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We propose AccHashtag, the irst framework for high-accuracy detection of fault-injection attacks on Deep Neural Networks

(DNNs) with provable bounds on detection performance. Recent literature in fault-injection attacks shows the severe DNN

accuracy degradation caused by bit lips. In this scenario, the attacker changes a few DNN weight bits during execution by

injecting faults to the dynamic random-access memory (DRAM). To detect bit lips, AccHashtag extracts a unique signature

from the benign DNN prior to deployment. The signature is used to validate the model’s integrity and verify the inference

output on the ly. We propose a novel sensitivity analysis that identiies the most vulnerable DNN layers to the fault-injection

attack. The DNN signature is constructed by encoding the weights in vulnerable layers using a low-collision hash function.

During DNN inference, new hashes are extracted from the target layers and compared against the ground-truth signatures.

AccHashtag incorporates a lightweight methodology that allows for real-time fault detection on embedded platforms. We

devise a specialized compute core for AccHashtag on ield-programmable gate arrays (FPGAs) to facilitate online hash

generation in parallel to DNN execution. Extensive evaluations with the state-of-the-art bit-lip attack on various DNNs

demonstrate the competitive advantage of AccHashtag in terms of both attack detection and execution overhead.

CCS Concepts: · Computer systems organization → Embedded systems; Reliability; · Computing methodologies →

Machine learning.

Additional Key Words and Phrases: Deep Learning, Fault-injection, Bit-lip attack, Hashing, Embedded Systems

1 INTRODUCTION

Deep Neural Networks (DNNs) have enabled a transformative shift in various applications ranging from natural

language processing and computer vision to healthcare and autonomous driving. With the deep integration of

autonomous systems in safety-critical tasks, model assurance and decision robustness have gained imminent

importance [7, 8]. Although DNNs demonstrate superb accuracy in controlled settings, it has been shown that

they are particularly vulnerable to fault-injection attacks. Recent work [5, 20] demonstrates how changing a few

bits of the victim DNN’s weights can reduce the classiication accuracy to below random guess. These malicious

bit lips have been realized in DNN accelerators via rowhammer attacks on the DRAM containing the model

weights [31].

In response to bit-lip attacks, prior work suggests adding speciic constraints on DNN weights during training

such as binarization [23], clustering [4], or block reconstruction [14]. Adding such constraints increases the

number of bit-lips required to deplete the inference accuracy, however, they do not entirely mitigate the

threat. Additionally, the proposed constraints often severely afect the underlying DNN’s test accuracy. Other

work [15, 16] propose to use machine learning (ML) based techniques where a simpler model is trained to detect

faults in the victim DNN. However, their detection rate and false positive rate are bound by the accuracy of the

ML-based detector. To ensure DNN robustness, it is crucial to augment autonomous systems with an online fault
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detection strategy that delivers strict performance guarantees. To the best of our knowledge, none of the earlier

works provide the needed detection strategy.

We propose AccHashtag, a highly accurate real-time fault detection methodology for DNNs deployed in

embedded applications. AccHashtag is the irst method to provide strict statistical bounds on fault detection

performance and deliver 0% false positive rate. AccHashtag extracts a unique signature from the benign DNN

prior to deployment. At runtime, the signature is used to validate the integrity of the DNN and verify the inference

output on the ly. We propose to leverage a low-collision hashing scheme, called the Pearson hash, to extract

an 8-bit signature from the pertinent weights in each DNN layer. Our hash-based signature extraction delivers

several beneits: (1) hash-based integrity check enables accurate fault detection that is robust to false alarms.

(2) The hash algorithm is devised particularly for low-overhead execution on commodity processors. We design a

customized FPGA core for hash generation and veriication that works alongside the co-processor that hosts the

target DNN. Concurrent with DNN execution, the weights are streamed to the FPGA core which then generates

the hash signature. We further optimize the streaming size to maximally overlap the latency of hash generation

core with the latency of communication through the underlying advanced extensible interface (AXI) with the

host central processing unit (CPU).

There exist an inherent trade-of between fault detection performance and the storage/runtime overhead that

is determined by the number of DNN layers used for signature extraction. To balance this trade-of, we propose

a novel sensitivity analysis scheme that identiies the most vulnerable layers within the DNN to be used for

signature extraction. This, in turn, leads to an extremely lightweight detection methodology that incurs negligible

storage and runtime, making it amenable for use in resource-constrained embedded environments. Notably, our

sensitivity analysis enables AccHashtag to achieve a 100% detection rate using as few as one layer for hash

extraction.

Our detection strategy is compatible with the challenging threat model where the attacker has full control

over the DRAM to freely select the location and number of bit lips. In addition, the attacker has full knowledge

of the underlying detection algorithm, i.e., the hash function. To calibrate AccHashtag detection, the user does

not require access to any labeled data, ine-tuning, or model training. The user only chooses a secret reordering

rule to generate the input for the hash function from the DNN layer weights. Using the reordering rule, the hash

signatures can be robustly extracted from the DNN at runtime without the attacker’s interference.

We validate the efectiveness of AccHashtag by performing extensive experiments on various DNN architec-

tures and visual datasets. The evaluated DNNs are injected with the state-of-the-art progressive bit-lip attack [20].

We show that AccHashtag achieves a 100% detection rate with 0 false alarms while incurring < 1.3�� storage

and < 1% runtime compared to DNN inference on an embedded graphics processing unit (GPU). When using our

customized hash computation core on FPGA, the runtime can be further decreased by an average of 2.1×, thereby

enabling online signature generation and veriication alongside DNN inference. Our proposed methodology

outperforms prior art across all benchmarks both in terms of attack detection and algorithm execution overhead.

Compared to best prior work, AccHashtag shows orders of magnitude faster execution and lower storage. In

summary, the contributions of AccHashtag are as follows:

• Introducing AccHashtag, the irst framework for online detection of DNN fault-injection attacks with

provable guarantees on performance.

• Constructing a novel signature generation scheme based on Pearson hash which enables low-overhead and

highly accurate fault detection.

• Providing lower bounds on attack detection rate using a statistical analysis of hash collision.

• Devising a sensitivity analysis to identify vulnerable layers within any given DNN architecture. AccHash-

tag automatically inds DNN layers with a high probability for attack and tailors the fault detection to

those layers.
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• Designing an FPGA core for hash generation which enables high-throughput DNN integrity validation.

An earlier version of AccHashtagwas presented in [6]. In this article, we extend our framework by: (i) Devising

a custom hardware accelerator that enables real-time fault-injection detection using hashing (Section 4.4), (ii)

extending our evaluations on new benchmark models with higher complexity (Sections 5.1, 5.2, 5.3). Notably, we

provide the irst analysis of bit-lip attacks on Transformers, and (iii) providing more analysis and discussions

about the various design choices of AccHashtag, speciically the proposed layer sensitivity measurement

(Section 5.2).

2 BACKGROUND AND PRIOR WORK

2.1 Bit-Flip Atack

Recent work has developed various fault-injection techniques [10, 27, 30] that can be utilized to alter bits stored

in the DRAMmemory. These techniques give rise to the plethora of attacks that take advantage of the bit-lipping

tools to induce adversarial behavior in deployed DNNs. Researchers have demonstrated the vulnerability of

DNNs to fault-injection attacks that target model parameters. Perhaps the pioneer in this domain is [17] which

alters a single parameter throughout the DNN to change the classiication result. Follow-up work [5] analyzes

the efect of targeted bit lips induced by the Row hammer attack on DNN accuracy. The authors perform the bit

lips in the loating-point representation and show that their injected bitwise errors can lead to > 90% accuracy

degradation when applied on certain DNN parameters.

Current state-of-the-art bit-lip attack [20] leverages a gradient-based progressive bit search to strategically

identify the vulnerable bits in the DNN. Their attack is applied on quantized DNN parameters with the ixed-

point representation. Other variants of the bit-lip attack exist which leverage a similar adaptive method to

ind the vulnerable bits but difer in the attack objective: rather than degrading the accuracy on all samples,

authors of [21, 22] perform bit lips to misclassify certain input examples as a target class. In this paper, we

direct our focus to the generic untargeted bit-lip attack [20, 31] as it provides the most general attack objective.

We emphasize that AccHashtag is applicable to other attack variants as our methodology relies on signature

extraction and veriication. This, in turn, allows us to detect (adversarial) changes in DNN parameters regardless

of the underlying attack objective.

Attack Formulation. Let us denote by {�� }
�
�=1

the total bits from the Two’s complement representation of

per-layer DNN weights where � is the layer index. To maximally reduce the DNN accuracy, the attacker iteratively

identiies the bit with the highest gradient max��
|∇��

L| in each layer of the DNN. Here, L denotes the DNN

inference loss. Once the per-layer most vulnerable bits are detected, the new loss will be measured for each

candidate bit-lip. Finally, the bit that results in the maximum loss is selected and lipped. The iterative process

continues until the DNN accuracy falls below the attacker’s desired value.

2.2 Existing Defenses

Prior art propose various techniques to increase robustness to fault-injection attacks that occur during DNN

training and execution. To thwart training-time attacks, authors of [2], propose a trust-based framework as the

fault detection mechanism. The performance of this method is strongly dependant on the accuracy of the trust

evaluation mechanism [28, 29]. In this paper, we direct our focus to fault injection attacks applied on the DNN’s

internal parameters at inference time. A high-level comparison of AccHashtag with prior works is enclosed in

Table 1. In what follows, we provide more details about each method and their key diferences with AccHashtag.

Several prior defenses against inference-time fault injection attacks suggest adding speciic constraints to

the model during training. Authors of [4] show that adding a piece-wise clustering constraint to the training

objective or performing binarized training can improve resiliency. Follow-up work [14] proposes to locally

reconstruct DNN weights during inference to minimize or defuse the efect of the bitwise error caused by the bit
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lips. Such methods increase the number of bit lips required to reduce the victim DNN’s classiication accuracy.

However, they do not detect or prevent fault-injection attacks. Additionally, due to the added constraints on the

pertinent DNN, these methods reduce the inference accuracy of the victim model. Compared to these methods,

AccHashtag does not afect the inference accuracy in any way and is able to detect the occurrence of bit lips

with 100% accuracy.

Other works suggest adding an ML-based attack detection mechanism. Authors of [15] train a smaller, checker

network to verify the classiication results produced by the original DNN. In case of a mismatch, the task is

repeated and the output of the victim DNN is accepted, which results in a low detection rate. Compared to

AccHashtag lightweight detection method, the checker DNN incurs a higher computational/storage overhead

and can itself be subject to fault-injection attacks. Another work [16] uses the magnitude of the gradient to

ind sensitive weights. The authors then train a binary classiier on the sensitive weights to ind bit lips. The

ML-based detection techniques are bound by the classiication accuracy of the underlying detector model and

thereby have lower true positive rate and higher false positive rate compared to AccHashtag. We provide a

probabilistic lower bound on AccHashtag detection performance that outperforms prior work.

Most recently, authors of [13] employ checksums to detect bitwise errors in weight groups. The detection

performance of the proposed methodology relies on the choice of the group size, i.e., the number of weights

used to compute each checksum value. To obtain a good trade-of between detection performance and the

storage/runtime overhead, the authors suggested using higher group sizes. From a probabilistic point-of-view,

checksum on large groups has higher false negative rate compared to our hash-based mechanism. This is because

checksum inherently overlooks speciic even-numbered bit lips. As shown in our experiments, the best reported

results from [13] achieve lower detection accuracy compared to AccHashtag while requiring higher storage and

runtime.

Table 1. High-level comparison of AccHashtag with prior work.

100% TPR 0% FPR
Degrade

DNN Accuracy

Require

DNN Training

Low

Overhead

Customized

Hardware

Piece-wise Clustering [4] ✓ ✓

Weight Reconstruction [14] ✓ ✓

DeepDyve [15] ✓

Weight Encoding [16] ✓

RADAR [13] ✓ ✓

HASHTAG [6] ✓ ✓ ✓

AccHashtag ✓ ✓ ✓ ✓

3 ACCHASHTAG METHODOLOGY

Figure 1 demonstrates the high-level overview of AccHashtag methodology for detecting fault-injection attacks

in DNN parameters, i.e., bit lips. The core idea in AccHashtag is to generate a compact (ground-truth) signature

from the benign DNN. This is done by generating per-layer hashes of DNN parameters prior to model deployment.

The signature is then used to verify the integrity of DNN parameters during execution to validate the inference

result and mitigate malicious behavior. Our detection methodology incurs minimal computation/storage overhead

and is devised based on lightweight solutions to enable eicient and real-time execution in embedded systems.

AccHashtag comprises two main phases to detect anomalies in DNN parameters:

Pre-processing Phase. AccHashtag preprocessing is a one-time process in which the detection mechanism is

calibrated for the underlying victim DNN. There exist an inherent tradeof between attack detection performance

and the computation/storage requirement for extracting layer signatures; On the one hand, hashing all layers

ensures that the detection mechanism can universally adapt to attacks in any subset of layers. On the other hand,
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Fig. 1. Global flow of AccHashtag detection. During the pre-processing phase, we first identify sensitive DNN layers that are

most prone to fault-injection atacks. We then generate a customized signature from the identified sensitive layers. During

online execution, the signature is used to validate the model’s integrity in real-time, parallel to conducting inference.

hash computation and storage are linear in the number of layers used for detection. We observe that various DNN

layers are not equally targeted by fault-injection attacks. Motivated by this, we devise a novel sensitivity analysis

scheme that models the vulnerability of DNN layers to bit-lip attacks. The top-� most vulnerable layers, called

checkpoint layers, are then used to extract the hashes. This, in turn, allows AccHashtag to maximize detection

performance under any given computation/storage budget. � is a tunable hyperparameter in AccHashtag which

can range from 1 to � where � is the total number of linear layers in the victim DNN. If the user selects � = �,

then hashes will be generated for all layers. However, as we show in our experiments (see Section 5.3.2 Figure 11),

for the wide variety of evaluated models our detection rate reaches 100% when generating hashes for at most

� = 5 layers. This is due to the ability of our sensitivity analysis to accurately locate layers with the highest

probability of fault injection.

Online Execution. This recurring phase is activated when the underlying DNN is queried. During online

execution, new hashes are extracted from checkpoint layers in parallel to the DNN inference. The new hashes

are then validated against the ground-truth hash values from the pre-processing phase to verify the legitimacy of

model parameters. Upon hash mismatch, an alarm lag is raised to notify the user that the system is compromised.

The user shall then evict the deployed model and reload the ground-truth weights from the source. We accelerate

the operations performed in AccHashtag’s online execution phase using a customized FPGA core that interacts

with the DNN’s host processor.

3.1 Threat Model

In this paper, we direct our focus to fault-injection attacks that target DNN parameters, i.e., the bit-lip attack. In

this scenario, the attacker has full knowledge of the victim DNN architecture and its parameters. They further

know the physical address of the model parameters and have access to a subset of the data used for training the

DNN. The attacker uses the data to progressively identify vulnerable weights and lip their value. This is done by

performing a Row Hammer Attack (RHA) [10] on DRAM locations where the model parameter are stored [5, 31].

To keep the attack stealthy and reduce the high cost of RHA, we assume the attacker is motivated to minimize

the number of lipped bits as is observed in the state-of-the-art attacks [20, 21]. As such, we do not consider

random bit lips since they are shown to be inefective in reducing DNN accuracy even with a high number of

lipped weights [20, 31].

We evaluate our detection in the challenging white-box scenario where the attacker knows which layers are

used for detection. He is also fully aware of the hash algorithm used for generating the per-layer signatures.

However, he does not know the secret hash values and the parameter ordering used for generating the hashes.

Following prior work [13], we assume the secret hashes are stored in the secure on-chip static random access

memory (SRAM) which is not accessible by the attacker. Note that even when SRAM storage is not available, our
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detection secrets are still immune to RHA. This is due to their low memory footprint (less than 5 KB) that makes

them hard to target by RHA as shown in [5].

4 ACCHASHTAG COMPONENTS

4.1 Hash-based Signature Extraction

Hash functions generate a constant-length code value which is independent of the size of the corresponding

hashed data. This property motivated us to leverage hashing as the underlying mechanism for extracting DNN

layer signatures. Among the available hash functions, AccHashtag incorporates the Pearson hash [19] which

operates on input streams at Byte granularity. Below we present the Pearson scheme for generating an 8-bit hash

value.

Pearson Hash Formulation. The user generates a hash table � which contains a random permutation of integer

values in the range [0, 255], i.e., Z256. For an incoming vector of length � containing Byte values {�� }
�
�=1, the

Pearson hash is deined recursively as follows:

ℎ(�1, �2, . . . , �� ) = � (ℎ(�1, �2, . . . , ��−1) ⊕ �� ) (1)

where ⊕ represents the XOR operation. Since� is an arbitrary permutation of values in Z256, there exists a total of

(256)! hash variations for a ixed input stream. The Pearson hash can be extended to generate hashes longer

than 8 bits by repeating the above process several times and concatenating the results. However, as shown in our

experiments, the 8-bit Pearson hash accurately detects the state-of-the-art bit-lip attack [20].

Our hashing scheme provides several desirable characteristics that makes it particularly amenable for low-

overhead detection of fault injection attacks: (1) The hash computation is well-deined for execution in 8-bit

processors and embedded CPUs [19]. (2) The hashing scheme is applicable to input streams of varying lengths,

thereby providing high customizability for various DNN layer conigurations. (3) Pearson hash accommodates

input streams with ixed-point representation which have been target to contemporary bit-lip attacks [20, 21].

Fixed-point parameter values are observed in quantized DNNs that are widely deployed in embedded systems.

Signature Generation. To extract the ground-truth signature from a benign DNN layer, we irst generate a

random hash table� . The pertinent layer parameters are then fed to Equation (1) as the input stream �1, �2, . . . , ��
to generate the secret hash of the layer. The hash input stream is generated using a user-deined secret ordering.

An example of such ordering is shown in Figure 2. Here, the hash input stream is constructed by irst traversing

the layer’s weight kernel in the output channel dimension. Ordering adds a zero-cost layer of complexity to

AccHashtag signature generation which prevents the attacker from reproducing the per-layer secret hashes.

Note that the hash input ordering does not afect AccHashtag detection performance. The user can easily choose

diferent secret orderings for various layers or change the ordering at any time to reinforce system integrity.

4.2 Bounds on Detection Performance

In this section, we provide the worst-case performance bounds on our hash-based detection mechanism. Recall

from the threat model (Section 3.1) that the attacker is not aware of the secret ordering used to generate the

hashes from layer parameters. As such, even if the attacker gains full access to the Pearson hash tables, they will

not be able to reproduce the ground-truth hash values. The attacker, therefore, performs the bit-lip attack without

taking extra measures to preserve the ground-truth hashes. In this context, the lower bound on AccHashtag

detection can be obtained by quantifying the probability of collision in our hashes. Collision occurs when multiple

input streams are mapped to the same output hash. We analyze hash collision in two separate scenarios where

the attacker alters 1) one or 2) more than one element of the parameter tensor in the target layer.

4.2.1 Single-element Alteration. When the attacker alters only one element in the weight block where the

hash is computed, the user can detect the hash mismatch with 100% accuracy. This is due to an intrinsic collision
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Fig. 2. Reordering parameters in an example convolution layer for generating the hash input stream. The layer parameters are

the convolution weight kernels ∈ R�×�×��×�� where � , �� , �� denote the kernel size, input channels, and output channels.

property for the Pearson hash: for two input streams with exactly one value diference, the probability of collision

is zero when the streams are Pearson hashed.

Let us denote the altered byte value inside DNN weights by �̃� . The Pearson hash operation for the irst�

bytes can be written as:

ℎ� = � (ℎ�−1 ⊕ �̃�) (2)

where ℎ� is the short notation for ℎ(�1, �2, . . . , �� ). Since the irst� − 1 bytes are unaltered, the value of ℎ�−1

remains constant. By changing �� , the hash value ℎ� changes due to the bijective property of the hash table � .

Since the remaining elements �� |
�
�=�+1 are unaltered, the new hash ℎ� propagates through the rest of the input

chain, resulting in a diferent inal hash ℎ� compared to the original weight block.

4.2.2 Multi-element Alteration. In cases where the attacker changes more than one weight value in the hash

block, a possibility arises that the hash mismatch caused by the earlier perturbed elements is later corrected by a

subsequent perturbed weight element such that the overall hash value ℎ� remains unchanged. Without loss of

generality let us assume only two elements are altered: �̃� and �̃� (� < �). As shown previously, changing the

��ℎ element, results in a new hash value that propagates through the input chain until the next changed element.

Let us denote the hash value of the irst � − 1 elements in the original and altered weight blocks by ℎ�−1 and

ℎ̃�−1, respectively. To ensure the inal hash value of the block remains the same, the new value of the ��ℎ element

�̃� needs to satisfy the following equation:

ℎ�−1 ⊕ �� = ℎ̃�−1 ⊕ �̃� (3)

The above equation limits the number of allowed values for �̃� to only one. As such, the overall probability of

obtaining the same hash after altering the bits in two elements is 1
256 ∼ 0.004. This probability quantiies the

chance of collision occurring in our hashing scheme and remains the same for any arbitrary number of elements

altered bigger than one. As such, our (worst-case) lower bound on hash mismatch detection for the DNN is
(

1
256

)�� .

Here, �� denotes the number of attacked layers where more than one weight element is lipped by the attacker.

We empirically evaluate our developed bound by performing multiple runs of hash extraction on an arbitrary

input stream of length 1000. We randomly change a subset of � values within the input and measure the collision

rate. As seen in Figure 3, by increasing the number of experiments, the collision probability asymptotically

reaches 0.004 in all settings, which is compatible with the bound from our statistical analysis.
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Fig. 3. Collision rate versus number of trial runs for hashing an input stream of length 1000. Each trial randomly changes a

subset � ∈ [2, 3, 6, 8, 12, 16] of message elements.

4.3 Per-layer Sensitivity Analysis

State-of-the-art fault injection attacks leverage various techniques to identify weight values that most afect the

accuracy if altered. By targeting the attack towards such vulnerable weights, the attacker requires very few bit

lips to degrade the accuracy of the victim DNN below random guess. Motivated by this, we devise a sensitivity

analysis that accurately inds the subset of layers inside the victim DNN that are most prone to fault injection. Our

sensitivity formulation is inspired by prior work in DNN pruning [18]. Speciically, we utilize Taylor expansion

to model the efect of per-layer weight change on DNN accuracy as an efective measure of sensitivity.

Linear layers in DNNs comprise two key parameters, namely the weight and bias: (�,�). Let us represent

the entire parameter set for a given DNN with � layers by � = {(�,�)1, (�,�)2, . . . (�,�)�} where the subscript

denotes the layer index. Training the DNN is equivalent to minimizing a loss function L(�, �) over a corpus

of data � = (�1, �1), . . . , (�� , �� ) where � and � correspond to input examples and their labels, respectively. To

degrade a pretrained DNN’s accuracy, the attacker’s goal is to maximize the loss over the given dataset. Let us

denote by � and �̃ , the parameters of the DNN before and after the attack. We model the attack objective as:

max
�̃

(L(�, �) − L(�, �̃))2 (4)

We, therefore, quantify the sensitivity of each DNN parameter by the increase in loss value caused by changing it.

Bit-lip attacks often alter the sign as it causes the most dramatic change in the value of the underlying parameter,

thereby greatly inluencing the accuracy [20]. As such, we model parameter sensitivity by altering the sign

�̃ = −� and measuring the efect on loss. Here the lower case � represents individual weight/bias elements in the

DNN. The sensitivity � (·) for the ��ℎ parameter �� can thus be measured as:

� (��) = (L(�, �) − L(�, �̃ |�̃�=−�� ))
2 (5)

Since individual computation of (5) for each weight element inside the DNN is computationally prohibitive,

we leverage Taylor expansion to estimate � (·). For a given function � (�), the irst-order approximation using

Taylor polynomials at point � = � is given by:

� (�) ≈ � (�) + (� − �) ×
��

��

�

�

�

�

�=�

(6)

By replacing � in the Taylor expansion formula with the loss function L, we can rewrite (5) as:

L(�, �) − L(�, �̃ |�̃�=−�� ) ≈ 2�� ×
�L

���
(7)

We thus measure the sensitivity of parameter �� as:

� (��) ∝ (�� ×
�L

���
)2 (8)
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Note that the formula shown in (8) can be easily computed using a simple backward pass through the network

to compute the irst-order gradients. Once the sensitivity is obtained for each weight element, we deine the

sensitivity of each layer as the average over top-5 sensitivity values of its enclosing elements. We empirically

explain our reason for choosing the top-5 weights by providing an analysis of the bit-lip attack in Section 5.2

4.4 Accelerating Hash Generation

To enable detection of faults in real time, we accelerate the hash computation on FPGA. This, in turn, allows for a

parallel veriication of weights and DNN execution. The top-level architecture of AccHashtag FPGA accelerator

is shown in Figure 4. Our FPGA design communicates with the host CPU through AXI4 and AXI4-Lite interfaces.

We leverage the AXI4 interface to receive the target DNN’s weights in bursts. The burst reads are then fed to the

input irst in, irst out (FIFO) bufer through the AXI master interface. The Pearson hash core interacts with the

input FIFO bufer to receive the hash input stream sequentially and generate the corresponding signatures. This

systolic features have low global data transfer and high clock frequency, which is suitable for large-scale parallel

design, especially on FPGAs. We utilize the simpler AXI4-Lite interface to interact with the control unit and

send the appropriate instructions for controlling the hash module and relevant memory transfers. AccHashtag

control unit operates in three modes, namely, populating the hash table, querying the Pearson hash module for

signature generation, and sending the inal hash value to the host CPU. Once the hash computation concludes,

the inal hash value enters the output FIFO bufer and is sent back to the host CPU through the AXI master

interface. We provide a break down of the utilized resources for all components in AccHashtag accelerated hash

generation in Table 2. Here, the design is synthesized for a Xilinx VCU108 FPGA.

We take several measures to increase the hash generation throughput. First, we design the Pearson hash

module as a specialized form of parallel computing with a deeply pipelined processes inside the hash generation

loop. Using pipeline forwarding, our design fetches new data from the input FIFO bufer and calculates the

hash signatures within the same pipeline stage, thereby increasing end-to-end throughput. Secondly, we take

advantage of the small footprint of the hash tables to implement them entirely using 8-bit Flip-lop registers on

the FPGA. This, in turn, enables very low latency accesses to the table during hash computation. Finally, we

optimize the burst length for AXI reads to maximally overlap the latency of hash computation with the input

stream read latency from the AXI4 Master. An optimal burst length will result in a nearly diminished cost for

AXI reads, thereby increasing throughput to that of the hash Pearson hash module, with negligible increase in

FPGA resource utilization.

5 EXPERIMENTS

In the following, we provide a comprehensive evaluation of AccHashtag performance along with various

analyses and discussions. Section 5.1 encloses details of our benchmarked models and datasets, attack setup and

implementation, as well as deinitions for the utilized evaluation metrics. Section 5.2 provides an analysis of the

attack proile to clarify various design choices. Finally, in Section 5.3 we report the detection performance of

AccHashtag, provide comparisons with the best prior art, and analyze the storage and computation requirements

of AccHashtag.

ACM J. Emerg. Technol. Comput. Syst.
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Fig. 4. Overview of AccHashtag accelerated hash generation and

verification using a specialized FPGA compute kernel.

Module BRAM FF LUT

Pearson Hash - 244 962

Hash Table 2 2306 238

FIFO - 512 580

Control Unit - - 1314

AXI Master - 106 168

AXI-Lite Slave - 144 232

Table 2. Resource utilization for AccHashtag com-

ponents when synthesized on a Xilinx FPGA.

5.1 Experimental Setup

Benchmarks. We evaluate AccHashtag on two image datasets, namely, CIFAR10 [11] and ImageNet [24]. The

datasets contain 10 and 1000 classes of RGB (red, green, and blue) images of dimensionality 32× 32 and 224× 224,

respectively. We separate 20 examples from each class in the training data and create a small held-out validation

dataset. This validation set is used to perform sensitivity analysis in the pre-processing phase.

Table 3 encloses an overview of the DNN architectures evaluated on each dataset and their baseline test

accuracies with 8-bit quantization. We evaluate CIFAR10 on two DNNs, namely, ResNet20 [3] and VGG11 [26].

For ImageNet, we perform experiments on four DNNs, namely ResNet18 [3], ResNet34 [3], AlexNet [12], and Mo-

bileNetV2 [25]. We further present the irst systematic study of bit-lip attacks on Transformers by benchmarking

two contemporary models used in vision tasks, namely ViT [1] and DeiT [9]. We leverage the open-source code

in [32] to quantize pre-trained Transformer models. As shown in Table 3, Transformers show, on average, higher

robustness towards fault-injection which results in a higher number of required bit lips for degrading their

accuracy.

Table 3. Overview of the evaluated benchmarks. Here, CONV, FC, and ATTN represent convolution, fully-connected, and

self-atention layers, respectively. Note that each self-atention layer consists of four fully-connected layers. The baseline

top-1 accuracy and the average number of bit flips are reported for 8-bit quantized DNNs.

Dataset Model Layers
Top-1

Acc (%)
Bit Flips

CIFAR10
VGG11 8 CONV, 3 FC 89.3 89

ResNet20 19 CONV, 1 FC 91.9 18

ImageNet

AlexNet 5 CONV, 3 FC 55.5 21

ResNet18 20 CONV, 1 FC 68.8 8

ResNet34 36 CONV, 1FC 72.8 10

MobileNet 52 CONV, 1 FC 70.3 3

ViT 1 CONV, 12 ATTN, 1 FC 80.6 203

DeiT 1 CONV, 12 ATTN, 1 FC 79.3 166

Attack Coniguration. We leverage the open-source implementation1 of the state-of-the-art bit-lip attack [20]

to evaluate our detection. The attack batch size on convolutional neural networks is set to 128 and 64 for CIFAR10

and ImageNet benchmarks, respectively. Throughout the experiments, we repeat the attack 50 times with diferent

initial random seeds for each of our DNN benchmarks and report the average obtained results. Each attack round

1Available at https://github.com/elliothe/BFA
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consists of multiple iterations where one bit is lipped at each step. The iterations conclude once the DNN test

accuracy falls below the random guess threshold, i.e., 10% and 0.1% for CIFAR10 and ImageNet, respectively. Due

to the robustness of Transformer models to bit-lips, we consider the attack successful once the accuracy of the

model falls below 0.2%. Table 3 encloses the average number of bit lips required for attacking our benchmarked

DNNs in the 8-bit quantized regime.

Metrics.We use two evaluation metrics to quantify AccHashtag detection. Firstly, we deine Detection Rate (DR)

as the ratio of models under attack which are correctly detected by AccHashtag, as formulated in Equation (9).

�� =

# of attacked models correctly detected

Total # of attack rounds
(9)

Secondly, we use the False Positive Rate (FPR) as the ratio of benign models mistaken for being malicious, i.e.,

containing a bit-lip that results in a hash mismatch.

5.2 Analysis of Design Choices

In this section, we perform an ablation study to analyze the characteristics of the bit-lip attack. We experiment

with three victim DNNs with various types of (linear) layers, e.g., convolution, fully-connected, and self-attention.

Speciically, we benchmark ResNet20 trained on CIFAR10 and ResNet18 and ViT trained on ImageNet. The

weights in each victim DNN are quantized using a range of bitwidths. The minimum evaluated bitwidth is

selected such that the classiication accuracy is within 1%, 2%, and 3% of the loating-point accuracy for ResNet20,

ResNet18, and ViT, respectively. For each coniguration, we perform 50 runs of the bit-lip attack with diferent

random seeds to ensure we capture the variances in the outcome. We summarize our indings below:

Fig. 5. Percentage of sign changes occurring during multiple runs of

the bit-flip atack. The progressive bit-flip atack [20] changes the sign

of the target parameter with high probability.

Sign Change. Figure 5 demonstrates the percentage of bit lips resulting in a sign change across various attack

conigurations. The consistent pattern among all experiments indicates that the attack signiicantly favors

changing the sign of the target parameter. This is intuitive as lipping the sign of the underlying weight parameter

can induce a dramatic change in the output of the layer. Commensurate with this inding, AccHashtag sensitivity

analysis models the efect of attack as a change in the underlying parameter’s sign (See Equation (5)).

Sensitivity Computation. We quantify the per-layer vulnerability to bit-lips by averaging the sensitivities

of � most vulnerable weights enclosed in each layer. Figure 6 shows the efect of various � values on ranking

DNN layers in terms of their sensitivity. On the vertical axis, the layers in each model are ordered based on

their sensitivity, where a higher rank corresponds to higher sensitivity. As highlighted with the green boxes,

the ordering amongst most sensitive layers remain largely the same when � ≤ 10. This is intuitive as a higher �

includes weights in the sensitivity analysis that are not prone to bit-lips, while a lower � ensures a more targeted

sensitivity analysis only for the most vulnerable parameters. For the benchmarked Transformer models, due to

their inherent robustness to faults, the number of bit-lips required to reduce the accuracy is extremely large (see

Table 3). For convolution-based benchmarks, however, accuracy can be downgraded with very few bit-lips. For

such models, we observe that while the attack could target diferent or same weights within a certain layer, on

average, the same layer is not targeted more than ∼ 5 times. To investigate the per-layer attack concentration,

we count the number of times each layer is targeted during one execution of the attack. Figure 7 shows the

maximum number of bit lips occurring per layer, averaged across diferent attack runs for two representative

ACM J. Emerg. Technol. Comput. Syst.
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Fig. 6. Ranking DNN layers based on their vulnerability to bit-flips, defined as the average sensitivity score assigned to their

� most vulnerable weights. The most vulnerable layers (marked with green boxes), remain largely the same, when � ≤ 10.

convolutional neural networks. Using the insights from attack concentration and the analysis in Figure 6, we

quantify the sensitivity of each layer as the average over its � = 5 most sensitive weights.

Fig. 7. Maximum per-layer atack concentration, averaged

across multiple runs of the bit-flip atack to ResNet20 and

ResNet18 trained on CIFAR120 and ImageNet, respectively.

The progressive bit-flip atack [20] on average targets the

weights in the same layer no more than ∼ 5 times.

Dataset Size.We leverage a small held-out validation dataset to compute the sensitivity scores for model weights.

In this section, we investigate the efect of validation dataset size, controlled by the number of held-out samples

per class (�), on the sensitivity analysis. Figure 8 demonstrates the ranking of model layers in terms of sensitivity,

shown for diferent �, where a higher rank on the vertical axis corresponds to higher sensitivity. As shown, for

ImageNet benchmarks, the ranking variance is very small and the sensitivity analysis delivers consistent results

even in the extreme case of � = 1. For CIFAR10 dataset, the sensitivity analysis is more afected by �. This is

due to the small number of classes in this dataset, which results in a very small validation dataset for small �.

We show the detection rate of AccHashtag versus various number of checkpoints in Figure 9. As seen for the

CIFAR10 benchmark and the extreme case of � = 1, more checkpoints are needed to obtain 100% detection rate.

However, for � ≥ 5, hashing only the two most sensitive layers can achieve perfect detection. For the ImageNet

ACM J. Emerg. Technol. Comput. Syst.
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benchmark, � ≥ 2 can provide 100% detection with two checkpoints. Our analysis shows an intrinsic trade-of

between validation dataset size and number of checkpoint layers. When data is scarce, the sensitivity analysis

may be afected, thus more checkpoint layers are needed to ensure detection.

Fig. 8. Ranking DNN layers based on their sensitivity, computed using a validation dataset with � samples per class.

Fig. 9. AccHashtag detection rate versus number of checkpoint layers, shown for various number of per-class samples (�)

used in sensitivity calculation. We omit the plot for ViT for brevity as it shows a similar trend as the ResNet18 benchmark.

5.3 AccHashtag Performance

5.3.1 Sensitivity Analysis. In this section, we showcase the stand-alone performance of AccHashtag sensi-

tivity analysis. We benchmark the ResNet20 model on CIFAR10 to evaluate the efectiveness of our proposed

method in inding the vulnerable layers within a DNN. Figure 10 demonstrates the sensitivity score assigned

to each layer of the model versus the number of per-layer bit lips occurring across 50 runs of the attack. All

values are normalized by the total summation. As seen, there exists a correlation between the sensitivity score

ACM J. Emerg. Technol. Comput. Syst.
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Fig. 10. Per-layer sensitivity scores assigned by AccHashtag versus the number of per-layer bit-flips. All values are normalized

and sum to 1. Results are gathered across 50 runs of the bit-flip atack on the ResNet20 DNN trained with CIFAR10 dataset.

and the number of times the pertinent layer has been subject to attack; most attacks occur in layers 1, 7 which

are also the most sensitive layers found by AccHashtag. Below, we provide a thorough evaluation of end-to-end

AccHashtag execution.

5.3.2 Detection Performance. We leverage our sensitivity analysis to rank DNN layers in the order of their

attack vulnerability. The top-k most sensitive layers are then selected as checkpoints to extract hashes during

the pre-processing and online phases. During online execution, if there exists at least one hash mismatch with

the ground-truth signature among DNN layers, AccHashtag marks the model as malicious. Figures 11 and 12

demonstrates the detection performance of AccHashtag versus the number of checkpoint layers for various

DNN benchmarks. For this experiment, all evaluated models are quantized with 8-bit parameters.

AccHashtag achieves a 100% attack detection rate with very few checkpoints. For the CIFAR10 benchmarks,

AccHashtag detects faulty DNNs with only 1 and 2 checkpoints on the VGG11 and ResNet20 architectures,

respectively. For ImageNet, AccHashtag achieves a perfect detection rate on AlexNet with only 1 checkpoint.

On the more complex architectures ResNet18 and ResNet34, AccHashtag achieves 100% detection with only 2

and 3 checkpoints. For the most complex convolution neural network (CNN) benchmark, i.e., MobileNetV2 with

53 convolution and fully-connected layers, AccHashtag achieves 96.2% detection rate with 3 checkpoints and

reaches perfect accuracy with 5. We further show the efectiveness of AccHashtag fault detection for large-scale

Transformer-based models in Figure 12. As shown, AccHashtag successfully locates the sensitive layers that

Fig. 11. AccHashtag detection rate versus the number of checkpoint layers used for signature extraction, evaluated on

diferent victim CNNs.

ACM J. Emerg. Technol. Comput. Syst.



AccHashtag: Accelerated Hashing for Detecting Fault-Injection Atacks on Embedded Neural Networks • 15

Fig. 12. detection performance of AccHashtag versus the num-

ber of checkpoint layers for various DNN benchmarks. Evalu-

ated models are derived from the Transformer backend with

self-atention layers.

are most prone to bit-lips among more than 50 layers in the Transformer benchmarks. As such, our defense

can detect the occurrence of faults with 100% using only 1 and 2 checkpoint layers for the DeiT and ViT models,

respectively.

The results demonstrate AccHashtag’s ability to correctly ind the most vulnerable DNN layers and detect

fault-injections using hash signatures. Note that AccHashtag has an FPR=0.0%, i.e., it never mistakes benign

layers for attacked ones. This is due to the fact that the hash value is constant as long as the underlying layer

parameters remain intact, i.e., in the absence of bit lips.

Efect of Bitwidth. We benchmark ResNet20 and ResNet18 trained on CIFAR10 and ImageNet, respectively,

and sweep the quantization bitwidth of the victim DNN. Figure 13 demonstrates the efect of DNN bitwidth on

AccHashtag detection rate. While the bitwidth can afect the detection rate with only one checkpoint, it can be

observed that AccHashtag becomes agnostic to the underlying bitwidth with more than 2 checkpoints. For > 2

checkpoints, AccHashtag consistently achieves a detection rate of 100%. The same trend can be observed for

the Transformer-based ViT benchmark trained on ImageNet, where AccHashtag consistently achieves 100%

detection rate when more than 2 (sensitive) layers are checked. the ability to maintain the detection rate in face

of diferent quantization bitwidths allows AccHashtag to be globally applicable to various DNN conigurations

employed in embedded applications.

Fig. 13. Efect of victim DNN’s bitwidth on AccHashtag detection rate. The legend presents the utilized datasets along with

the underlying bitwidths.

5.3.3 Comparison with prior work. We compare AccHashtag with the best prior work, i.e., WED [16] and

RADAR [13] in terms of detection performance and overhead. We baseline the best reported results in the original

papers, i.e., the WED(2) coniguration from [16], and � = 8 and � = 512 with interleaving for ResNet20 and

ResNet18 from [13]. We devise two conigurations for AccHashtag to enable on-par comparison with each of

the prior work as follows.
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Similar to AccHashtag, the proposed method in [16] checkpoints a subset of DNN layers to detect malicious

models. Therefore, for best comparison with this work, we evaluate AccHashtag with the number of checkpoints

set to the minimum value required to obtain 100% detection rate (see Figure 11). We call this coniguration

Cfg-1. The method in [13], however, checkpoints all layers within the DNN and reports the performance as the

total number of detected bit lips. Therefore, to compare with this work, we devise Cfg-2, where the number of

checkpoints is selected such that all bit lips are detected. For Cfg-2, we set the number of checkpoints to 7 and 8

for ResNet18 and ResNet20, respectively.

The comparison results are summarized in Table 4. As seen, AccHashtag provides state-of-the-art detection

performance at a fraction of the storage/computation cost compared to best prior works. Compared to WED [16],

AccHashtag signiicantly reduces the false-positive rate and achieves 100% detection rate with ��� = 0.0%.

Additionally, AccHashtag incurs 20 − 400× lower storage footprint. Compared to RADAR [13], AccHashtag

detects all bit lips within the model with 100% accuracy while incurring 3 − 4× lower storage cost. We further

compare AccHashtag runtime with RADAR [13]. We measure our runtime on an ARM Cortex-A57 embedded

CPU. For a fair comparison, we report the normalized runtimes, i.e., relative to the inference time of the victim

DNN on the target hardware. As seen, AccHashtag achieves 175 − 183× faster runtime compared to [13].

We would like to emphasize that unlike [13], AccHashtag detection does not rely on the number of detected

bit lips. Therefore, the setup in Cfg-2 is purely for comparison purposes. The most representative metric for

evaluating AccHashtag is the detection rate corresponding to Cfg-1, as explained in Section 5.1, Equation (9).

Table 4. AccHashtag comparison with best prior works WED [16] and RADAR [13]. Runtime numbers are measured on an

ARM CPU and normalized by the inference time of the victim DNN.

Benchmark Work
Detection

(%)

FPR

(%)

Detection Overhead

Storage (KB) Runtime (%)

ResNet20

WED 96 12 47 N/A

RADAR 97.5 0 8.2 5.27

Cfg-1 100 0 0.5 0.01

Cfg-2 100 0 2.1 0.03

ResNet18
RADAR 96.2 0 5.6 1.83

Cfg-2 100 0 1.8 0.01

ResNet34
WED 100 4 302 N/A

Cfg-1 100 0 0.8 < 0.01

MobileNet
WED 100 6 26 N/A

Cfg-1 100 0 1.3 < 0.01

5.3.4 Storage and Computation Overhead. Below we provide a more detailed analysis of the storage and

runtime speciications of AccHashtag detection. AccHashtag storage and computation are linear in the number

of checkpoint layers: we compute and store an 8-bit secret hash per checkpoint layer. In addition, the per-layer

Pearson Pearson hash tables each incur a storage cost of 256�. The Pearson hash tables can be reused among

layers, however, here we report the maximum required storage, i.e., when utilizing a unique hash table per

checkpoint layer. For � checkpoint layers, the storage overhead of AccHashtag is, therefore, O(257 × �)�.

To showcase the eiciency of AccHashtag detection, we measure the runtime on both an embedded Cortex-

A57 CPU and an FPGA. We develop and optimize the 8-bit Pearson hash in C, which is then invoked during

DNN execution to detect bit lips. We further synthesize our FPGA cores for AccHashtag on the Xilinx VCU108

development board. We utilize Vivado High-Level Synthesis to realize our FPGA design. The FPGA accelerator

operates with a clock cycle of 2ns. As a baseline, we report the inference time of the victim DNN. For our

CNN-based benchmarks, we report the runtimes on an embedded Jetson TX2 board which includes an ARM
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Cortex-A57 CPU and an NVIDIA Pascal embedded GPU. For the large-scale Transformer-based benchmarks, we

report their runtime on a server-grade Intel Xeon E5-2609 CPU and the Nvidia TITAN Xp GPU. The victim DNN

is implemented and executed via PyTorch deep learning library.

Table 5 encloses the runtime and storage of AccHashtag across diferent benchmarks. We report AccHash-

tag’s storage as the percentage of the memory (in Bytes) required by the victim DNN’s weights. The number of

checkpoints is set to the minimum value required for a 100% detection rate from Figure 11.

As evident from Table 5, AccHashtag delivers perfect detection performance while incurring a negligible

storage and computation cost, making it suitable for real-time embedded DNN applications. Additionally, by

leveraging our accelerated hash core on FPGA, we relieve the host CPU of hash computation. AccHashtag FPGA

modules checkpoint the sensitive layers in parallel to DNN inference, enabling 1.5-2.6× faster hash generation

compared to CPU execution.

Table 5. AccHashtag overhead analysis. Here, # denotes the number of utilized checkpoint layers.

Type Benchmark #
DNN Inference (ms) CPU Detection FPGA Detection

CPU GPU Storage (%) Time (ms) Time (ms)

CNN

VGG11 1 1698.4 110.7 3e-3 0.009 0.003

ResNet20 2 654.8 59.4 2e-2 0.012 0.005

AlexNet 1 7957.9 240.7 4e-4 0.928 0.614

ResNet18 2 20938.8 198.5 4e-3 0.066 0.035

ResNet34 3 40870.6 229.7 3e-3 1.889 1.059

MobileNet 5 2313.6 182.2 4e-2 0.020 0.007

Transformer
ViT 3 196.9 19.1 3e-3 4.692 3.127

DeiT 1 181.3 19.5 1e-3 1.768 1.179

As discussed in Section 4.4, the hash computation is overlapped with the read latency of the hash input from

AXI. To balance the latency bottleneck between these two stages, we deine a design hyperparameter dubbed

� ���, which corresponds to the length of the burst reads from AXI. Figure 14 demonstrates the relationship

between design throughput (measured in number of hash computations per seconds) and � ��� length. Using

a small � ��� will cause the memory reads to become the latency bottleneck in the design. By increasing the

� ��� value, we increase the compute capacity to match the AXI read latency, thereby increasing the overall

system throughput. We empirically found� ��� = 1024 to provide a suitable balance between AXI reads and hash

computation as shown in Figure 14.

Fig. 14. System throughput as a function of the design parameter� ���,

i.e., the burst length for AXI reads. Higher� ��� length facilitates larger

overlap between CPU-FPGA communications and hash computation,

thus increasing throughput.
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6 CONCLUSION

This paper presents AccHashtag, a highly accurate methodology for online detection of fault-injection attacks

in DNN parameters. The core idea in AccHashtag is to extract a ground-truth signature from the benign model

which is then used for veriication at inference time. We extract the signatures by encoding DNN layer weights

using a low-collision hash function. To minimize detection overhead, we only extract the hashes from a subset

of DNN layers where the probability of attack occurrence is high. Towards this goal, AccHashtag is equipped

with a novel sensitivity analysis that quantiies the vulnerability of DNN layers to bit-lip attacks. AccHashtag

detection strategy provides several beneits: (1) it delivers 100% detection rate with 0 false alarms across a variety

of benchmarks. (2) The proposed detection is backed up by provable performance guarantees that provide a lower

bound on the detection rate. (3) AccHashtag incurs negligible storage and runtime overhead, enabling accurate

fault detection on resource-constrained embedded devices. Our lightweight method and realistic threat model

make AccHashtag an attractive candidate for practical deployment. Our thorough evaluations corroborate

AccHashtag’s competitive advantage in terms of attack detection and execution overhead.
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