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Abstract

The evolution of a deep neural network trained by
the gradient descent in the overparametrization
regime can be described by its neural tangent ker-
nel (NTK) (Jacot et al., 2018; Du et al., 2018b;a;
Arora et al., 2019b). It was observed (Arora et al.,
2019a) that there is a performance gap between
the kernel regression using the limiting NTK and
the deep neural networks. We study the dynamic
of neural networks of finite width and derive an
infinite hierarchy of differential equations, the
neural tangent hierarchy (NTH). We prove that
the NTH hierarchy truncated at the level p > 2
approximates the dynamic of the NTK up to ar-
bitrary precision under certain conditions on the
neural network width and the data set dimension.
The assumptions needed for these approximations
become weaker as p increases. Finally, NTH can
be viewed as higher order extensions of NTK. In
particular, the NTH truncated at p = 2 recovers
the NTK dynamics.

1. Introduction

Deep neural networks have become popular due to their un-
precedented success in a variety of machine learning tasks.
Image recognition (LeCun et al., 1998; Krizhevsky et al.,
2012; Szegedy et al., 2015), speech recognition (Hinton
et al., 2012; Sainath et al., 2013), playing Go (Silver et al.,
2016; 2017) and natural language understanding (Collobert
et al., 2011; Wu et al., 2016; Devlin et al., 2018) are just
a few of the recent achievements. However, one aspect of
deep neural networks that is not well understood is train-
ing. Training a deep neural network is usually done via a
gradient decent based algorithm. Analyzing such training
dynamics is challenging. Firstly, as highly nonlinear struc-
tures, deep neural networks usually involve a large number
of parameters. Secondly, as highly non-convex optimization
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problems, there is no guarantee that a gradient based algo-
rithm will be able to find the optimal parameters efficiently
during the training of neural networks. One question then
arises: given such complexities, is it possible to obtain a
succinct description of the training dynamics?

In this paper, we focus on the empirical risk minimization
problem with the quadratic loss function
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where {z,}7_; are the training inputs, {y,}o_; are the
labels, and the dependence is modeled by a deep fully-
connected feedforward neural network with H hidden layers.
The network has d input nodes, and the input vector is given
by z € R% For 1 < ¢ < H, the (-th hidden layer has
m neurons. Let z(¥) be the output of the /-th layer with
2(9) = 2. Then the feedforward neural network is given by
the set of recursive equations:
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where W) € R™*?if { = 1 and W) € R™*™ if 2 <
¢ < H are the weight matrices, and o is the activation unit,
which is applied coordinate-wise to its input. The output of
the neural network is

flz,0) = a2z e R, )

where ¢ € R™ is the weight matrix for the output layer.
We denote the vector containing all trainable parameters
by 6 = (vec(WM),vec(W®) ... vec(WH)) a). We
remark that this parametrization is nonstandard because of
those 1/4/m factors. However, it has already been adopted
in several recent works (Jacot et al., 2018; Du et al., 2018b;a;
Lee et al., 2019). We note that the predictions and training
dynamics of (1) are identical to those of standard networks,
up to a scaling factor 1/+/m in the learning rate for each
parameter.

We initialize the neural network with random Gaussian
weights following the Xavier initialization scheme (Glo-
rot & Bengio, 2010). More precisely, we set the initial
parameter vector 6y as Wi(f) ~ N(0,02), a; ~ N(0,02).
In this way, for the randomly initialized neural network,
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we have that the Lo norms of the output of each layer are
of order one, i.e. ||z(?|3 = O(1) for 0 < ¢ < H, and
f(x,00) = O(1) with high probability. In this paper, we
train all layers of the neural network with continuous time
gradient descent (gradient flow): for any time ¢t > 0

oW =~y L(6,),
8tat = —8aL(9t),
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where 6; = (Vec(VVt(l))7 Vec(Wt(Q)) e ,Vec(Wt(H))7 ag).

For simplicity of notations, we write o(W ) z(¢=1) as
oe(x), or simply oy if the context is clear. We write its
derivative diag(o’ (W@ z(=1)) as o) (z) = 0’; )( ), and
r-th derivative diag(o™) (W) z(¢=1)) as aér)( ), or 027)
for r > 1. In this notation, aér)(x) are diagonal matri-

ces. With those notations, explicitly, the continuous time
gradient descent dynamic (3) is

oW = —8y 0 L(6)
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1.1. Neural Tangent Kernel

A recent paper (Jacot et al., 2018) introduced the Neural
Tangent Kernel (NTK) and proved the limiting NTK cap-
tures the behavior of fully-connected deep neural networks
in the infinite width limit trained by gradient descent:
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where the NTK Kt(z) (+,-) is given by
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The NTK K, t(Z) (+,-) varies along training. However, in the
infinite width limit, the training dynamic is very simple: The
NTK does not change along training, Kt(Q) () = K& (1)
The network function f(x, 6;) follows a linear differential
equation (Jacot et al., 2018):

O f(x,0;) = Z :Ziirg f(ws,0t) —yg), (8)
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which becomes analytically tractable. In other words, the
training dynamic is equivalent to the kernel regression using
the limiting NTK K (-, -). While the linearization (8) is
only exact in the infinite width limit, for a sufficiently wide
deep neural network, (8) still provides a good approxima-
tion of the learning dynamic for the corresponding deep
neural network (Du et al., 2018b;a; Lee et al., 2019). As a
consequence, it was proven in (Du et al., 2018b;a) that, for
a fully-connected wide neural network with m > n* under
certain assumptions on the data set, the gradient descent
converges to zero training loss at a linear rate. Although
highly overparametrized neural networks is equivalent to
the kernel regression, it is possible to show that the class
of finite width neural networks is more expressive than the
limiting NTK. It has been constructed in (Ghorbani et al.,
2019; Yehudai & Shamir, 2019; Allen-Zhu & Li, 2019) that
there are simple functions that can be efficiently learnt by
finite width neural networks, but not the kernel regression
using the limiting NTK.

1.2. Contribution

There is a performance gap between the kernel regression
(8) using the limiting NTK and the deep neural networks. It
was observed in (Arora et al., 2019a) that the convolutional
neural networks outperform their corresponding limiting
NTK by 5% - 6%. This performance gap is likely to origi-
nate from the change of the NTK along training due to the
finite width effect. The change of the NTK along training
has its benefits on generalization.

In the current paper, we study the dynamic of the NTK for
finite width deep fully-connected neural networks. Here we
summarize our main contributions:
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e We show the gradient descent dynamic is captured by
an infinite hierarchy of ordinary differential equations,
the neural tangent hierarchy (NTH). Similar recursive
differential equations were also obtained by Dyer and
Gur-Ari (Dyer & Gur-Ari, 2019). Different from the
limiting NTK (7), which depends only on the neural
network architecture, the NTH is data dependent and
capable of learning data-dependent features.

e We derive a priori estimates of the higher order kernels
involved in the NTH. Using these a priori estimates as
input, we confirm a numerical observation in (Lee et al.,
2019) that the NTK varies at a rate of order O(1/m).
As a corollary, this implies that for a fully-connected
wide neural network with m > n?, the gradient descent
converges to zero training loss at a linear rate, which
improves the results in (Du et al., 2018a).

e The NTH is just an infinite sequence of relationship.
Without truncation, it cannot be used to determine the
dynamic of the NTK. Using the a priori estimates of
the higher order kernels as input, we construct a trun-
cated hierarchy of ordinary differential equations, the
truncated NTH. We show that this system of truncated
equations approximates the dynamic of the NTK to
certain time up to arbitrary precision. This description
makes it possible to directly study the change of the
NTK for deep neural networks.

1.3. Notations

In the paper, we fix a large constant p* > 0, which appears
in Assumptions (2.1) and (2.2). We use c, C to represent
universal constants, which might be different from line to
line. In the paper, we write a = O(b) or a < b if there exists
some large universal constant C such that |a| < Cb. We write
a 2 b if there exists some small universal constant ¢ > 0
such that a > cb. We write a =< b if there exist universal
constants ¢, C such that ¢b < |a| < Cb. We reserve n for the
number of input samples and m for the width of the neural
network. For practical neural networks, we always have
that m < poly(n) and n < poly(m). We denote the set
of input samples as X = {x1,za,- -, z,}. For simplicity
of notations, we write the output of the neural network as
fa(t) = f(zp,0;). We denote vector Lo norm as | - |2,
vector or function L., norm as || - || o, matrix spectral norm
as || - |[2—2, and matrix Frobenius norm as || - ||p. We say
that an event holds with high probability, if it holds with
probability at least 1 — e~™" for some ¢ > 0. Then the
intersection of poly(n, m) many high probability events is
still a high probability event, provided m is large enough.
In the paper, we treat c,., C, in Assumption 2.1 and 2.2, and
the depth [ as constants. We will not keep track of them.

1.4. Related Work

In this section, we survey an incomplete list of previous
works on optimization aspect of deep neural networks.

Because of the highly non-convexity nature of deep neural
networks, the gradient based algorithms can potentially get
stuck near a critical point, i.e., saddle point or local mini-
mum. So one important question in deep neural networks
is: what does the loss landscape look like. One promising
candidate for loss landscapes is the class of functions that
satisfy: (i) all local minima are global minima and (ii) there
exists a negative curvature for every saddle point. A line of
recent results show that, in many optimization problems of
interest (Ge et al., 2015; 2016; Sun et al., 2018; 2016; Bho-
janapalli et al., 2016; Park et al., 2016), loss landscapes are
in such class. For this function class, (perturbed) gradient
descent (Jin et al., 2017; Ge et al., 2015; Lee et al., 2016)
can find a global minimum. However, even for a three-
layer linear network, there exists a saddle point that does
not have a negative curvature (Kawaguchi, 2016). So it is
unclear whether this geometry-based approach can be used
to obtain the global convergence guarantee of first-order
methods. Another approach is to show that practical deep
neural networks allow some additional structure or assump-
tion to make non-convex optimizations tractable. Under
certain simplification assumptions, it has been proven re-
cently that there are novel loss landscape structures in deep
neural networks, which may play a role in making the opti-
mization tractable (Dauphin et al., 2014; Choromanska et al.,
2015; Kawaguchi, 2016; Liang et al., 2018; Kawaguchi &
Kaelbling, 2019).

Recently, it was proved in a series of papers that, if the
size of a neural network is significantly larger than the size
of the dataset, the (stochastic) gradient descent algorithm
can find optimal parameters (Li & Liang, 2018; Du et al.,
2018b; Song & Yang, 2019; Du et al., 2018a; Allen-Zhu
et al., 2018b; Zou et al., 2018; Zou & Gu, 2019). In the
overparametrization regime, a fully-trained deep neural net-
work is indeed equivalent to the kernel regression predictor
using the limiting NTK (8). As a consequence, the gradi-
ent descent achieves zero training loss for a deep overpa-
rameterized neural network. Under further assumptions, it
can be shown that the trained networks generalize (Arora
et al., 2019b; Allen-Zhu et al., 2018a; Cao & Gu, 2019).
Unfortunately, there is a significant gap between the over-
parametrized neural networks, which are provably trainable,
and neural networks in common practice. Typically, deep
neural networks used in practical applications are trainable,
and yet, much smaller than what the previous theories re-
quire to ensure trainability. In (Kawaguchi & Huang, 2019),
it is proven that gradient descent can find a global mini-
mum for certain deep neural networks of sizes commonly
encountered in practice.
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Training dynamics of neural networks in the mean field set-
ting have been studied in (Mei et al., 2019; Song et al., 2018;
Aratjo et al., 2019; Nguyen, 2019; Sirignano & Spiliopou-
los, 2019; Chizat & Bach, 2018). Their mean field analysis
describes distributional dynamics of neural network parame-
ters via certain nonlinear partial differential equations, in the
asymptotic regime of large network sizes and large number
of stochastic gradient descent training iterations. However,
their analysis is restricted to neural networks in the mean-
field framework with a normalization factor 1/m, different
from ours 1/+/m, which is commonly used in modern net-
works (Glorot & Bengio, 2010).

2. Main results

Assumption 2.1. The activation function o is smooth, and
forany 1 < r < 2p*+1, there exists a constant C,. > 0 such
that the r-th derivative of o satisfies ||o(™) ()| oo < Cy.

Assumption 2.1 is satisfied by using common activation
units such as sigmoid and hyperbolic tangents. More-
over, the softplus activation, which is defined as o,(x) =
In(1 + exp(ax))/a, satisfies Assumption 2.1 with any hy-
perparameter ¢ € R~ (. The softplus activation can approxi-
mate the ReL.U activation for any desired accuracy as

oq(x) = relu(x) as a — oo,

where relu represents the ReLU activation.

Assumption 2.2. There exists a small constant ¢ > 0 such
that the training inputs satisfy ¢ < ||z ||2 < cL. For any
1 < r < 2p*+1, there exists a constant c,. > 0 such that for
any distinct indices 1 < a1, o, -+ , o < n, the smallest
singular value of the data matrix [To,, oy, - 5 La,. ] is at
least c,.

For more general input data, we can always normalize them
such that ¢ < [|z4]l2 < ¢!, Under this normalization,
for the randomly initialized deep neural network, it holds
that Hmf}f)ﬂg = O(1) forall 1 < ¢ < H, where the im-
plicit constants depend on ¢. The second part of Assump-
tion 2.2 requires that for any small number of input data:

Taqy3sTass > Ta,., they are linearly independent.

Theorem 2.3. Under Assumptions 2.1 and 2.2, there exists
an infinite family of operators Kt(r) X" = Rforr > 2,
the continuous time gradient descent dynamic is given by

an infinite hierarchy of ordinary differential equations, i.e.,
the NTH,

O Falt) ~ o) = - 3 KL (s 2) (o 0) — ),
=1
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and for any r 2> 2,
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There exists a deterministic family (independent of m) of
operators A0 T s Rfor2 <r <p*+1and A =0
if r is odd, such that with high probability with respect to the

random initialization, there exist some constants C,C' > 0
such that

(r) c
) R (Inm)
HKU T omr/2-1 ~ o r-1)/2° (1n
o0
and for 0 < t < mIEFD /(In m)cl,
- Inm)°®
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It was proven in (Du et al., 2018a; Lee et al., 2019) that
the change of the NTK for a wide deep neural network
is upper bounded by O(1/+/m). However, the numerical
experiments in (Lee et al., 2019) indicate the change of the
NTK is closer to O(1/m). As a corollary of Theorem 2.3,
we confirm the numerical observation that the NTK varies
at a rate of order O(1/m).

Corollary 2.4. Under Assumptions 2.1 and 2.2, the NTK
Kt(Q)(~, -) varies at a rate of order O(1/m): with high
probability with respect to the random initialization, there
exist some constants C,C' > 0 such that for 0 < t <

m2FD /(Inm)C, it holds

(L+8)(nm)°

10K oo <
m

As another corollary of Theorem 2.3, for a fully-connected
wide neural network with m > n3, the gradient descent
converges to zero training loss at a linear rate.

Corollary 2.5. Under Assumptions 2.1 and 2.2, we further
assume that there exists X > 0 (which might depend on n)

min K(2) a :| > 1
M (K @anp)] o >ha3)
and the width m of the neural network satisfies
3
m > C' (%) (Inm)®1In(n/e)?, (14)

for some large constants C,C’' > 0. Then with high proba-
bility with respect to the random initialization, the training
error decays exponentially,
n
S (Falt) — ys)? S me 3%,
B=1

which reaches ¢ at time t < (n/\)In(n/e).
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The assumption that there exists A > 0 such that

)\min K(Q) %)
o (Ta,Tp) L<aB<n
vious papers (Du et al., 2018b;a; Arora et al., 2019b). It is

proven in (Du et al., 2018b;a), if no two inputs are paral-
lel, the smallest eigenvalue of the kernel matrix is strictly
positive. In general A\ might depend on the size of the train-
ing data set n. For two layer neural networks with random
training data, quantitative estimates for \ are obtained in
(Ghorbani et al., 2019; Zhang et al., 2019; Xie et al., 2016).
It is proven that with high probability with respect to the
random training data, A\ > n” for some 0 < 3 < 1/2.

> A appears in many pre-

It is proven in (Du et al., 2018a) that if there exists \(!') > 0,

Amin GE)H) (:Conxﬂ) = )\(H)7

1<a,B<n

then for m > C(n/A))* the gradient descent finds a
global minimum. Corollary 13 improves this result in two

ways: (i) We improve the quartic dependence of n to a cubic
dependence. (i) We recall that K2 = S~ G0 and
those kernels G((f) are all non-negative definite. The small-
est eigenvalue of K| 62) is typically much bigger than that
of G(()H), ie., A > AU Moreover, since Kt(z) is a sum of
H + 1 non-negative definite operators, we expect that \ gets
larger, if the depth H is larger.

The NTH, i.e., (9) and (10), is just an infinite sequence of
relationship. It cannot be used to determine the dynamic of
NTK. However, thanks to the a priori estimates of the higher
order kernels (12), it holds that for any p < p* with high
probability | K™ ||ls < (Inm)¢/mP/2. The derivative
9;K,” is an expression involves the higher order kernel
K t(p +1), which is small provided that p is large enough.
Therefore, we can approximate the original NTH (10) by
simply setting 0; K. fp ) = 0. In this way, we obtain the fol-
lowing truncated hierarchy of ordinary differential equations
of p levels, which we call the truncated NTH,

atfa -

:\'—‘

Z K (20, 8) (f3(8) — ys)

aK(7)($a17xa27"'

71'%)
n

Z K 20y, Tans  Ta,, 1) (Fa(t) — ),

Btkt(p)(xal,xag,-n 1 Ta,) = 0.
(15)
where 2 < r < p—1, and
fﬁ(o):fﬁ(0)7 521727"'7,”7
KST) = Kér)> r= 2737' P

In the following theorem, we show this system of truncated
equations (15) approximates the dynamic of the NTK up to
arbitrary precision, provided that p is large enough.

Theorem 2.6. Under Assumptions 2.1 and 2.2, we take an
even p < p* and further assume that

)\min |:K(2) (%) :| 2 )\ 16
0 (Taszp) I<a.f<n (16)

Then there exist constants c,C,C' > 0 such that for t

t < min{c\/)\m/n/(lnm)c,mﬂpp*irl) /(lnm)cl}, (17)

the dynamic (9) can be approximated by the truncated dy-
namic (15),

1/2
B;(fa(t) — fs(t))? mfi—/f n{t x}’
(18)
and

2 (2

K (20, 25) — K2
—1

< (14 t)t? (1

mp/2

(Ta; 25)|
+ L+ t):n(lnm) min {t, Z}>

19)

We remark that the error terms, i.e., the righthand sides of
(18) and (19) can be arbitrarily small, provided that p is
large enough. In other words, if we take p large enough,
the truncated NTH (15) can approximate the original dy-
namic (9), (10) up to any precision provided that the time
constraint (17) is satisfied. To better illustrate the scaling
in Theorem 2.6, let us treat A, £, n as constants, ignore the
log n, log m factors and focus on the trade-off between time
t and width m. Then (17) simplifies to t < m? /2" +1D _1f
p* is sufficiently large, the exponent approaches 1/2, and
the condition is equivalent to that ¢ is much smaller than
m!/2. In this regime, (18) simplifies to

1/2
S (Fat) — o)) s(t), 0)
B=1

and similarly (19) simplifies to

_ t \?
K ars) ~ KO wn)l < (=) - @D

The error terms in (20) and (21) are smaller than any § > 0,
provided we take p > log(1/6)/ log(y/m/t).

Now if we take t < (n/\)In(n/e), so that Corollary 2.5
guarantees the convergence of the dynamics. Consider two
special cases: (i) If we take p = 2, then the error in (18)
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is O(n"/?1n(n/e)?/A>m), which is negligible provided
that the width m is much bigger than n7/2. We conclude
that if m is much bigger than n”/2, the truncated NTH
gives a complete description of the original dynamic of
the NTK up to the equilibrium. The condition that m is
much bigger than n/2 is better than the previous best avail-
able one which requires m > n*. (ii) If we take p = 3,
then the error in (18) is O(n?/2In(n/e)*/A\*m?/?) when
t < (n/X\)In(n/e), which is negligible provided that the
width m is much bigger than n3. We conclude that if m is
much bigger than n3, the truncated NTH gives a complete
description of the original dynamic of the NTK up to the
equilibrium. Finally, we note that the estimates in Theorem
2.6 clearly improved for smaller ¢.

The previous convergence theory of overparametrized neu-
ral networks works only for very wide neural networks, i.e.,
m 2> n3. For any width (not necessary that m > n?), The-
orem 2.6 guarantees that the truncated NTH approximates
the training dynamics of deep neural networks. The effect
of the width appears in the approximation time and the error
terms, (18) and (19), i.e., the wider the neural networks are,
the truncated dynamic (15) approximates the training dy-
namic for longer time and the approximation error is smaller.
We recall from (7) that the NTK is the sum of H + 1 non-
negative definite operators, Kt@) = f:tl GEZ). We expect
that A as in (16) gets bigger, if the depth H is larger. There-
fore, large width and depth makes the truncated dynamic
(15) a better approximation.

Thanks to Theorem 2.6, the truncated NTH (15) pro-
vides a good approximation for the evolution of the
NTK. The truncated dynamic can be used to predict
the output of new data points. Recall that the training
data are {(zg,ys)t1<p<n C R? x R. The goal is
to predict the output of a new data point z. To do
this, we can first use the truncatgd dynamic to solve
for the approximated outputs {fz(t)}i<g<n.  Then
the prediction on the new test point z € R? can be
estimated by sequentially solving the higher order kernels
I:(t(p)($7Xp_1)7f(t(p71)($7/¥p_2)7 o KP(2,X)  and

fa(t)s
F - LN ;
O fo(t) = - ¢ (x,w8)(f(t) —yp)
B=1
6t[~(t(r)(x7xa17xa27 e 71‘an1)
1 n iy B
I YK (@00, Tay, Ty —1,28) (Fa(t) — ),

p=1
at[(t(p)(zvxauxam e a‘TOép—l) =0.
(22)

where 2 <r < p— 1.

3. Technique overview

In general, the summands appearing in kernel
Kt(r)(xal,xa2,~-~ ,Zq,) are product of inner prod-
ucts of vectors obtained in the following way: starting from

one of the vectors

B ORI
\/’I%’ \/’I%’ B 2B

(1) multiply one of the matrices

{Wt(z) (Wt(z))T Wt(H) (Wt(H))T}

H
’ 33(5 )}Be{ahaQ:'” Qi }o

{Ui (l‘,@), Ué(l‘g), T 7U}I(xﬂ)}5€{a1,az,w ,ar b
(23)

(i1) multiply one of the matrices

diag(---), a(s)(:cﬁ)diag(---)«-~diag(~~~),
s—1 terms
24
for s > 2, where diag(- - - ) is the diagonalization of a

vector obtained by recursively using (i) and (ii).

To describe the vectors appearing in
Kt(r) (Tayy Tagy** ,ZTa,) in a formal way, we need
to introduce some more notations. We denote 3 the set of

expressions in the following form

Dy 1= {eses—l --re1e0: 0< s <4H — 3} (25)

where e; is chosen from the following sets:

e € {at,{\/ﬁx(l) Vmz, - ,\/ﬁwfaH)}lgﬁ@}

and for 1 < j < s,

Wt(H) (Wt(H))T
) \/m bl \/7% b

{o1 02(366) o () hicpsnt -

We remark that from expression (7), each summand in
K (24, ,2a,) is of the form

Vi), va(t))  (va(t),va(t)) (va(t), va(t))

m ’ m m ’

where vy (t), va(t),vs(t), va(t) € Dg. But the set D¢ con-
tains more terms than those appearing in Kt(2) (+,-). Given
that we have constructed D¢, D1, -+ ,2,., we denote D11
the set of expressions in the following form

Dyy1 = {eses_1---e1e0: 0< s <4H — 3},  (26)
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where e; is chosen from the following sets (notice that we
have included 1 in the following set, which does not appear
in the definition of ®):

€y € {at7 17 {\/Exfjl)7 \/Ex(ﬂQ)v Tty \/ﬁxéH)}léﬂgn} ’
and for 1 < j < s, e; belongs to one of the sets
2 2 H H
Wt( ) (Wt( ))T Wt( ) (Wt( ))T
\/m b) \/ﬁ ) b \/ﬁ b \/TH )
{o1(xp), 05(xp), - o (xp) hicp<nt s
{diag(d), de€DyUDU---UD,},
{ag*“)(xﬁ)diag(dl)diag(dz) - diag(dy) : 1 < £ < H,

1<p<n,1<u<rdy,dg, -

Moreover, the total number of diag operations in the expres-
sion eses_1 - --ejep € D4 is exactly r + 1. We remark
that if d € Dy, then it contains s diag operations. On the
other hand, by definition, we view diag(d) as an element
with s + 1 diag operations because the diag in diag(d)
counted as one diag operation.

We will show in the supplementary materials that each sum-

mand in K" (2a,, %oy, ,Za,) is of the form

1 ﬁ {vaj—1(t),vo; (1) | o
mr/271 et m (27)

V1(t)7V2(t), e ,Vgs(t) S @0 U @1 U---u @r_g.

The initial value K(()T) (Tay ) Tass* ** , Ta,.) can be estimated
by successively conditioning based on the depth of the neu-
ral network. A convenient scheme is given by the tensor
program (Yang, 2019), which was developed to charac-
terize the scaling limit of neural network computations.
In the supplementary materials, we show at time ¢t = 0,
those vectors v;(0) in (27) are combinations of projections
of independent Gaussian vectors. As a consequence, we
have that (vo;_1(0),v2;(0))/m concentrates around cer-
tain constant with high probability. So does the product
szl(ij_l(O), v2;(0))/m. This gives the claim (11).

In the supplementary materials, we consider the quantity:

&(t) = max{||v;(t)||oo : vj(t) EDoUD1U---UDype_1}.

Again using the tensor program, we show that with high
probability ||[v;(0)]|c < (Inm)C. This gives the estimate of
&(t) att = 0. Next we show that the (p* +1)-th derivative of
&(t) can be controlled by itself. This gives a self-consistent
differential equation of £(¢):

. 2
o Vg(r)y < ST (28)

Combining with the initial estimate of £(¢), it follows that
for time 0 < ¢ < m2@ 70 /(Inm)C, it holds that £(t) <
(Inm)C. Especially ||v;(t)]lc < (Inm)C. Then the claim
(12) in Theorem 2.3 follows.

Thanks to the a priori estimate (12), we show that along the
continuous time gradient descent, the higher order kernels
Kt(r) vary slowly. We prove Corollary 2.4 and 2.5, and
Theorem 2.6 in the supplementary materials by a Gronwall
type argument.

4. Discussion and future directions

In this paper, we study the continuous time gradient descent
(gradient flow) of deep fully-connected neural networks. We

< ,dy €DoUDq U---UD, khow that the training dynamic is given by a data dependent

infinite hierarchy of ordinary differential equations, i.e., the
NTH. We also show that this dynamic of the NTH can
be approximated by a finite truncated dynamic up to any
precision. This description makes it possible to directly
study the change of the NTK for deep neural networks.
Here we list some future directions.

1. We mainly study deep fully-connected neural networks
in this paper, we believe the same statements can be proven
for convolutional and residual neural networks.

2. We focus on the continuous time gradient descent for
simplicity. Our approach developed here can be generalized
to analyze discrete time gradient descent with small step
size. We elaborate the main idea here. The discrete time
gradient descent is given by

n
n
Orr =00 =0V L(0r) = 0r — > Vols(®)(fs(t) — yp),
B=1

where 7 is the learning rate. We write the NTK as
K@ (za, x3; 0¢) to make the dependence on 6 explicit. To
estimate the NTK K (24, , Zay; 04 1) at time ¢ + 1, we
use the taylor expansion,

s—1 r
K:(Q) ($a17$a2; 9t+1) = K:(Q) ($a17$a2;9t) + Z (_77>

nr
r=3
’C(T) (.’L’al ) xot27x61a e 7x6r,~72; 9t>
1<B1,B2,+ ,Br—2<n
X (f31 (t) - y,Bl) T (fﬁ,.,z(t) - yﬂ'r'72) + s,
(29)

where () is the error term in the truncation and the higher
order kernels (") are given by

K:(r) ('rcn yLagyThyy " s LB o3 975)
= Vi KD (@ay, 20,100 (VoS (0, -+, Vofs, L (0)):

We notice that (") is different from K (") in the NTH hier-
archy. A similar argument as for (12) can be used to derive
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the a priori estimates of these kernels K("). We expect to
have that ||| < (Inm)®/m™/?~1 with high proba-
bility with respect to the random initialization. Therefore
19 ]l00 < O((Inm)®n® /n?ms/2~1), which can be arbitrar-
ily small provided that n < /m and s is large enough.
Similar procedure can be applied to NTH in the discrete
time dynamics and we will not get into details here. To con-
clude this discussion, we believe that, under the assumption
1 < +/m, our analysis in continuous time can be carried
over to the discrete time dynamics.

3. It will be interesting to further analyze the behaviors of
the truncated dynamics (15), and understand why it is better
than kernel regression using the limiting NTK. For example,
if we truncate the dynamic at p = 3,

0ufalt) = = S K (o 25) (Fal0) — )

J
8tkt(2) (xcn ’ xaz)

1 - N
= == 3 K oy, Tans2s)(F(t) — ys),
B

8tf(t(3) (Tays Tags Tas) = 0.

(30)

The difference between (30) and the kernel regression
using the limiting NTK is that in (30), the kernel Kt(z)
changes along time at a rate of O((Inm)®/m). We de-
note the residue vector as 7(t) = (f1(t) — v1, f2(t) —
Yo, -+ fn(t) —yn) . Since f(t(g) does not depend on time

t, we can integrate the second equation in (30) to get K, ,5(2) =

K — %Kég) [f, 7(s)ds]. We denote R(t) = [, #(s)ds,
and plug the previous relation to the first equation of (30),
to obtain the following system of ordinary differential equa-
tions

0uP(t) = — K2 7)) — RV R(1), 7(1),
O R(t) =7 ().

The above system of ordinary differential equations can be
easily solved numerically. It will be interesting to under-
stand, under what conditions, the change of the kernel K, ,5(2)
helps optimization and generalization.

4. The optimal condition to use the NTH approximation.
We have shown that m > n® guarantees the approximation
of the NTH to the deep neural network up to both of them
find global minimizers. Our analysis loses a factor n by
estimating the norm of the kernels K ("using their entry-
wise Lo, norm. This results in a loss of a factor 1/n. We
believe that this loss can be recovered by a more careful
analysis and one can improve the condition to m > n?. To
further improve on this condition, one will have to analyze
other cancellation effects. Assuming such an analysis is
possible, one might reach the condition m 2 n. It would

be interesting to see if this is the best possible condition for
approximating deep neural networks by the NTH, i.e., if
one can show with some example that deep neural network
converges for m < n, while the approximation by the NTH
fails.

Acknowledgements

The work of J.H. is supported by the Institute for Advanced
Study. The work of H.-T. Y. is partially supported by NSF
Grants DMS-1606305 and DMS-1855509, and a Simons
Investigator award. The authors would like to thank the
reviewers for their thoughtful comments and efforts towards
improving our manuscript.

References

Allen-Zhu, Z. and Li, Y. What can resnet learn efficiently,
going beyond kernels? arXiv preprint arXiv:1905.10337,
2019.

Allen-Zhu, Z., Li, Y., and Liang, Y. Learning and generaliza-
tion in overparameterized neural networks, going beyond
two layers. arXiv preprint arXiv:1811.04918, 2018a.

Allen-Zhu, Z., Li, Y., and Song, Z. A convergence theory
for deep learning via over-parameterization. In ICML,
arXiv:1811.03962, 2018b.

Aratjo, D., Oliveira, R. I., and Yukimura, D. A mean-field
limit for certain deep neural networks. arXiv preprint
arXiv:1906.00193, 2019.

Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R., and
Wang, R. On exact computation with an infinitely wide
neural net. arXiv preprint arXiv:1904.11955, 2019a.

Arora, S., Du, S. S., Hu, W, Li, Z., and Wang, R. Fine-
grained analysis of optimization and generalization for
overparameterized two-layer neural networks. arXiv
preprint arXiv:1901.08584, 2019b.

Bhojanapalli, S., Neyshabur, B., and Srebro, N. Global
optimality of local search for low rank matrix recovery.
In Advances in Neural Information Processing Systems,
pp. 3873-3881, 2016.

Cao, Y. and Gu, Q. Generalization bounds of stochastic
gradient descent for wide and deep neural networks. In
Advances in Neural Information Processing Systems, pp.
10835-10845, 2019.

Chizat, L. and Bach, F. On the global convergence of gradi-
ent descent for over-parameterized models using optimal
transport. In Advances in neural information processing
systems, pp. 3036-3046, 2018.



Dynamics of Deep Neural Networks and Neural Tangent Hierarchy

Choromanska, A., Henaff, M., Mathieu, M., Ben Arous, G.,
and LeCun, Y. The loss surfaces of multilayer networks.
In Proceedings of the Eighteenth International Confer-

ence on Artificial Intelligence and Statistics, pp. 192-204,
2015.

Collobert, R., Weston, J., Bottou, L., Karlen, M.,
Kavukcuoglu, K., and Kuksa, P. Natural language pro-
cessing (almost) from scratch. Journal of machine learn-
ing research, 12(Aug):2493-2537, 2011.

Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K., Gan-
guli, S., and Bengio, Y. Identifying and attacking the
saddle point problem in high-dimensional non-convex op-

timization. In Advances in Neural Information Processing
Systems, pp. 2933-2941, 2014.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Du, S.S., Lee, J. D, Li, H., Wang, L., and Zhai, X. Gradient
descent finds global minima of deep neural networks.
ICML, arXiv:1811.03804,2018a.

Du, S. S., Zhai, X., Poczos, B., and Singh, A. Gradient
descent provably optimizes over-parameterized neural
networks. In ICLR, arXiv:1810.02054, 2018b.

Dyer, E. and Gur-Ari, G. Asymptotics of wide
networks from feynman diagrams. arXiv preprint
arXiv:1909.11304, 2019.

Ge, R., Huang, F., Jin, C., and Yuan, Y. Escaping from
saddle points—online stochastic gradient for tensor de-
composition. In Proceedings of The 28th Conference on
Learning Theory, pp. 797-842, 2015.

Ge, R., Lee, J. D., and Ma, T. Matrix completion has no spu-
rious local minimum. In Advances in Neural Information
Processing Systems, pp. 2973-2981, 2016.

Ghorbani, B., Mei, S., Misiakiewicz, T., and Montanari, A.
Linearized two-layers neural networks in high dimension.
arXiv preprint arXiv:1904.12191, 2019.

Glorot, X. and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 249-256, 2010.

Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A.-r.,
Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Kings-
bury, B., et al. Deep neural networks for acoustic mod-
eling in speech recognition. IEEE Signal processing
magazine, 29, 2012.

Jacot, A., Gabriel, F.,, and Hongler, C. Neural tangent kernel:
Convergence and generalization in neural networks. In
Advances in neural information processing systems, pp.
8571-8580, 2018.

Jin, C., Ge, R., Netrapalli, P., Kakade, S. M., and Jordan,
M. 1. How to escape saddle points efficiently. In Proceed-
ings of the 34th International Conference on Machine
Learning-Volume 70, pp. 1724—1732. JMLR. org, 2017.

Kawaguchi, K. Deep learning without poor local minima.
In Advances in Neural Information Processing Systems,
pp- 586-594, 2016.

Kawaguchi, K. and Huang, J. Gradient descent finds global
minima for generalizable deep neural networks of practi-
cal sizes. arXiv preprint arXiv:1908.02419, 2019.

Kawaguchi, K. and Kaelbling, L. P. Elimination of all
bad local minima in deep learning. arXiv preprint
arXiv:1901.00279, 2019.

Krizhevsky, A., Sutskever, 1., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
In Advances in neural information processing systems,

pp. 1097-1105, 2012.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278-2324, 1998.

Lee, J., Xiao, L., Schoenholz, S. S., Bahri, Y., Sohl-
Dickstein, J., and Pennington, J. Wide neural networks of
any depth evolve as linear models under gradient descent.
arXiv preprint arXiv:1902.06720, 2019.

Lee, J. D., Simchowitz, M., Jordan, M. I., and Recht, B.
Gradient descent only converges to minimizers. In Con-
ference on learning theory, pp. 1246-1257, 2016.

Li, Y. and Liang, Y. Learning overparameterized neural
networks via stochastic gradient descent on structured
data. In Advances in Neural Information Processing
Systems, pp. 8157-8166, 2018.

Liang, S., Sun, R., Lee, J. D., and Srikant, R. Adding one
neuron can eliminate all bad local minima. In Advances
in Neural Information Processing Systems, 2018.

Mei, S., Misiakiewicz, T., and Montanari, A. Mean-
field theory of two-layers neural networks: dimension-
free bounds and kernel limit. arXiv preprint
arXiv:1902.06015, 2019.

Nguyen, P.-M. Mean field limit of the learning dy-
namics of multilayer neural networks. arXiv preprint
arXiv:1902.02880, 2019.



Dynamics of Deep Neural Networks and Neural Tangent Hierarchy

Park, D., Kyrillidis, A., Caramanis, C., and Sanghavi, S.
Non-square matrix sensing without spurious local min-
ima via the burer-monteiro approach. arXiv preprint
arXiv:1609.03240, 2016.

Sainath, T. N., Mohamed, A.-r., Kingsbury, B., and Ram-
abhadran, B. Deep convolutional neural networks for
Ivesr. In 2013 IEEE international conference on acous-
tics, speech and signal processing, pp. 8614-8618. IEEE,
2013.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, 1.,
Panneershelvam, V., Lanctot, M., et al. Mastering the

game of go with deep neural networks and tree search.
Nature, 529(7587):484-489, 2016.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
L., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., et al. Mastering the game of go without
human knowledge. Nature, 550(7676):354, 2017.

Sirignano, J. and Spiliopoulos, K. Mean field analysis of
deep neural networks. arXiv preprint arXiv:1903.04440,
2019.

Song, M., Montanari, A., and Nguyen, P. A mean field view
of the landscape of two-layers neural networks. Proceed-
ings of the National Academy of Sciences, 115:E7665—
E7671, 2018.

Song, Z. and Yang, X. Quadratic suffices for over-
parametrization via matrix chernoff bound. arXiv preprint
arXiv:1906.03593, 2019.

Sun, J., Qu, Q., and Wright, J. Complete dictionary recovery
over the sphere i: Overview and the geometric picture.
IEEE Transactions on Information Theory, 63(2):853—
884, 2016.

Sun, J., Qu, Q., and Wright, J. A geometric analysis of phase
retrieval. Foundations of Computational Mathematics, 18
(5):1131-1198, 2018.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P, Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich,
A. Going deeper with convolutions. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1-9, 2015.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M.,
Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey,
K., et al. Google’s neural machine translation system:
Bridging the gap between human and machine translation.
arXiv preprint arXiv:1609.08144, 2016.

Xie, B., Liang, Y., and Song, L. Diverse neural net-
work learns true target functions. arXiv preprint
arXiv:1611.03131,2016.

Yang, G. Scaling limits of wide neural networks with
weight sharing: Gaussian process behavior, gradient in-
dependence, and neural tangent kernel derivation. CoRR,
abs/1902.04760, 2019. URL http://arxiv.org/
abs/1902.04760.

Yehudai, G. and Shamir, O. On the power and limitations
of random features for understanding neural networks.
arXiv preprint arXiv:1904.00687, 2019.

Zhang, G., Martens, J., and Grosse, R. B. Fast convergence
of natural gradient descent for over-parameterized neural
networks. In Advances in Neural Information Processing
Systems, pp. 8080-8091, 2019.

Zou, D. and Gu, Q. An improved analysis of training over-
parameterized deep neural networks. In Advances in
Neural Information Processing Systems, pp. 2053-2062,
2019.

Zou, D., Cao, Y., Zhou, D., and Gu, Q. Stochastic gradient
descent optimizes over-parameterized deep relu networks.
arXiv preprint arXiv:1811.08888, 2018.


http://arxiv.org/abs/1902.04760
http://arxiv.org/abs/1902.04760

