e)←
FS-Send(vP1

, a,mb)
record(chall, a,mb, e)
return e

deliver-P2 (a, e)
req (i, a,m, e) ∈ trans

for some i,m
(vP2

, i′,m′)←
FS-Rcv(vP2

, a, e)

if (i′,m′) 6= (i,m)
win

if (i,m) ∈ chall

m′ ← ⊥
delete(i)
return (i′,m′)

inject-P2 (a, e)
req (a, e) /∈ trans

(vP2
, i′,m′)←

FS-Rcv(vP2
, a, e)

if m′ 6= ⊥ and i′ /∈ comp

win

delete(i′)
return (i′,m′)

record (flag, a,m, e)
rec← (iP1

, a,m, e)

trans
+← rec

if corrP1

comp
+← rec

if flag = chall

chall
+← rec

delete (i)
rec← (i, a,m, e) for m, a, e

s.t. (i, a,m, e) ∈ trans

trans, chall, comp
−← rec

Figure 13: Oracles corresponding to party P1 of the FS-AEAD security game for a scheme
FS-AEAD = (FS-Init-S,FS-Init-R,FS-Send,FS-Rcv); the oracles for P2 are defined analogously.

A.1.3 ACD’s FS-AEAD Definition

The syntax and the correctness of ACD’s FS-AEAD is almost the same as ours (c.f. Definition 3)
except that our FS-Stop algorithm is slightly different from theirs. However, similar to ACD we
do not require explicit definitions of FS-Stop in this section. The difference comes up later while
describing transformation T1 – we defer this discussion until Appendix A.2.2. Our security notion
diverges here as well although we stick to the game-based notion analogous to ACD. We present
ACD’s game-based definition of FS-AEAD in Figure 13, which is adjusted to our notations of parties
P1/P2 in contrast with ACD’s A/B. We discuss the differences between our definition and ACD’s
definition in Section 4.2. In short, the main difference is that the adversary has much stronger
corruption abilities. The advantage of an attacker A against an FS-AEAD scheme FS-AEAD is
denoted by the expression AdvFS-AEADACD (A). The attacker is parameterized by its running time t and
the total number of queries q it makes.
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Definition 16. An FS-AEAD scheme FS-AEAD is (t, q, ε)-ACD-secure if for all (t, q)-attackers A,

AdvFS-AEADACD (A) ≤ ε

and whenever t, q ∈ poly(κ) and ε ∈ negl(κ) we simply say that FS-AEAD is ACD-secure.

For more details regarding the ACD’s FS-AEAD definition we refer the reader to Section 4.2 of
the full version of ACD [ACD18].

A.1.4 ACD’s PRF-PRNG Defintion

Instead of modelling the function which defines the root KDF chain as a random oracle (as we
do), ACD propose a primitive called PRF-PRNG, which resembles both a pseudo-random function
(PRF) and a pseudorandom number generator with input (PRNG). They also provide a (deter-
ministic) construction in the standard model for PRF-PRNGs. In Section 4.1.1, we explain the
insufficiency of a standard model construction of PRF-PRNGs for realizing our FDR ideal func-
tionality. Namely, the adversary’s unrestricted ability to leak parties’ states requires programming
a random oracle to explain these states, and further to provide non-malleability properties (as in
CCA-security for hashed ElGamal [ABR01,CS03,KM04]).

It is trivial to see that a PRF-PRNG can be modelled as a random oracle in the ACD composition
theorem which we include in the next section. For more details regarding ACD’s PRF-PRNG
definition, we refer the reader to Section 4.3 of the full version of ACD [ACD18].

A.1.5 ACD’s Composition

Now, deriving from the concrete version of ACD’s composition theorem we state the asymptotic
version of ACD’s composition theorem (adjusted for our notations/syntax and modelling of the
PRF-PRNG as a random oracle).

Theorem 6. Assume that:

• CKA is a ACD-secure CKA scheme with ∆SM

• FS-AEAD is a ACD-secure FS-AEAD scheme, and

• H is modelled as a random oracle.

Then the DR protocol (c.f. Figure 7) is ACD-secure with ∆SM = 2 +∆CKA.

We will be using this to show security of the transformed protocols. For more details we refer
to Section 5.3 of the full version of ACD [ACD18].

A.2 Transformations to the DR and Their (In)Security

Now we are ready to present the six transformations, each of which we show to be insecure/incorrect
according to our weaker ideal functionality FDR, but secure with respect to ACD’s (Def. 13) and/or
CCD+’s [CCD+20] definition. Note that we make the same modifications CCD+ does, as neces-
sitated by their security model, in their analysis of the DR, when analyzing the security of the
transformed protocols (i.e., we remove data messages from the protocol, and send everything else
in plaintext, instead of inside the associated data of the AEAD encryption of a message).
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The transformed protocol T1(DR)

Init-P1 (k
P1)

(σroot, γ)← kP1

v[·]← ⊥
Tcur ← ⊥
ℓprv ← 0

tP1
← 0

Send-P1 (m)
if tP1

is even
ℓprv ← FS-Stop(v[tP1

− 1])
tP1

++

(γ, Tcur, I)
$← CKA-S(γ)

(σroot, k)← H(σroot, I)
v[tP1

]← FS-Init-S(k)

h← (tP1
, Tcur, ℓprv)

(v[tP1
], e)← FS-Send(v[tP1

], h,m)

return (h, e)

Rcv-P1 (c)
(h, e)← c
(t, T, ℓ)← h
req t even and t ≤ tP1

+ 1

if t = tP1
+ 1

ℓprv ← FS-Stop(v[tP1
])

tP1
++

FS-Max(v[t− 2], ℓ)

(γ, I)← CKA-R(γ, T)
(σroot, k)← H(σroot, I)

v[t]← FS-Init-R(k)

(v[t], i,m)← FS-Rcv(v[t], h, e)

if m = ⊥
error

return (t, i,m)

Figure 14: DR-based secure-messaging scheme as described by ACD in Page 30 of [ACD18] where
the PRF-PRNG algorithms are replaced with hash functions. The differences with our version of
the DR are highlighted in blue: basically the only difference is that FS-Stop is called inside the
sending algorithm in ACD instead of inside the receiving algorithm in our protocol. The figure
only shows the algorithms for P1; P2’s algorithms are analogous, with “even” replaced by “odd”.

A.2.1 T1: Postponed FS-AEAD Key Deletion

In this section we present a transformation that slightly modifies the usage of FS-AEAD scheme in
the DR protocol. This transformation alters the timing of the deletion of FS-AEAD states. In partic-
ular, instead of deleting the (old) FS-AEAD secret state (a.k.a. sending chain) when switching from
a sending epoch to a receiving epoch, this protocol does it when the next sending epoch is started.
The transformed protocol T1(DR) is described in Figure 14. Remarkably, ACD’s presentation of
the “Signal-based Secure-messaging protocol” is actually the same as this transformed protocol;
their composition theorem already proved (c.f. Theorem 6) that this protocol is secure according
to their definitions. However, it turns out that it is insecure according to our ideal functionality
FDR (it is also insecure according to CCD+’s notion). We show this by presenting an “injection
attack” which is formalized below.

Lemma 5. Suppose that the protocol T1(DR) is instantiated with a correct and secure CKA scheme
(with any ∆CKA) and a correct and secure FS-AEAD scheme. Then there exists a PPT adversary
against T1(DR) protocol in the real world for which there is no PPT simulator that realizes the
functionality FDR in the ideal world.

Proof. We propose an explicit attack strategy for an environment and a PPT adversary in the real
world. We exploit the fact that in protocol T1(DR) (alternatively ACD’s DR-based secure-messaging
protocol), parties do not update the sending chain until the next call to Send. This means that if
a party is compromised within the receiving epoch t (which is in-between two sending epochs t− 1
and t + 1), it leaks secrets pertaining to the immediately past sending epoch t − 1. We formalize
this strategy as follows:
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1. Once the setup is completed send a message m1 from P1 in epoch-1. Get the ciphertext c1.

2. Deliver the ciphertext c1 = (h, e) to P2 where h = (t, T, ℓ).

3. Send a message m2 from P2. Get the ciphertext c2 in epoch-2

4. Deliver the ciphertext c2 to P1.

5. Compromise P1. Get the secret state which includes v[1].

6. Choose an arbitrary m′ and then use v[1] to compute (v[1]′, e′)← FS-Send(v[1], h,m′).

7. Send m′ on behalf of P1 using the injection ciphertext c′ = (h, e′).

8. Finally, deliver c′ to P2.

Let us now explain how the attack works and why it cannot be simulated. Observe that P2

accepts the injected message m′ by executing Rcv-P1(c
′) due to the correctness of the underlying

schemes. The simulator cannot make this delivery successfully because this message m′ was not in
the transmission list P1.T and hence will be skipped by the ideal functionality in the first step of
the delivery. This concludes the proof.

Note that, we do not need to prove that T1(DR) is secure, when instantiated with secure FS-AEAD
and CKA schemes, as in Theorem 6, because this was already proven by ACD.

A.2.2 T2: Postponed CKA Key Deletion

We present our second transformation T2 here, which slightly modifies the CKA scheme in the DR

protocol. In particular, the modification holds on to the shared key derived by the CKA-R algorithm
for the entire receiving epoch and is deleted only when the next time CKA-S is run. Given any
CKA scheme for party P (CKA-Init-P,CKA-S,CKA-R) we define the modified scheme (CKA-Init-P′,
CKA-S′,CKA-R′) as:

• CKA-Init-P′ is the same as CKA-Init-P

• CKA-S′ takes a state γ and then:

1. parses γ as (Iprv, γ
⋆) and set Iprv ← ⊥;

2. runs (γ′, T, I)
$← CKA-S(γ⋆);

and then it outputs (γ′, T, I)

• CKA-R′ takes inputs (γ, T ) and then:

1. run (γ⋆, I)← CKA-R(γ, T );

2. Iprv ← I

3. γ′ ← (Iprv, γ
⋆)

and outputs (γ′, I)
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The transformed protocol T2(DR) can be obtained just by replacing the CKA algorithms with
the modified ones and hence a detailed description is omitted. We now prove that this modified
protocol is insecure in our framework (it is also insecure in CCD+’s framework).

Lemma 6. Suppose that the T2-modified CKA scheme described above is instantiated with a secure
CKA (Def. 9) scheme. Moreover, consider that the protocol T2(DR) is instantiated with a secure
FS-AEAD scheme (Def. 5). Then there exists a PPT adversary against the T2(DR) protocol for
which there is no PPT simulator that realizes the functionality FDR in the ideal world.

Proof. The attacker’s strategy is to compromise the sender right before a message is sent and then
compromise the receiver in the next epoch. Using the information obtained from both compromises
the adversary can recover all messages sent in this epoch – this information can not be simulated
in the ideal world to realize the ideal functionality FDR. The attacker’s strategy works as follows.

1. Send a message m1 from party P1 to P2 (with good randomness) and deliver it to P2 in
epoch-1.

2. Compromise P2 and obtain σroot.

3. In epoch 2, send a message m2 from P2 to P1 (with good randomness) and deliver it to P1.
Get the CKA message T and ciphertext c = (h, e).

4. Corrupt P1 and obtain its state that includes γ = (Iprv, γ
⋆).

5. Then recover m2 as follows:

• . . . , k ← H(σroot, Iprv);

• v[2]← FS-Init-S(k);

• . . . ,m2 ← FS-Rcv(v[2], h, e)

We argue why this attack is possible. First, observe that the new step added to the protocol
in CKA-R′ (highlighted in blue) stores the previous secret CKA key, I into a variable Iprv before this
is overwritten (and thus deleted) by (γ, T, I)← CKA-S(γ) in the Send-P1 algorithm. Furthermore,
(i) the root-key σroot that is obtained by the first compromise of P2 is the same as the root key σroot
used by the receiver’s algorithm Rcv-P1 and (ii) Iprv obtained by the compromise of P1 is the same
as the I used to encrypt m by P2 due to the correctness of the underlying primitives. Therefore
the plaintext can be derived correctly by the attacker.

Finally let us argue how this can not be simulated. To see this, observe that ciphertext
c is delivered and there are no further corruptions besides the one on P2 before she sends c, and
the one on P1 after she receives c. The first leak of course does not reveal m2 to the simulator
(since it has not yet been sent). More formally, from the description of FDR we observe that when
the epoch changes, that is New(P2, TURN,P2.T) returns 1, then the flag P2.CUR SLEK is reset to 0 in
Step 3 of Figure 3 – this is because P1 and P2 use good randomness while starting epochs 1 and 2
so that even with P1.CUR SLEK = 1, both P1.PLEK = P2.PLEK = 0. Also, the second leak does not
reveal m2: c is delivered so m2 is no longer in P2.T and m2 is never in P1.V (it is in P2.V which is
not leaked to the simulator). Thus the simulator only knows the length of m2 and cannot properly
simulate its leakage in the real world.
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Lemma 7. Suppose that the T2 modified CKA scheme CKA′ is instantiated with an ACD-secure
CKA scheme with ∆CKA ≥ 1. Also assume that T2(DR) is instantiated with a secure FS-AEAD
scheme. Then T2(DR) is a ACD-secure secure-messaging scheme with ∆SM = ∆CKA + 2.

Proof. We show that if there exists a PPT adversary A with non-negligible advantage against
the modified CKA scheme, then we can construct a PPT adversary (or reduction) B that breaks
the underlying CKA scheme with non-negligible advantage. Both security games are played with
respect to the ACD security game (c.f. Definition 15). Taking a closer look we observe that all
queries from A can be simulated by B using the challenger, except a corruption query following a
receive query. The state at this time additionally contains Iprv. Nevertheless, for any epoch t 6= t∗,
Iprv is just obtained by making a send-query which returns I = Iprv. But if the query sequence is
chall-P1 −→ receive-P2 −→ corr-P2, then Iprv is not always obtained (because when b = 1 a random
value is obtained instead). However, due to the restriction ∆CKA ≥ 1 such corruption query would
not return anything because both allow-corr and finishedP2

return 0 since tP2
= t∗. This concludes

the proof.

A.2.3 T3 : Eager CKA Randomness Sampling

This transformation slightly modifies how the CKA scheme is used in the DR protocol without
making any change to the CKA itself. In particular, the modification samples the randomness
that is to be used in the CKA-S algorithm of the next sending epoch while it is still in the prior
receiving epoch. We note that this transformation reflects the primary description of the Double
Ratchet algorithm in its white paper (in the main body) [MP16a], and also CCD+’s presentation.
However, Perrin and Marlinspike later state that better security can be achieved if the randomness
is indeed sampled within the actual sending epoch (as in our protocol). Moreover, we believe that
the security model of CCD+ itself, which only analyzes the key exchange component of the DR,
can be composed with an AEAD scheme to avoid the weakness of T3(DR). However, this needs to
be done carefully, and not as in their description of the DR.

We present the modified protocol T3(DR) in Figure 15 and prove that this is insecure with
respect to our ideal functionality FDR.

Lemma 8. Suppose that the protocol T3(DR) is instantiated with a secure CKA (Def. 9) scheme
and a secure FS-AEAD scheme (Def. 5). Then there exists a PPT adversary against the T3(DR)
protocol for which there is no PPT simulator that realizes the functionality FDR in the ideal world.

Proof. We propose an explicit attack strategy for an environment and an adversary in the real
world. The adversary never instructs the parties to use bad randomness.

1. Send a message m1 from P1. Get the ciphertext c1.

2. Deliver the ciphertext c1 to P2.

3. Compromise P2. Get the secret state which includes r, γP2 , σroot.

4. Send a message m2 from P2. Get the ciphertext c2 = (h2, e2).

5. Use γ and r and then compute:

(a) (. . . , I)← CKA-S(γP2 ; r);
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The transformed protocol T3(DR)

Init-P1 (k
P1)

(σroot, γ)← kP1

v[·]← ⊥
Tcur ← ⊥
ℓprv ← 0

tP1
← 0

r
$← R

Send-P1 (m)
if tP1

is even
tP1

++
(γ, Tcur, I)← CKA-S(γ; r)
(σroot, k)← H(σroot, I)
v[tP1

]← FS-Init-S(k)

h← (tP1
, Tcur, ℓprv)

(v[tP1
], e)← FS-Send(v[tP1

], h,m)

return (h, e)

Rcv-P1 (c)
(h, e)← c
(t, T, ℓ)← h
req t even and t ≤ tP1

+ 1

if t = tP1
+ 1

ℓprv ← FS-Stop(v[tP1
])

tP1
++

FS-Max(v[t− 1], ℓ)

(γ, I)← CKA-R(γ, T)

r
$← R

(σroot, k)← H(σroot, I)

v[t]← FS-Init-R(k)

(v[t], i,m)← FS-Rcv(v[t], h, e)

if m = ⊥
error

return (t, i,m)

Figure 15: The difference from the DR are highlighted in blue.

(b) (. . . , k)← H(σroot, I);

(c) v[2]← FS-Init-R(k);

(d) (. . . ,m2)← FS-Rcv(v[2], h2, e2);

6. Output m2.

It is easy to see that the attack works due to the correctness of the underlying schemes. Furthermore,
note that the simulator can not obtain m2 in the ideal world, because compromising/leaking on P2

before it sends m2 will not reveal m2 (as in the proof of Lemma 6).

Lemma 9. Suppose that T3(DR) is instantiated with an ACD-secure CKA scheme with ∆CKA and
an ACD-secure FS-AEAD scheme. Then T3(DR) is a ACD-secure secure-messaging scheme with
∆SM = ∆CKA + 2.

Proof. We construct a reduction B against a challenger, which is running the secure-messaging
game with the original DR protocol; B uses an adversary A who is trying to gain a non-negligible
advantage in a secure-messaging game running protocol T3(DR). Note that, the only difference in
the two schemes is that in the modified scheme the randomness r is sampled one epoch earlier.
Therefore, when a corr-P query is received from A followed by a deliver-P query, then B must
simulate the randomness r, which it uses in the next epoch (when P becomes a sender). B simulates
this by sampling a random r and giving that to A. However, in order to do so, it uses the transmit
oracle with randomness r: transmit-P(m, r). This does not work if A makes a chall-P call right
after. However, since ∆SM ≥ 2, this can not happen. Hence, the simulation can be done. The other
oracles are simulated straightforwardly by using the challenger as there is no other change in the
protocol. This concludes the proof.
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A.2.4 T4: Malleable Ciphertexts

For our proof that the DR UC-realizes FDR, we crucially assume that the underlying CKA protocol
provides non-malleability guarantees. More specifically, recall that in Definition 7 for CKA in this
paper, we include the test(t, T, I) oracle, which outputs 1 if the corresponding receiver in epoch t
would on input CKA message T output I; and 0 otherwise. In order to prove that the DR CKA is
secure with respect to this definition, we used the StDH assumption.

In this section, we elaborate on the need for such non-malleability, by first showing that the
DR building blocks can be used to build PKE, even if some of the secret information of the DR

parties is not hidden. Then, we apply T4 to the DR, which replaces the CKA secure with respect to
Definition 7, with one that permits the existence of an adversary that given a ciphertext encrypting
m from the above PKE scheme, can successfully maul it into a new ciphertext encrypting m + 1.
Based on this, we show that T4(DR) does not UC-realize FDR.

We further observe that if our derived PKE scheme is instantiated using the building blocks of
the real DR protocol, then this PKE is (a variant of) hashed ElGamal. Hashed ElGamal is known
to be CPA-secure based on the DDH assumption, but however, is only known to be CCA-secure
under the stronger StDH assumption. Thus such malleability attacks could in theory exist against
the DR, if for example, a group in which DDH is hard, but not StDH, is used. This is why we need
to assume StDH-security for our proof that the DR UC-realizes FDR, and not just DDH-security.

On the other hand, the DR does not need such non-malleability guarantees to achieve ACD-security,
since ACD prove it secure based on a CKA definition without such a test() oracle (for the DR CKA,
this is proved using only DDH). Thus, generally, if an instantiation of the DR with a CKA that
prevents against malleability is transformed via T4 into an instantiation of the DR with a CKA
that is prone to malleability, then the DR is still ACD-secure but is not secure according to FDR.
More generally, we highlight a gap in the provable security of the DR, based on whether only DDH
is secure, or if also StDH is secure.

CCD+-security also does not provide all of the non-malleability guarantees of FDR, since their
security definition only covers key exchange, and not any actual message transmission. Thus,
Transformation T ′

4 (which we omit for brevity, but is almost identical to T4), in which the underlying
AEAD of the FS-AEAD scheme is replaced with a symmetric encryption scheme that does not
provide authentication and hence is susceptible to malleability attacks is clearly insecure according
to FDR, yet, the underlying key exchange protocol is in fact CCD+-secure.

PKE from the DR building blocks with (partially) exposed secrets. Here, we observe
that PKE can be constructed from the DR building blocks, even if the root KDF chain key σroot is
not hidden. Assume that there are some publicly known values σ and h.

• The generation algorithm Gen() first samples random CKA initialization key k, then sets
(sk, pk)← (CKA-Init-P2(k),CKA-Init-P1(k)).

• The encryption algorithm Enc(pk,m) first computes (·, T, I)← CKA-S(pk), then k ← H(σ, I),
v ← FS-Init-S(k), (·, e)← FS-Send(v, (T, h),m), and finally c← (T, e).

• The decryption algorithm Dec(sk, c) parses (c1, c2)← c and computes (·, I)← CKA-R(sk, c1),
then k ← H(σ, I), v′ ← FS-Init-R(k), and finally (·, ·,m) = FS-Rcv(v′, (c1, h), c2).

One can observe that if the above PKE scheme is instantiated using the CKA of the DR, then
the PKE scheme is essentially hashed ElGamal: The secret key is exponent a, the public key is
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ga, exponent b (and gb) is sampled during encryption, then AEAD key k is derived by both the
encryptor and decryptor by hashing shared DDH secret gab (and public information), and finally
m is encrypted using the AEAD with key k.

Intuitively, CPA-security of this PKE scheme comes from that of the underlying CKA, since I
should be hidden given just the CKA state of the CKA sender before transmitting, and the resulting
CKA message that is in the ciphertext (c.f. Section 4.3). However, it is unclear if this PKE scheme
provides CCA-security, particularly if the underlying CKA does not acheive the security definition
with a test() oracle—how does the reduction answer decryption queries? In fact, there could,
for example, exist some PPT adversary A that on input ciphertext from our above PKE scheme,
c ← Enc(pk,m), and public information σroot, h, can with non-negligible probability maul this
ciphertext to create c′ such that m+ 1← Dec(sk, c′).

Malleability attack on the DR. Now assume that T4(DR) uses a CKA scheme that is secure
with respect to the definition of ACD in Definition 15, but for which such an attacker A above does
exist. Then, although T4(DR) is ACD-secure with this CKA scheme, it does not realize FDR.

Lemma 10. Assume that malleability adversary A above exists. Then there exists a PPT adversary
against the DR for which there is no PPT simulator that realizes FDR in the ideal world.

Proof. We propose an explicit attack strategy for an environment and an adversary in the real
world.

1. After Setup (initialized by P1), corrupt P1. This leaks σroot to the attacker.

2. Send a message m1 from P1. Get the ciphertext c1 = (h1, e1), h1 = (t, ℓ, T ).6

3. Compute c′1 ← A((T, e1), σroot, (t, ℓ)).

4. Deliver c′1 to P2.

5. When P2 outputs m′
1, the attacker outputs m′

1 − 1.

Now, since A is successful with non-negligible probability, then with non-negligible probability, P2

decrypts c′1 to m1 + 1 and then our attacker outputs m1.
However, in the ideal world, the simulator does not get m1 from the functionality and therefore

only with negligible probability can create ciphertext c1 such that P2 will decrypt it to m1 +1 and
output that. More formally, from the description of FDR, we observe that when P1 starts the first
epoch, although flag P2.CUR SLEK is set to 1 after the first leakage, if P1 has good randomness then
both P1.PLEK = P2.PLEK = 0, so P1.CUR SLEK is set to 0 and thus the simulator is only given the
length of m.

Intuitively, this attack cannot be executed according to the ACD definition, since such an
injection of mauled ciphertext c′1 after corruption of P1 is not allowed. More formally, after the
corruption of P1 in the ACD defintion, tL is set to 0. Since for the DR, they prove security with
respect to ∆SM = 3, tP2

will still be 0 and thus safe-inj will evaulate to false. Thus, no matter if
such a malleability attack can be performed, the same level of security can be proved for the DR

according to the ACD definition.

6We reorder for simplicity; the attack can easily be performed on the original order as presented in ACD.
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The transformed protocol T5(DR)

Init-P1 (k
P1)

(σroot, γ)← kP1

v[·]← ⊥
Tcur ← ⊥
ℓprv ← 0

tP1
← 0

plain← 0

Send-P1 (m)
if tP1

is even
tP1

++

r
$← R

if r = 0|r|

plain← 1
(γ, Tcur, I)← CKA-S(γ; r)
(σroot, k)← H(σroot, I)
v[tP1

]← FS-Init-S(k)

if plain = 0
h← (tP1

, Tcur, ℓprv)
(v[tP1

], e)← FS-Send(v[tP1
], h,m)

return (h, e)

else
return m

Rcv-P1 (c)
(h, e)← c
(t, T, ℓ)← h
req t even and t ≤ tP1

+ 1

if t = tP1
+ 1

ℓprv ← FS-Stop(v[tP1
])

tP1
++

FS-Max(v[t− 1], ℓ)

(γ, I)← CKA-R(γ, T)
(σroot, k)← H(σroot, I)

v[t]← FS-Init-R(k)

(v[t], i,m)← FS-Rcv(v[t], h, e)

if m = ⊥
error

return (t, i,m)

Figure 16: The differences from the DR are highlighted in blue.

A.2.5 T5: CKA Bad Randomness Plaintext Trigger

This transformation changes the DR protocol to send everything in plaintext if the all-0 random
string is sampled during CKA-S. This highlights the additional power that our (and ACD’s) ad-
versary gets in choosing bad randomness for certain messages, as opposed to only randomness
reveals of uniform randomness as in the model of CCD+. Although the reader might view this
transformation as highly artificial, as pointed out by [BRV20], there are real-world attacks that
randomness reveals do not capture, but which allowing the adversary to choose bad randomness
does capture; for example, attacks against randomness sources (e.g., [HDWH12]) and/or generators
(e.g., [CNE+14,YRS+09]). Furthermore this difference has a tangible impact on protocol design,
particularly in Secure Messaging, as the results of [BRV20] show.

We present the modified protocol T5(DR) in Figure 16 and prove that this is insecure with
respect to our ideal functionality FDR (it is also insecure in ACD’s notion).

Lemma 11. Suppose that the protocol T5(DR) is instantiated with CKA from Section 4.3.3 and a
secure FS-AEAD scheme (Def. 5). Then there exists a PPT adversary against the T5(DR) protocol
for which there is no PPT simulator that realizes the functionality FDR in the ideal world.

Proof. We propose a simple attack strategy for an environment and an adversary in the real world,
utilizing bad randomness.

1. Send a message m from P1 with bad randomness 0|r|. Get the ciphertext c.

2. Since the ciphertext c is just m unencrypted, output m.

It is easy to see that the attack works based on the description of T5(DR). Furthermore, note
that the simulator can not obtain m in the ideal world, because solely instructing P1 to use bad
randomness 0|r| when it sends m will not reveal m. This is because in Step 3 of Figure 3, only
P.PLEK← 1 is set, but P̄.CUR SLEK = 0, so P.CUR SLEK← 0. Thus m is not passed to S.
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The transformed protocol T6(DR)

Init-P1 (k
P1)

(σroot, γ)← kP1

v[·]← ⊥
Tcur ← ⊥
ℓprv ← 0

tP1
← 0

Send-P1 (m)
if tP1

is even
tP1

++
(γ, Tcur, I)← CKA-S(γ)
(σroot, k)← H(σroot, I)
v[tP1

]← FS-Init-S(k)

h← (tP1
, Tcur, ℓprv)

Tcur ← ⊥
(v[tP1

], e)← FS-Send(v[tP1
], h,m)

return (h, e)

Rcv-P1 (c)
(h, e)← c
(t, T, ℓ)← h
req t even and t ≤ tP1

+ 1

if t = tP1
+ 1

if T = ⊥
return ⊥

ℓprv ← FS-Stop(v[tP1
])

tP1
++

FS-Max(v[t− 1], ℓ)

(γ, I)← CKA-R(γ, T)
(σroot, k)← H(σroot, I)

v[t]← FS-Init-R(k)

(v[t], i,m)← FS-Rcv(v[t], h, e)

if m = ⊥
error

return (t, i,m)

Figure 17: The differences from the DR are highlighted in blue.

Lemma 12. Suppose that T5(DR) is instantiated with CKA from Section 4.3.3 and the FS-AEAD
scheme of Figure 5. Then T5(DR) is a CCD+-secure secure-messaging scheme.

Proof. Since in the CCD+ security model, Send is always executed with uniform randomness, the
probability that the all-0 string is sampled is negligibly small. Thus the real-world game in which
T5(DR) is used is statistically-indistinguishable from a game in which the DR is used, with CKA

from Section 4.3.3, which is the version of the DR that CCD+ analyzes. Since this version of the
DR is secure according to CCD+, we are done.

A.2.6 T6: Removed Immediate Decryption

This transformation changes the DR protocol to only include CKA messages in the first ciphertext
of each epoch. Thus, if a party receives the ith ciphertext of an epoch before the first message, they
cannot successfully decrypt it. This highlights the fact that the formal model of CCD+ does not
consider the notion of immediate decryption (nor correctness more generally). One might argue
that this is an easy fix to make to the model of CCD+. However, as [ACD19] explain, immediate
decryption is an important practical requirement of the DR, and one of the main strengths of the
DR is achieving PCS and FS while still maintaining immediate decryption. Furthermore, properly
modelling immediate decryption allows subsequent work to understand it, and further improve
upon the DR with the requirement in mind. Indeed, many of the works which we are aware
of [BSJ+17, DV17, JS18, JMM19a, PR18], besides [ACD19], which try to improve the DR do not
consider immediate decryption in their security models or constructions, arguably thrusting these
works outside of the practical realm.

We present the modified T6(DR) in Figure 17 and prove that it is insecure with respect to our
ideal functionality FDR (it is also insecure according to ACD’s notion).
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Lemma 13. Suppose that the protocol T6(DR) is instantiated with CKA from Section 4.3.3 and the
FS-AEAD scheme of Figure 5. Then there exists a PPT adversary against the T6(DR) protocol for
which there is no PPT simulator that realizes the functionality FDR in the ideal world.

Proof. We propose a simple attack strategy for an environment and an adversary in the real world,
delivering messages out of order.

1. Send two messages m1,m2 from P1 and obtain ciphertexts c1, c2.

2. Deliver the second ciphertext c2 to P2.

In the real world, P2 will output ⊥ after receiving c2. However, due to the definition of the ideal
functionality of Figure 3, the simulator cannot force P2 to output ⊥. This is because no corruption
has occurred and thus messages can only honestly be delivered. Thus, the simulator can only force
P2 to output m1 or m2, not ⊥, and so the real world and ideal world are easily distinguished.

Lemma 14. Suppose that T6(DR) is instantiated with the CKA scheme from Section 4.3.3 and the
FS-AEAD scheme of Figure 5. Then T6(DR) is a CCD+-secure secure-messaging scheme.

Proof. The only thing that changes in T6(DR) is that the CKA message T is only included in the
first ciphertext of an epoch. Thus, for i 6= 1, the ith message key and chain key of an epoch (i.e.,
the i-th AEAD key Ki and seed wi, respectively, computed by FS-AEAD) can only be computed
if the first ciphertext of that epoch was delivered beforehand. In fact, every ciphertext is simply
discarded by the protocol if the first ciphertext of the corresponding epoch was not yet delivered.
In the language of CCD+, wi is the input state of the stage corresponding to the ith message of
the epoch. This is what is revealed to the adversary upon corruption of a participant in this stage.
Note that this input state can only be set if the first ciphertext of the epoch is delivered beforehand,
since the stage is identified in part by the CKA message T of the epoch (i.e., the ratchet public key),
which cannot be known by the receiver until such reception. However, once this first ciphertext is
delivered, the protocol proceeds as usual.

Since in the CCD+ security game against T6(DR), the adversary will receive no more information
than it does against the DR, and needs to distinguish the same keys from random, security of T6(DR)
follows from their analysis.

B The Model in Detail

In this section we provide details of the model, a lot of which is taken from Bitanksy et al. [BCH12].

B.1 UC Security: A Brief Overview

We summarize the UC security framework of Canetti [Can01]. For brevity and simplicity, we de-
scribe a somewhat restricted variant á la [BCH12]; still, the summary is intended to provide suffi-
cient detail for verifying the treatment in this work. The description below is taken almost verbatim
from [BCH12]. Further elaboration and justification of definitional choices appears in [Can01].

B.1.1 The Basic Model of Computation

We first present the underlying model of computation, which provides the basic mechanics on top
of which the notion of protocol security is defined.
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Interactive Turing Machines (ITM). The basic computing element is an Interactive Turing
Machine (ITM), which represents a program written for a distributed system. The UC framework
uses a formalism of an ITM that augments the original formalism of [Gol04,GMR89] with some
additional structure, for the purpose of capturing protocols in multi-party, multi-instance systems.
Specifically, an ITM is a Turing machine (one may consider any standard definition such as [Sip97])
with the following additional constructs. It has three special tapes that represent three different
types of information coming from external sources: (i) The input tape represents information
coming from the “calling protocol” (for now consider a protocol to be just another ITM, we shall
formalize it below); (ii) the communication tape represents information coming from other parties
over untrusted communication links; (iii) the subroutine output tape represents information coming
from “subroutine protocols” in a trusted way. In addition, an ITM has a special identity tape
which cannot be written on by the ITM transition function, or program. The contents of the
identity tape is interpreted as three values: The program of the ITM, represented in some canonical
form; a session-identifier (sid), representing a specific protocol session; and a party identifier (pid),
representing an identity of a party within that session. In the context of this work we will use the
pid as an indicator of the physical device on which the ITI runs. That is, all the ITIs that represent
processes that run on the same physical device (and can thus leak in a correlated way) have the
same pid. Finally, to the standard ITM syntax we add the ability to perform an external write
instruction. The semantics of this instruction are defined below.

Systems of ITMs. Running programs in a distributed system is captured as follows. An ITM
instance (also called an ITI) µ ← (M, id) is an ITM M (alternatively, a program) along with a
string id← (sid, pid), called the identity of µ. An ITI represents a running instance of the ITM M
where the identity id is written in its identity tape. A system of of ITMs is a pair (M,C) where M
is an ITM and C : {0, 1}∗ → {0, 1}∗ is a control function that determines the effect of the external
write commands.

An execution of a system (M,C) of ITMs, on input x, consists of a sequence of activations of
ITIs. Initially, the system consists of a single ITI with ITMM , some fixed identity (say, id0 = (0, 0)),
and x written on the input tape. This ITI, µ0 ← (M, id0) is then activated.

In each activation of an ITI, the active ITI runs its program. The execution ends when the
initial ITI µ0 halts. The output of the execution is the output of the initial ITI.

It remains to specify the effect of the external-write operation of an arbitrary ITI µ⋆, that is
active at any given point. This operation specifies three things: (i) a target ITI µ (say); (ii) one
of its tapes τ ∈ {input, communication, subroutine output}; (iii) and the data δ to be written.
When an external-write operation is carried out, the control function C is applied to the sequence
of external write requests in the execution so far. Then:

1. If C returns 1 then:

(a) If an ITI with the same identity as the target ITI does not exist in the system then a
new ITI with the given specification µ.

(b) The data δ is written to the specified tape τ of ITI µ (this is uniquely determined).

The active ITI µ⋆ becomes inactive and the target ITI µ becomes active.

2. If C returns 0 or the ITI µ⋆ halts, then the initial ITI µ0 is activated.
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3. If C returns another value, parse that as a description of an ITM M . The effect is the same
as in Case-1 except, the program of µ is replaced by M instead of the original value specified
in the command.

Subroutines. An ITI µsub is a subroutine of another ITI µmain in an execution if µmain wrote to
the input tape of µsub or µsub wrote to the subroutine output tape of µmain.

Protocols and protocol instances. A protocol π is formalized as a single ITM, that represents
the programs to be run by all the intended participants. A protocol may specify different roles, in
that case the single ITM describes the programs for all the roles and the role is given to the specific
party as part of an input. For example, in a secure message transmission protocol, the sender and
the receiver has different roles and therefore run different programs. An instance (or session) of
a protocol π with session identifier sid, within a system of ITMs, is the set of ITIs that run the
program π and whose session identifier is sid.

Polyonomial Time ITMs. We consider ITMs that run in probabilistic polynomial time (PPT),
where PPT is defined as follows: an ITM M is PPT if there exists a constant c > 0 such that, for
any ITI µ with program M , at any point during its run, and for any contents of the random tape,
the overall number of steps taken is at most nc, where n is the overall number of bits written on
the input tape of µ minus the overall number of bits written by µ to input tapes of other ITIs. An
execution of a system of ITM is said to be run in PPT if the initial ITM is PPT and the control
function is computable in probabilistic polynomial time by any TM.

B.1.2 Security of Protocols.

Recall that real world protocols that securely implement a given task are defined via comparison
with an ideal process for carrying out the task. Formalizing this notion is done in several steps,
as follows. First, we define the process of executing a protocol in the presence of an adversarial
environment. We then define what it means for one protocol to “emulate” another protocol. Next,
we define the ideal functionality for carrying out the task. A protocol is said to securely carry out
the task if it emulates the idealized protocol for that task.

The model for protocol execution. The model for executing a protocol π is parametrized
by a security parameter κ ∈ N, and three ITMs: the protocol implementation π an adversary A,
which represents the adversarial activity against a single instance of π, and an environment Z,
which represents the rest of the system. Specifically, to execute the protocol π on input x, execute
the system of ITMs (Z, CA,π), CA,π being the control function for the protocol π in presence of an
adversary A — it remains to describe this control function, namely the external write capabilities
of each ITI.

In essence, the definition of CA,π captures a model where a single instance of π interacts with
Z and A, in that Z controls the inputs to parties and reads the outputs. All communication (via
the communication tapes) must pass through A. In addition, the parties of π can create subroutine
ITIs, can write to the input tapes of the subroutines, and receive outputs from the subroutine on
the subroutine output tapes of the calling parties. More precisely:
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• External writes by the environment: The environment can write only to the tapes of other
ITIs. The program of the first ITI invoked by the environment is set (by the control function)
to be the program of the adversaryA. The programs of all the other ITIs that the environment
writes to are set to be the protocol π. In addition, the SIDs of all the ITIs invoked by the
environment (except A) must be the same, which implies that all of those ITIs with the same
sid belong to the same instance of π.

• External writes by the adversary: The adversary can write only to the communication tapes
of ITIs. In addition, it is not allowed to create new ITIs; namely, if the adversary performs
an external write request with non-existing target ITI, the control function returns 0.

• External writes by other ITIs: An ITI µ other than the environment and the adversary can
write only to: (i) the subroutine output tapes of ITIs that have previously written to the
input tape of µ; (ii) the input tapes of ITIs that µ has invoked; (iii) and to the input tapes
of ITIs with the same session ID as µ. In addition, it can write to the communication tape
of the adversary. (Writing to input tapes of ITIs is the same SID will become useful when
defining ideal protocols.)

We also use the convention that creation of a new ITI must be done by writing to the input tape of
that ITI; the data written in this activation must start with 1κ , where κ is the security parameter.

Modeling party corruption specific to our setting. Since the modeling of party corruption
will be central to our modeling of leakage and bad randomness, we describe it in more detail.
Formally, party corruption is modeled as a special message sent by the adversary to the corrupted
party (ITI). Different types of corruptions (e.g., passive, Byzantine) are modeled as parameters
in the corruption message. The response of a party (ITI) to an incoming corruption message is
formally treated as part of the protocol specification. This modeling has the advantage that general
notions and theorems such as UC emulation, the UC theorem, and the universality of the dummy
adversary apply regardless of the specific corruption model. However, some additional formalism is
necessary in order to make sure that the formal corruption operation corresponds to the generally
accepted intuitive notion of party corruption. Specifically, we assume that an ITM is corruption
compliant if its program consists of a main program σ (which can be thought of as an “operating
system” of sorts), and a subroutine π which represents the actual program run by the ITM. The
main program relays all inputs, incoming messages, and subroutine outputs to π, with the exception
of the corruption messages sent by the adversary. The behavior of σ upon receipt of the corruption
message essentially determine the corruption model.

Let us specify the behavior of σ for two salient types of corruption. In the case of passive party
corruption, σ behaves as follows. When an ITI µ receives the first corruption message, the σ part of
the code of µ reports that µ has been corrupted to all the ITIs that have written on µ’s input tape.
Upon receipt of all other corruption messages, σ returns to the adversary the entire current state
of π. Note that π is never notified of the corruption message; this captures the intuitive concept
that a party is generally not aware of being passively corrupted. Also, note that here the adversary
has to explicitly ask for each new report of internal state; however this formalism is chosen for
convenience only and is of no real consequence. Our leakage (alternatively state-compromise) is
modeled as a restricted form of passive corruption, in that σ returns the secret-state only once; in
particular, unlike the standard passive corruption this is just a one-time affair in which the future
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states of µ are not returned. Nevertheless, leakage requests can be made multiple time, each of
which is addressed with a one-time state-return (plus reporting to the other ITIs that have written
to µ’s input tape).

In the case of Byzantine/malicious/active corruptions, it is assumed that the corruption message
from the adversary includes in it a description of an ITM M . Here σ behaves the same as
before, except that it immediately replaces the code M instead of π. Our bad-randomness (or
adversarially chosen randomness) corruption can be thought of as a restricted form of malicious
corruption, in that the adversary instead provides description of a specific ITM, which runs the code
of π except that now the code does not read from its own randomness tape, but takes the adverserial
randomness provided as part of the ITM. This is also notified to all ITIs that have written to µ’s
input tape. Such bad randomness is used until the adversary sends another corruption request
with an ITM that runs exactly the code of π reading from its own randomness tape – again this is
reported to all ITI’s that have written to µ’s input tape.

Let Execπ,A,Z(κ, z) denote the output distribution of the environment Z when interacting
with parties running protocol π on security parameter κ and input z. Let Execπ,A,Z denote the
ensemble {Execπ,A,Z(κ, z)}κ∈N,z∈{0,1}∗ .

Protocol emulation. Informally, we say that a protocol π UC-emulates protocol π′ if for any
adversary A there exists an adversary A′ such that no environment Z, on any input, can tell with
non-negligible probability whether it is interacting with A and parties running π or it is running
π′. This means that, from the view of the environment, running protocol π is “just as good” as
interacting with π′.7 This notion is formalized as follows. A distribution ensemble is called binary
if it consists of distributions over {0, 1}. We have:

Definition 17. Two binary distribution ensembles {X(κ, a)}k∈N,a∈{0,1}∗ and {Y (κ, a)}k∈N,a∈{0,1}∗
are called indistinguishable (written X ≈ Y ) if for any c, d ∈ N there exists κ0 ∈ N such that for

all κ > κ0 and for all a ∈ {0, 1}κd

we have:

|Pr[X(κ, a)]− Pr[Y (κ, a)]| < κ−c

Definition 18 (Protocol emulation). Let π and π′ be two protocols. We say that π UC emulates π′

if for any adversary A there exists an adversary A′ such that for any environment Z that outputs
a value in {0, 1} we have:

Execπ,A,Z ≈ Execπ′,A′,Z

This work makes use of the following simplified formulation of UC emulation. Let the dummy
adversary D be the adversary that merely reports to the environment all the messages sent by
the parties, and follows the instructions of the environment regarding which messages to deliver to
parties. Then, it is enough to prove security with respect to the dummy adversary. That is:

Definition 19 (Protocol emulation with the dummy adversary). Let π and π′ be two protocols.
We say that π UC emulates π′ with the dummy adversary if there exists an adversary A′ such that
for any environment Z that outputs a value in {0, 1} we have:

Execπ,D,Z ≈ Execπ′,A′,Z

7To be precise, the definition of protocol emulation only quantifies over balanced environments. An environment
is balanced if at any point in time the overall length of input to the adversary is at least some polynomial in the
overall length the of inputs given to the rest of the ITIs in the system. As explained in [Can01], failing to make
this restriction makes the definition unreasonably strong, and also causes technical problems with the composition
theorem.
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Claim 1 ( [Can01]). Protocol π UC-emulates protocol π′ iff π UC-emulates π′ with respect to
dummy adversary.

Ideal functionalities and ideal protocol. A key ingredient in the ideal process for a given task
is the ideal functionality that captures the desired behavior, or in other words, the specification
of that task. The ideal functionality is modeled as an ITM (representing a “trusted party”) that
interacts with the parties and the (ideal) adversary. For convenience, the process for realizing an
ideal functionality is represented as a special type of protocol, called an ideal protocol denoted IF .
The adversary interacting with the ideal protocols is called the simulator and denoted S. Executing
the ideal protocol IF on input x formally means executing the system of ITMs (Z, CS,IF ), CS,IF

being the control function for the protocol IF in presence of the adversary S. Informally, the
execution works of the ideal protocol IF works as follows: all parties simply hand their inputs to
an ITI with program F plus a session ID that is equal to the local session ID, and party ID set to
some fixed value, say ⊥. Whenever a party in IF receives a value from F on its subroutine output
tape, it immediately copies this value to the subroutine output tape of the ITI that invoked it. We
call the parties of the ideal protocol dummy parties.

Definition 20 (Realizing functionalities). Let π be a protocol, and let F be an ideal functionality.
We say that π UC-realizes F if π UC-emulates IF , the ideal protocol for F .

Ideal functionalities and party corruption. An ideal functionality represents an ideal spec-
ification, rather than an actual program that runs on an actual, physical device. Thus, party
corruption messages sent to an ideal functionality do not directly represent physical corruption. In-
stead, the behavior of an ideal functionality upon receipt of corruption messages from the adversary
specifies the security requirements from the realizing protocols upon party corruption.

In general, ideal functionalities can modify their behavior in arbitrary ways as a function of the
corruption requests received from the adversary so far. (For instance, an ideal functionality may
allow the adversary to modify sensitive information as soon as more than some number of parties
have been corrupted.) Still, we define some “standard” behavior of an ideal functionality in face of
corruption. Specifically, we say that an ideal functionality F is standard corruption if:

1. An instance of F with SID sid keeps some “ideal local state” stateP for each dummy party
(sid, P ) that interacts with this instance of F . (Here P is the PID of this dummy party.)

2. Upon receipt of the first “corrupt P” message from the adversary, F first notifies the dummy
party (sid, P ) that it has been corrupted. Next, in each future “corrupt p” message, F returns
to the adversary the contents of the ideal state stateP .

It is stressed that a standard corruption functionality can specify additional instructions to be
performed upon receipt of a corruption message; it can also alter its overall behavior as exemplified
above.

Universal Composition. Let ρφ be a protocol that uses one or more instances of some protocol
φ as a subroutine, and let π be a protocol that UC-emulates φ. The composed protocol ρπ is
constructed by modifying the program of ρφ so that calls to φ are replaced by calls to π. Similarly,
subroutine outputs coming from π are treated as subroutine outputs coming from φ. The universal
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composition theorem says that protocol ρπ behaves essentially the same as the original protocol
ρφ. That is:

Theorem 7 (Universal Composition [Can01]). Let π, φ, ρ be protocols, such that π UC-emulates
φ. Then the protocol ρπ UC-emulates ρφ. In particular, if ρφ UC-realizes an ideal functionality F ,
then so does ρπ.

We note that the universal composition theorem hold only in the case where protocols π and
φ are modular. Essentially, a protocol is modular if in no instance s of this protocol there is a
subroutine ITI I of some ITI which is part of the instance (or a subroutine thereof), where I
receives input from or sends outputs to and ITI that is not a descendant of a member of instance
s. Alternatively, modular protocols are also called subroutine respecting [Can01].
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