
1

SenseHash: Computing on Sensor Values
Mystified at the Origin

Nojan Sheybani, Xinqiao Zhang, Siam Umar Hussain, and Farinaz Koushanfar, Fellow, IEEE

Abstract—We propose SenseHash, a novel design for the lightweight in-hardware mystification of the sensed data at the origin. The
framework aims to ensure the privacy of sensitive sensor values while preserving their utility. The sensors are assumed to interface to
various (potentially malicious) communication and computing components in the Internet-of-things (IoT) and other emerging pervasive
computing scenarios. The primary security primitives of our work are Locality Sensitive Hashing (LSH) combined with Differential
Privacy (DP) and secure construction of LSH. Our construction allows (i) sub-linear search in sensor readings while ensuring their
security against triangulation attack, and (ii) differentially private statistics of the readings. SenseHash includes hardware architecture
as well as accompanying protocols to efficiently utilize the secure readings in practical scenarios. Alongside these scenarios, we
present an automated workflow to generalize the application of the mystified readings. Proof-of-concept FPGA implementation of the
system demonstrates its practicability and low overhead in terms of hardware resources, energy consumption, and protocol
execution time.
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1 INTRODUCTION

Embedded sensors like fingerprint and iris readers, GPS
transceivers, heart rate, and oxygen saturation monitors col-
lect sensitive information about users. Recently, these sen-
sors are being deployed on edge devices like smartwatches
for authentication, tracking, and more. Most of these tasks
require communication with a web server. However, the
majority of the edge devices lack internet connection and
usually communicate with the servers through a third entity,
henceforth referred to as the gateway. For example, the
gateway to the web for smartwatches are smartphone apps
to which they are connected via Bluetooth. While many
of these apps are provided by the vendors of the edge
devices, they allow access to the sensor readings to third-
party apps as well (e.g., the workout monitoring apps access
GPS data/heart rate sensor, password-free login uses finger-
print/iris to authenticate users to different apps). This setup
creates new concerns about the privacy of the sensitive
sensor readings. On the one hand, the privacy of the sensor
readings needs to be protected from both the gateway and
the web server. On the other hand, the privacy of the user
data stored in the server needs to be protected from the
gateways of different sensors. Most importantly, we need to
ensure efficient and meaningful computation on the sensor
readings without compromising privacy.

Over the past decade, Privacy-Preserving Computation
(PPC) has received considerable attention from the research
community [1] and, as a result, has seen orders of magni-
tude improvement in run-time. However, it still entails a
large amount of computation and communication that is
not suitable for resource-constrained devices. Two of the
primary approaches to PPC are Homomorphic Encryption
(HE) [2] which allows computation on encrypted data and
Multi-Party Computation (MPC) [3] where two or more
parties compute on shared data such that the inputs from

all the parties are secret from others. HE requires high
computational power and large memory, none of which are
available in edge devices. MPC protocols require extensive
communication, and as a result, cannot be directly applied
to the current scenario where the primary source of the data
has limited communication capability. Another important
consideration in practical systems is scalability since in
many cases, the computations on the sensor reading involve
querying a large database (e.g., authentication). In both
Homomorphic Encryption (HE) and Garbled Circuits (GC),
the complexity of such operations is linear in the number of
database entries, while a sub-linear complexity is desired.

In this work, we introduce a novel method based on
a judicious combination of hardware and algorithmic ap-
proaches to protect the privacy of the sensor readings while
ensuring their utility. In the proposed method, the sensor
readings are secured at the source such that no entity can
access them in plain text. We design a lightweight hardware
security module colocated on the same chip as the sensor.
The sensor readings go through this module before being
placed at the I/O port of the chip. Our hardware design
is accompanied by corresponding algorithms to extract the
intended utility from the secured sensor readings.

The primary security primitives of our work are Locality
Sensitive Hashing (LSH) [4] combined with Differential
Privacy (DP) and secure construction of LSH. LSH allows
performing Near Neighbor Search (NNS) on a database
with sub-linear complexity in terms of the database size.
A recent work [5] has shown how to preserve the privacy
of the database by employing DP. However, this work
assumes access to the entire database by a single party in
the preprocessing phase. In several practical scenarios, we
need to compute aggregate statistics based on private data
from multiple sources. We tackle this challenge by adapting
the secure aggregation protocol presented in [6] to combine
multiple differentially private sketches while maintaining



individual privacy. Our customized version of the protocol
significantly reduces the communication and computation
complexity and makes it independent of the dimension of
the sketch.

LSH, in its vanilla version, is susceptible to triangulation
attacks where an adversary is able to deduce the input
to the hash function (the plain-text sensor readings) by
performing multiple queries to the database. The work in [7]
introduced Secure Locality Sensitive Hashing (SLSH) that
prevents the triangulation attack while still retaining the
sub-linear NNS property of LSH. Our hardware module
utilizes the differentially private LSH of [5], which we refer
to as the RACE LSH (RLSH) scheme. We adopt the basic
concept of SLSH presented in [7] and modify (in some cases
improve upon) it to fit the different application scenarios.

While the proposed hardware module ensures the se-
curity of the sensor readings by preventing direct access
to them, it creates a new challenge – performing mean-
ingful computation on the sensor reading. To demonstrate
the practicality of our scheme, we develop two illustrative
applications – one demonstrating the computation of aggre-
gate statistics and one demonstrating secure NNS. In the
first application, we compute statistics such as minimum,
maximum, and mean of health vitals (heart rate, blood pres-
sure, oxygen saturation) of the participants of a group ex-
ercise. The individual readings of these vitals are protected
via DP. This application also benefits from our customized
secure aggregation protocol. As the second application, we
present efficient indexing of fingerprints to enable authen-
tication in sub-linear (in terms of database size) time. In
addition, we develop the corresponding hardware modules
where needed to ensure that plain-text sensor reading is
never used for any computation outside the sensor chip. As
part of the second application, we present hardware imple-
mentation of the Minutia Cylinder Coding (MCC), currently
the most efficient method to represent fingerprint readings.
This is the first hardware implementation of MCC and can
be of independent interest to speed up the authentication
process.

Note that for more established privacy-preserving primi-
tives like HE or MPC, there are a number of frameworks [8],
[9], [10] that allow for the development of any generic
functionality. The applications proposed in this work, while
being representative of a large class of generic applications,
required the development of specific protocols. However,
both HE and MPC require high communication and compu-
tational power that are not available in our target devices.
The proposed scheme provides a lightweight solution that
is amenable to the constraints of the available computing
platform. Moreover, both HE and MPC were considered
theoretical concepts at the beginning and required extensive
research efforts over three decades to be considered for
practical scenarios. Even though our LSH-based method
lacks enough versatility like HE or MPC, we believe that
with strong research effort it is possible to generalize it for
a subset of useful applications. In Section 5.3, we outline
a workflow to develop custom applications around our
hardware module.

We present a proof-of-concept of the hardware module
implemented on a SPARTAN-7 xc7s25csga225-1IL. Our im-
plementation demonstrates low resource usage, which is a

significant requirement of the target scenario. Moreover, we
also demonstrate low energy consumption by the module.
As a testament to the lightweight nature of SenseHash, it
is possible to run the first representative application for
an estimated 17 hours on a fully charged Samsung Galaxy
Watch.

In brief, our contributions are as follows.
• We present a novel paradigm to secure the sensor

reading at the origin such that no entity has access to
the plain-text readings.

• We employ a combination of hardware and software
security primitives to provide an efficient privacy-
preserving scheme for a resource-constrained platform.

• We present two practical applications to demonstrate
the effectiveness of the proposed scheme.

• Proof-of-concept implementation of the proposed hard-
ware module on FPGA and the protocol for the appli-
cations demonstrate the practicality of our approach.

The rest of the paper is organized as follows. In the
next section, we present a brief overview of the necessary
background. Then we review the related work in this field.
Next, we present the configuration and implementation of
the proposed system. In Section 5, we present two rep-
resentative practical applications based on our design. In
Section 6, we present the performance evaluation results.
Finally, Section 8 concludes the paper.

2 PRELIMINARIES

2.1 ε-Differential Privacy

Differential Privacy (DP) provides certain privacy by adding
a specific kind of noise to the data, which is stored on the
server. The noise allows for the computation of statistical
properties such as average, variance, etc. of the whole
database while ensuring the individual data is kept secure.
This kind of privacy approach enhances the privacy in some
useful scenarios. For example, if clients are interested in
the statistical properties of a whole dataset and they are
not interested in individual data, differential privacy can
be an effective way to preserve privacy. DP is built on an
assumption that the server, which stores all clients’ data,
is trusted and an attacker will only be able to query the
database and then infer as much information as possible
based on the results that he receives. An attacker may be
able to observe trends within the dataset, but the privacy of
the users is guaranteed.

Formally, the degree of privacy is offered with a param-
eter ε.

Definition 2.1. A randomized function K gives ε-Differential
Privacy if the Hamming distance for datasets D and D’
d(D,D′) ≤ 1 and all S ⊆ Range(K)

Pr[K(D) ∈ S] ≤ eε × Pr[K(D′) ⊆ S] (1)

The probability in the equation is taken over the coin tosses of K .

Rather than comparing what an attacker can learn about
individual data with and without access to the output of
the privacy mechanism, DP focus on limiting the additional
risk of every possible situation that may be incurred by an
individual. The definition is a property of the mechanism
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alone and can run in the real world [11]. Some highly
accurate differential private solutions are proposed in data
mining, statistics, and learning [12], [13], [14], [15].

A main concept of DP is the sensitivity of the real-valued
function mapping datasets to real numbers:

Definition 2.2. Assume all databases have D space. For f : D −→
Rd, the sensitivity of f is:

4f = max
D,D′
||f(D)− f(D′))||1 (2)

Generally speaking, low sensitivity allows highly
accurate differential private mechanisms [16].
exponential mechanism is an insensitive function for
evaluating the quality of an output e.g, getting the revenue
in an auction. By using this function, high-quality outputs
can be obtained in a differentially private fashion [17].
exponential mechanism weights each possible data with
a density that falls exponentially with its utility based on
ε, sensitivity, this time, of the utility function. The utility of
output is its L1 distance from the true data.

2.2 Locality Sensitive Hashing
Locality Sensitive Hashing (LSH) [18] is an efficient method
for approximate Near Neighbor Search (NNS). The notions
of both LSH and NNS are associated with a certain measure
of similarity. Given a database and a query, NNS returns the
entries in the database that have the highest similarity with
the query. Standard hash functions aim to avoid collisions
and have a plethora of collision-handling techniques. LSH
aims to have similar items collide in the hash table. LSH is
a family of hash functions with the property that the hash
of two inputs with higher similarity has a higher collision
probability compared to the hash of two inputs with lower
similarity. Formally, for a hash H to be an LSH

PrH(h(x) = h(y)) = Similarity(x, y) (3)

Different hash functions are available for different measures
of similarity. For instance, MinHash is an LSH that preserves
Jaccard Similarity and is primarily used for web documents.
LSH does suffer from the problem of false positives, in
which objects with low similarity are sometimes hashed
similarly. This problem can be mitigated by utilizing the
compound LSH functions introduced in [19].

2.3 Secure Locality Sensitive Hashing
In LSH, the probability of collision is a monotonically in-
creasing function of the similarity. This makes it vulnerable
to the triangulation attack where an adversary can estimate
the input to the LSH by performing multiple queries and
observing the number of collisions. The work in [7] presents
a transformation to convert any generic LSH into its secure
version, namely SLSH, which is robust against the trian-
gulation attack. The primary idea of [7] is to consecutively
perform several hashes on the output of LSH such that
the collision probability is not a monotonically increasing
function of the similarity anymore. Instead, the collision
probability is high if the two inputs are similar and drops
sharply if the similarity decreases. In Section 5, we present
our implementation of SLSH to perform fingerprint index-
ing.

2.4 Private Repeated Array of Count Estimators (RACE)
Sketches

[5] introduces a one-pass algorithm to generate a private
sketch of a dataset. The result of this algorithm is a Repeated
Array of Count Estimators (RACE) sketch SD ∈ RRxW ,
where R is the number of functions from an LSH family
H on a data point x, {h0(x), h1(x), ..., hR(x)}, and W is
the number of columns in the RACE sketch. For every
data point, we use the output of the hash function hr(x)
to increment row r and column hr(x) of the RACE sketch.
This RACE sketch can be thought of as a summary of a large
dataset. By adding zero-mean Laplacian Noise to this RACE
sketch, we obtain an ε-differentially private summary of the
data, which allows the RACE sketch to release LSH kernel
sums without leaking information about the dataset. This
work shows the feasibility of performing density estimates
on a dataset, but can be simplified to show dataset statistics,
such as the mean. Compared to other works, the algorithm
presented in [5] achieves a much more efficient generation of
private sketches of a dataset while achieving rigorous error
bounds.

2.5 Secure Aggregation

Secure aggregation protocols allow N parties to compute
the sum of N L-element vectors. In this work, we em-
ploy the protocol presented in [6]. In the Honest-but-
Curious (HbC) security model, the computation and com-
munication complexities of this protocol are respectively
O
(
log 2N + L log N

)
and O

(
log 2N + L

)
per client, and

O
(
N log2 n + NL log N

)
and O

(
N log 2N + NL

)
for the

server. It requires three rounds of interactions between the
server and clients. It is important to note that the protocol
presented in [6] is not a fully MPC protocol. Rather, it builds
upon the MPC protocol for secure aggregation presented in
[20] by reducing the communication channels, only having
communication channels between each client and the server,
resulting in a two-party protocol. As mentioned in [6], many
MPC protocols require communication between all clients.
This often results in problems with scalability with respect
to a number of clients. In the semi-malicious setting, the
protocol we utilize only requires communication with 3%
of clients, which is why the work is able to achieve poly-
logarithmic runtime with respect to the number of clients.
This method also makes handling dropouts much easier,
although we do not discuss it in detail in our work.

2.6 Fingerprint Terminology and Minutia

Fingerprint indexing involves two basic steps. First, the
raw sensor data is represented as a Minutia Cylinder-Code
(MCC) [21]. Then the LSH of the MCC representation is
computed. The LSH is either inserted in the hash table
(registration) or used a query (authentication). The raw
fingerprint is composed of a set of lines. Most of the lines
flow parallel, and some of them make a pattern. There
are three fingerprint patterns (1) ridge ending, (2) bifur-
cation, and (3) short ridge (dot). These patterns represent
some specific features of a fingerprint that can be extracted
by using a fingerprint scanner. The minutiae, or Galton’s
characteristics, are determined by the termination or the
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bifurcation of the ridge lines. The minutiae data we use
in this paper are represented in the ISO/IEC 19794-2 [22]
format. Each data consists of three values (x, y, θ), which
are x location, y location and direction respectively. The
minutiae-based representation includes spatial contribution
and directional contribution.

In the matching process, first, the similarity for each
minutia called local similarity, is computed. One set of
fingerprint data consists of around 60 to 70 minutia data
and each data can build a cylinder to calculate the local
similarity. The way to calculate it is to compare both cells at
the same location of two cylinders. If both of the values
are the same, the similarity value of this cell is 1; After
going through all the cells in both cylinders, the value of
the similarity γ(a, b) is computed as follows.

γ(a, b) =

{
1− ‖ca|b−cb|a‖

‖ca|b‖+‖cb|a‖
if Ca and Cb are matchable

0 otherwise

}
(4)

where

ca|b[t] =

{
ca[t] ifca[t] and cb[t] are matchable
0 otherwise

}
(5)

cm[lin(i, j, k)] = Cm(i, j, k) (6)

lin(i, j, k) = (k − 1) · (Ns)2 + (j − 1) ·NS + i (7)

and i, j, k refers to the location of each cell in a cylinder. The
equations above compute the local similarity. The next step
is to get the overall similarity. A single value (globalscore)
that represents the overall similarity needs to be introduced.
Some simple approaches like Local Similarity Sort (LSS),
Local Similarity Assignment (LSA), and Local Similarity
Sort with Relaxation (LSS-R) are very popular and easy to
be implemented on a small design. The basic idea behind
LSS is that it sorts all the local similarities and selects the
top nP . In Section 5, we will use minutiae data to do our
secure hashing for fingerprint indexing.

3 PRIOR WORK

To the best of our knowledge, SenseHash is the first work
that suggests securing the sensor readings at the source and
preventing plain-text access to them. In this section, we
describe previous works on private RACE sketches, LSH,
and fingerprint indexing.

The work [5] presents an algorithm that creates a private
summary of a dataset in the form of a matrix SD ∈ RRxW ,
where R is the number of LSH functions performed on
each data point and W is the number of columns. For each
data point, R independent hash functions are performed,
resulting in some number hr(x), which is used to increment
SD at row r and column hr(x). Zero mean Laplacian noise is
added to SD to achieve ε-differential privacy. Using this pri-
vate summary of the dataset, SD , the authors present several
machine learning tasks that can be achieved by performing
queries. Some of these tasks include linear regression, kernel

density estimation, and naive Bayes classification. We sim-
plify this algorithm and allow each user to be the only one
with access to the private summary of their sensor readings.
The server holds the private summary of all users’ data and
is updated periodically. We present a hardware module that
performs the R LSH functions that are described in [5] and
updates the private summary before being shared with the
server. Finally, we utilize the secure aggregation technique
presented in [6] to ensure that the summary of all users’ data
on the server is correctly updated with each user’s private
summaries, without leaking any information.

The work in [23] presents an implementation of a se-
cure approximate search of Content Addressable Memory
(CAM) using SLSH. This implementation stores distance-
preserving embeddings in the CAM. This allows for faster
lookup times, as the previously expensive search for data
object similarity has been reduced to a Hamming similarity
search. The embeddings in the CAM preserve Jaccard and
Cosine distance. We implement the same general SLSH, but
our implementation is built on a hardware module and
focuses on preserving similarity between fingerprints.

[24] discusses the feasibility and limitations of using
HE on commercial off-the-shelf (COTS) Internet of Things
(IoT) edge devices to secure sensor data and, on a bigger
scale, enable signal processing applications in the encrypted
domain. This work highlights the BGV HE scheme, which
employs very heavy computation on the server-side. Along-
side the heavy server computation, [25] presents a hard-
ware implementation of BGV encryption, in which there
is a much higher resource utilization and slower runtime
than SenseHash. The combination of high complexity and
comparatively slow performance on both the client and
server sides shows that HE is not an ideal solution for our
proposed applications. Similarly, [26] introduces an FPGA
implementation of an MPC encryption scheme. This state-
of-the-artwork is only able to achieve runtimes in the ms-
range, while requiring much higher resource utilization. HE
and MPC are very effective algorithms, but due to their
relative novelty, there is still a large research effort required
to support lightweight operations in edge devices that can
enable applications with runtimes comparable to plaintext
operation.

[27] presents an algorithm that preserves location pri-
vacy using LSH. This implementation assumes an untrusted
server that holds the location data and a trusted server that
anonymizes the user’s data before sending the data to the
untrusted server. This is done by utilizing a K-anonymous
approach at the trusted server so that the untrusted server
only receives a cloaked version of the user’s location. Our
implementation does not require the use of any trusted
servers, as we are implementing security at the hardware
module. This means that data is secure even if the operating
system or server is breached. While we do not present an
application that preserves location privacy, it is a prevalent
problem that can be solved using our SLSH techniques.

For fingerprint indexing, [21] shows the basic idea to rep-
resent and match fingerprint minutia data. It is an excellent
starting point, and the representation is very computation-
ally efficient. It can convert the value of each cell to a binary
representation and use Local Similarity Sort (LSS) or other
methods to get a global score of each fingerprint data. [28]
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Fig. 1: Overview of the proposed system

proposes a way to improve the regular MCC representation
and their experiment result shows the proposed indexing
approach dramatically improves the performance of finger-
print indexing. However, they did not consider security, and
the data will leak easily at every terminal. [29] uses the Gar-
bled Circuit (GC) protocol to perform fingerprint authenti-
cation, but they do not implement them on an FPGA with
a sensor. Also, MCC has some advantages over Garbled
Circuit. For example, (1) MCC is bit-oriented coding and it
is extremely simple and very fast. (2) The border problem
can be easily managed without extra burden. Hardware
implementation is a little bit tricky because, during MCC,
we use the Gaussian function and sigmoid function. [30]
introduces a piecewise linear approximation (PLA) method
when building a neural network with FPGA and applies it
to the sigmoid and tanh function. The result in [30] looks
outstanding, and we apply the same method in our paper.

4 SYSTEM DESCRIPTION

In this section present the hardware module of SenseHash,
which is located in the same chip as the sensors. Any sensor
reading goes through this module before being placed at the
I/O port of the chip for access by external entities.

4.1 Configuration
The configuration of the proposed system is presented
in Figure 1. It involves three modules: the sensor module,
the gateway, and the web server as described below.

The sensor module may reside either on an edge device
or in a dedicated location in an embedded system. It can
incorporate any of the sensors in the device (e.g., oxygen sat-
uration, heart rate, blood pressure, fingerprint, etc) and the
SLSH/RLSH protocol execution module. Since the sensor
readings do not leave the module in plain text, any required
preprocessing on the readings before computing the hash is
also performed inside the sensor module. We reiterate that
the presented method works for sensors that are colocated
on a chip, or within the same circuit as the processing unit,
which means that we are able to support many sensors in
the RLSH application. We discuss this further in section
5.1. The problem SenseHash aims to address is plaintext
sensor data reaching a network-connected gateway, so we
do not support processing being outsourced to a network-
connected gateway.

The gateway may be a smartphone to which the edge
device is connected via a local connection (e.g., Bluetooth).
Another possible setup is having both the sensor and the
gateway on the same platform. In that case, the gateway is
the Operating System (OS) of the platform. This ensures that
the sensor readings are safe even if the OS is compromised.

There are two two-way communication channels in the
proposed architecture: one between the sensor module and
the gateway and the other one between the gateway and
the server. Note that any outgoing reading from the sensor
module to the gateway goes through SLSH/RLSH. More-
over, there is no direct channel between the sensor module
and the server.

We refer to the owner of the sensor module as the
user. All the sensor readings belong to the user. The user
also controls the gateway. However, she wants to ensure
the security of the sensor reading in case the gateway is
compromised.

4.2 Security Model

We assume an honest-but-curious security model in this
work. In this model, all the parties: sensor module, gateway,
and web server follow the agreed-upon protocol yet may try
to deduce more from the information at hand. Moreover, we
assume the absence of collusion between the gateway and
the server.
Input Privacy. The goal of the proposed system is to ensure
that (1) neither the gateway nor the server has access to
the raw sensor reading, (2) none of the parties can deduce
the raw sensor reading for the data stored in the server.
Note that the gateway device does not hold any sensitive
information.
Output Privacy. The output of the computation is revealed
to the server. The server should not be able to confidently
deduce the user’s raw sensor reading.
Limitation. The proposed system ensures that none of the
servers and the gateway is able to get access to the plain-
text sensor reading. However, one possible attack performed
by the gateway is the denial of service (DoS). Since in
our setting the sensor modules do not have independent
communication capability, prevention of such attack is not
possible.

4.3 RLSH Implementation

Algorithm 1 describes the general implementation of the
RLSH transformation performed on SenseHash hardware
module. This undergoes slight changes based on the appli-
cation that is being developed, but the changes do not have
a significant impact on hardware performance. This concept
will be explained further in Section 5. In our applications,
we project each sensor reading onto the 2D plane and
sample functions from the Euclidean LSH family [4], which
preserves similarity in terms of Euclidean distance. As men-
tioned, Algorithm 1 is implemented entirely on hardware,
hashing the sensor data before the data reaches the server.

Algorithm 1 also describes the process of populating the
RACE sketch for each data point. Note that adding the
Laplacian noise is done when the matrix is created, and
not when data is actually added. Adding this Laplacian
noise makes the RACE sketch ε-differentially private. It is
important to note that each user must use the same R
independent hash functions from hash family H , to ensure
successful computation on the server. The data sent from
the sensor module is in the form of a private RACE sketch,
as seen in the algorithm.
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If data is distributed among N users, each user creates
their own private RACE sketch that contains the summary
of their own data. When the computation is needed, the
servers compute the aggregate of the private RACE sketch
of users. To ensure that no data is leaked in the aggregation
process, we employ a modified version of the secure data
aggregation technique introduced in [6]. This concept is
further described in section 4.4.

Algorithm 1: Hashing a data point
Input : Datapoint X containing T sensor

readings
Output : Private RACE Sketch SU ∈ RT×R×W
Parameters: Number of Users, N

Number of columns in sketch, W
Privacy budget ε

Initialize : R independent hash functions from
LSH family H, {h0, h1, ..., hr}
SU += bZc, where Z is Lap(R(εN)−1)

1 i = 0
2 for t ∈ X do
3 for r ∈ R do
4 Increment SU [i][r][hr(t)]
5 end
6 Increment i
7 end
8 return SU

[5] presents a general query algorithm that can be used
for various tasks, such as calculating kernel density esti-
mates of a dataset with error bounds of 1%. In Algorithm 2,
we present a modified version of their query algorithm that
simply allows us to compute the average of the collected
sensor data, while maintaining ε-differential privacy and the
1% error bounds. This is done by declaring minimum and
maximum values. The work in [5] provides proof of security
highlighting the fact that constructing the RACE sketch as
we do allows for unlimited queries without exceeding our
privacy budget. The sketch that the server performs compu-
tation on is the aggregation of all users’ RACE sketches, or,
if only one user is present, that user’s RACE sketch.

4.4 Collaborative RLSH Implementation

The above construction of RLSH assumes the entire
database X to be held by a single entity. However, in certain
applications X is distributed among N users such that X =⋃
iX

i. In this case, each user i ∈ [N ] constructs their indi-
vidual sketch SiU and the final sketch SU =

∑
i = SiU . Since,

the individual SiU may reveal sensitive information about
the user, this summation is computed through the secure
aggregation protocol of [6]. However, a straight application
of this protocol would incur computation and communica-
tion complexities of respectively O

(
log 2N + L log N

)
and

O
(
log 2N + L

)
per client, and O

(
N log2 n + NL log N

)
and O

(
N log 2N + NL

)
for the server. In this particular

scenario, L = T ×R×W . This would be impractical for the
edge devices.

We tailor the protocol for the requirement of our con-
figuration. The secure aggregation scheme is performed on

Algorithm 2: Calculate average of data

Input : RACE Sketch S ∈ ZTxRxW
Output : avgt, average of gathered data, per

sensor reading type
Parameters: Same R hash functions from Algorithm

1, {h0, h1, ..., hr}
For each t ∈ T , data range [min,max]

1 for t ∈ T do
2 N = R−1 ∗

∑
i,j S[t][i][j]

3 for q ∈ range(min,max) of t do
4 q avg = 0
5 for r ∈ R do
6 q avg += R−1 ∗ S[t][r][hr(q)]
7 end
8 avgt+ = bq avgc ∗ q ∗N−1

9 end
10 return or store avgt
11 end

the network-connected gateways. Note that, the ultimate
purpose of the sketch SU is to compute the aggregate statis-
tics on the database X . In our custom protocol, each user
i adds a random secret number ri to each sensor reading
t ∈ X during the computation of Algorithm 1. This ensures
that the users can send the sketch SiU in plain-text to the
server, who simply computes the aggregate sketch SU . The
server then computes the mystified average q′ following
Algorithm 2, where q′ avg = q avg +

∑
i ri. To recover

the actual average q avg, from q′ avg, the server needs to
securely compute

∑
i ri. In this way, we have reduced L to

1 instead of T ×R×W .
Using our optimizations to reduce L, we are able to

maintain poly-logarithmic communication and computa-
tion complexities overheads on client and server. As we
are assuming relatively resource-limited edge devices with
a powerful server, we highlight that client computation
and communication, respectively, only incur overhead of
O
(
log 2N+ log N

)
andO

(
log 2N

)
. The secure aggregation

technique that we utilize in the Honest-but-Curious setting
can support a billion clients. To measure server runtime
for RLSH secure aggregation in a reasonable scenario, we
initialize clients with a RACE sketch containing 60k cells
and vary the number of clients from 30-100. The results can
be seen in table 1.

TABLE 1: Server runtime of secure aggregation with varying
number of clients

# of Clients Runtime (ms)
30 131.24
40 184.42
50 214.371
70 321.057
100 427.456

4.5 SLSH Implementation

Privacy parameter k. At this point, we would like to further
explain the parameter k, and how it relates to privacy.
From [7],
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Definition 4.1. (ε−Secure Hash at Threshold s0). For any
x and y with Similarity(x,y) ≤ s0, we call a 1-bit hashing scheme
hsec at threshold s0 ε − secure if the probability of bit-matches
satisfies

1

2
≤ Pr(hsec(x) = hsec(y)) ≤

1

2
+ ε

k is a privacy knob that can be tuned to generate an ε−
secure hash. Higher values of k will result in finer hashes,
which means the similarity between objects must be much
higher for them to collide.

Any LSH function drawn from some LSH family H can
be transformed into an SLSH function. The work in [31]
presents a novel LSH family that preserves MCC similarity,
which we will refer to as HMCC . To perform the SLSH
protocol and create a secure L-bit embedding of a single
fingerprint, we perform k independent hashes drawn from
HMCC , L times. The first step is to hash each data point
xi k times. These hashes are used in a universal hash
function, seen in the following equations [7], to generate
a 1-bit representation of the data point.

huniv(x1, ..., xk) = (
k∑
i=1

aixi)modp,mod2

hsec(x) = huniv(h
mcc
1 , ..., hmcck )

where a are fixed random integers and p is a large prime
number. This will output a 1-bit representation of the data
point, but it is not yet secure. hsec(x) should be performed
L times to create an L-bit embedding of any data point xi.
If k is equal to 1, the output will be the same as standard
LSH.

We assume each value is represented as a 32-bit floating-
point value, so each time, the module reads one data point
and stores it to an array. We design a finite-state machine
(FSM) to execute the SLSH protocol. For the fingerprint
indexing application, the SLSH module will only operate
when needed and will not be working continuously, so
dynamic power consumption is not a pressing issue.

4.6 Security Analysis
Although we modify the private RACE sketch generation to
support a distributed setting, the security analysis presented
in [5] is still applicable to our work. We modify the scaling
of the Laplacian noise generation function to be sensitive to
the number of users alongside the number of hash functions.
By doing this, we maintain the zero-mean Laplacian noise
that is necessary for the ε-differential privacy we introduce
in section 2.1. In our SLSH implementation, we perform a
novel combination of an LSH function for fingerprint em-
beddings and the SLSH transformation in our work. As the
security of the SLSH transformation is not dependent on the
LSH function it is applied on, the security of SenseHash’s
SLSH module holds under the analysis shown in [7].

5 APPLICATIONS

In the previous section, we describe the hardware module
that mystifies the sensor reading at its origin. However,
preventing access to the plain-text sensor reading makes
their efficient use a challenge. In this section, we present

two practical applications that are realizable via SenseHash.
The primary goal while developing these applications is to
ensure that sensor readings are used only for the intended
purpose. We present end-to-end implementations of all the
proposed applications and evaluate their performance.

5.1 Monitoring Health Vitals
Wearable devices are becoming more prevalent, which is
resulting in a massive uptick of personal data that must
be protected. Many current privacy protocols rely on per-
forming operations on plaintext data, but this can result
in leakage of information. As edge devices collect more
information about the users, such as health vitals, it is
important to be able to perform meaningful computation
on the collected data, while ensuring that no data is being
leaked in the process. Using our RLSH scheme, we present
an ε-differentially private application that allows a server to
monitor the health vitals (e.g. heart rate) of a group, such as
a gym class, without any information about a specific user
being leaked.

We adopt a simplified technique of the scheme presented
in [5]. In this setting, users each have their own private
RACE sketch SU , for each type of sensor reading they are
tracking. For instance, if we wanted to monitor heart rate
and oxygen saturation, each user would store two sketches,
SU−heart and SU−oxygen, which can be conceptualized as a
2×R×W matrix where SU [0] is SU−heart, and update them
accordingly. For the sake of simplicity, we assume that we
are only monitoring heart rate, knowing that we can easily
scale to monitor more vitals if necessary.

The user’s private sketch must be initialized with zero-
mean Laplacian noise to uphold the ε-differential privacy
utility. The noise is scaled by the number of users so that it
does not grow too large when all the data is aggregated.
Upon each sensor reading, we update the user’s private
sketch using the algorithms shown in Section 4. The server
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hashes

                  
on reading x
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Secure 
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Fig. 2: Heart rate monitoring workflow
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has a single or multiple universal private RACE sketches,
Suniv that contain the aggregation of all users’ private
sketches. Due to the Laplacian noise, being scaled by the
number of users, the aggregation of the sketches is also ε-
differentially private.

The server uses the secure aggregation technique intro-
duced in [6] to collect and update Suniv periodically. The
server contains multiple Suniv sketches if we are aiming
to look at different periods and make comparisons of the
data collected within those periods. For instance, if we are
looking at the trends of the group’s average heart rate at
each minute, we would have a private sketch on the server
for each minute that we collect data, while the private sketch
on the edge device would be the same process, but with
each user’s SU reinitialized each minute. This also works
if we want to make smaller subgroups, such as calculating
statistics by weight.

Once enough data has been processed, the server can
initiate the process described in Section 4 to calculate the
average heart rate of the group, maintaining ε-differential
privacy and the 1% error bounds achieved in [5]. The
general workflow for this application can be observed in
the figure 2. We reiterate that, while in this context we use
heart rate as the data, this application would work with any
health vitals and multiple health vitals at one time.

This application could also be achieved without users
storing their own private sketches by using SLSH hashes
instead of LSH hashes in the RLSH process. In this case, the
users would share the results of their R SLSH hashes with
the server, and the server would update the universal sketch
with increments in indices based on those results. In theory,
this works and avoids the triangulation problem that faces
LSH, but it does not ensure differential privacy, so it is not
further explored in this work.

5.2 Fingerprint Indexing

Biometric sensors such as fingerprint/iris readers are one
of the most security-critical components of modern devices.
The majority of smartphones in recent years include either
or both of them. Fingerprint sensors are also on the verge
of appearing on smartwatches [32]. One of the most com-
plex tasks involving fingerprints is indexing or continuous
classification [33], which provides an efficient method to
identify a fingerprint in a large database. We now show that
such indexing is compatible with the setup proposed in this
work.

We adopt the indexing method presented in [31]. The
raw fingerprint reading is represented in the ISO/IEC
19794 [22] minutiae template. A minutia m is a triplet
(m = xm, ym, θm), where xm and ym are the minutia
location and θm ∈ [0, 2π] is the minutia direction. Each
minutia is first encoded into a fixed-length binary vector
through Minutia Cylinder Codes (MCC) [21]. MCC is a very
effective way to map a minutiae-based representation into
a set of binary vectors [28]. The general flow is shown in
Figure 3.

The minutiae-based representation includes (1) spa-
tial contribution and (2) directional contribution[21].
CmS (mt, p

i,j
m ) is the spatial contribution that minutia mt

offers to cell (i, j, k). Spatial contribution is defined as a
euclidean distance function between mt and pi,jm :

CmS (mt, p
i,j
m ) = GmS dS(mt, p

i,j
m ) (8)

where GS(t) is a Gaussian function with zero mean and σs
standard deviation.

Directional contribution of mt is represented as
CDS (mt, dϕ). A directional contribution function consists of
(1) dϕk and (2) the directional difference between two initi-
ates. If (1) and (2) are close to each other, a high contribution
value will be got. The directional contribution is:

CDm(mt, dϕk) = GD(d(dϕk, dθ(m,mt))), (9)

where dθ(θ1, θ2) is the difference between two angles θ1 and
θ2. This value is in range [0, π]. GD(α) is the area under
Gaussian distribution.

After calculating all the contributions, we multiply
the two contributions and get the overall contribution
Cm(i, j, k), where i, j, k is the location of each cell. Then,
after an activation faction (sigmoid), a threshold value of
µΨ is set to select cells (i, j, k) that have a high contribution
value. By applying this, we convert all the contribution
results to bit-based results. The bit-based values are inputs
to the SLSH module and get the final hash value.

In this project, the minutiae template data is from [21],
[31], [34], [35]. Since the format of a random number is a 32-
bit floating-point, and for each calculation, the MCC module
uses around 500 random values, and they are about 16k
bits for each calculation. We minimize the usage of input
ports by feeding the random number sequentially. Since the
fingerprint indexing job does not need to run at all times
and it only runs when someone needs indexing, the energy
consumption is negligible.

Both spatial contribution and directional contribution
use the Gaussian distribution function We build a look-up
table inside the FPGA module and use it as the output of
the Gaussian function. The size of the look-up table is 256
numbers each so the value fits in an 8-bit binary number.
Note that after the multiplication of two contributions, a
sigmoid activation function is attached. We also apply the
look-up table for this function. Since this non-linear activa-
tion function is less complicated than the Gaussian function,
we utilize the piecewise linear approximation (PLA) tech-
nique [30]. In our design, we segment the sigmoid function
uniformly in the range y = [−5, 5], [30] shows that the mean
squared error(MSE) of the piecewise linear approximation
of the logistic sigmoid function. The error is only 10−5 if we
use 10 segments for the sigmoid function. Also, since the
function is symmetric, we just need to calculate the range
y = [0, 5]. For an input yn < 0, the output of our sigmoid
function is fl(yn) = 1 − fl(|yn|). Therefore, a look-up table
with 10 values is used to represent the sigmoid function in
the MCC design. Each MCC output data has 600 features.

The work in [31] presents an LSH construction along
with an effective search algorithm to retrieve the finger-
prints. We apply the transformation of [7] on the LSH
construction to form an SLSH compatible with fingerprint
indexing. Moreover, since the MCC encoding is performed
before LSH, we design a hardware module for the encoding
on the sensor reading. The resulting output of the hardware
module is directly compatible with the search algorithm.
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Fig. 3: Global flow of SenseHash Minutia Cylinder Codes application.

Note that the output of the hardware module is still useful
for more regular applications, such as authentication. In this
case, we use the same setup above only difference being the
size of the database, which includes only a limited number
of fingerprints all belonging to the owner or the edge device.

5.3 General Purpose Applications

While we present two specific applications in this work,
we reiterate that the algorithms used to achieve these appli-
cations are general and allow for a multitude of applications
without too much change. The RLSH scheme works with
any sensor data as long as a minimum and the maximum
value is known (e.g. air quality). The only changes that are
required with general RLSH applications are changing the
periodicity of updates to the universal private sketch on
the server, and what kind of statistics you would like to
calculate. The general structure of an RLSH application can
be seen in figure 4.

The SLSH scheme is a bit more difficult to generalize,
but still quite straightforward. The main aspect of the SLSH
scheme that must be modified is the LSH functions that are
transformed into SLSH functions. Different LSH families
preserve different similarities. For instance, the MinHash
LSH family preserves Jaccard distance, which works well for
web documents but performs poorly on GPS coordinates.
The family of LSH functions that we draw from is highly
dependent on the input data and application. Hardware
modules can be designed that define the LSH functions
used to work with the hardware module we have built that
performs the SLSH transformation. Server operations can be
modified to fit the application, if indexing is not the desired

Perform RLSH Scheme

Sensor Module

Collect Sensor Reading

Server

Calculate data statistics via query 
algorithm

Fig. 4: General RLSH application workflow

Declare LSH Family

Perform SLSH Transform

Sensor Module

Generate L-bit embeddings with SLSH

Gather Input Data

Server

Custom Operations (e.g. indexing, 
classification)

Fig. 5: General SLSH application workflow

application. The general structure of an SLSH application
can be seen in figure 5.

6 EVALUATION

We present a proof-of-concept implementation of the pro-
posed systems as well as the application on the SPARTAN-7
xc7s25csga225-1IL. Our design applications use Xilinx Vitis
HLS 2020.2 and Vivado 2020.2 tools. In this section, we
first describe the implementation details and then present
the evaluation of resource utilization, run-time, and power
consumption.

6.1 Monitoring Vitals

We build a low-power heart-rate monitoring application
using our RLSH scheme. First, we assume the hardware
processes one data point at a time with 1-minute intervals.
Then, the sensor module will update its stored private
RACE sketch, add Laplacian noise, and send it to the server.
We set R to 40 for this application.

TABLE 2: Resource Utilization of Monitoring Vitals

Resource Utilization
LUT 17
FF 20
IO 46
BUFG 1

Also, we need to note that to generate random numbers
for the LSH and Laplacian noise, we use a Pseudo Random
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Number Generation called the Linear congruential genera-
tor (LCG). After getting the random numbers, both random
projections and random Laplacian noise can be generated
by doing the necessary calculations. The LCG hardware
module produces a random number in 225ns, and the
random numbers can be generated in parallel. The resource
utilization for of the LCG hardware module to produce a
random number can be seen in figure 3. We highlight that
random numbers for differential privacy, as described in
section 4.3, and sketch masking, as described in section 4.4,
are only generated once during initialization.

TABLE 3: Resource Utilization of LCG

Resource Utilization
LUT 414
FF 245
DSP 9

TABLE 4: Power Utilization of Monitoring Vitals

Resource Power Consumption
Total Power 0.068W
Dynamic Power 0.009W
Static Power 0.059W
Clock Power 0.002W

Our design aims to generate random numbers and then
run all the hash functions in parallel. We also make the de-
sign flexible to adapt different secure level of hash functions.
NUM HASH is a parameter in this application and it can be
changed to fit any circumstance.

Fig. 6: Power consumption with different values of R.

For the power consumption, Table 4 and Figure 6 show
that the total power is 0.068W and static power takes
most of it. Table 4 also represents that our design is very
lightweight with 17 Look Up Tables (LUT), 20 Flip Flops
(FF), and 46 Input/Outputs (IO). Moreover, we can see from
Figure 6 that both static power and dynamic power remain
almost the same as R increases, which indicates that our
design can be extended to a bigger or smaller R, resulting
in different utility guarantees, without much of an increase
in power.

Table 5 shows the parameters we use for our design. The
clock period is 3ns.

TABLE 5: Parameter Values for Monitoring Vitals

Parameter Value
R 40
clock period 3.000ns

The plaintext version of this application does not require
any processing before reaching the gateway, as the secure
aggregation is done on data that is sent to the gateway.
The overhead of the secure aggregation we utilize is dis-
cussed in section 4.4. As SenseHash presents a method for
mystifying sensor data before reaching a network-connected
gateway, the measurements we present can all be considered
overhead to make the plaintext version of this applica-
tion privacy-preserving. The average runtime to hash a
data point in the privacy-preserving setting we present is
222.4µs.

6.2 Fingerprint Indexing

Fingerprint indexing is implemented using the proposed
SLSH scheme. The raw fingerprint reading is represented in
the ISO/IEC 19794 [22] minutiae template. The MCC design
before indexing is implemented separately from the SLSH
model. Table 7 shows the value of the parameters we use.

TABLE 6: Resource Utilization of Fingerprint Indexing

Resource Utilization
LUT 1842
FF 2545
IO 193
BRAM 20
DSP 22
LUTRAM 41

TABLE 7: Parameter values of MCC

Parameter Value Parameter Value
R 140 µΨ 0.002
N S 10 clock period 3.814ns
N D 6 output feature 600
Max N S 32

From Table 6, we see that our design uses less than
2k LUTs and around 2.5k FFs, which is very lightweight.
The IO could be minimized even smaller to 6, which is left
for our future work. This design could be better optimized
based on the specific fingerprint data we use. The minimum
clock period we use is cp = 3.814ns.

TABLE 8: Power Utilization of Fingerprint Indexing

Resource Power Consumption
Total Power 0.139W
Dynamic Power 0.082W
Static Power 0.057W
Clock Power 0.019W

The average runtime of operation is tM = 1.799ms for
each fingerprint, which is acceptable because this applica-
tion is only run intermittently. Once the MCC module gets
all the data, the SLSH module is activated to process the
data. The average time to hash the data is tH = 0.00036ms.
Therefore the total time to get the SLSH hash value from
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the fingerprint data is tM + tH = 1.79936ms. SLSH op-
eration only adds 0.02% of the MCC processing time and
provides secure data. Table 8 shows that the total power for
consumption the MCC module is still very low at 0.139W
when assuming the worst case in which the MCC module is
active at all times.

The plain-text version of this application achieves ap-
proximate fingerprint indexing using LSH, instead of the
privacy-preserving SLSH scheme that we utilize in this
application. As we mention before, SLSH is simply a trans-
formation that can be done on LSH functions. We perform
our application with and without SLSH to compute the
overhead of SenseHash. Due to our optimizations, the SLSH
module only requires 18 more LUTs, 7 more FFs and 32 more
IOs. This, paired with a negligible difference in average run-
time, means that SenseHash is a low-overhead and efficient
solution for this application.

7 LIMITATIONS AND FUTURE WORK

Our work is focused on protecting sensor data from data
breaches on network-connected gateways and honest-but-
curious servers, that will follow the protocol but try to de-
duce information about the data. For this reason, we assume
that the clients utilize trusted hardware during operation.
While secure in this setting, if the clients do not utilize
trusted hardware, the data is vulnerable to side-channel
attacks. As mentioned before, LSH is susceptible to the
triangulation problem, in which an adversary can estimate
the input to the LSH by performing multiple queries and
observing the number of collisions. In our RLSH scheme,
we increment indices in our RACE sketch corresponding to
LSH function outputs. If the attacker is aware of the memory
layout of the processing unit, they can see what indices are
being accessed and perform a triangulation attack to get an
approximation of the user’s original value [36], [37], [38].
Our work also does not support the use of passive sensors,
due to the nature of our data collection and aggregation
[39]. However, we fully support active sensors that provide
reading within a known range, which applies to a majority
of sensors.

In our future works, we hope to present an expansion
of applications for SenseHash, such as facial recognition
via SLSH. Many of the newer applications we aim to
implement will require the development of new encoding
functions and LSH families, similar to how we utilize MCC
encodings and an LSH family to preserve MCC similarity
in our fingerprint indexing application. Developing these
encodings and families is an exciting path that will enable
many more applications that would greatly benefit from the
secure operation.

8 CONCLUSION

This paper proposes SenseHash, the realization of secu-
rity at the sensor for various applications. SenseHash uti-
lizes state-of-the-art Secure Locality Sensitive Hashing and
presents the RLSH scheme, which utilizes lightweight hash-
ing mechanisms to achieve differential privacy, ensuring the
safety of user data. Our applications ensure data privacy
with a compromised server and gateway by providing

security on an FPGA before the data is transferred over a
network. All following operations are done with the en-
crypted data, which provides an impenetrable form of pri-
vacy. SenseHash addresses the privacy concerns surround-
ing monitoring health vitals, alongside privacy concerns
with fingerprint indexing. Alongside this, SenseHash is a
generalizable solution to many problems that require secure
computation and handling of data. Our analysis shows
that SenseHash is a fully realizable solution to handling
sensitive data and is not limited by utilization of resources,
computation time, or computation energy.
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