
This paper is included in the Proceedings of the
31st USENIX Security Symposium.

August 10–12, 2022 • Boston, MA, USA
978-1-939133-31-1

Open access to the Proceedings of the
31st USENIX Security Symposium is

sponsored by USENIX.

DeepDi: Learning a Relational Graph Convolutional
Network Model on Instructions for Fast and

Accurate Disassembly
Sheng Yu, University of California Riverside and Deepbits Technology Inc.;

Yu Qu, University of California Riverside; Xunchao Hu, Deepbits Technology Inc.;
Heng Yin, University of California Riverside and Deepbits Technology Inc.

https://www.usenix.org/conference/usenixsecurity22/presentation/yu-sheng

DEEPDI: Learning a Relational Graph Convolutional Network Model on

Instructions for Fast and Accurate Disassembly

Sheng Yu†‡, Yu Qu†, Xunchao Hu‡, Heng Yin†‡

† University of California Riverside
‡ Deepbits Technology Inc.

Abstract

Disassembly is the cornerstone of many binary analysis
tasks. Traditional disassembly approaches (e.g., linear and re-
cursive) are not accurate enough, while more sophisticated ap-
proaches (e.g., Probabilistic Disassembly, Datalog Disassem-
bly, and XDA) have high overhead, which hinders them from
being widely used in time-critical security practices. In this
paper, we propose DEEPDI, a novel approach that achieves
both accuracy and efficiency. The key idea of DEEPDI is
to use a graph neural network model to capture and propa-
gate instruction relations. Specifically, DEEPDI firstly uses
superset disassembly to get a superset of instructions. Then
we construct a graph model called Instruction Flow Graph
to capture different instruction relations. Then a Relational
Graph Convolutional Network is used to propagate instruction
embeddings for accurate instruction classification. DEEPDI

also provides heuristics to recover function entrypoints. We
evaluate DEEPDI on several large-scale datasets containing
real-world and obfuscated binaries. We show that DEEPDI is
comparable or superior to the state-of-the-art disassemblers
in terms of accuracy, and is robust against unseen binaries,
compilers, platforms, obfuscated binaries, and adversarial at-
tacks. Its CPU version is two times faster than IDA Pro, and
its GPU version is 350 times faster.

1 Introduction

A disassembler takes a binary program as input and produces
disassembly code and some higher-level information, such
as function boundaries and control flow graphs. Most binary
analysis tasks [20, 31, 44, 51] take disassembly code as input
to recover syntactic and semantic level information of a given
binary program. As a result, disassembly is one of the most
critical building blocks for binary analysis problems, such as
vulnerability search [23, 57], malware classification [28], and
reverse engineering [52].

Disassembly is surprisingly hard, especially for the x86 ar-
chitecture due to variable-length instructions and interleaved

code and data. As a result, a simple linear sweep approach like
objdump1 or Capstone2, despite high efficiency, suffers from
low disassembly correctness on Windows binaries and bina-
ries compiled by the Intel C++ Compiler (where jump tables
are placed in the code section), and can be easily confused
by obfuscators. There has been a long history of research on
improving disassembly accuracy. For instance, the recursive
disassembly identifies true instructions by following control
transfer targets. It largely eliminates false instructions but
may miss true instructions that are not reached by other code
blocks, leading to a low true positive rate. Commercial disas-
semblers like IDA Pro and Binary Ninja employ linear sweep
and recursive traversal along with undocumented heuristics to
achieve high disassembly accuracy, at price of low runtime ef-
ficiency. Our experiments show that IDA Pro can only process
approximately 72 KB/s, and Binary Ninja 11 KB/s.

Recently, researchers have explored various novel ap-
proaches to further improve the disassembly accuracy, such as
probabilistic inference [39, 55], static program analysis [46],
logic inference [24], and deep learning [43]. However, the
improved accuracy often comes at price of even lower run-
time efficiency. For instance, Probabilistic Disassembly [39]
can only process about 4 KB/s, Datalog Disassembly [24]
4 – 50 KB/s. Even worse, XDA [43], based on expensive
BERT [19] model, when running on CPU, can only process
140 B/s according to our evaluation.

Despite the importance of disassembly, we still do not have
a disassembler that is both accurate and fast to support down-
stream binary analysis tasks. This is especially true when
dealing with malware, which is often obfuscated to thwart
disassemblers for evasion.

In this paper, we present a novel deep learning-based dis-
assembler called DEEPDI, which can achieve high accuracy
and efficiency simultaneously. It can be further accelerated on
GPU to gain hundreds of times speedup. In order to achieve
high efficiency, DEEPDI takes a very different approach than
XDA [43] to leverage deep learning. Instead of feeding raw

1https://www.gnu.org/software/binutils/manual/
2http://www.capstone-engine.org/

USENIX Association 31st USENIX Security Symposium 2709

bytes as input to an expensive deep learning model as done in
XDA, DEEPDI first decodes all possible instructions and con-
verts them into high-level feature vectors, and then identifies
true instructions from all instruction candidates by construct-
ing logical relations (e.g., one instruction followed by another,
one instruction overlapped with another, etc.) between these
instruction candidates and performing graph inference on
them. In particular, we use a Relational Graph Convolutional
Network (Relational-GCN) [50], because it can capture dif-
ferent kinds of relations between nodes and it is small and
efficient. After supervised training, our model is able to iden-
tify true instructions. From these identified true instructions,
DEEPDI then recovers function entrypoints from the true
instructions using heuristics and a simple classifier.

We have conducted extensive experiments to evaluate
DEEPDI with respect to accuracy, efficiency, generalizabil-
ity and robustness. To evaluate the accuracy, we use four
datasets (i.e., BAP corpora [17], LLVM 11 on Windows3,
SPEC CPU2006 [6], and SPEC CPU2017 [7]), and compare
with five disassemblers (i.e., IDA Pro [3], Binary Ninja [1],
Ghidra [2], Datalog Disassembly [24] and XDA [43]). Experi-
mental results show that DEEPDI is comparable or superior to
these disassemblers in terms of accuracy on regular binaries.
For efficiency, the single-core CPU version of DEEPDI can
achieve a throughput of 146 KB/s, which is two times faster
than commercial disassemblers. A CUDA implementation
of DEEPDI can further improve the throughput by 170 times
on a modest GPU, reaching 24.5 MB/s, which is 350 times
faster than IDA Pro. To evaluate its generalizability, we first
train our model with BAP corpora on each optimization, and
evaluate on LLVM 11 to show the performance on unseen
binaries compiled with different compilers and on a different
platform. The result shows that our instruction precision and
recall are at least 97.1%. We use the model for the accuracy
test and test it on ten unseen real-world software to show the
performance on real-world binaries, and the result is compa-
rable with XDA. For robustness, we evaluate the performance
on obfuscated binaries provided by Linn and Debray [36]
and some real-world binaries obfuscated by Hikari [58]. Our
model achieves 84.1% precision and 95.2% recall within 1.2
seconds in the first test, whereas XDA and IDA Pro takes
over 200 seconds and are less accurate. In the second test,
our model has very consistent performance on five different
obfuscation techniques, and is several orders of magnitude
faster than the other disassemblers.

We further demonstrate how DEEPDI is used in malware
classification. We use the malware dataset from Microsoft
Malware Classification Challenge [48], and extend Gem-
ini [57] and EMBER [9] to use high-level features for malware
classification. Our evaluation shows our Gemini model can
achieve 98.2% training accuracy and beat MalConv [47] in
testing loss value. The extended EMBER model achieves

3https://github.com/llvm/llvm-project

99.5% training accuracy and beats the original EMBER.
While the traditional feature extractions take hours and even
days on this dataset, ours only takes 9 minutes in Gemini and 3
minutes in EMBER, showing the capability of classifying mal-
ware accurately and efficiently. We provide a binary release of
DEEPDI at https://github.com/DeepBitsTechnology/DeepDi.

Paper Contributions. In summary, we make the following
contributions in this paper:

• We design a novel deep learning-based disassembler
that can achieve accuracy and efficiency simultaneously.
It exemplifies how a deep learning-based system can
substantially improve the efficiency and accuracy over
the existing approaches.

• We propose a novel graph representation called “Instruc-
tion Flow Graph” to model different relations between
instructions. We then use a Relational-GCN to perform
inference and classification on Instruction Flow Graph
to classify instructions accurately.

• We conduct extensive experiments to show the practical
application value of DEEPDI. Experimental results show
that DEEPDI is comparable or superior to the state-of-
the-art disassemblers in terms of accuracy. DEEPDI is
also robust against unseen compilers and platforms, ob-
fuscated binaries, and adversarial attacks. Its efficiency
is several orders of magnitude higher than the baseline
approaches.

• We showcase malware classification as a downstream ap-
plication for DEEPDI. We show that DEEPDI can enable
fast and accurate malware classification by providing
high-level features efficiently.

2 Background

2.1 Traditional Disassembly Methods

Linear Sweep Disassembly. Linear sweep disassembly is the
most straightforward yet fast disassembly method. It disas-
sembles from the beginning of the buffer and assumes there is
no data in the buffer, meaning the starting point of an instruc-
tion is the ending point of the previous instruction. However,
this assumption may not hold as compilers may insert jump ta-
bles or strings [10], so the false positive rate and false negative
rate can be high, especially for obfuscated binaries. Modern
compilers do not place strings in the code section, but it hap-
pens a lot in shellcode. Besides that, the Microsoft Visual

C++ Compiler and Intel C++ Compiler will place jump
tables in the code section, adding errors to linear disassembly
results.

Recursive Traversal Disassembly. Recursive traversal dis-
assembly can greatly eliminate false positives. It starts from
the entry point of a binary file and follows control flow edges.
However, it cannot follow indirect jumps or calls, so it may
miss quite a number of code blocks. This method is usually

2710 31st USENIX Security Symposium USENIX Association

https://github.com/DeepBitsTechnology/DeepDi

Table 1: Comparison of Disassembly Approaches

Method Pros Cons
Efficiency1

CPU GPU

Traditional Approaches Close to 100% accuracy on regular files Slow and vulnerable to obfuscation 10 – 200 KB/s N/A

Superset Disassembly [13] Very fast and no false negative 85% false positive [39] 4 – 5 MB/s 1+ GB/s

Shingled Graph Disassembly [55] Similar accuracy to IDA Pro and 2x faster Small dataset and not open source 70+ – 200 KB/s N/A

Probabilistic Disassembly [39] No false negative 3% false positive and slow 4 KB/s N/A

Datalog Disassembly [24] Nearly 100% accuracy Slow and limited file format support 4 – 50 KB/s N/A

XDA [43] Close to 100% accuracy Slow 140 B/s 47 KB/s

DEEPDI (this work) Close to 100% accuracy – 146 KB/s 24.5 MB/s

1 Measured on our server, please refer to Section 4.1 for more details.

combined with some heuristics to detect missing code blocks.
Indirect control transfers are very common in complex pro-
grams. These programs have switch-case statements, virtual
functions, function pointers, etc. Jump tables, such as jmp

dword ptr [addr+reg*4], are relatively easy to resolve.
However, there exist different variants of jump tables, and
some can be difficult to resolve.

These two methods are straightforward and simple, but
neither is perfect. IDA Pro has a signature-based approach
to scan common patterns of code, others may have dedicated
data flow analysis to resolve indirect jumps. Neither is cheap.
Code patterns can be affected by compilers, optimization lev-
els, architectures, etc. Therefore, searching in such a large
knowledge base is time-consuming. Data flow analysis gener-
ally uses an iterative algorithm and requires a lot of compu-
tational time. Since the manually-defined heuristics are not
complete and slow, we build a machine learning model to au-
tomatically capture relations among instructions and use GPU
and SIMD instructions in CPU to accelerate the computation.

2.2 Superset Disassembly

Superset Disassembly [13] was proposed for binary rewriting.
It disassembles every executable byte offset. Figure 1 (a)
and (b) show an example of superset disassembly. Although
most of instructions are false positive, all true positives are
included in the result so that every possible transfer target can
be instrumented during binary rewriting.

2.3 Probabilistic Inference

Shingled Graph Disassembly [55] and Probabilistic Disas-
sembly [39] are both probability-based approaches, and they
both start from superset disassembly. Shingled Disassembly
maintains an opcode state machine that gives a probability of
transition from one opcode to another. It removes execution
paths with low probabilities (according to the opcode state
machine) to find an optimal execution path with a maximum
likelihood. Their algorithm runs in O(n) and according to
the paper, their approach is two to three times faster than
IDA Pro v6.3. Shingled Disassembly also has a similar accu-
racy compared to IDA Pro and has fewer missing instructions.
Probabilistic Disassembly is a recently proposed binary rewrit-

ing approach that uses probabilities to model uncertainties
(interleaved code and data, indirect transfer targets, etc.). It
considers register define-use relations, control flow conver-
gence, control flow crossing, and computes a probability for
each address based on these features. Its experiment shows
that it has no false negative, and false positive rate is only 3.7%
on average, making it particularly suited for binary rewriting.

2.4 Datalog Disassembly

Datalog Disassembly [24] is also a recently proposed binary
rewriting approach. Similar to Probablistic Disassembly, Data-
log is based on Superset Disassembly, and it defines a series of
rules to remove invalid instructions. For instance, if an instruc-
tion falls-through, or jumps, or calls an invalid instruction,
this instruction is also invalid. Combined with some heuristics
and potential references in data sections, it resolves overlaps
and achieves very high accuracy. The downside though, is
that such analyses are expensive and can take a lot of time.

2.5 XDA

XDA [43] is a deep learning-based disassembly approach. It
takes raw bytes as input, and then randomly masks some of
these bytes to learn a language model for instructions. For ex-
ample, XDA learns sub rsp and add rsp, a typical function
prologue and epilogue, is a pair, which can be used to indicate
function boundaries. With this pre-trained language model,
one can fine-tune it for various tasks (instruction boundary,
function boundary, etc.) with very little training data. XDA
also has a good accuracy on unseen real-world projects and
is robust to different optimizations. However, it has 12 multi-
head attention layers and a large hidden size, or 86,838,795
trainable parameters in total, which make this model very
complex and hinder the efficiency benefits brought by GPUs.

2.6 Summary

Each approach has pros and cons. Linear Sweep is the fastest,
but the disassembly results may be inaccurate. Recursive has
no false positives but can miss a substantial amount of code
due to indirect transfers. Superset Disassembly has bloated
false positives. Probabilistic Disassembly inherits the advan-
tage of Superset Disassembly, but its runtime performance

USENIX Association 31st USENIX Security Symposium 2711

0: 83
1: FA
2: 5C
3: 75
4: 02
5: FF
6: 03
7: 8B
8: 0B

0: cmp edx, 0x5C
1: cli
2: pop esp
3: jnz 0x07
4: add bh, bh
5: inc dword [ebx]
6: add ecx, dword [ebx+0x9090900B]
7: mov ecx, dword [ebx]
8: or edx, dword [eax+0x90909090]

Line Opcode ModRM SIB REX Len
0 83 FA 00 00 3
1 FA 00 00 00 1
2 5C 00 00 00 1
3 75 00 00 00 2
4 02 FF 00 00 2
5 FF 03 00 00 2
6 03 8B 00 00 6
7 8B 0B 00 00 2
8 0B 90 00 00 6

RNN RNN RNN

u0 u3 u5

RNN RNN RNN

u3 u5 u7

(e) Instruction Flow
Graph

Forward Edge
Backward Edge
Overlap Edge

h0 h1

h2h3h4

h5h6

h7h8

x(1) x(2) x(3)

x(1) x(2) x(3)

0: cmp edx, 0x5C
1: cli
2: pop esp
3: jnz 0x07
4: add bh, bh
5: inc dword [ebx]
6: add ecx, dword [ebx+0x9090900B]
7: mov ecx, dword [ebx]
8: or edx, dword [eax+0x90909090]

Valid Instruction
Invalid Instruction

(f) Instruction Classification Result

Em
bedding Layer

u0

u3

u5

h0

h3

(a) Raw Bytes (b) Superset of
Instructions

(c) Instruction Metadata (d) Instruction Embedding

Superset
Disassembly

Graph
Generation

Graph
Inference

Extracting Metadata

DeepDi’s
Trainable
Modules

Fully C
onnected Layer

Sigm
oid

Figure 1: Overview of DEEPDI with a Concrete Example

is much worse than traditional approaches. Shingled Graph
Disassembly has an opcode state machine to measure the
probability of transition from one opcode to another and re-
moves execution paths with low probabilities. However, it
is not open-source, so we cannot evaluate it on a large-scale
dataset. Datalog Disassembly adopts a similar idea, thus suf-
fers the same runtime performance issue. XDA uses GPU
to accelerate the analysis, but its complex and heavyweight
model still hinders its efficiency. These approaches show a
trade-off between accuracy and efficiency: a more accurate
result requires more sophisticated analysis, resulting in lower
efficiency. Table 1 summarizes and compares these existing
approaches. Our approach can achieve both high accuracy
and high efficiency, so it is applicable to time-sensitive tasks.

3 Design

We envision a good disassembler should achieve the following
design goals:

• High Accuracy. It should correctly identify instructions
and functions with very high recall and precision.

• High Efficiency. It should disassemble a binary program
at a very high speed, without compromising accuracy.

• Reasonable Robustness. While it is impossible to
achieve complete robustness against strong adversaries
that can be explicitly designed against a disassembler, a
good disassembler should be resilient to common obfus-
cations such as junk code and computed jumps.

• Support for Downstream Tasks. In addition to iden-
tifying instructions and functions, a good disassembler
should provide auxiliary information like call graph, con-
trol follow graph, etc., which is useful for downstream

analysis tasks.

Figure 1 serves as an overview and a running example
of DEEPDI. Our approach first uses superset disassembly to
disassemble raw bytes. According to the disassembled instruc-
tions, we build an instruction flow graph (IFG) representing
all possible execution paths. Each instruction is also converted
to a feature vector via instruction embedding while maintain-
ing its semantic meaning. The feature vectors are propagated
on the IFG using an R-GCN model to obtain neighboring
information, and then are fed into a classification layer to
predict whether the corresponding instructions are valid. All
the aforementioned layers are connected and are trained in an
end-to-end supervised fashion.

Moreover, we further leverage the prediction results to
recover function entrypoints (not shown in Figure 1). We treat
instructions that are not reachable by non control transfer
instructions as function candidates. We then train a classifier
to identify true function entrypoints from the candidates.

3.1 Superset Disassembly

We use Superset Disassembly [13] to ensure our input to the
model is a superset of true instructions. Given N raw bytes
b0,1,...,N−1, the output of superset disassembly is as follows:

ti = D(bi,...,i+14),∀i ∈ {0, . . . ,N −1} (1)

where D(⋅) disassembles the given bytes and each ti is an
(Opcode,ModRM,SIB,REX) tuple. We call this tuple in-
struction metadata. We feed 15 consecutive bytes (as shown
in Equation 1) because an instruction is composed of up to
15 bytes. If the rest of the bytes are less than 15, we will
pad them with 0x90 (nop). A decoded instruction may have

2712 31st USENIX Security Symposium USENIX Association

prefixes, Opcode, ModRM, SIB, Displacement, and Immedi-
ate [4], but we only use REX prefix, Opcode, ModRM and
SIB as its semantic representation, because displacement and
immediate contain arbitrary values and do not affect the se-
mantic meaning. More details are introduced in Section A in
the Appendix.

Figure 1 (c) shows an example of tk and how the tuple
is represented. Note that although an instruction often takes
more than one byte, superset disassembly will still disassem-
ble from its next byte to obtain all possible instructions, which
forms a superset of instructions.

Since disassembling any instruction is independent, this
process can be easily parallelized on GPU: given n raw bytes,
we simply create n GPU threads, and thread i disassembles
from bi [34]. A modern GPU can schedule over one billion
threads, so doing so will not cause performance issues.

Thread 0 1 ... 30 31

Memory 0 1 ... 30 31 32 ...

(a) Time 0

Thread 0 1 ... 30 31

Memory 0 1 ... 30 31 32 ...

(b) Time 1

Figure 2: GPU Disassembly State at Different Time

Figure 2 illustrates an example of data parallelism on GPU.
Assuming the address of the first instruction byte is 0, we
assign thread 0 to 31 (a warp) to disassemble instructions
starting at memory location 0 to 31. At time 0, all threads
consume one byte at location 0 to 31 accordingly at the same
time. At time 1, some threads may turn inactive because they
encounter 1-byte instructions and remain inactive until all
threads in this warp finish disassembling their instructions.
Other threads consume the next bytes, which are memory
location 1 for thread 0, 2 for thread 1, and so on. The number
of threads we create is the same as the number of bytes in the
code section, and each thread will output one instruction.

We make each thread in a warp disassemble a consecutive
memory location because of GPU global memory coalescing.
When threads in a warp access an aligned and consecutive
memory location, this is a coalesced access and GPU can fetch
up to 32 words in one memory transaction. If the memory
accesses were strided (for example, greater than 31 words),
each memory transaction would fetch only one word, wasting
almost 97% of memory bandwidth.

When GPU is not available, we can perform this task on
CPU, which is very straightforward. We just need to go over
one byte at a time and disassemble one instruction starting
from it. We can exploit multi-threading on CPU by creating
multiple threads, each of which sweeps through one chunk of
the input binary.

3.2 Instruction Embedding

After we get the superset of instructions, we would like to
use the R-GCN model to infer the true instructions. First, we

need to decide what kind of representation of each instruction
should be fed into the R-GCN model (the representations are
used as the node features in the R-GCN model). In this section,
we introduce how we construct instruction representations
from their metadata ti, as shown in Figure 1 (d).

The metadata ti, i.e., the (Opcode,ModRM,SIB,REX)
tuple, is integer-encoded, so we first convert it to a fixed-
dimensional embedding via a learnable embedding layer, then
incorporate the embeddings of an instruction and its follow-

ing instructions into the instruction representation (feature
vector) via a recurrent neural network (RNN). Note that Fig-
ure 1 (c) shows the original values of Opcode, ModRM, SIB,
and REX extracted from instructions. However, their value
ranges may overlap (e.g., the range of ModRM and SIB is
{0, . . . ,255}) and it will confuse the embedding layer. So we
add a constant value to Opcode, ModRM, SIB, and REX to
make their ranges non-overlapping. In total we have 1,025
distinct opcodes, 257 ModRM, 257 SIB, and 17 REX. Each
field has a reserved value which is used when the correspond-
ing field is not presented. This makes the overall input size of
the embedding layer 1,556. We use an instruction sequence
instead of a single instruction because one instruction carries
too little information to tell if it is valid. Take Figure 1 (b) for
example, instruction 4 alone looks valid. However, if we also
consider its following instruction, instruction 6 where ebx is
used as a base register, the modification of bh in instruction
4 becomes suspicious. In this way, the same instruction in
different execution paths can have different semantic repre-
sentations, and the context-aware representations can help
improve the classification accuracy. In our experiment, two
following instructions can give enough information and will
not cause much runtime penalty.

Formally, we define the instruction i’s feature vector as
follows:

x
(n)
i = f (x(n−1)

i ,ui⊕(n−1)),n = 1, . . . ,M (2)

where f is the vanilla RNN’s recurrent function [49], x
(n)
i ∈

R
d2 is the hidden state of the RNN network (x

(0)
i is an all-

zero vector, which is the initial hidden state of the RNN). M

is the sequence length, which is three in this paper. ui ∈R4⋅d1

is the embedding of ti generated by a learnable embedding
layer. Each item in the tuple is treated as a word index and
the embedding layer convert it to a d1-dimensional vector.
ui is the concatenation of the embeddings of the four items
(Opcode, ModRM, SIB, REX). For an instruction i in the
superset of instructions, we define that the operation i⊕ j

represents finding j-th non-overlap following instruction of
i. Take Figure 1 (d) for example, for instruction 0, 0⊕1 = 3,
0⊕2 = 5, etc. If i⊕ (k+1) does not exist (out of bound or
instruction i⊕k being invalid), we define i⊕(k+1)= i⊕k.

Since we define M = 3 in this paper, a simpler unrolled
RNN equation of length three can be defined as follows:

x
(3)
i = funrolled(ui,ui⊕1,ui⊕2) (3)

USENIX Association 31st USENIX Security Symposium 2713

Since only the RNN steps cannot be parallelized, a small
sequence length means it would not be particularly more
expensive. That is why our approach can still achieve high
efficiency even though an RNN is used.

After the RNN module, we can use x
(M)
i (in this paper,

M = 3) as the representation of instruction i and then feed this
representation as the node feature into the R-GCN model for
graph inference (see Section 3.4 for more details). We chose
the vanilla RNN over GRU or LSTM for better efficiency.

3.3 Instruction Flow Graph

Since we are exhaustively disassembling binaries, there exist
many false instructions. Even worse, instructions are variable-
length, thus the model cannot easily determine where the
true instructions are. To help the model better understand the
contexts, we propose to model different relations between in-
structions using a graph called Instruction Flow Graph (IFG),
which is used with the Graph Inference phase to propagate
information of each instruction to its neighbors and to classify
true instructions.

Formally, we define an instruction flow graph as a directed
graph G = (V,E,R). For each node vi ∈V , there is a feature
vector xi, a semantic representation of the instruction obtained
from Section 3.2. Each edge (vi,r,v j) ∈ E is labeled with a
relation r ∈ R denoting the edge type. R = { f ,b,o} represents
three types: forward, backward, and overlap, respectively. If
the label r in (vi,r,v j) is a forward relation, it means the
next instruction of i can be j, either i falls through to j, i

calls j, or i jumps to j. For example, if the instruction i is a
conditional jump which may fall through to j or jump to k,
there is a forward edge from i to j and a forward edge from
i to k. If instruction i is a return instruction or an indirect
jump/call, no forward edge from i is created since the transfer
target is unknown. A forward edge from i to j is the same
as a backward edge from j to i. If r is an overlap relation, it
means instruction i and j overlap with each other. That is, the
starting point of instruction j is inside instruction i, or vice
versa. These different relations can help the model propagate
different kinds of information.

Figure 1 (e) shows an example of an Instruction Flow
Graph. For instance, Node 3 has two forward relations be-
cause Instruction 3 is a conditional jump and thus has two
potential targets. Likewise, Node 0 has two overlap relations
with Node 1 and 2 because the length of Instruction 0 is three.

3.4 Graph Inference

For our graph inference, we use a Relational-GCN (R-
GCN) [50] to propagate information of each instruction to
its neighbors. In this network, nodes can have different kinds
of relations so that we can pass different messages along
different relations. Recall that a valid instruction makes its
successors valid, but not vice versa because it can have multi-
ple predecessors, and only one of them or even none of them

is valid. R-GCN is capable of modeling this and increases the
likelihood of valid instructions while decreases the likelihood
of invalid instructions.

As defined in Section 3.3, an instruction flow graph is
denoted as (V,E,R). We use the following propagation model
to update the hidden state of each node vi in each layer:

h
(l+1)
i = ReLU

⎛
⎜
⎝
∑
r∈R
∑
j∈Nr

i

1

∣Nr
i ∣

W
(l)
r h

(l)
j +W

(l)
0 h

(l)
i

⎞
⎟
⎠

(4)

where h
(l)
i ∈ Rd2 is the d2-dimensional hidden state of the

node vi in the l-th layer. Nr
i denotes the set of neighboring

indices of node vi under relation r ∈R. ∣Nr
i ∣ denotes the number

of nodes in Nr
i . W

(l)
r ∈Rd2×d2 is the weight matrix for relation

r ∈ R in the l-th layer. W
(l)
0 ∈Rd2×d2 is the weight matrix for

the node itself in layer l (self-connection). Initially, h
(0)
i = xi,

the feature vector associated with node vi (see Section 3.2).
The final output of R-GCN with L layers is the hidden state of

the last layer h
(L)
i . Figure 3 illustrates the propagation process

at layer l.

+ ReLU

X

X

X

input vector

embedded vector
at layer l+1

Figure 3: Embedding propagation at layer l of R-GCN

During training, each instruction embedding is propagated
and updated L times via different relations: forward, back-
ward, and overlap to capture information from neighboring

nodes. The final output h
(L)
i is fed into a classifier: a fully-

connected layer to reduce the dimension to one, and then
activated by sigmoid to generate a probability p. We try to
minimize the Binary Cross Entropy loss function:

J(Θ, p,y)=∑(−(y ⋅ log(p)+(1−y) ⋅ log(1− p))) (5)

where Θ denotes the model parameters and y is the true label.
As shown in Figure 1, all the trainable modules of DEEPDI

are linked together and trained in an end-to-end fashion.

2714 31st USENIX Security Symposium USENIX Association

3.5 Function Entrypoint Recovery

To recover function entrypoints, we first identify a set of func-
tion entrypoint candidates, and then feed each candidate and
its surrounding instructions into a classifier. To identify the
candidates, we first obtain the metadata of valid instructions,
and exclude instructions that are int3, jmp, ret, nop, or are
reachable via instruction fallthrough or conditional jump be-
cause these instructions will not be function entrypoints. We
also assume the targets of call instructions are function entry-
points. This not only reduces false positives, but also greatly
reduces the number of candidates to evaluate.

We then stack each candidate instruction with three pre-
ceding instructions and three following instructions into our
function entrypoint recovery model. The model has a learn-
able embedding layer followed a GRU layer and a two-layer
perceptron classifier. This will determine if this candidate
instruction is indeed a function entrypoint. Let the valid in-
struction metadata be {t0,t1, . . . ,tk}, we define the function
entrypoint recovery model as follows:

gi = f (ui−3,ui−2,ui−1,ui,ui+1,ui+2,ui+3) (6)

where f is the GRU’s recurrent function, and ui ∈R4⋅d1 is the
embedding of ti generated by a learnable embedding layer
(not the same embedding layer in Section 3.2). gi is the hidden
state of the GRU layer and is then fed into a classification
layer.

During evaluation, we only feed function entrypoint candi-
dates into our model. Since the number of function candidates
is very limited compared to the number of superset instruc-
tions (about 1:30), this model has almost no impact on runtime
performance. Our experiment shows that it helps achieve the
average F1 score of function recovery 98.6%.

Guo et al. [27] show that RNN-based function identification
tends to learn specific bit patterns, such as push ebp. How-
ever, we identify function entrypoints based on high-level
features learned by the neural network model and accurate
instructions, which can likely lead to higher robustness. The
drawback of this approach is that we will miss tail jumps and
functions with unseen prologues. To identify tail jumps, we
can use the same heuristics in other works [45, 46]. If the
jump target address is larger than the next function start or
smaller than the current function start, it is considered as a
tail jump. For unseen prologues, we are able to find many of
them via call targets.

4 Evaluation

In this section, we evaluate DEEPDI’s performance. Our ex-
periments aim to answer the following Research Questions
(RQs).
RQ1 How does it perform on regular binaries?
RQ2 How does it perform on unseen binaries?
RQ3 How does it perform on obfuscated binaries?

RQ4 How resilient is it against adversarial attacks?

4.1 Implementation and Setup

We use PyTorch [41] to implement our model and write a plug-
in to disassemble raw bytes and return instruction metadata
and an IFG as PyTorch Tensors. To disassemble instructions
on GPU, we used a header-only library LDasm4 and modified
the code so that it can run on GPU, and its look-up tables are
properly cached and shared among GPU threads. The IFG
is represented as a set of sparse adjacency matrices, and we
used the PyTorch Sparse5 library to avoid expensive memory
coalescing operations. We ran all the experiments on a dedi-
cated server with a Ryzen 3900X CPU @ 3.80 GHz×12, one
GTX 2080Ti GPU, 16 GB memory, and 500 GB SSD.

Baseline. We select the following disassemblers for baseline
comparison: Binary Ninja 2.2 [1], IDA Pro 7.2 [3], Ghidra
9.1.2 [2], Datalog Disassembly [24], and XDA [43]. IDA Pro,
Ghidra, and Binary Ninja are widely used in reverse engi-
neering and binary analysis practices, and their results are
considered high-quality. Datalog is a recently proposed bi-
nary rewriting approach. XDA is the state-of-the-art machine
learning-based approach. This selection covers the state-of-
the-art commercial disassembler tools and the most recent
research prototypes.

We used the default settings when evaluating IDA Pro and
Binary Ninja. For Ghidra, we disabled its decompiler, ASCII
string analyzer, x86 exception handling, and constant refer-
ence analyzer to boost its efficiency. We finetuned two XDA
models, one for instruction and one for function entrypoints,
both based on the pre-trained model that XDA provided. We
kept the same hyperparameters as in their paper and finetuned
each model for five epochs.

Dataset. We conducted experiments on BAP corpora [17],
LLVM 11 for Windows6, SPEC CPU2006 [6], and SPEC
CPU2017 [7]. The BAP corpora contain 1,032 x86 and x64
ELF binaries compiled by GCC with optimization levels O0
to O3. Though these corpora also come with ELF binaries
compiled by Intel C++ Compiler (ICC) and PE files, these
binaries are not used in experiments due to the existence of
jump tables in the code section. LLVM 11 is compiled by
Microsoft Visual Studio 2019 with optimization levels
Od, O1, O2, Ox for both x86 and x64 architectures. SPEC
CPU2006 is compiled by GCC-4.8.4 and MSVC 2008 for
x86 and x64 architectures and with four optimization levels.
SPEC CPU2017 is also compiled on the two ISAs with four
optimization levels by using GCC-7.5 and MSVC 2019. To
reduce the training time for XDA, we excluded files larger
than 5MB.

In total, we have 1,032 ELF files (268 MB) from BAP,
266 PE files (322 MB) from LLVM, 152 PE files (152 MB)

4https://github.com/Rprop/LDasm
5https://github.com/rusty1s/pytorch_sparse
6https://github.com/llvm/llvm-project

USENIX Association 31st USENIX Security Symposium 2715

and 190 ELF files (79 MB) from SPEC CPU2006, and 270
PE files (287 MB) and 218 ELF files (120 MB) from SPEC
CPU2017. Note that we only count code section size.

It is straightforward to extract the ground truth from ELF
files, since there is no data in the code section according to
Andriesse et al. [10]. We get instruction boundaries by lin-
early disassembling the code section. We use pyelftools7 to
get function entrypoints come from the symbol table where
the symbol type is “STT_FUNC” and the symbol index is not
“SHN_UNDEF” (to exclude external functions). To obtain the
ground truth for PE files, we modified DIA2Dump, an exam-
ple that comes with Visual Studio, to dump all functions, data,
and label addresses from pdb files. We can only find data
addresses but no data lengths in pdb files, so to estimate data
ranges, we first find the label where the data belongs, then
treat the data address to the end of that label as data. When
creating the labels, we set the label to one if the corresponding
byte is the starting point of an instruction or a function.

Evaluation Metrics. For the accuracy evaluation, we use F1

scores to measure the performance because both precision
and recall are pretty high for almost all disassemblers. For
generalizability and obfuscation evaluation, we use Precision

(P) and Recall (R) to measure the performance.

Deep Learning Model Settings. We use the Adam optimiza-
tion algorithm [32] and a default learning rate 10−3. As in-
troduced in Section 3.4, we use the Binary Cross-Entropy
Loss to calculate the loss. We choose the following hyper-
parameters through an informal parameter sweep process:
d1 = 8, d2 = 16, L= 2, M = 3, and the batch size is 1,048,576.
If a code section is larger than the batch size, we obtain an
Instruction Flow Graph for each batch, and edges outside of
this graph are dropped. We apply the same strategy to keep the
graph small and fit in the GPU memory during the inference.
In each batch, the average valid-to-invalid instruction ratio is
about 1:1 because compilers tend to insert sufficient padding
instructions to align instructions. If we count the paddings as
invalid, the ratio becomes 1:4. The graph size is roughly five
times the batch size: almost all instructions have only one for-
ward and one backward relation (fallthrough), each of which
overlaps with three instructions on average. We also apply a
row normalization to make each node in a similar range [50].
As for the function model, the output length of the embedding
layer is 8, the hidden size of GRU is 64, and the hidden layer
size of the two-layer perceptron is 64, 1, respectively. In total,
our model only has 49,889 trainable parameters.

4.2 Accuracy and Efficiency

In this section, we evaluate the accuracy and the efficiency of
DEEPDI and other baseline tools. First, we introduce some
details and settings of the experiments, then report and discuss
experimental results.

7https://github.com/eliben/pyelftools

Training and Testing Details. We randomly shuffled the
dataset and did a 90-10% split (90% of binaries are used
for training, 10% for testing). Both XDA and DEEPDI are
trained for five epochs because XDA converges after five
epochs according to their paper. We feed code sections (raw
bytes) to XDA and binary files to DEEPDI.

4.2.1 Accuracy

To answer RQ 1, we measure F1 scores of DEEPDI and base-
line models at instruction and function levels, as shown in
Table 2.

When evaluating instruction level results, we treat nop,
int3, hlt and jmp instructions, and lea instructions whose
source and destination registers are the same as padding in-
structions, thus they do not count towards positive or negative
instructions. Similarly, for the function entrypoint evaluation,
if the first instruction of a function is jmp, this function does
not count towards positive or negative functions.

Datalog only supports x64 ELF files, so its evaluation on
LLVM binaries is not available, and the corresponding cells
show “N/As” in Table 2. From the table, we observe that
most disassemblers struggle to identify function entrypoints
on SPEC datasets. By looking into the datasets, we find that
functions from the BAP and the LLVM dataset are mostly
aligned, meaning padding instructions can be found between
functions. These padding instructions are a strong indicator of
function boundaries. However, functions from SPEC datasets
are not aligned. To make it worse, many functions end with
non-return calls, and frame pointers are often omitted on high
optimization levels. With frame pointers omitted, the first
instruction of a function is not push ebp/rbp, but xor, cmp,
mov, etc. These are normal instructions after a call instruc-
tion, and this explains why many disassemblers struggle to
recover function entrypoints. IDA Pro treats many small func-
tions as error handling code, or “__unwind”. That is why IDA
Pro misses many functions in the LLVM dataset. Note that
DEEPDI is not the best performer, but is comparable with
the other disassemblers. We are unable to evaluate Shingled
Graph Disassembly [55] on our dataset because it is not open
source. Still, according to their paper, the accuracy of Shin-
gled Disassembly is comparable to IDA Pro, meaning its
instruction-level accuracy is similar to DEEPDI.

4.2.2 Efficiency

Figure 4 shows the correlations between code section size and
disassembly time for our approach, IDA Pro, Binary Ninja,
Ghidra, Datalog, and XDA. The y-axis of this figure is log-
scaled. For IDA Pro, Binary Ninja, and Ghidra, we run them
in console/headless mode to avoid unnecessary GUI costs.
For Datalog Disassembly, we take the numbers reported from
the tool directly. When disassemblers are tested on CPU, only
one CPU core is used to ensure fairness.

DEEPDI on GPU clearly stands out in this experiment. Its
throughput is about 24.5 MB/s, about 170 times faster than

2716 31st USENIX Security Symposium USENIX Association

Table 2: Instruction and Function Level Accuracy

Dataset Opt.
Instruction F1 (%) Function Entrypoint F1 (%)

DEEPDI XDA Datalog IDA Pro Binary Ninja Ghidra DEEPDI XDA Datalog IDA Pro Binary Ninja Ghidra

BAP

O0 99.9 99.9 100 99.9 99.9 100 99.9 99.9 100 100 99.9 100
O1 99.8 99.9 100 99.9 99.8 99.9 99.3 99.5 100 99.9 99.8 99.9
O2 99.7 99.9 99.9 99.9 99.8 99.9 98.6 99.4 100 99.9 99.8 99.9
O3 99.7 99.9 100 99.9 99.7 99.9 99.0 99.5 100 99.9 99.7 99.9

LLVM

Od 99.8 99.9 N/A 99.9 99.8 99.9 99.8 99.9 N/A 99.9 97.1 99.9
O1 99.8 99.9 N/A 99.9 99.7 99.9 99.8 99.9 N/A 99.8 96.8 99.9
O2 99.8 99.9 N/A 99.9 99.6 99.9 99.8 99.9 N/A 99.8 89.7 99.7
Ox 99.7 99.9 N/A 99.9 99.7 99.9 99.8 99.9 N/A 99.8 84.9 99.7

SPEC 2006

O0 99.9 99.9 100 99.9 99.6 98.9 98.4 99.9 99.9 88.8 88.7 97.3
O1 99.7 99.8 100 99.8 99.3 97.2 97.0 99.3 100 86.3 88.7 93.4
O2 99.9 99.9 100 99.9 99.2 97.6 96.4 99.5 100 85.2 91.5 92.7
O3 99.9 99.9 100 99.9 98.9 98.0 98.6 99.5 100 93.3 96.0 99.9

Os/Ox 99.8 99.9 100 99.9 99.4 97.5 95.3 98.3 100 85.6 87.1 91.6

SPEC 2017

O0 99.9 99.9 99.9 99.9 99.7 94.2 99.0 99.8 100 89.4 93.6 86.7
O1 99.9 99.9 100 99.9 99.5 95.9 99.7 99.8 100 80.8 95.6 76.8
O2 99.8 99.9 100 99.9 99.4 95.1 99.5 99.9 100 79.4 96.7 75.5
O3 99.6 99.9 100 99.9 98.9 90.1 98.9 99.4 100 88.4 93.5 85.0

Os/Ox 99.7 99.8 100 99.9 99.6 96.5 96.3 99.5 100 72.5 92.1 68.7

Figure 4: Efficiency Evaluation

DEEPDI on CPU, 146 KB/s. The latter still is noticeably
faster than the remaining disassemblers: IDA Pro 72 KB/s,
XDA (GPU) 47 KB/s, Binary Ninja 11 KB/s, Ghidra 10 KB/s,
Datalog 5 KB/s (for files around 1 MB), and XDA (CPU) 140
B/s. Shingled Graph Disassembly, according to their paper, is
two to three times faster than IDA Pro, making it comparable
to our CPU approach.

In contrast, XDA is several orders of magnitude slower than
the other disassemblers when running on CPU, and its GPU
version is merely comparable to the other CPU disassemblers.
It is worth noting that we obtained XDA source code from
their GitHub repository, but we could not reproduce their
reported efficiency. One possible reason is that they used
three GPUs [43] whereas we only used one.

The answer to RQ 1: DEEPDI is very accurate on
regular binaries. Its accuracy is comparable to all
the commercial tools and recent research prototypes.
Moreover, DEEPDI is significantly more efficient.

4.3 Generalizability

To answer RQ 2, we conduct two experiments. First, we train
our model on the BAP corpora and test it on the LLVM dataset,
and then compare it with another machine learning-based
model – XDA [43]. We did not do it in the opposite way
(i.e., training on the LLVM and testing on the BAP corpora)
because XDA is pre-trained on the BAP corpora [43] and this
dataset should not be considered unseen for XDA. DEEPDI

and XDA are trained on each optimization level of BAP cor-
pora for five epochs and tested on the LLVM binaries. This
experiment shows disassemblers’ performance on unseen bi-
naries of different compilers (GCC vs MSVC), platforms (Linux
vs Windows), and optimization levels. Second, we evaluate
our model and XDA’s model from Section 4.2 on the same
unseen real-world software used by XDA. This experiment
uses unseen real-world software to show the performance in
real-world scenarios.

Table 3 lists the evaluation results on instruction and func-
tion recoveries. Even though DEEPDI has not seen LLVM
binaries before, it still reaches 97.1%+ precision and recall
on recovering instruction boundaries. However, XDA only
obtains a high precision while recall is constantly below 50%.
One possible explanation is that XDA’s attention header is
too conservative, and does not perform well when instruction
patterns are unseen. The function entrypoint recovery eval-
uation shows a greater degradation when analyzing unseen
binaries of unseen compilers. As the optimization level in-
creases, function prologues become less obvious and differ

USENIX Association 31st USENIX Security Symposium 2717

Table 3: Precision and Recall on Unseen Binaries from an Unseen Compiler

Model
Train

Test
Instruction Function

Od O1 O2 Ox Od O1 O2 Ox
P R P R P R P R P R P R P R P R

DEEPDI

O0 98.6 99.1 98.1 97.6 98.0 97.6 98.2 97.7 94.5 42.3 95.9 38.4 74.8 26.2 73.1 26.0
O1 98.6 98.9 97.2 96.6 97.9 97.1 98.0 97.1 94.9 60.5 93.3 76.8 72.2 72.1 69.5 71.9
O2 98.9 99.7 98.3 98.6 98.3 98.5 98.2 98.6 89.4 47.3 86.7 61.6 82.6 55.0 83.1 53.7
O3 98.2 99.0 97.7 96.9 98.1 97.3 98.1 97.4 80.4 21.0 78.7 39.5 72.9 30.9 74.3 32.5

XDA

O0 98.7 38.9 96.1 43.9 97.1 42.1 97.5 42.6 56.9 0.1 77.6 0.7 5.3 0.03 45.5 0.6
O1 99.0 37.5 97.2 44.2 98.1 42.5 98.4 43.0 2.6 0.4 8.9 1.2 2.3 0.9 3.6 1.4
O2 99.1 38.7 97.2 46.5 98.2 44.2 98.5 44.6 16.8 0.5 57.6 3.8 29.5 2.9 34.1 3.9
O3 98.9 39.8 97.3 47.6 98.1 44.8 98.4 45.1 8.7 0.2 40.4 1.4 7.6 0.4 20.5 1.4

Table 4: Precision and Recall of Function Entrypoint Recovery on Real-world Software

Model Opt.
curl diffutils GMP ImageMagick libmicrohttpd libtomcrypt OpenSSL PuTTy SQLite zlib

P R P R P R P R P R P R P R P R P R P R

DEEPDI

O0 99.9 99.9 99.4 99.2 97.7 97.2 99.6 99.9 99.5 99.5 97.7 94.2 99.7 100 99.9 99.8 99.8 99.9 100 99.3
O1 98.5 99.4 94.6 94.8 96.9 85.6 98.2 94.9 93.6 89.5 97.9 77.1 97.3 93.5 99.4 91.6 97.7 96.9 98.3 85.6
O2 96.2 96.6 94.4 96.5 95.7 90.7 94.1 95.3 91.7 92.7 97.8 95.6 92.6 95.5 98.5 95.6 94.9 95.5 99.1 84.3
O3 96.7 97.4 88.9 97.9 96.0 91.3 94.1 95.1 88.7 93.4 97.9 95.1 92.8 96.0 99.0 96.2 94.7 95.9 98.0 84.2

XDA

O0 100 100 100 100 99.2 96.7 99.9 100 99.5 100 99.6 95.6 100 100 100 99.9 100 100 100 100
O1 91.6 96.0 96.1 96.6 94.1 94.2 98.9 98.7 89.8 92.8 91.4 95.8 93.0 96.1 95.4 97.3 92.9 97.0 94.8 92.7
O2 88.9 95.6 95.9 95.4 95.9 91.9 97.9 98.4 93.9 95.5 98.0 96.0 89.6 95.1 96.1 95.9 95.9 94.0 99.1 90.9
O3 88.9 96.1 94.1 95.7 96.3 94.7 97.1 97.8 96.6 95.8 97.0 96.6 83.8 97.3 96.2 94.3 95.3 94.9 98.2 93.3

a lot from compilers to compilers, making function identifi-
cation much harder. Despite that, DEEPDI outperforms XDA
by a large margin.

Table 4 shows the precision and recall of function entry-
point recovery on each software and optimization. We find
that DEEPDI is on par with XDA. The F1 scores of both XDA
and DEEPDI are close to 100 on instruction recovery, and
their performance is almost identical, so we omit the table for
instruction recovery.

The first experiment shows that DEEPDI can generalize
function entrypoint recovery to some extend when analyzing
binaries from unseen compilers and optimization levels. The
second experiment shows DEEPDI can generalize pretty well
when compilers and optimization levels are already known.
This indicates that each compiler has its function patterns on
each optimization level, so for DEEPDI, training the model
on binaries compiled by gcc and MSVC with different opti-
mization levels is good enough for most general software.

The answer to RQ 2: For unseen binaries, DEEPDI

is still able to achieve high precision and recall. It
outperforms another machine learning-based model,
XDA, by a large margin for unseen compilers and
optimization levels, and is on par with XDA for un-
seen real-world binaries. These results suggest that
DEEPDI has good generalizability.

4.4 Obfuscation Evaluation

To answer RQ 3, we used two different obfuscators to eval-
uate whether our approach is resilient to obfuscations, and

how it compares with the disassemblers with sophisticated
heuristics. The first obfuscator was developed by Linn and
Debray [36]. In that paper, the authors proposed to insert
junk code to confuse both linear and recursive disassembly.
Moreover, unconditional jumps are redirected to a universal
function that modifies its return address based on callers. This
nonstandard behavior hides jump targets and breaks common
heuristics. We used the models trained in Section 4.2 and
the ground truth provided by Linn and Debray [36]. They
provided 11 obfuscated x86 ELF binaries of the SPECint
2000 benchmark suite that have been obfuscated by their tool.
Evaluation results of these binaries are shown in Table 5.

We excluded Datalog Disassembly and Binary Ninja be-
cause Datalog Disassembly does not support x86 ELF files,
and Binary Ninja consumed all memory resources and was
killed by the OS. We can observe from Table 5 that DEEPDI

is the best performer with respect to precision, recall, and run-
time efficiency. In contrast, Ghidra took almost three hours to
analyze these binaries and achieved low precision and recall.
XDA is slightly worse than DEEPDI in terms of precision and
recall, but 235 times slower than DEEPDI on GPU.

Table 5: Obfuscation Test Results

Disassembler Precision Recall Time

DEEPDI (GPU) 84.1 95.2 1.2s

XDA (GPU) 80.2 95.1 282s

IDA Pro 75.8 44.8 262s

Ghidra 69.1 47.0 10,240s

We also evaluated another obfuscator called Hikari [58].
It is an improvement over Obfuscator-LLVM [29], and it
can generate hard-to-read code to provide tamper-proofing
and increase software security. We used five obfuscation

2718 31st USENIX Security Symposium USENIX Association

Table 6: Function Entrypoint Recovery on Obfuscated Unseen Binaries, P: Precision, R: Recall, T: Time

Obfuscation
DEEPDI XDA IDA Pro Binary Ninja Ghidra Datalog

P R T P R T P R T P R T P R T P R T

bcfobf 98.9 98.9 1.6s 99.6 99.4 396s 99.5 100 129s 86.1 100 621s 35.9 33.1 208s 99.7 100 783s

cffobf 99.4 97.9 0.7s 99.6 99.1 342s 99.9 100 112s 98.6 100 593s 39.8 33.0 920s 99.7 100 1,231s

indibran 99.8 98.0 0.5s 99.8 99.0 229s 20.5 100 842s 75.5 99.9 248s 39.7 33.3 230s 98.8 100 905s

splitobf 99.7 98.6 0.6s 99.8 99.3 312s 100 100 117s 98.5 100 539s 42.4 33.2 198s 99.7 100 480s

subobf 99.7 97.9 0.5s 99.8 98.8 187s 100 100 63s 98.6 100 409s 50.6 33.3 105s 99.7 100 284s

strategies, namely bogus control flow (bcf), control flow
flattening (cff), basic block splitting (splitobf), instruction
substitution (subobf), and register-based indirect branching
(indibran) to obfuscate seven popular open-source projects,
including curl-7.74.0, diffutils-3.7, gmp-6.2.1,
ImageMagick-7.0.10, libmicrohttpd-0.9.72, SQLite

-3.34.0, and zlib-1.2.11. We also turned off optimizations
as instructed by Hikari [58]. The function entrypoint evalu-
ation results are shown in Table 6. In this experiment, IDA
Pro has low precision when files are obfuscated by Indirect
Branching. It fails to resolve some indirect jump instructions
and treats these jump targets as function entrypoints. Ghidra
misidentifies many function entrypoints, indicating that
signature-based function identification is not very resilient
to unseen patterns. IDA Pro, Binary Ninja, Ghidra, and
Datalog Disassembly show increased analysis time due to
the increased control flow complexity. In contrast, machine
learning-based approaches like DEEPDI and XDA are not
affected by this.

Based on the results in Table 5 and Table 6, we can see that
the two machine learning-based approaches, DEEPDI, and
XDA, are superior in accuracy when dealing with obfuscated
binaries, but DEEPDI is hundreds of times faster than XDA
on GPU.

The answer to RQ 3: For obfuscated binaries,
DEEPDI is superior in accuracy and its efficiency
is not affected by the increased code complexity.

4.5 Adversarial Evaluation

An extensive answer to RQ 4 would deserve a separate inves-
tigation. In this section, we conduct a preliminary evaluation.
Since our model relies on jump relations to recognize true in-
structions, one possible adversarial attack would be replacing
some of these jumps with computed jumps. In this experiment,
we trained our model on O3 BAP corpora. In evaluation, we
use O0 BAP corpora and randomly drop 50% and 90% of
jump edges.

The evaluation results show that if 50% of the jumps are
removed, the false positive rate (FPR) increases slightly from
0.0473% to 0.0524%, and the false negative rate (FNR) from
0.24% to 0.51%. If 90% are removed, the FPR is 0.0575%,
and the FNR is 0.81%. By analyzing false-negative cases, we

find most false negatives are the first instruction of a short
basic block, or nop instructions at the beginning of a basic
block. This makes sense because the first instruction of a basic
block, especially a short one, has the least context information
if it is not a jump target.

We also evaluate the function entrypoint accuracy. When
all jump edges are removed, precision drops to 93.8% and
recall to 98%. Precision drops a lot because GCC may align
basic blocks and insert nops between them. If a function has
multiple exits, we can find code patterns like return - nop -
mov reg, [reg]. The third instruction looks like a function
entrypoint even to humans, and thus confuses the model.

We speculate that the high resiliency of DEEPDI against
this jump-obfuscation attack is attributed to graph inference,
which takes into account several kinds of relations between
instructions. Context information still exists in adjacent in-
structions and overlapping instructions. Destroying only a
part of these relations (in this case, jump relations) does not
cause a drastic impact on the overall graph inference task.

The answer to RQ 4: Through a preliminary eval-
uation on jump-obfuscation attacks, we show that
DEEPDI has good resilience.

5 Downstream Application

In this section, we showcase how DEEPDI can support down-
stream applications. Particularly, we choose malware clas-
sification in this demonstration. We leave more extensive
evaluations on downstream applications as future work.

We use the malware dataset from Microsoft Malware Clas-
sification Challenge [48]. This dataset contains nine malware
families, and is split into 10,868 malware training samples
and 10,873 testing samples. Each malware sample comes
with IDA Pro disassembly results and raw bytes (represented
as hexadecimal values) of the code sections. Some raw bytes
are represented as “??”, so we removed such bytes and con-
verted other hex strings back to bytes. For all the following
experiments, we use 10-fold cross-validation on the training
data and report mean accuracy as well as standard deviation.
The ground truth of the test dataset is not released to the pub-
lic, and the only evaluation metric returned from the online
judge system is logloss, so we report logloss instead of accu-

USENIX Association 31st USENIX Security Symposium 2719

racy on the test dataset. As a reference, the logloss of random
guessing on the test dataset is 2.19722.

The top models in this challenge used both disassembly and
raw bytes to extract high-level features such as N-gram and
strings [48]. These features are expensive and can take hours
or even days to extract [8, 59]. Although they could achieve
over 99.7% training accuracy and 0.0063 in loss, those models
are impractical for real-time analysis.

To demonstrate how the high-level features benefit malware
classifiers, we conduct two experiments. First, we compare
MalConv [47] with Gemini [57] to compare the performance
of classifiers that take raw bytes and high-level features. Sec-
ond, we compare the original EMBER [9] with a modified
version where high-level disassembly features are added.

For the first experiment, we extend Gemini [57] which
takes attributed control-flow graph (ACFG) as input, gener-
ates embeddings for all basic blocks, and finally outputs an
embedding for each function by summing up all basic-block
embeddings. To build a malware classifier, instead of gener-
ating function embeddings, we concatenate min- and max-
pooling of all basic-block embeddings of the program, and
then feed them into a 2-layer perceptron followed by a tanh

activation function. It finally outputs 9-dimensional vectors
for classification. We can then use softmax to get a probability
for each class. We expect that a classifier based on high-level
features can achieve good accuracy and generalizability.

We use Adam optimizer with the default learning rate 10−3

and Cross Entropy Loss to train the model. At the input layer,
we added a fully connected layer to increase the vector size to
32 to allow more information to pass through ACFGs. We also
set the output embedding size 32, and information propagates
five hops. In this simple case study, we did not attempt to
find the optimal hyperparameters or explore different network
architectures, so there is certainly room for improvement.

We also evaluated MalConv [47], a convolutional neural
network model that takes raw bytes as input for malware
classification. We used the same training strategy described
above to train a MalConv model.

Table 7: Malware Classification Results

Model Training Accuracy Testing Loss Time (GPU)

Gemini 96.52%±0.595 0.134974±0.036 7m

MalConv 97.81%±0.659 0.159165±0.048 48.6s

Table 7 lists the results of this experiment. We can see that
although MalConv has better training accuracy, Gemini can
better generalize with 0.13 logloss. This result substantiates
that a malware classifier based on high-level features tends to
be more accurate on unseen samples. In terms of efficiency,
MalConv only takes 48.6 seconds to process all testing sam-
ples (5.2 GB in total) on GPU, because it takes raw bytes as
input. Gemini takes 7 minutes to process the same amount of
samples on GPU. This is still a notable achievement, given
that DEEPDI has to disassemble the malware samples and

extract ACFG as high-level features and then hand them over
to Gemini to perform classification.

For the second experiment, we evaluate EMBER which
uses static features such as byte code histogram and imported
functions to train a gradient-boosted decision tree (GBDT)
model. We first train the original EMBER model with the de-
fault parameters except changing the objective from binary to
multiclass. Later, we add high-level features: code histogram
and code entropy histogram to the static features to show how
they benefit classification. Code histogram and entropy his-
togram are extracted from instruction metadata mentioned in
Section 3.2, similar to how byte histogram and byte entropy
histogram are extracted.

Table 8: EMBER Classification Results

Model Training Accuracy Testing Loss Time

EMBER 99.13%±0.1747 0.041541±0.0022 21m

EMBER w/ code 99.40%±0.2465 0.024391±0.0018 24m

Table 8 shows that we can lift the training accuracy from
99.1% to 99.4%, and almost halve the testing loss while
adding minor overhead (3 minutes).

This case study shows that DEEPDI opens up a lot of op-
portunities for fast and accurate binary analysis. It will be in-
teresting to explore other machine-learning and deep-learning
models that take disassembly results and high-level features
as input to produce even more accurate classification results
and conduct other binary analysis tasks.

6 Discussion

In this section, we have more discussions about our evaluation
results.

Learning-based vs. Rule-based Approaches. In this work,
we demonstrate that a learning-based approach outperforms
rule-based approaches used in the commercial disassemblers
with respect to accuracy (especially on obfuscated binaries)
and efficiency. This result might be surprising to many people,
as binaries are generated by the compilers following a well-
understood compilation process. So experts should be able
to develop good rules and heuristics to correctly disassemble
the binaries. However, much of higher-level information is
lost during the compilation process, and ambiguities start to
emerge. The situation is further exacerbated by deliberate
obfuscations that aim to break these rules and heuristics, as
demonstrated by our obfuscation evaluation in Section 4.4.
A learning-based approach, if done right, can automatically
learn from a large number of real data on how to resolve the
ambiguities and tolerate certain obfuscation attempts. We also
demonstrate that a learning-based approach (particularly, a
neural network-based approach) can be more efficient than
rule-based approaches. A deep neural network model can bet-
ter leverage the parallelism in modern processors to perform

2720 31st USENIX Security Symposium USENIX Association

vector and matrix computation very efficiently. In contrast, a
rule-based approach may not be easily parallelized.

Generalizability. A common problem for a machine learn-
ing model is overfitting, meaning that the model only learns
superficial features existing in the training dataset and cannot
generalize on unseen dataset. Our evaluation in Section 4.3
shows that our model is able to learn intrinsic features from
the training set, and perform well on a completely different
dataset containing a different set of programs generated by a
different compiler for a different operating system. We spec-
ulate that this excellent generalizability mainly comes from
how we make use of Relational-GCN, as it captures a number
of important relations between instructions. These relations
generally hold true across programs, compilers, and OS.

Adversarial Attacks. A machine-learning system is known
to be vulnerable to adversarial attacks. DEEPDI is no excep-
tion. However, the disassemblers we evaluated face the same
problem, and perform even worse than DEEPDI on obfus-
cated binaries. Section 4.5 shows that DEEPDI at least is able
to counter attacks that simply hide direct jumps. A strong
adversary may be able to perform in-depth analysis on our
model (e.g., based on the gradients), to construct adversarial
examples. This problem deserves a separate investigation, and
we leave it as future work. Nevertheless, our evaluation in
Section 4.4 and Section 4.5 shows that DEEPDI is already
more robust than the existing commercial disassemblers.

7 Related Work

We have discussed existing disassembly techniques in Sec-
tion 2. In this section, we briefly discuss other related works.

Function Identification. Function identification in stripped
binaries is a fundamental challenge in reverse engineering
and binary analysis. Nevertheless, many security solutions,
such as binary rewriting and control flow integrity, rely on
accurate function identification. There exist many machine-
learning-based solutions, such as ByteWeight [12] and Shin
et al.’s work [53]. ByteWeight extracts features from code
(raw bytes or linearly disassembled instructions) and builds a
prefix tree to evaluate the probability of a sequence of instruc-
tions or raw bytes being function boundary. Shin et al. builds
a multi-layer RNN network and feeds one raw byte a time
to the network [53]. The output is whether this byte is func-
tion boundary or not. Some machine-learning-based models
turned out to capture specific patterns, such as push ebp [27],
as function entrypoint signature, and are likely to miss func-
tions if the first instructions in the function are rarely used
(e.g., frame pointer omitted). Others are rule-based solutions
such as Nucleus [11] and Qiao et al.’s work [46]. Fundamen-
tally, they rely on various heuristics or program analysis. The
problem of function identification is that a precise identifica-
tion result does not guarantee a precise disassembly because
the function body may not be contiguous and may contain

data. Another problem is that the runtime performance of
function identification is not good.

Differentiating Code and Data. This is another way of think-
ing disassembly. If we know which part is data, linear sweep
disassembly can give us the correct result. Wartel et al. [56]
uses a compression model to estimate the probability of a
sequence, but its efficiency is not evaluated.

Dynamic Disassembly. Many researchers have made great
contributions [14–16, 40, 42, 54] to this direction. Dynamic
disassembly can achieve better accuracy on the code path
that is actually executed compared to static disassembly, and
is resilient to obfuscation and packing, but imposes extra
runtime overhead and limited code coverage.

Deep Learning for Binary Analysis. There has been a surge
of research efforts on applying deep learning techniques to
solve binary analysis problems. A prominent one is binary
code similarity analysis and search. Its central theme is to
generate an embedding for a piece of code (function or basic
block), and then use the generated embedding to search simi-
lar code snippets [37, 38, 57, 60]. Researchers also leverage
deep learning to perform other sophisticated binary analysis
tasks, such as inferring function type signatures [18], and con-
ducting coarse-grained value set analysis [26]. All of these
schemes except αDiff [37] require disassembly code or fea-
tures extracted from disassembly code as input. As a result, no
matter how efficient these schemes are, the end-to-end system
performance is bounded by the disassembler. By integrating
DEEPDI with these downstream tasks, the end-to-end system
performance can be improved substantially.

Decompilation. Decompilation takes one step further to re-
cover source code from binaries, and is very useful in under-
standing or analyzing binaries when their source code is not
available. [30] uses an encoder-decoder model to translate
raw bytes to pseudo C code, [25, 33] translate instructions to
AST. There are also some commercial decompilers such as
Hex-Rays Decompiler and Binary Ninja. However, compilers
may generate different machine code from the same source
code, or the same machine code from different source code.
It is hard to evaluate the quality of decompilers.

8 Conclusion

In this paper, we have proposed DEEPDI, a novel deep learn-
ing based technique for disassembly that achieves both ac-
curacy and efficiency. Our experimental results have shown
that DEEPDI’s accuracy is comparable to the state-of-the-
art commercial tools and research prototypes, and it is two
times faster than IDA Pro, and its GPU version is 350 times
faster. DEEPDI is able to generalize to unseen binaries, and
counter obfuscations and certain adversarial attacks. When
used with EMBER [9] for malware classification involving
5.2 GB testing samples, we are able to increase training ac-
curacy to 99.4% and only add 3 minutes to feature extraction

USENIX Association 31st USENIX Security Symposium 2721

time, showing its capacity of classifying malware accurately
and efficiently.

Acknowledgement

We would like to thank the anonymous reviewers for their
helpful and constructive comments. This work was supported
in part by National Science Foundation under Grant No.
1719175, and Office of Naval Research under Award No.
N00014-17-1-2893. Any opinions, findings, and conclusions
or recommendations expressed in this paper are those of the
authors and do not necessarily reflect the views of the funding
agencies.

References

[1] Binary ninja, a new type of reversing platform. https:
//binary.ninja/.

[2] Ghidra – software reverse engineering framework.
https://www.nsa.gov/resources/everyone/

ghidra/.

[3] The ida disassembler and debugger. https://www.

hex-rays.com/products/ida/.

[4] Intel® 64 and ia-32 architectures software developer’s
manual, volume 2. http://tiny.cc/vskytz.

[5] Researchers easily trick cylance’s ai-based antivirus into
thinking malware is ‘goodware’. http://tiny.cc/

qnijuz.

[6] Standard performance evaluation corporation. spec
cpu2006 benchmark, 2006.

[7] Standard performance evaluation corporation. spec
cpu2017 benchmark, 2017.

[8] Mansour Ahmadi, Dmitry Ulyanov, Stanislav Semenov,
Mikhail Trofimov, and Giorgio Giacinto. Novel feature
extraction, selection and fusion for effective malware
family classification. In Proceedings of the sixth ACM

conference on data and application security and privacy,
pages 183–194, 2016.

[9] H. S. Anderson and P. Roth. EMBER: An Open Dataset
for Training Static PE Malware Machine Learning Mod-
els. ArXiv e-prints, April 2018.

[10] Dennis Andriesse, Xi Chen, Victor Van Der Veen, Asia
Slowinska, and Herbert Bos. An in-depth analysis of
disassembly on full-scale x86/x64 binaries. In 25th

{USENIX} Security Symposium ({USENIX} Security

16), pages 583–600, 2016.

[11] Dennis Andriesse, Asia Slowinska, and Herbert Bos.
Compiler-agnostic function detection in binaries. In
2017 IEEE European Symposium on Security and Pri-

vacy (EuroS&P), pages 177–189. IEEE, 2017.

[12] Tiffany Bao, Jonathan Burket, Maverick Woo, Rafael
Turner, and David Brumley. {BYTEWEIGHT}: Learn-
ing to recognize functions in binary code. In 23rd

{USENIX} Security Symposium ({USENIX} Security

14), pages 845–860, 2014.

[13] Erick Bauman, Zhiqiang Lin, Kevin W Hamlen, et al.
Superset disassembly: Statically rewriting x86 binaries
without heuristics. In NDSS, 2018.

[14] Andrew R Bernat and Barton P Miller. Anywhere, any-
time binary instrumentation. In Proceedings of the 10th

ACM SIGPLAN-SIGSOFT workshop on Program analy-

sis for software tools, pages 9–16, 2011.

[15] Derek Bruening and Saman Amarasinghe. Efficient,

transparent, and comprehensive runtime code manipula-

tion. PhD thesis, Massachusetts Institute of Technology,
Department of Electrical Engineering, 2004.

[16] Derek Bruening, Timothy Garnett, and Saman Amaras-
inghe. An infrastructure for adaptive dynamic optimiza-
tion. In International Symposium on Code Generation

and Optimization, 2003. CGO 2003., pages 265–275.
IEEE, 2003.

[17] David Brumley, Ivan Jager, Thanassis Avgerinos, and
Edward J Schwartz. Bap: A binary analysis platform.
In International Conference on Computer Aided Verifi-

cation, pages 463–469. Springer, 2011.

[18] Zheng Leong Chua, Shiqi Shen, Prateek Saxena, and
Zhenkai Liang. Neural nets can learn function type sig-
natures from binaries. In 26th {USENIX} Security Sym-

posium ({USENIX} Security 17), pages 99–116, 2017.

[19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In Pro-

ceedings of the 2019 Conference of the North American

Chapter of the Association for Computational Linguis-

tics: Human Language Technologies, Volume 1 (Long

and Short Papers), pages 4171–4186, 2019.

[20] Alessandro Di Federico, Mathias Payer, and Giovanni
Agosta. rev. ng: a unified binary analysis framework
to recover cfgs and function boundaries. In Proceed-

ings of the 26th International Conference on Compiler

Construction, pages 131–141, 2017.

2722 31st USENIX Security Symposium USENIX Association

https://binary.ninja/
https://binary.ninja/
https://www.nsa.gov/resources/everyone/ghidra/
https://www.nsa.gov/resources/everyone/ghidra/
https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/
http://tiny.cc/vskytz
http://tiny.cc/qnijuz
http://tiny.cc/qnijuz

[21] Steven HH Ding, Benjamin CM Fung, and Philippe
Charland. Asm2vec: Boosting static representation ro-
bustness for binary clone search against code obfusca-
tion and compiler optimization. In 2019 IEEE Sym-

posium on Security and Privacy (SP), pages 472–489.
IEEE, 2019.

[22] Yue Duan, Xuezixiang Li, Jinghan Wang, and Heng Yin.
Deepbindiff: Learning program-wide code representa-
tions for binary diffing. In Network and Distributed

System Security Symposium, 2020.

[23] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng,
Brian Testa, and Heng Yin. Scalable graph-based bug
search for firmware images. In Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communi-

cations Security, pages 480–491, 2016.

[24] Antonio Flores-Montoya and Eric Schulte. Datalog
disassembly. In 29th {USENIX} Security Symposium

({USENIX} Security 20), pages 1075–1092, 2020.

[25] Cheng Fu, Huili Chen, Haolan Liu, Xinyun Chen, Yuan-
dong Tian, Farinaz Koushanfar, and Jishen Zhao. Coda:
An end-to-end neural program decompiler. In Advances

in Neural Information Processing Systems, pages 3703–
3714, 2019.

[26] Wenbo Guo, Dongliang Mu, Xinyu Xing, Min Du, and
Dawn Song. {DEEPVSA}: Facilitating value-set analy-
sis with deep learning for postmortem program analysis.
In 28th {USENIX} Security Symposium ({USENIX} Se-

curity 19), pages 1787–1804, 2019.

[27] Wenbo Guo, Dongliang Mu, Jun Xu, Purui Su, Gang
Wang, and Xinyu Xing. Lemna: Explaining deep learn-
ing based security applications. In Proceedings of the

2018 ACM SIGSAC Conference on Computer and Com-

munications Security, pages 364–379, 2018.

[28] Xin Hu, Tzi-cker Chiueh, and Kang G Shin. Large-
scale malware indexing using function-call graphs. In
Proceedings of the 2009 ACM SIGSAC Conference on

Computer and Communications Security, pages 611–
620, 2009.

[29] Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie
Michielin. Obfuscator-LLVM – software protection for
the masses. In Brecht Wyseur, editor, Proceedings of

the IEEE/ACM 1st International Workshop on Software

Protection, SPRO’15, Firenze, Italy, May 19th, 2015,
pages 3–9. IEEE, 2015.

[30] Deborah S Katz, Jason Ruchti, and Eric Schulte. Us-
ing recurrent neural networks for decompilation. In
2018 IEEE 25th International Conference on Software

Analysis, Evolution and Reengineering (SANER), pages
346–356. IEEE, 2018.

[31] Johannes Kinder and Helmut Veith. Jakstab: A static
analysis platform for binaries. In International Confer-

ence on Computer Aided Verification, pages 423–427.
Springer, 2008.

[32] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In ICLR (Poster), 2015.

[33] Jeremy Lacomis, Pengcheng Yin, Edward Schwartz,
Miltiadis Allamanis, Claire Le Goues, Graham Neu-
big, and Bogdan Vasilescu. Dire: A neural approach to
decompiled identifier naming. In 2019 34th IEEE/ACM

International Conference on Automated Software Engi-

neering (ASE), pages 628–639. IEEE, 2019.

[34] Evangelos Ladakis, Giorgos Vasiliadis, Michalis Poly-
chronakis, Sotiris Ioannidis, and Georgios Portokalidis.
Gpu-disasm: A gpu-based x86 disassembler. In Interna-

tional Conference on Information Security, pages 472–
489. Springer, 2015.

[35] Quan Le, Oisín Boydell, Brian Mac Namee, and Mark
Scanlon. Deep learning at the shallow end: Malware
classification for non-domain experts. Digital Investiga-

tion, 26:S118–S126, 2018.

[36] Cullen Linn and Saumya Debray. Obfuscation of exe-
cutable code to improve resistance to static disassem-
bly. In Proceedings of the 10th ACM conference on

Computer and communications security, pages 290–299,
2003.

[37] Bingchang Liu, Wei Huo, Chao Zhang, Wenchao Li,
Feng Li, Aihua Piao, and Wei Zou. αdiff: cross-version
binary code similarity detection with dnn. In Proceed-

ings of the 33rd ACM/IEEE International Conference

on Automated Software Engineering, pages 667–678.
ACM, 2018.

[38] Luca Massarelli, Giuseppe Antonio Di Luna, Fabio
Petroni, Roberto Baldoni, and Leonardo Querzoni. Safe:
Self-attentive function embeddings for binary similarity.
In International Conference on Detection of Intrusions

and Malware, and Vulnerability Assessment, pages 309–
329. Springer, 2019.

[39] Kenneth Miller, Yonghwi Kwon, Yi Sun, Zhuo Zhang,
Xiangyu Zhang, and Zhiqiang Lin. Probabilistic dis-
assembly. In Proceedings of the 41st International

Conference on Software Engineering, ICSE ’19, pages
1187–1198, Piscataway, NJ, USA, 2019. IEEE Press.

[40] Susanta Nanda, Wei Li, Lap-Chung Lam, and Tzi-cker
Chiueh. Bird: Binary interpretation using runtime disas-
sembly. In International Symposium on Code Genera-

tion and Optimization (CGO’06), pages 12–pp. IEEE,
2006.

USENIX Association 31st USENIX Security Symposium 2723

[41] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Py-
torch: An imperative style, high-performance deep learn-
ing library. Advances in Neural Information Processing

Systems, 32:8026–8037, 2019.

[42] Harish Patil, Robert Cohn, Mark Charney, Rajiv Kapoor,
Andrew Sun, and Anand Karunanidhi. Pinpointing
representative portions of large intel® itanium® pro-
grams with dynamic instrumentation. In 37th Inter-

national Symposium on Microarchitecture (MICRO-

37’04), pages 81–92. IEEE, 2004.

[43] Kexin Pei, Jonas Guan, David Williams King, Junfeng
Yang, and Suman Jana. Xda: Accurate, robust disassem-
bly with transfer learning. In NDSS, 2021.

[44] Manish Prasad and Tzi-cker Chiueh. A binary rewriting
defense against stack based buffer overflow attacks. In
USENIX Annual Technical Conference, General Track,
pages 211–224, 2003.

[45] Rui Qiao and R Sekar. Effective function recovery for
cots binaries using interface verification. Technical re-
port, Technical report, Secure Systems Lab, Stony Brook
University, 2016.

[46] Rui Qiao and R Sekar. Function interface analysis: A
principled approach for function recognition in cots bina-
ries. In 2017 47th Annual IEEE/IFIP International Con-

ference on Dependable Systems and Networks (DSN),
pages 201–212. IEEE, 2017.

[47] Edward Raff, Jon Barker, Jared Sylvester, Robert Bran-
don, Bryan Catanzaro, and Charles K Nicholas. Mal-
ware detection by eating a whole exe. In Workshops at

the Thirty-Second AAAI Conference on Artificial Intelli-

gence, 2018.

[48] Royi Ronen, Marian Radu, Corina Feuerstein, Elad Yom-
Tov, and Mansour Ahmadi. Microsoft malware classifi-
cation challenge. CoRR, abs/1802.10135, 2018.

[49] David E Rumelhart, Geoffrey E Hinton, and Ronald J
Williams. Learning representations by back-propagating
errors. nature, 323(6088):533–536, 1986.

[50] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne Van Den Berg, Ivan Titov, and Max Welling.
Modeling relational data with graph convolutional net-
works. In European Semantic Web Conference, pages
593–607. Springer, 2018.

[51] Alexander Sepp, Bogdan Mihaila, and Axel Simon. Pre-
cise static analysis of binaries by extracting relational
information. In 2011 18th Working Conference on Re-

verse Engineering, pages 357–366. IEEE, 2011.

[52] Monirul Sharif, Vinod Yegneswaran, Hassen Saidi,
Phillip Porras, and Wenke Lee. Eureka: A framework for
enabling static malware analysis. In European Sympo-

sium on Research in Computer Security, pages 481–500.
Springer, 2008.

[53] Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi.
Recognizing functions in binaries with neural networks.
In 24th {USENIX} Security Symposium ({USENIX}
Security 15), pages 611–626, 2015.

[54] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls,
Nick Stephens, Mario Polino, Andrew Dutcher, John
Grosen, Siji Feng, Christophe Hauser, Christopher
Kruegel, et al. Sok:(state of) the art of war: Offensive
techniques in binary analysis. In 2016 IEEE Symposium

on Security and Privacy (SP), pages 138–157. IEEE,
2016.

[55] Richard Wartell, Yan Zhou, Kevin W Hamlen, and Murat
Kantarcioglu. Shingled graph disassembly: Finding
the undecideable path. In Pacific-Asia Conference on

Knowledge Discovery and Data Mining, pages 273–285.
Springer, 2014.

[56] Richard Wartell, Yan Zhou, Kevin W Hamlen, Murat
Kantarcioglu, and Bhavani Thuraisingham. Differenti-
ating code from data in x86 binaries. In Joint European

Conference on Machine Learning and Knowledge Dis-

covery in Databases, pages 522–536. Springer, 2011.

[57] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song,
and Dawn Song. Neural network-based graph embed-
ding for cross-platform binary code similarity detection.
In Proceedings of the 2017 ACM SIGSAC Conference

on Computer and Communications Security, pages 363–
376, 2017.

[58] Naville Zhang. Hikari – an improvement
over obfuscator-llvm. https://github.com/

HikariObfuscator/Hikari.

[59] Yunan Zhang, Chenghao Rong, Qingjia Huang, Yang
Wu, Zeming Yang, and Jianguo Jiang. Based on multi-
features and clustering ensemble method for automatic
malware categorization. In 2017 IEEE Trustcom/Big-

DataSE/ICESS, pages 73–82. IEEE, 2017.

[60] Fei Zuo, Xiaopeng Li, Zhexin Zhang, Patrick Young,
Lannan Luo, and Qiang Zeng. Neural machine transla-
tion inspired binary code similarity comparison beyond
function pairs. In NDSS, 2019.

A Instruction Representation

In this section, we discuss different design choices of the
Pre-processing phase.

2724 31st USENIX Security Symposium USENIX Association

https://github.com/HikariObfuscator/Hikari
https://github.com/HikariObfuscator/Hikari

Raw Bytes vs. Features. Although some recent studies
(e.g., [35]) feed raw bytes to deep learning models and show
encouraging results, we argue that raw bytes contain limited
semantic information because they are encoded and have vari-
able length. To fully understand the raw bytes, the model has
to learn decoding rules, which are already explicitly defined
by instruction specifications. Moreover, [5] shows features at
raw-byte level are superficial and are vulnerable to adversarial
attacks.

Table 9: Instruction Format

Legacy
Prefix

REX
Prefix

Opcode ModRM SIB Displacement Immediate

(optional) (optional) 1-, 2- or
3-byte
opcode

1 byte
(op-
tional)

1
byte
(op-
tional)

1, 2, or
4 bytes
(optional)

1, 2, or 4
bytes (op-
tional)

String Representation vs. Metadata The string representa-
tion of instructions is very expressive: it has no ambiguity and
good readability. Some recent studies [21, 22] are based on
the string representation, then utilize NLP models for further
analysis. If we see the string representation as source code,
then the metadata of instructions is similar to intermediate

language. Table 9 shows instruction format in x86-64 archi-
tecture. It essentially shows what each byte in an instruction
represents. However, it is still highly encoded, for example,
some fields are optional, and some bits in one field can influ-
ence the meaning of other fields. Our approach uses metadata
because translating from byte code into strings is slow, and
relies on our model to learn the meaning of each field.

B Analysis of False Positives and False Nega-
tives

We also dive into the underlying causes of these false results.
They are discussed as follows.

First, for false positives, MSVC generates jump stubs at the
beginning of the code section due to incremental linking.
Such patterns do not exist in ELF binaries and it confuses
the model when several false instructions look legitimate.
Listing 1 shows an example where 00FC100A and 00FC100F

should be two valid jump instructions, but the model favors
instructions starting from 00FC100B. The xor instruction sets
the PF flag, and the jpo instruction checks the PF flag and
does a conditional jump. Both jump targets are legitimate,
and it is hard even for humans to decide whether these three
instructions are valid or not.

The second outstanding case is the add esp instruction.
The model favors the opcode C4, and all add esp instructions
become les instructions. les instructions do not exist in the
training set, which might be the reason the model does not
perform well.

1 00 FC100B 31C2 xor edx ,eax
2 00 FC100D 7B 00 jpo 00 FC100F
3 00 FC100F E9 CCC9E400 jmp 01 E0D9E0

Listing 1: Clang False Positive Example

For false negatives, MSVC sometimes generates some very
short yet sparse functions. These instructions have very little
context information and thus cannot be correctly identified by
our model. See Listing 2 for an example.

1 01012 F0F int3
2 01012 F10 mov dowrd ptr ds:[ecx], 021 A7014
3 01012 F16 retn
4 01012 F17 int3
5 01012 F18 int3
6 01012 F19 int3

Listing 2: Clang False Negative Example

USENIX Association 31st USENIX Security Symposium 2725

	Introduction
	Background
	Traditional Disassembly Methods
	Superset Disassembly
	Probabilistic Inference
	Datalog Disassembly
	XDA
	Summary

	Design
	Superset Disassembly
	Instruction Embedding
	Instruction Flow Graph
	Graph Inference
	Function Entrypoint Recovery

	Evaluation
	Implementation and Setup
	Accuracy and Efficiency
	Accuracy
	Efficiency

	Generalizability
	Obfuscation Evaluation
	Adversarial Evaluation

	Downstream Application
	Discussion
	Related Work
	Conclusion
	Instruction Representation
	Analysis of False Positives and False Negatives

