AccHAsHTAG: Accelerated Hashing for Detecting Fault-Injection
Attacks on Embedded Neural Networks

MOJAN JAVAHERIPI, JUNG-WOO CHANG, and FARINAZ KOUSHANFAR, University of California
San Diego, USA

We propose AcCHASHTAG, the first framework for high-accuracy detection of fault-injection attacks on Deep Neural Networks
(DNNs) with provable bounds on detection performance. Recent literature in fault-injection attacks shows the severe DNN
accuracy degradation caused by bit flips. In this scenario, the attacker changes a few DNN weight bits during execution by
injecting faults to the dynamic random-access memory (DRAM). To detect bit flips, ACCHASHTAG extracts a unique signature
from the benign DNN prior to deployment. The signature is used to validate the model’s integrity and verify the inference
output on the fly. We propose a novel sensitivity analysis that identifies the most vulnerable DNN layers

devise a specialized compute core for AccHASHTAG on field-programmable gate arr;
generation in parallel to DNN execution. Extensive evaluations with the state-of-th
demonstrate the competitive advantage of AcCHASHTAG in terms of both attack d

CCS Concepts: « Computer systems organization — Embedded systems;
Machine learning.

Additional Key Words and Phrases: Deep Learning, Fault-injection, Bi

1 INTRODUCTION

Deep Neural Networks (DNNs) have enabled a tra
language processing and computer vision to heal
autonomous systems in safety-critical tz

Ceuracy in controlled settings, it has been shown that
'ks Recent work [5, 20] demonstrates how changmg a few

bit flips have been realized
weights [31].

In response to bit-flip
such as binarization [23 4], or block reconstruction [14]. Adding such constraints increases the
number of bit-flip deplete the inference accuracy, however, they do not entirely mitigate the
i sed constraints often severely affect the underlying DNN’s test accuracy. Other
machine learning (ML) based techniques where a simpler model is trained to detect
N. However, their detection rate and false positive rate are bound by the accuracy of the
or. To ensure DNN robustness, it is crucial to augment autonomous systems with an online fault

Authors’ address:"Mojan Javaheripi, mojan@ucsd.edu; Jung-Woo Chang, juc023@ucsd.edu; Farinaz Koushanfar, farinaz@ucsd.edu, University
of California San Diego, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

© 2022 Copyright held by the owner/author(s).

1550-4832/2022/8-ART

https://doi.org/10.1145/3555808

ACM]. Emerg. Technol. Comput. Syst.

https://doi.org/10.1145/3555808

2+ Mojan Javaheripi, Jung-Woo Chang, and Farinaz Koushanfar

detection strategy that delivers strict performance guarantees. To the best of our knowledge, none of the earlier
works provide the needed detection strategy.

We propose AcCHASHTAG, a highly accurate real-time fault detection methodology for DNNs deployed in
embedded applications. AcCHASHTAG is the first method to provide strict statistical bounds on fault detection
performance and deliver 0% false positive rate. AcCHASHTAG extracts a unique signature from the benign DNN
prior to deployment. At runtime, the signature is used to validate the integrity of the DNN and verify the inference
output on the fly. We propose to leverage a low-collision hashing scheme, called the Pearson hash, to extract
an 8-bit signature from the pertinent weights in each DNN layer. Our hash-based signature extraction delivers
several benefits: (1) hash-based integrity check enables accurate fault detection that is robust to false alarms.
(2) The hash algorithm is devised particularly for low-overhead execution on commodity processors. We design a
customized FPGA core for hash generation and verification that works alongside the co-processor that hosts the
target DNN. Concurrent with DNN execution, the weights are streamed to the FPGA core which the:
the hash signature. We further optimize the streaming size to maximally overlap the la
core with the latency of communication through the underlying advanced extensible
host central processing unit (CPU).

There exist an inherent trade-off between fault detection performance and
is determined by the number of DNN layers used for signature extraction
a novel sensitivity analysis scheme that identifies the most vulnerable |

dded environments. Notably, our
g as few as one layer for hash

storage and runtime, making it amenable for use in resource-co
sensitivity analysis enables AcCHASHTAG to achieve a 100% d
extraction.

Our detection strategy is compatible with the challe
over the DRAM to freely select the location and numbeér of | In addition, the attacker has full knowledge
of the underlying detection algorithm, i.e., the hash function. alibrate AccHASHTAG detection, the user does
not require access to any labeled data, fi ing, o [training. The user only chooses a secret reordering
rule to generate the input for the hash fu 1 N layer weights. Using the reordering rule, the hash
signatures can be robustly extracted from 1 runtime without the attacker’s interference.

We validate the effectiven G by performing extensive experiments on various DNN architec-
tures and visual datasets. Th re injected with the state-of-the-art progressive bit-flip attack [20].
We show that AccCHASHTAG achieves a 100% detection rate with 0 false alarms while incurring < 1.3KB storage
and < 1% runtime comp) ference on an embedded graphics processing unit (GPU). When using our
customized hash co

odel where the attacker has full control

summary, th ions of AcCCHASHTAG are as follows:

o Introdu ng AcCHASHTAG, the first framework for online detection of DNN fault-injection attacks with
provable guarantees on performance.

e Constructing a novel signature generation scheme based on Pearson hash which enables low-overhead and
highly accurate fault detection.

e Providing lower bounds on attack detection rate using a statistical analysis of hash collision.

e Devising a sensitivity analysis to identify vulnerable layers within any given DNN architecture. AccHAsH-
TAG automatically finds DNN layers with a high probability for attack and tailors the fault detection to
those layers.

ACM J. Emerg. Technol. Comput. Syst.

AccHAsHTAG: Accelerated Hashing for Detecting Fault-Injection Attacks on Embedded Neural Networks « 3

o Designing an FPGA core for hash generation which enables high-throughput DNN integrity validation.

An earlier version of AcCHASHTAG was presented in [6]. In this article, we extend our framework by: (i) Devising
a custom hardware accelerator that enables real-time fault-injection detection using hashing (Section 4.4), (ii)
extending our evaluations on new benchmark models with higher complexity (Sections 5.1, 5.2, 5.3). Notably, we
provide the first analysis of bit-flip attacks on Transformers, and (iii) providing more analysis and discussions
about the various design choices of AccHasHTAG, specifically the proposed layer sensitivity measurement
(Section 5.2).

2 BACKGROUND AND PRIOR WORK
2.1 Bit-Flip Attack

Recent work has developed various fault-injection techniques [10, 27, 30] that can be utilized |

DNN:ss to fault-injection attacks that target model parameters Perhaps the pi
alters a single parameter throughout the DNN to change the classification re:
the effect of targeted bit flips induced by the Row hammer attack on DNN
flips in the floating-point representation and show that their injected bitw
degradation when applied on certain DNN parameters.

Current state-of-the-art bit-flip attack [20] leverages a gradient
identify the vulnerable bits in the DNN. Their attack is applied

ors perform the bit
ad to > 90% accuracy

ssive bit search to strategically
NN parameters with the fixed-
e a similar adaptive method to

an degrading the accuracy on all samples,
éxamples as a target class. In this paper, we

authors of [21, 22] perform bit flips to misclassif
direct our focus to the generic untargeted bit-flip g

extraction and verification. This, in turn,'
of the underlying attack objective. :
l , the total bits from the Two’s complement representation of
per-layer DNN welghts wheré x. To maximally reduce the DNN accuracy, the attacker iteratively

identifies the bit with the hi gradient rrraxBl |V B,.£| in each layer of the DNN. Here L denotes the DNN

at results in the maximum loss is selected and flipped. The iterative process
falls below the attacker’s desired value.

Prior art proy us techniques to increase robustness to fault-injection attacks that occur during DNN
training and execution. To thwart training-time attacks, authors of [2], propose a trust-based framework as the
fault detection'mechanism. The performance of this method is strongly dependant on the accuracy of the trust
evaluation mechanism [28, 29]. In this paper, we direct our focus to fault injection attacks applied on the DNN’s
internal parameters at inference time. A high-level comparison of AccHasHTAG with prior works is enclosed in
Table 1. In what follows, we provide more details about each method and their key differences with AccHasHTAG.

Several prior defenses against inference-time fault injection attacks suggest adding specific constraints to
the model during training. Authors of [4] show that adding a piece-wise clustering constraint to the training
objective or performing binarized training can improve resiliency. Follow-up work [14] proposes to locally
reconstruct DNN weights during inference to minimize or defuse the effect of the bitwise error caused by the bit

ACM]. Emerg. Technol. Comput. Syst.

4+ Mojan Javaheripi, Jung-Woo Chang, and Farinaz Koushanfar

flips. Such methods increase the number of bit flips required to reduce the victim DNN’s classification accuracy.
However, they do not detect or prevent fault-injection attacks. Additionally, due to the added constraints on the
pertinent DNN, these methods reduce the inference accuracy of the victim model. Compared to these methods,
AccHasHTAG does not affect the inference accuracy in any way and is able to detect the occurrence of bit flips
with 100% accuracy.

Other works suggest adding an ML-based attack detection mechanism. Authors of [15] train a smaller, checker
network to verify the classification results produced by the original DNN. In case of a mismatch, the task is
repeated and the output of the victim DNN is accepted, which results in a low detection rate. Compared to
AccHasHTAG lightweight detection method, the checker DNN incurs a higher computational/storage overhead
and can 1tself be subject to fault-injection attacks Another Work [16] uses the magmtude

ML-based detection technlques are bound by the classification accuracy of the underlying
thereby have lower true positive rate and higher false positive rate compared to Acc
probabilistic lower bound on AccHAsHTAG detection performance that outperforms p:

Most recently, authors of [13] employ checksums to detect bitwise errors,j
performance of the proposed methodology relies on the choice of the grou .
used to compute each checksum value. To obtain a good trade-off bet ion performance and the
storage/runtime overhead, the authors suggested using higher group siz ‘Om a pre bablhstlc pomt of-view,

checksum inherently overlooks specific even-numbered bit flips.
results from [13] achieve lower detection accuracy compared to
runtime.

Low Customized

100% TP} Hardware

Piece-wise Clustering [4]
Weight Reconstruction [14]
DeepDyve [15]
Weight Encoding [16]
RADAR [13]
HASHTAG [6]
AccHASHTAG

SSRNANEN

bit flips. The core idea in ACCHASHTAG is to generate a compact (ground-truth) signature
NN. This is done by generating per-layer hashes of DNN parameters prior to model deployment.
The signature’is then used to verify the integrity of DNN parameters during execution to validate the inference
result and mitigate malicious behavior. Our detection methodology incurs minimal computation/storage overhead
and is devised based on lightweight solutions to enable efficient and real-time execution in embedded systems.
AccHASHTAG comprises two main phases to detect anomalies in DNN parameters:

Pre-processing Phase. AcCHASHTAG preprocessing is a one-time process in which the detection mechanism is
calibrated for the underlying victim DNN. There exist an inherent tradeoff between attack detection performance
and the computation/storage requirement for extracting layer signatures; On the one hand, hashing all layers
ensures that the detection mechanism can universally adapt to attacks in any subset of layers. On the other hand,

ACM J. Emerg. Technol. Comput. Syst.

AccHAsHTAG: Accelerated Hashing for Detecting Fault-Injection Attacks on Embedded Neural Networks « 5

Pre-processing Steps Online Execution Loop

Layer Sensitivity
Analysis

Hash DNN Inference <—Ye
Generation

Victim
DNN

No=> Fault Detected

7 \
o <
Hash Extraction < FPGA

most prone to fault-injection attacks. We then generate a customized signature from the identified sens
online execution, the signature is used to validate the model’s integrity in real-time, parallel to conductj

hash computation and storage are linear in the number of layers used for detection We ol
sitivity analysis
le layers, called
aximize detection
‘in AccHAasHTAG which

scheme that models the Vulnerablhty of DNN layers to b1t -flip attacks. The to
checkpoint layers, are then used to extract the hashes. This, in turn, allows Ac
performance under any given computation/storage budget. k is a tunable '
can range from 1 to L where L is the total number of linear layers in
then hashes will be generated for all layers. However, as we show i imeénts (see Section 5.3.2 Figure 11),
for the wide variety of evaluated models our detection rate rea¢
k = 5 layers. This is due to the ability of our sensitivity a
probability of fault injection.
Online Execution. This recurring phase is activated nderlying DNN is queried. During online
execution, new hashes are extracted from checkp t&/in‘parallel to the DNN inference. The new hashes
are then validated against the ground-truth hash v]
model parameters. Upon hash mismatch,
The user shall then evict the deployed mo
the operations performed in ACCHASHTAG':
with the DNN’s host proces

, sed to notify the user that the system is compromised.
oad the ground-truth weights from the source. We accelerate
ne execution phase using a customized FPGA core that interacts

3.1 Threat Model

In this paper, we direc

to fault-injection attacks that target DNN parameters, i.e., the bit-flip attack. In
ull knowledge of the victim DNN architecture and its parameters. They further
e model parameters and have access to a subset of the data used for training the
e data to progressively identify vulnerable weights and flip their value. This is done by

the number of flipped bits as is observed in the state-of-the-art attacks [20, 21]. As such, we do not consider
random bit flips since they are shown to be ineffective in reducing DNN accuracy even with a high number of
flipped weights [20, 31].

We evaluate our detection in the challenging white-box scenario where the attacker knows which layers are
used for detection. He is also fully aware of the hash algorithm used for generating the per-layer signatures.
However, he does not know the secret hash values and the parameter ordering used for generating the hashes.
Following prior work [13], we assume the secret hashes are stored in the secure on-chip static random access
memory (SRAM) which is not accessible by the attacker. Note that even when SRAM storage is not available, our

ACM]. Emerg. Technol. Comput. Syst.

6 + Mojan Javaheripi, Jung-Woo Chang, and Farinaz Koushanfar

detection secrets are still immune to RHA. This is due to their low memory footprint (less than 5 KB) that makes
them hard to target by RHA as shown in [5].

4 ACCHASHTAG COMPONENTS
4.1 Hash-based Signature Extraction

Hash functions generate a constant-length code value which is independent of the size of the corresponding
hashed data. This property motivated us to leverage hashing as the underlying mechanism for extracting DNN
layer signatures. Among the available hash functions, AccHASHTAG incorporates the Pearson hash [19] which
operates on input streams at Byte granularity. Below we present the Pearson scheme for generating an 8-bit hash
value. 0
Pearson Hash Formulation. The user generates a hash table T which contains a random permutat
values in the range [0, 255], i.e., Zyse. For an incoming vector of length N containing Byte val
Pearson hash is defined recursively as follows:

h(x1, %2, ...,xN8) = T(h(x1, x2,. .., xN-1) ® X

p attack [20]
particularly amenable for low-
-11-defined for execution in 8-bit

Our hashing scheme provides several desirable characteristi
overhead detection of fault injection attacks: (1) The has
processors and embedded CPUs [19]. (2) The hashing schy
thereby providing high customizability for various
input streams with fixed-point representation whi

Signature Generation. To extract the
random hash table T. The pertinent layer

sh input stream is generated using a user-defined secret ordering.
e 2. Here, the hash input stream is constructed by first traversing

An example of such orderin
the layer’s weight kernel in
AccHASHTAG signature

(Section 3.1) that the attacker is not aware of the secret ordering used to generate the
er parameters. As such, even if the attacker gains full access to the Pearson hash tables, they will
not be able to'reproduce the ground-truth hash values. The attacker, therefore, performs the bit-flip attack without
taking extra measures to preserve the ground-truth hashes. In this context, the lower bound on AccHasHTAG
detection can be obtained by quantifying the probability of collision in our hashes. Collision occurs when multiple
input streams are mapped to the same output hash. We analyze hash collision in two separate scenarios where
the attacker alters 1) one or 2) more than one element of the parameter tensor in the target layer.

4.2.1 Single-element Alteration. When the attacker alters only one element in the weight block where the
hash is computed, the user can detect the hash mismatch with 100% accuracy. This is due to an intrinsic collision

ACM J. Emerg. Technol. Comput. Syst.

AccHAsHTAG: Accelerated Hashing for Detecting Fault-Injection Attacks on Embedded Neural Networks « 7

- C,=64 -
L] 4
» L]
-
[I :
1(2|3 10[11] ©
k|[a]5]6 see
7189 18] k9
-~
k=3
Hash Input Stream 9 |10|11 e @ "

ility of collision
is zero when the streams are Pearson hashed.

Let us denote the altered byte value inside DNN weights by xp,,. The
bytes can be written as:

operation for the first m

B = T(hm-1 @ % (2

where h; is the short notation for h(xy, xs, ..., x;). Since ytes are unaltered, the value of h,,_;
remains constant. By changing x,, the hash value hp, ché

S1nce the remammg elements x|, ., are unalter

block, a possibility arises that the hash mis
subsequent perturbed weight element suc
generality let us assume on

h element, results in a ne
Let us denote the hash
Pu_1, respectively.
X, needs to satisfy

¢h caused by the earlier perturbed elements is later corrected by a
at the overall hash value hy remains unchanged. Without loss of
e altered: X, and x,, (m < n). As shown previously, changing the
; value that propagates through the input chain until the next changed element.
n — 1 elements in the original and altered weight blocks by hp—1 and

nal hash value of the block remains the same, the new value of the n'" element

b1 ® xp, = l:‘ln—l ® X 3)

n limits the number of allowed values for %, to only one. As such, the overall probability of
obtaining the ¢ame hash after altering the bits in two elements is 5= ~ 0.004. This probability quantifies the
chance of collision occurring in our hashing scheme and remains the same for any arbitrary number of elements

altered bigger than one. As such, our (worst-case) lower bound on hash mismatch detection for the DNN is (256)1“.
Here, [, denotes the number of attacked layers where more than one weight element is flipped by the attacker.

We empirically evaluate our developed bound by performing multiple runs of hash extraction on an arbitrary
input stream of length 1000. We randomly change a subset of k values within the input and measure the collision
rate. As seen in Figure 3, by increasing the number of experiments, the collision probability asymptotically
reaches 0.004 in all settings, which is compatible with the bound from our statistical analysis.

ACM]. Emerg. Technol. Comput. Syst.

8 « Mojan Javaheripi, Jung-Woo Chang, and Farinaz Koushanfar

002 ™

[} « k=2
e
[. v k=3
-4 .
= s k=6
6 0.011 s
I ¢ " s
=° -t-‘g ---------- I S -‘ ------ '- ------ # . k=12
W t + k=16

0.00 { e

0 2000 4000 6000 8GO0 10000

of Trials

Fig. 3. Collision rate versus number of trial runs for hashing an input stream of length 1000. Each trial rapdomly changes a

subset k € [2,3,6,8,12,16] of message elements.

4.3 Per-layer Sensitivity Analysis

State-of-the-art fault injection attacks leverage various techniques to identify weight val
accuracy if altered. By targeting the attack towards such vulnerable weights, the attack
flips to degrade the accuracy of the victim DNN below random guess. Motiv
analysis that accurately finds the subset of layers inside the victim DNN that a
sensitivity formulation is inspired by prior work in DNN pruning [18]. Speci

vise a sensitivity
It injection. Our
lize Taylor expansion

to model the effect of per-layer weight change on DNN accuracy as an of sensitivity.
Linear layers in DNNs comprise two key parameters, namely the t and bias: (W, b). Let us represent
the entire parameter set for a given DNN with L layers by P = {(W/ .. (W, b)L} where the subscript

denotes the layer index. Training the DNN is equivalent to mirn

1 i)les d their labels, respectively. To
ize the loss over the given dataset. Let us

. As such, we model parameter sensitivity by altering the sign
he lower case p represents individual weight/bias elements in the
ameter p, can thus be measured as:

S(pw) = (L(D,P) - £(D, Blj, -,)* (5)

p = —p and measuring the eff¢
DNN. The sensitivity S(-).for

yoint x = a is given by:

. _aoxZ
fG) % fla)+ (x—a) x 5L ©

xX=a

By replacing f in the Taylor expansion formula with the loss function £, we can rewrite (5) as:

N oL
L(Dsp)_L(Dsplﬁn:—pn) z2pn>< P) (7)
Pn
We thus measure the sensitivity of parameter p, as:
oL
S —)? 8
(pn) o< (pn X apn) (®)

ACM J. Emerg. Technol. Comput. Syst.

AccHAsHTAG: Accelerated Hashing for Detecting Fault-Injection Attacks on Embedded Neural Networks « 9

Note that the formula shown in (8) can be easily computed using a simple backward pass through the network
to compute the first-order gradients. Once the sensitivity is obtained for each weight element, we define the
sensitivity of each layer as the average over top-5 sensitivity values of its enclosing elements. We empirically
explain our reason for choosing the top-5 weights by providing an analysis of the bit-flip attack in Section 5.2

4.4 Accelerating Hash Generation

To enable detection of faults in real time, we accelerate the hash computation on FPGA. This, in4urn, allows for a
parallel verlﬁcatlon of welghts and DNN executlon The top -level architecture of AccHAsHTAG F 'A accelerator

the Pearson hash module for
hash computation concludes,

control unit operates in three modes, namely, populating the hash tab
signature generation, and sending the final hash value to the host#
the final hash value enters the output FIFO buffer and is sen
interface. We provide a break down of the utilized resource .)
generation in Table 2. Here, the design is synthesized fo ili 108 FPGA.
We take several measures to increase the hash genera
module as a specialized form of parallel computing eply pipelined processes inside the hash generation
ata from the input FIFO buffer and calculates the

hash signatures within the same pipelin
advantage of the small footprint of the has
the FPGA. This, in turn, enables very low
optimize the burst length fot
stream read latency from t
AXI reads, thereby incre,
FPGA resource utilizati

mplement them entlrely using 8-bit th flop registers on
ncy accesses to the table during hash computation. Finally, we
jaximally overlap the latency of hash computation with the input
4 Master. An optimal burst length will result in a nearly diminished cost for
t to that of the hash Pearson hash module, with negligible increase in

5 EXPERIMENTS

In the following, we provide a comprehensive evaluation of AccHAsHTAG performance along with various
analyses and discussions. Section 5.1 encloses details of our benchmarked models and datasets, attack setup and
implementation, as well as definitions for the utilized evaluation metrics. Section 5.2 provides an analysis of the
attack profile to clarify various design choices. Finally, in Section 5.3 we report the detection performance of
AccHASHTAG, provide comparisons with the best prior art, and analyze the storage and computation requirements
of AccHASHTAG.

ACM]. Emerg. Technol. Comput. Syst.

10 « Mojan Javaheripi, Jung-Woo Chang, and Farinaz Koushanfar

Output Pearson Hash Hash Table
1 fFFo [Module
AXI T
nilig Module BRAM FF LUT
Host . l:félg - xa-D Pearson Hash - 244 962
cPu Hash Table 2 2306 238
FIFO - 512 580
| || AXkLite Control Unit - - 1314
Slave
AXI Master - 106 168
AXI-Lite Slave - 144 232
Fig. 4. Overview of AccHASHTAG accelerated hash generation and Table 2. Resource utiIizatior#b AccHASHTAG com-
verification using a specialized FPGA compute kernel. ponents when synthesized . ilinx FPGA.

5.1 Experimental Setup

Benchmarks. We evaluate AcCHASHTAG on two image datasets, namely, CIFAR10 [
datasets contain 10 and 1000 classes of RGB (red, green, and blue) images of di i
respectively. We separate 20 examples from each class in the training data an
dataset. This validation set is used to perform sensitivity analysis in the

Table 3 encloses an overview of the DNN architectures evaluated

gt and their baseline test
esNet20 [3] and VGG11 [26].

3, Transformers show, on average, higher
mber of required bit flips for degrading their

,and ATTN represent convolution, fully-connected, and
-atténtion layer consists of four fully-connected layers. The baseline
are reported for 8-bit quantized DNNs.

Top-1

Model Layers Acc (%) Bit Flips

G11 8 CONV, 3 FC 89.3 89
ResNet20 19 CONV, 1 FC 91.9 18
AlexNet 5 CONV, 3 FC 55.5 21
ResNet18 20 CONV, 1 FC 68.8 8
ResNet34 36 CONV, 1FC 72.8 10
MobileNet 52 CONV, 1 FC 70.3 3
ViT 1 CONV, 12 ATTN, 1 FC 80.6 203
DeiT 1 CONV, 12 ATTN, 1 FC 79.3 166

Attack Configuration. We leverage the open-source implementation! of the state-of-the-art bit-flip attack [20]
to evaluate our detection. The attack batch size on convolutional neural networks is set to 128 and 64 for CIFAR10
and ImageNet benchmarks, respectively. Throughout the experiments, we repeat the attack 50 times with different
initial random seeds for each of our DNN benchmarks and report the average obtained results. Each attack round

1 Available at https://github.com/elliothe/BFA

ACM J. Emerg. Technol. Comput. Syst.

https://github.com/elliothe/BFA

AccHAsHTAG: Accelerated Hashing for Detecting Fault-Injection Attacks on Embedded Neural Networks « 11

consists of multiple iterations where one bit is flipped at each step. The iterations conclude once the DNN test
accuracy falls below the random guess threshold, i.e., 10% and 0.1% for CIFAR10 and ImageNet, respectively. Due
to the robustness of Transformer models to bit-flips, we consider the attack successful once the accuracy of the
model falls below 0.2%. Table 3 encloses the average number of bit flips required for attacking our benchmarked
DNNss in the 8-bit quantized regime.

Metrics. We use two evaluation metrics to quantify AcCHASHTAG detection. Firstly, we define Detection Rate (DR)
as the ratio of models under attack which are correctly detected by AccHASHTAG, as formulated in Equation (9).

_ # of attacked models correctly detected
a Total # of attack rounds

Secondly, we use the False Positive Rate (FPR) as the ratio of benign models mistaken for bein,
containing a bit-flip that results in a hash mismatch.

DR

©)

alicious, i.e.,

5.2 Analysis of Design Choices

In this section, we perform an ablation study to analyze the characteristics of th tack. We experiment
with three victim DNNs with various types of (linear) layers, e.g., convolution, d self-attention.
Specifically, we benchmark ResNet20 trained on CIFAR10 and ResNet1 ViT trained on ImageNet. The
weights in each victim DNN are quantized using a range of bitwidth m evaluated bitwidth is
point accuracy for ResNet20,
ResNet18, and ViT, respectively. For each configuration, we perfotn : e bit-flip attack with different
e our findings below:

mm CIFARLO-Reshet20

~100] %2 ois 5 ess 100 g7
1 93.6 93.2 93,5 = imageNet-fesNet18
3 o mageliet it Fi ¢ sign changes occurring during multiple runs of
2
£ . The progressive bit-flip attack [20] changes the sign
LR ¥ parameter with high probability.

&0

& B 12

Quantization Bitwidth

attern amonig all experiments indicates that the attack significantly favors
rameter. This is intuitive as flipping the sign of the underlying weight parameter

a higher rank corresponds to higher sensitivity. As highlighted with the green boxes,
gst most sensitive layers remain largely the same when y < 10. This is intuitive as a higher y
includes weights in the sensitivity analysis that are not prone to bit-flips, while a lower y ensures a more targeted
sensitivity analysis only for the most vulnerable parameters. For the benchmarked Transformer models, due to
their inherent robustness to faults, the number of bit-flips required to reduce the accuracy is extremely large (see
Table 3). For convolution-based benchmarks, however, accuracy can be downgraded with very few bit-flips. For
such models, we observe that while the attack could target different or same weights within a certain layer, on
average, the same layer is not targeted more than ~ 5 times. To investigate the per-layer attack concentration,
we count the number of times each layer is targeted during one execution of the attack. Figure 7 shows the
maximum number of bit flips occurring per layer, averaged across different attack runs for two representative

ACM]. Emerg. Technol. Comput. Syst.

12

Mojan Javaheripi, Jung-Woo Chang, and Farinaz Koushanfar

ImageNet-ResNetl8

CIFAR10-ResNet20

x 20{(Most Sensitive) e I (Most Sensitive) Jooef
& 15 e ™" 15 RN
s mls] ul
= T g e
£ 10 Wi 10 N
& <ol .
g2 5| Lezt | s tEs
[ot .
N ol . ols"
RARRERAR R IAVNN R N RFERARARARFINAIINEIN A
Layer) Layer
ImageNet-ViT
50| (Most Sensitive) J e e y=1
. lanf
x 40 Y) ! : Tov=2
i i
&) .§g;‘ vy 8 y=2
30 + Tm ¥ :
: S
2 , ,!'i
2 20 2 .;!.jl.x' .
g LA |
3 TR L v
10 i .!;: S]
. L §t " '
an" .
0 Iltl'
R TR R S DR SRR BAC AR AL,
Layer

average sensitivity score assigned to their
s), remain largely the same, when y < 10.

“concentration and the analysis in Figure 6, we

quantify the sensitivity of each layer as Y = 5 most sensitive weights.

m B

@
s %‘ 5 | Net
®7 magere Fig. 7. Maximum per-layer attack concentration, averaged
E g4 across multiple runs of the bit-flip attack to ResNet20 and
gﬁ 3 ResNet18 trained on CIFAR120 and ImageNet, respectively.
82, The progressive bit-flip attack [20] on average targets the
=7 - > .

2 L weights in the same layer no more than ~ 5 times.

Dataset Siz leverage a small held-out validation dataset to compute the sensitivity scores for model weights

we investigate the effect of validation dataset size, controlled by the number of held-out samples
per class (n), en'the sensitivity analysis. Figure 8 demonstrates the ranking of model layers in terms of sensitivity,
shown for different n, where a higher rank on the vertical axis corresponds to higher sensitivity. As shown, for
ImageNet benchmarks, the ranking variance is very small and the sensitivity analysis delivers consistent results
even in the extreme case of n = 1. For CIFAR10 dataset, the sensitivity analysis is more affected by n. This is
due to the small number of classes in this dataset, which results in a very small validation dataset for small n.
We show the detection rate of AcCHASHTAG versus various number of checkpoints in Figure 9. As seen for the
CIFAR10 benchmark and the extreme case of n = 1, more checkpoints are needed to obtain 100% detection rate.
However, for n > 5, hashing only the two most sensitive layers can achieve perfect detection. For the ImageNet

ACM J. Emerg. Technol. Comput. Syst.

AccHAsHTAG: Accelerated Hashing for Detecting Fault-Injection Attacks on Embedded Neural Networks « 13

benchmark, n > 2 can provide 100% detection with two checkpoints. Our analysis shows an intrinsic trade-off
between validation dataset size and number of checkpoint layers. When data is scarce, the sensitivity analysis

may be affected, thus more checkpoint layers are needed to ensure detection.

ImageNet-ResNet18

CIFAR1O-ResNet20

x 201 (Most Sensitive) Lo (Most Sensitive) . en "
L v .
g 1 - 15 Gt WG <
> LLET . . Lpied
= 10 HH 10 I R
£ is T
@ 5 2 5 L LiTE
e nT cHsla H
& WG o :
“n [oF L] o=
SRR AR RN XA ARG AN
Layer . Layer
ImageNet-ViT
50 (Most Sensitive)
x 40
g L
L:-. 30 o, 1 .vlii
£ HMLE
s " H
2 2 110
LT A
c]
@ v H 1L
Y10 . Vi
[Pl
o
5 'zsh

R R R R D R O B

Laye

Fig. 8. Ranking DNN layers based on their sensitivit a validation dataset with n samples per class.

CIFAR10-ResNet20

ImageNet-ResNet18

8 100 0 —— n=1
E —4— n=2
& 80 e n=5
2

v

2

o 60

o)

8 2 4 6 8

ckpoint Layers # of Checkpoint Layers

detection rate versus number of checkpoint layers, shown for various number of per-class samples (n)
alculation. We omit the plot for ViT for brevity as it shows a similar trend as the ResNet18 benchmark.

5.3 AccHAsHTAG Performance

5.3.1 Sensitivity Analysis. In this section, we showcase the stand-alone performance of AcCHASHTAG sensi-
tivity analysis. We benchmark the ResNet20 model on CIFAR10 to evaluate the effectiveness of our proposed
method in finding the vulnerable layers within a DNN. Figure 10 demonstrates the sensitivity score assigned
to each layer of the model versus the number of per-layer bit flips occurring across 50 runs of the attack. All
values are normalized by the total summation. As seen, there exists a correlation between the sensitivity score

ACM]. Emerg. Technol. Comput. Syst.

14+ Mojan Javaheripi, Jung-Woo Chang, and Farinaz Koushanfar

Hl Sensitivity

v LA s WA - T T T I~ T s S T < T N B
AW Vﬂ?\/ N A A A AN S
Layer

and the number of times the pertinent layer has been subject to attack; mo
are also the most sensitive layers found by AccHasHTAG. Below, we provide a
AccHASHTAG execution.

5.3.2 Detection Performance. We leverage our sensitivity analysis ayers in the order of their
attack vulnerability. The top-k most sensitive layers are then se nts to extract hashes during
the pre-processing and online phases. During online executio e at least one hash mismatch with
the ground-truth signature among DNN layers, AccHasH ,
umber of checkpoint layers for various
nantized with 8-bit parameters.

tew checkpoints. For the CIFAR10 benchmarks,
ch points on the VGG11 and ResNet20 architectures,
érfect detection rate on AlexNet with only 1 checkpoint.
esNet34, AccCHASHTAG achieves 100% detection with only 2
olution neural network (CNN) benchmark, i.e., MobileNetV2 with
cHASHTAG achieves 96.2% detection rate with 3 checkpoints and

AccHASHTAG achieves a 100% attack detection
AccHAsHTAG detects faulty DNNs with,
respectively. For ImageNet, ACCHASHTAG
On the more complex architectures ResNef
and 3 checkpoints. For the most complex ¢
53 convolution and fully-co
reaches perfect accuracy wit
Transformer-based mode]

ImageNet (CNN)

g £
(-4 -4
c c —#— ResNet34
<] o 80
s s —4— AlexNet
o —#— ResNet20 o MobileNetV2
R
g —+— VGGI11 2 60 —e— ResNet18
2 4 6 8 10 2 4 6 8 10
of Checkpoint Layers # of Checkpoint Layers

Fig. 11. AccHAsSHTAG detection rate versus the number of checkpoint layers used for signature extraction, evaluated on
different victim CNNs.

ACM J. Emerg. Technol. Comput. Syst.

AccHAsHTAG: Accelerated Hashing for Detecting Fault-Injection Attacks on Embedded Neural Networks « 15

ImageNet (Transformer)

o 100
-
:
c Fig. 12. detection performance of AccHASHTAG versus the num-
o 80 ber of checkpoint layers for various DNN benchmarks. Evalu-
© VIT ated models are derived from the Transformer backend with
3 . self-attention layers.
8 60 —4&— DeiT

2 4 6 8 10

of Checkpoint Layers

are most prone to bit-flips among more than 50 layers in the Transformer benchmarks. A
can detect the occurrence of faults with 100% using only 1 and 2 checkpoint layers for t
respectively.
The results demonstrate AcCHASHTAG’s ability to correctly find the most 3
fault-injections using hash signatures. Note that AccHASHTAG has an FPR=0
layers for attacked ones. This is due to the fact that the hash value is consi
parameters remain intact, i.e., in the absence of bit flips.
Effect of Bitwidth. We benchmark ResNet20 and ResNet18 trained

er mistakes benign
s the underlying layer

and ImageNet, respectively,

and sweep the quantization bitwidth of the victim DNN. Figure } the effect of DNN bitwidth on
AccHASHTAG detection rate. While the bitwidth can affect t on 1z only one checkpoint, it can be
observed that AccHASHTAG becomes agnostic to the unde with more than 2 checkpoints. For > 2
checkpoints, AcCHASHTAG consistently achieves a de n rate:of 100%. The same trend can be observed for

the Transformer-based ViT benchmark trained o
detection rate when more than 2 (sensitive) layers
of different quantization bitwidths allows A¢eHasn*
employed in embedded applications. '

e checked. the ability to maintain the detection rate in face
e globally applicable to various DNN configurations

1 2 3 4 5
of Checkpoint Layers

o 100 ageNet-ResNet18 (6 bits) | g 100

;_-i' ImageNet-ResNet18 (8 bits) | E

= 90 ImageNet-ResNet18 (12 bits) | ¢ oo

5 ; -]

B & CIFAR10-ResNet20 (4 bits) | e T

% CIFAR10-ResNet20 (6 bl‘tS) i % i + ImageNet-ViT (8 bits)

2 a5 CIFAR10-ResNet20 (8 bits) | @ ImageNet-ViT (12 bits)
CIFAR10-ResNet20 (12 bits) |

Fig. 13. Effect of yictim DNN’s bitwidth on AccHAsHTAG detection rate. The legend presents the utilized datasets along with
the underlying bitwidths.

5.3.3 Comparison with prior work. We compare AccHAsHTAG with the best prior work, i.e., WED [16] and
RADAR [13] in terms of detection performance and overhead. We baseline the best reported results in the original
papers, i.e., the WED(2) configuration from [16], and G = 8 and G = 512 with interleaving for ResNet20 and
ResNet18 from [13]. We devise two configurations for ACCHASHTAG to enable on-par comparison with each of
the prior work as follows.

ACM]. Emerg. Technol. Comput. Syst.

16 « Mojan Javaheripi, Jung-Woo Chang, and Farinaz Koushanfar

Similar to AcCHASHTAG, the proposed method in [16] checkpoints a subset of DNN layers to detect malicious
models. Therefore, for best comparison with this work, we evaluate AccCHASHTAG with the number of checkpoints
set to the minimum value required to obtain 100% detection rate (see Figure 11). We call this configuration
Cfg-1. The method in [13], however, checkpoints all layers within the DNN and reports the performance as the
total number of detected bit flips. Therefore, to compare with this work, we devise Cfg-2, where the number of
checkpoints is selected such that all bit flips are detected. For Cfg-2, we set the number of checkpoints to 7 and 8
for ResNet18 and ResNet20, respectively.

The comparison results are summarized in Table 4. As seen, AcCHASHTAG provides state-of-the-art detection
performance at a fraction of the storage/computation cost compared to best prior works. Compared to WED [16],
AccHASHTAG significantly reduces the false-positive rate and achieves 100% detection rate with FPR = 0.0%.
Additionally, AccHASHTAG incurs 20 — 400x lower storage footprint. Compared to RADAR [13], AccHASHTAG
detects all bit flips within the model with 100% accuracy while incurring 3 — 4x lower storage cost.
compare AcCCHASHTAG runtime with RADAR [13]. We measure our runtime on an AR
CPU. For a fair comparison, we report the normalized runtimes, i.e., relative to the i
DNN on the target hardware. As seen, AcCHASHTAG achieves 175 — 183X fas

We would like to emphasize that unlike [13], AccHAsHTAG detection does
bit flips. Therefore, the setup in Cfg-2 is purely for comparison purpose t representative metric for
evaluating AcCHASHTAG is the detection rate corresponding to Cfg-1

Table 4. AccHAsHTAG comparison with best prior works WED [16] and R 13 me numbers are measured on an
ARM CPU and normalized by the inference time of the victim DNN.

n Overhead
(KB) Runtime (%)
N/A
5.27
0.01
0.03
1.83
0.01
N/A
< 0.01
N/A
< 0.01

Detection
(%

Benchmark Work

WED
ResNet20

ResNet18

Pearson Pearson hash tables each incur a storage cost of 256B. The Pearson hash tables can be reused among
layers, however, here we report the maximum required storage, i.e., when utilizing a unique hash table per
checkpoint layer. For I checkpoint layers, the storage overhead of AcCHASHTAG is, therefore, O(257 X I)B.

To showcase the efficiency of AccHASHTAG detection, we measure the runtime on both an embedded Cortex-
A57 CPU and an FPGA. We develop and optimize the 8-bit Pearson hash in C, which is then invoked during
DNN execution to detect bit flips. We further synthesize our FPGA cores for AccHASHTAG on the Xilinx VCU108
development board. We utilize Vivado High-Level Synthesis to realize our FPGA design. The FPGA accelerator
operates with a clock cycle of 2ns. As a baseline, we report the inference time of the victim DNN. For our
CNN-based benchmarks, we report the runtimes on an embedded Jetson TX2 board which includes an ARM

ACM J. Emerg. Technol. Comput. Syst.

AccHAsHTAG: Accelerated Hashing for Detecting Fault-Injection Attacks on Embedded Neural Networks « 17

Cortex-A57 CPU and an NVIDIA Pascal embedded GPU. For the large-scale Transformer-based benchmarks, we
report their runtime on a server-grade Intel Xeon E5-2609 CPU and the Nvidia TITAN Xp GPU. The victim DNN
is implemented and executed via PyTorch deep learning library.

Table 5 encloses the runtime and storage of AcCHASHTAG across different benchmarks. We report AccHasH-
TAG’s storage as the percentage of the memory (in Bytes) required by the victim DNN’s weights. The number of
checkpoints is set to the minimum value required for a 100% detection rate from Figure 11.

As evident from Table 5, AccHASHTAG delivers perfect detection performance while incurring a negligible
storage and computation cost, making it suitable for real-time embedded DNN applications. Additionally, by
leveraging our accelerated hash core on FPGA, we relieve the host CPU of hash computation. AccHasaTAG FPGA
modules checkpoint the sensitive layers in parallel to DNN inference, enabling 1.5-2.6X faster’hash generation
compared to CPU execution.

DNN Inference (ms) CPU Detecti
Type Benchmark # CPU GPU Storage (%) Tim
VGG11 1 1698.4 110.7 3e-3 4 » 0.003
ResNet20 2 65438 59.4 2e-2 0.005
CNN AlexNet 1 7957.9 240.7 4e-4 0.614
ResNet18 2 20938.8 198.5 0.035
ResNet34 3 40870.6 229.7 1.059
MobileNet 5 2313.6 0.007
Transformer ViT 3 196.9 3.127
DeiT 1 1.179

wo stages, we define a design hyperparameter dubbed
eads from AXI. Figure 14 demonstrates the relationship
easured in ber of hash computations per seconds) and TILE length. Using
nory reads to' become the latency bottleneck in the design. By increasing the

ute capacity to match the AXI read latency, thereby increasing the overall

between design throughpu
a small TILE will cause the
TILE value, we increase the ‘

u 4

g Fig. 14. System throughput as a function of the design parameter TILE,
= i.e., the burst length for AXI reads. Higher TILE length facilitates larger
- overlap between CPU-FPGA communications and hash computation,
=

thus increasing throughput.

0 250 500 750 1000
TILE

ACM]. Emerg. Technol. Comput. Syst.

18 « Mojan Javaheripi, Jung-Woo Chang, and Farinaz Koushanfar

6 CONCLUSION

This paper presents ACCHASHTAG, a highly accurate methodology for online detection of fault-injection attacks
in DNN parameters. The core idea in ACCHASHTAG is to extract a ground-truth signature from the benign model
which is then used for verification at inference time. We extract the signatures by encoding DNN layer weights
using a low-collision hash function. To minimize detection overhead, we only extract the hashes from a subset
of DNN layers where the probability of attack occurrence is high. Towards this goal, AccCHASHTAG is equipped
with a novel sensitivity analysis that quantifies the vulnerability of DNN layers to bit-flip attacks. AccHasuTAG
detection strategy provides several benefits: (1) it delivers 100% detection rate with 0 false alarms across a variety
of benchmarks. (2) The proposed detection is backed up by provable performance guarantees that provide a lower
bound on the detection rate. (3) AcCHASHTAG incurs negligible storage and runtime overhead, enabling accurate
i eat model
scroborate

make AcCHASHTAG an attractive candidate for practical deployment. Our thorough evalu
AccHASHTAG’s competitive advantage in terms of attack detection and execution overhead,

7 ACKNOWLEDGEMENT

This work was supported in part by NSF-CNS award number 2016737, NSF
2112665 and the Intel PrivateAl Collaborative Research Institute.

REFERENCES

[1] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenb
Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. 2020. An in} g
scale. arXiv preprint arXiv:2010.11929 (2020).

(2]

[3] dual learning for image recognition. In Proceedings of the

8.
Deliang Fan. 2020. Defending and harnessing the bit-flip based
onference on Computer Vision and Pattern Recognition. 14095-14103.

[4] Zhezhi He, Adnan Siraj Rakin, Jingtao Li, C
adversarial weight attack. In Proceedings of th
[5] Sanghyun Hong, Pietro Frigo, Yigitcan Kaya,
graceless degradation in deep ne
Security 19). 497-514.
[6] Mojan Javaheripi and Farina
Neural Networks. In 2021 JE

istillation. arXiv preprint arXiv:2107.01378 (2021).

oss Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2014.

emory without accessing them: An experimental study of DRAM disturbance errors. ACM SIGARCH Computer
Architecture News 42, 3 (2014), 361-372.

[11] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. [n.d.]. CIFAR-10 (Canadian Institute for Advanced Research). ([n.d.]). http:
/Iwww.cs.toronto.edu/~kriz/cifar.html

[12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classification with deep convolutional neural networks.
Advances in neural information processing systems 25 (2012), 1097-1105.

[13] Jingtao Li, Adnan Siraj Rakin, Zhezhi He, Deliang Fan, and Chaitali Chakrabarti. 2021. RADAR: Run-time Adversarial Weight Attack
Detection and Accuracy Recovery. arXiv preprint arXiv:2101.08254 (2021).

[14] Jingtao Li, Adnan Siraj Rakin, Yan Xiong, Liangliang Chang, Zhezhi He, Deliang Fan, and Chaitali Chakrabarti. 2020. Defending bit-flip
attack through DNN weight reconstruction. In 2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE, 1-6.

ACM J. Emerg. Technol. Comput. Syst.

https://arxiv.org/abs/2104.07853
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html

AccHAsHTAG: Accelerated Hashing for Detecting Fault-Injection Attacks on Embedded Neural Networks « 19

[15] Yu Li, Min Li, Bo Luo, Ye Tian, and Qiang Xu. 2020. DeepDyve: Dynamic Verification for Deep Neural Networks. In Proceedings of the
2020 ACM SIGSAC Conference on Computer and Communications Security. 101-112.

[16] Qi Liu, Wujie Wen, and Yanzhi Wang. 2020. Concurrent weight encoding-based detection for bit-flip attack on neural network
accelerators. In Proceedings of the 39th International Conference on Computer-Aided Design. 1-8.

[17] Yannan Liu, Lingxiao Wei, Bo Luo, and Qiang Xu. 2017. Fault injection attack on deep neural network. In 2017 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). IEEE, 131-138.

[18] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. 2019. Importance estimation for neural network pruning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 11264-11272.

[19] Peter K Pearson. 1990. Fast hashing of variable-length text strings. Commun. ACM 33, 6 (1990), 677-680.

[20] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. 2019. Bit-flip attack: Crushing neural network with progressive bit search. In Proceedings
of the IEEE/CVF International Conference on Computer Vision. 1211-1220.

[21] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. 2020. Tbt: Targeted neural network attack with bit trojan.
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 13198-13207.

[22] Adnan Siraj Rakin, Zhezhi He, Jingtao Li, Fan Yao, Chaitali Chakrabarti, and Deliang Fan. 2020. T-bfa: Targeti
weight attack. arXiv preprint arXiv:2007.12336 (2020).

[23] Adnan Siraj Rakin, Li Yang, Jingtao Li, Fan Yao, Chaitali Chakrabarti, Yu Cao, Jae-sun Seo, and Deliang F:
Robust & Accurate Binary Neural Network to Simultaneously Defend Adversarial Bit-Flip Attack and)
arXiv:2103.13813 (2021).

[24] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhihen,
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual
115, 3 (Dec. 2015), 211-252. https://doi.org/10.1007/s11263-015-0816-y

[25] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chié
linear bottlenecks. In Proceedings of the IEEE conference on computer visio:

[26] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional 1y
arXiv:1409.1556 (2014).

[27] Andrei Tatar, Radhesh Krishnan Konoth, Elias Athanasopoulos, Cristj

oceedings of the

ition. 4510-4520.
ale image recognition. arXiv preprint

nd Kaveh Razavi. 2018. Throwhammer:

hmcal Conference ({USENIX} {ATC} 18). 213-226.

[28] Nariman Torkzaban and John S. Baras. 2020. Trust-Aware Sepvice ion Chain Embedding: A Path-Based Approach. In 2020 [EEE
' tworks (NFV-SDN). 31-36. https://doi.org/10.1109/NFV-

Conference on Network Function Virtualization and S
SDN50289.2020.9289885
[29] Nariman Torkzaban, Chrysa Papagianni, an
Conference on Software Defined Systems (SD!
[30] Victor Van Der Veen, Yanick Fratantonio, Ma:

://doi.org/10.1109/SDS.2019.8768602

r7Daniel Gruss, Clémentine Maurice, Giovanni Vigna, Herbert Bos, Kaveh
erministic rowhammer attacks on mobile platforms. In Proceedings of the 2016
pications security. 1675-1689.

iang Fan. 2020.”Deephammer: Depleting the intelligence of deep neural networks through targeted
ecurity Symposium ({USENIX} Security 20). 1463-1480.

fang Wu, and Guangyu Sun. 2021. PTQ4ViT: Post-Training Quantization Framework for
111.12293 (2021).

ACM]. Emerg. Technol. Comput. Syst.

https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/NFV-SDN50289.2020.9289885
https://doi.org/10.1109/NFV-SDN50289.2020.9289885
https://doi.org/10.1109/SDS.2019.8768602

	Abstract
	1 Introduction
	2 Background and Prior Work
	2.1 Bit-Flip Attack
	2.2 Existing Defenses

	3 AccHashtag Methodology
	3.1 Threat Model

	4 AccHashtag Components
	4.1 Hash-based Signature Extraction
	4.2 Bounds on Detection Performance
	4.3 Per-layer Sensitivity Analysis
	4.4 Accelerating Hash Generation

	5 Experiments
	5.1 Experimental Setup
	5.2 Analysis of Design Choices
	5.3 AccHashtag Performance

	6 Conclusion
	7 Acknowledgement
	References

