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Pressure-Strain Interaction: |. On Compression,
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The pressure-strain interaction describes the rate per unit volume that energy is
converted between bulk flow and thermal energy in neutral fluids or plasmas. The
term has been written as a sum of the pressure dilatation and the collisionless
analogue of viscous heating referred to as Pi — D, which isolates the power density
due to compressible and incompressible effects, respectively. It has been shown
that Pi — D can be negative, which makes its identification as collisionless viscous
heating troubling. We argue that an alternate decomposition of pressure-strain
interaction can be useful for interpreting the underlying physics. Since Pi—D
contains both normal deformation and shear deformation, we propose grouping
the normal deformation with the pressure dilatation to describe the power density
due to converging/diverging flows, with the balance describing the power density
purely due to shear deformation. We then develop a kinetic theory interpretation
of compression, normal deformation, and shear deformation. We use the results to
determine the physical mechanisms that can make Pi — D negative. We argue that
both decompositions can be useful for the study of energy conversion in weakly
collisional or collisionless fluids and plasmas, and implications are discussed.

Keywords: Energy conversion, dissipation, magnetic reconnection, plasma turbu-
lence, collisionless shocks

I. INTRODUCTION

Weakly collisional plasmas are important in many settings, from heliophysics to planetary
magnetospheres to astrophysics'. A host of plasma phenomena take place in such settings,
including magnetic reconnection, plasma turbulence, and collisionless shocks. The dearth
of collisions in many settings of interest implies that these plasmas can be far from local
thermodynamic equilibrium (LTE). In the study of these physical phenomena, one of the
forefront research questions is how energy is converted during each process, especially when
non-LTE effects greatly affect the dynamics at the micro-, meso-, and even the macro-scale?.

A quantity contributing to non-LTE energy conversion that has received intense scrutiny
over the last few years is the pressure-strain interaction, written as —(P - V) - u, where P
is the pressure tensor of a species of a fluid or plasma and u is its bulk flow velocity3 6.
In terms of the phase space density f (the number of particles per unit position space
volume and velocity space volume), the bulk flow velocity is u = (1/n) [ d*vv f, where v
is the velocity space coordinate, n = f d3vf is the number density, and the integrals are
over all velocity space, and the elements of the pressure tensor P are (classically and non-
relativistically) Pjx =m [ v;v; fd3v, where j, k are indices for the spatial dimensions, m is
the constituent particle mass, and v/ = v — u is the peculiar (random) velocity.

To see why pressure-strain interaction is important for energy conversion, consider the
thermal (internal) energy density &, = 3P/2 = [(3mv'?)fd®v, where P = (1/3)tr(P) =
(1/3)P;; is the effective pressure, using the Einstein summation convention for repeated
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indices here and throughout. Its time evolution is described by”

0,
ot

+ V- (gthll) = —(P . V) -u—V- q+ Qvisc,collv (1)

where q = f(1/2)mv’2v’fd3v is the vector heat flux density and Qvisc,cou is the volumetric
viscous heating rate via collisions, where we use the word viscous regardless of the functional
form of the collisional heating. The time evolution of the bulk kinetic energy density
Ex = (1/2)mnu? is given by’

%—i—V-(u&—l—u-P):(P-V)-u+nu~F—|—RCOH, (2)
where F is the net body force and Reop is the inter-species collisional drag force power
density. The pressure-strain interaction —(P - V) - u arises in each equation with opposite
signs, so it describes the rate per unit volume that energy is converted between bulk flow
and thermal. The minus sign is included in the definition so a positive value describes a
contribution towards increasing thermal energy density. While these equations have been
known for years, a watershed moment came recently when it was emphasized that the
pressure-strain interaction is key to describing changes in thermal energy in plasmas® ©.

The pressure-strain interaction can be simplified by defining the strain rate tensor Vu,
which can be decomposed®® as Vu = S + € into a symmetric (irrotational) strain rate
tensor S with elements Sj;, = (1/2)(0ux/0r; + Ou;/Ory) and an anti-symmetric strain rate
tensor € with elements Q) = (1/2)(Ouy/0r; — Ou;/0ry). A flow with non-zero S but zero
Q has “pure straining motion”?; it strains a fluid element without rotating it. In contrast,
a flow with non-zero Q but zero S is “rigid body rotation”®, which rotates a fluid element
without changing its shape. A further decomposition of S was introduced®*6# by writing
S=(1/3)I(V -u) + D, i.e.,

1
Sjk = g(SJ (V . u) + Djk, (3)
where I is the identity tensor, d;; is the Kroenecker delta and D is the traceless strain rate
tensor with elements

_ L (0w Oup) 1
Djk =3 (8rk + am) 35]k(V u). (4)

Physically, (1/3)I(V - u) describes compression/expansion, while D describes the incom-
pressible deformation of a fluid element®®, which is a volume preserving change of shape of
the fluid element.

The pressure-strain interaction is then written in a number of equivalent ways. In terms
of the strain rate tensor, —(P - V)-u=—P: Vu = —P;;(9uy/0r;). Using Vu =S + Q,
it is immediately found that P : 2 = 0 since P is symmetric under interchange of indices,
so rigid body rotation does not contribute to pressure-strain interaction3. Consequently,
—(P-V)-u=—-P:8S = —Pj,S, i.e., pressure-strain interaction only has contributions
from the pure straining motion portion. Further, one decomposes the pressure tensor as

P =PI+II, (5)

where II is the deviatoric pressure tensor that describes the non-isotropic part of the pres-
sure tensor. While the diagonal elements of P must be non-negative, all elements of IT can
be either positive or negative. Using the decomposition of S in Eq. (3) with D defined in
Eq. (4) and the pressure decomposed in Eq. (5), one finds

—-(P-V) - u=-P(V-u)—IL;Djp, (6)

where the cross-terms vanish because IT and D are both traceless. The benefit of this
decomposition is that the first term (including the minus sign), called pressure dilatation,
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describes the power density of heating due to bulk compression (V - u < 0) or cooling due
to bulk expansion (V-u > 0). The second term (including the minus sign) has been called*
Pi — D, which is the power density due to incompressible deformation®. Pi — D was also

called “collisionless viscosity” because it is analogous in form to collisional viscous heating®.

Much has been learned about the pressure-strain interaction and Pi — D in the context
of plasma physics. The pressure-strain interaction was studied in strongly magnetized
plasmas®, including the recognition that the gyro-viscous contribution to the pressure-strain
interaction vanishes identically. The fluid description of the contributions to the pressure-
strain interaction was studied for the case with zero heat flux density®®. It was shown*
that for a periodic or closed domain in a purely collisionless system, the volume average of
Eq. (1) implies that < —(P - V) - u > is the only term that can change the total thermal
energy Ey, = [ d3r&;;, of the system, where angular brackets denote a volume average.
Interestingly, the same study showed in simulations of plasma turbulence that Pi — D could
be locally positive or negative (since elements of both IT and D can be positive or negative).

Numerous studies have since investigated the pressure-strain interaction and Pi — D using
numerical simulations. Pi— D is stronger in coherent structures (current sheets) than in
the bulk in plasma turbulence®. The pressure-strain interaction was highest in regions with
current sheets and high vorticity'®. Pi — D was found to successfully identify regions of
strong energy conversion in dipolarization fronts!'!'2. The pressure-strain interaction dom-
inates other energy conversion metrics at small length scales'?®, and was shown to account
for the net temperature increase in simulations of turbulence!®!4. A recent study compared
the pressure-strain interaction during reconnection and turbulence, finding that pressure di-
latation at current sheets was more important in turbulence than in reconnection'®. Pi — D
increases with plasma beta for ions, but the dependence is weak for electrons'®. In island
coalescence, pressure-strain interaction does not depend strongly on electron mass or sys-
tem size'”. It was suggested that pressure-strain interaction contributes to the break in the
turbulent spectrum at ion'® and electron'® scales, and therefore is a critical piece of the
termination of the turbulent cascade?. Importantly, Pi — D and the heat flux divergence
have similar contributions in turbulence?, and the heat flux divergence can oppose the
pressure-strain interaction?'.

The pressure-strain interaction, including Pi — D, has also been studied observationally,
facilitated greatly by the high resolution measurements afforded by the Magnetospheric
Multiscale (MMS) mission®?. In the turbulent magnetosheath, it was found that pressure-
dilatation contributed more to the pressure-strain interaction than Pi — D?3, as would later
be seen in simulations'®. A statistical study of Pi — D in the turbulent magnetosheath found
that it is spatially concentrated near current sheets as in the simulations, but is small within
current sheets?*, as would also later be reported in simulations'®. A study of magnetopause
reconnection found that electrons were heated at a faster rate than ions and pressure-
dilatation dominated Pi — D?°. The same study measured negative Pi — D. In a statistical
study of reconnection diffusion regions, it was common to see a negative Pi — D, and the
pressure-strain interaction was positive in only about half of the events?S. They also found
that the gyrotropic portion of Pi — D was more important than the non-gyrotropic part.
In a study of 50 turbulent magnetosheath events, both positive and negative intervals were
found for both pressure dilatation and Pi — D?7. A statistical study of 122 dipolarization

fronts suggested that Pi — D is not a significant contributor to energy conversion?®.

Despite great advances in our knowledge about pressure-strain interaction in general, and
Pi — D in particular, there are a number of puzzling aspects of its interpretation, especially
Pi — D. For example, it is not understood how Pi — D is effectively a collisionless viscosity
but can be negative. This study is the first in a three-part series on pressure-strain inter-
action. Here, we point out that the strain rate tensor contains both normal deformation
and shear deformation, as is well known in continuum mechanics, which therefore implies
that Pi — D contains power density due to both effects. This grouping of terms compli-
cates the interpretation of Pi — D because it mixes stresses from normal flows and sheared
flows. Because pressure dilatation is also associated with normal flows, we suggest an alter-
nate decomposition of the pressure-strain interaction that groups the normal deformation
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with the pressure dilatation instead of shear deformation. This separates the effects of
converging/diverging flow from shear strain. We calculate the terms in this alternate de-
composition analytically. We then develop a physical interpretation of the compression and
normal and shear deformation using kinetic theory. This allows us to determine the phys-
ical mechanisms that can make Pi — D negative, thereby clarifying how to interpret such
measurements. In the second study? (“Paper II”), we write the pressure-strain interaction
in magnetic field-aligned coordinates, which further elucidates the physical contributions to
the pressure-strain interaction in a magnetized plasma. In the third study?® (“Paper II1"),
we display the pressure-strain interaction and its Cartesian and magnetic field-aligned de-
compositions in simulations of reconnection. We determine the physical causes for the
pressure-strain interaction during reconnection.

The layout of this manuscript is as follows. An alternate decomposition of the pressure-
strain interaction is derived in Sec. II. We then provide a kinetic theory interpretation of
the pressure-strain interaction contributions in Sec. III, and discuss the causes of Pi — D
and the normal deformation being negative using kinetic theory in Sec. IV. A discussion
and conclusions are in Sec. V.

II. AN ALTERNATE DECOMPOSITION OF PRESSURE-STRAIN INTERACTION

From the expression in Eq. (4), we note the important general property, well known in
continuum mechanics, that the diagonal elements of D are associated with normal defor-
mation while the off-diagonal elements are associated with shear deformation. To picture
this, consider a cubic fluid element. Normal deformation of the fluid element results from
flow parallel to the normal to the edges of the fluid element that vary, while shear defor-
mation results from flow in the plane of the edges of the fluid element that vary. Thus,
we decompose D into a normal deformation tensor Dy ormal and a shear deformation tensor
Dishear, SO that

D= Dnormal + Dshear- (7)

Here, Dyormal,jk = [(Ou;/0r;) — (1/3)(V - u)]d;x (with no sum on j) has the same diagonal
elements as D with its off-diagonal elements equal to zero and isolates normal deformation.
Similarly, Dshear,jk = (1/2)(0u;/0r + Our/Or;) for j # k and Dghear,j; = 0 (no sum on j)
has its diagonal elements equal to zero and its off-diagonal elements equal to those of D,
which isolates shear deformation. (A related decomposition was discussed in Refs.!26, but
we do not make any assumptions about gyrotropy.)

In terms of this decomposition of D, we write Pi — D as the sum of two terms,

Pi—-D=Pi— Dnormal + Pi— Dshearv (8)

where Pi — Dyormal = —IT @ Dyormal and Pi — Dgpear = —IT @ Dgpear- In Cartesian coordi-
nates, a brief calculation reveals that these are

Pi— Dnormal = _(Hszmw + Hyypyu + szDzz)

Ouy ou ou,
= - (Harxax + Hyyaiyy + szaz> ; (Qa)
Pi— Dshear = _(QHLyDIy + 2H.LZD.LZ + 2Hyszz)

Ou,  Ouy Ouy Ou, Ouy ~ Ou,
- [Pw <ay+ax) + Pos (aﬁ ax) + By (aﬁ a9y )} (9b)

The terms separate the contributions due to normal deformation and shear deformation,
respectively.

Mirroring the decomposition of Pi — D, we revisit the pressure-strain interaction, which
describes the full rate of conversion between bulk flow and thermal energy density. Following
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Eq. (3), we decompose the symmetric strain rate tensor S as
1
S = gI(V : U.) + Dnormal + Dsheau (10)
Then, the pressure-strain interaction is decomposed into three pieces,

—(P . V) cu = _P(V N ll) + Pi— Dnormal + Pi — Dshear~ (11)

These three terms isolate the power density due to dilatation, normal deformation, and
shear deformation, respectively. A key point is that the normal deformation only depends
on diagonal elements of D, i.e., on converging/diverging flow, as seen in Eq. (9a). We
thus argue that it may be more natural for the normal deformation to be combined with
the pressure dilatation, which also only depends on the diagonal elements of D, than with
Pi — Dgpear- We therefore introduce the quantity PDU as

PDU = 7'P(V . ll) + Pi — Dyormal (12&)
ou ou Ju
_ waix P Y Pzziz 12b
( gr oy T 371) )
so that
~(P-¥)-u=PDU + Pi — Dypenr- (13)

For an isotropic pressure with P, = Py, = FP,, = P, where P is the scalar pressure,
Eq. (12b) reduces to PDU = —P(V -u), the known pressure dilatation from fluid mechanics.
For an arbitrary pressure tensor, PDU gives the power density due to converging and
diverging flows, which contains both dilatation and normal deformation. Eq. (12b) is the
reasonable generalization of pressure dilatation when isotropy is not valid, as it contains
contributions from dilatation in each direction independently.

I1l. PHYSICAL INTERPRETATION OF PRESSURE-STRAIN INTERACTION

Here, we provide the physical interpretation of the pressure-strain interaction contribu-
tions in the fluid and kinetic descriptions. The fluid description has partially been addressed
previously®%. We provide simplified examples that allow for the physical interpretation to
be made clear, with the idea that they can be used to motivate analogous processes for
more general cases. While the fluid description is valid, both simulations and satellites now
regularly measure the phase space density, measuring plasma properties at scales at and
below the scales where treating a plasma as a fluid is no longer appropriate3':32. Thus, we
argue it is important to develop a fully kinetic interpretation of the contributions to the
pressure-strain interaction. As shown in Sec. IV, this understanding will provide insight
into what it means to have a negative Pi — D.

A. Fluid Description of the Pressure-Strain Interaction

We begin with the physical interpretation of pressure-strain interaction in the fluid de-
scription. It was treated in the limit of vanishing vector heat flux density q in Ref.%, vividly
conveyed in their Fig. 1 that contains valid sketches of the effects of dilatation (red) and
normal deformation (blue). However, because their analysis did not contain a vector heat
flux density, the shear deformation term in Eq. (9b) did not appear in their analysis. Thus,
we extend their Fig. 1 in the general case in our Fig. 1.

Panel (a) exemplifies pressure dilatation —P(V - u), representing compression of the
sketched spherical fluid element. Panel (b) exemplifies normal deformation Pi — Dyormal,
represented by the volume preserving change of shape of the sketched ellipsoidal fluid el-
ement. These two panels are modeled directly after Ref.®. The initial fluid element is in
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(a)_P(V : u) (b) Pi— Dnormal (C) Pi— Dshear

&

FIG. 1. Sketch of representative contributions to the pressure-strain interaction in the fluid descrip-
tion. Black shapes are the initial fluid elements, and bold arrows show the bulk flow directions. The
dashed arrows map the change between initial and final shapes of the fluid elements. (a) Pressure
dilatation (red), showing compression, (b) normal deformation (blue), and (c) shear deformation
(green). Panels (a) and (b) are essentially copies of Figure 1 from Ref.%; panel (c) is new. Mod-
ified with permission from Figure 1 of “Shear-induced pressure anisotropization and correlation
with fluid vorticity in a low collisionality plasma,” by Daniele Del Sarto and Francesco Pegoraro,
Monthly Notices of the Royal Astronomical Society, 475, 181 (2018).

black, the flow profile is in the large arrows, and the final fluid element is in color. The
small colored arrows denote the action of the fluid element due to the flow.

Panel (c) exemplifies shear deformation Pi — Dgpear, which is not present in Ref.%. The
sheared flow deforms the fluid element, as in the standard treatment of flow shear in a fluid,
except that this effect is purely collisionless. A key point is that shear deformation requires
a non-zero off-diagonal pressure tensor element in the plane of the varying bulk flow and its
gradient for there to be a contribution to the pressure-strain interaction [see Eq. (9b)]. Thus,
we draw a cubical fluid element in (¢) with a feature sticking out of the box to denote the
need for the off-diagonal elements. Since the off-diagonal pressure tensor elements can be
either positive or negative, shear deformation can lead to a positive or negative contribution
to the pressure-strain interaction. Because the pressure-strain interaction is collisionless,
any change in thermal energy due to it is formally reversible. In contrast, collisional viscous
heating is unable to lead to a decrease in thermal energy and is irreversible.

B. Kinetic Description of PDU

Here we treat the kinetic theory interpretation of the pressure-strain interaction. We do
this by investigating how a phase space density evolves in time when there is a non-zero
pressure-strain interaction to illustrate kinetically why there is a change in the thermal
energy density. We first emphasize that the pressure-strain interaction is local in space and
time, and calculating it depends only on the local pressure tensor and the bulk flow velocity
profile. Thus, instantaneously, determining if there is conversion between bulk flow and
thermal energy density does not require knowledge of the presence of any body forces or
collisions. In the treatment that follows, we ignore body forces and collisions. Although
body forces and collisions are not needed to determine the local pressure-strain interaction,
they do impact the motion of particles and the evolution of the phase space density, so these
effects would have to be considered in addition to the phase space evolution considered here.
We briefly return at the end to motivate how body forces change the pictures that follow.

In the force-free, collisionless limit, the Boltzmann/Vlasov equation becomes

of
ot

As is well known, this is merely a linear convection equation in position space at every v.
We will use this in the examples that follow.

+v-Vf=0. (14)
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FIG. 2. Sketches showing the physical interpretation of PDU, i.e., heating via converging flow,
in kinetic theory, ignoring body forces and collisions for simplicity. Magenta ellipses denote a 2D
slice of the phase space density f in the (ve,v.) plane given by bi-Maxwellian distributions with
Py > Py, where z is a perpendicular direction and z is parallel. (a) Phase space densities at initial
time t = to at three locations at and near z = 0. The vertical bulk flow velocity u., denoted by the
magenta arrows, is converging in the parallel direction. (b) The phase space density at z =0 at a
slightly later time ¢ = ¢o + dt. The phase space densities labeled 1, 2, and 3 in panel (a) evolve to
their associated positions labeled in panel (b). The phase space density at this time is broader in
v,, implying an increase in thermal energy density. Note, Pi — D is positive for this case. (c) and
(d) are analogous for the same phase space density except with converging bulk flow in z. There
is an increase in the thermal energy density in the phase space density at x = 0 at t = to + dt in
panel (d). Interestingly, Pi — D is negative for this case.

As an example which isolates PDU, consider a plasma with a drifting bi-Maxwellian phase
space density fp;pr aligned with a Cartesian coordinate system so that the pressure tensor
Pyins is uniform in space and its elements are given by P, = Pyy = P, P,, = Py, and
Pj, = 0 for j # k. The effective pressure is then Py = (2P + P)/3, and Eq. (5) reveals
that the deviatoric pressure tensor Il;ps is

1
=0 0
3
Iyine = Poing — PoidI=(PL—P)) | 0 3 0 (15)
00 —%
Using Eq. (4), the associated Pi — Dy;ps for an arbitrary bulk flow profile u is
. 1 ou,
Pi— Dyiyr = —1LxDjr = —(PL — Fy) {3(V ‘u) — EP } : (16)

As desired, this pressure tensor Py; s does not depend on flow shear even if it is present. For
definiteness, we consider P > P,. We first treat converging flow in the parallel direction,
such that u = u,(2)z, and for simplicity we treat bulk flow towards z = 0.

A sketch of the system at initial time t = tq is in Fig. 2(a). The phase space density fp;as
is sketched as the magenta ovals in the (v,,v,) plane at three different spatial locations,
z = dz,0, and —dz. The pressures are the same at each location, but the phase space
densities are offset from the origin accordingly to impose that the bulk flow converges
towards z = 0. A short time dt later, fy;ps with v, < 0 at z > 0 (labeled 1) convects down,
Svine with v, > 0 at z < 0 (labeled 3) convects up, and fy;pr near v, = 0 at z = 0 (labeled
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2) does not convect far, so the phase space density f at z =0 at t = ¢t + dt is qualitatively
displayed in Fig. 2(b), with the same numbering scheme to show where the particles came
from at ¢t = tg. (We acknowledge that the precise phase space density at time to + dt
would be affected by particles from cells beyond those plotted and would smear out the
final distribution, but we do not attempt to capture this effect in the sketch for simplicity.)
Comparing the phase space densities fy;ar and f at z = 0 at t = ¢y and at t = o + dt,
respectively, we note that the breadth of f in the perpendicular v, direction is the same
as in fp;ps (there is no perpendicular heating), but f is broader in the parallel v, direction
than fy;ps. Broadening a phase space density is the kinetic manifestation of heating, i.e.,
increasing the thermal energy. This gives the kinetic interpretation of PDU, i.e., heating
via converging flow in the z direction, corresponding to —P,,(0u,/0z) in Eq. (12b).

We now consider converging flow in the perpendicular direction for the same initial phase
space density, so now u = u, ()X, treating bulk flow converging towards = 0 for simplicity.
A sketch at the initial time ¢ = ¢y is in Fig. 2(c), where the phase space density fp;ps is
sketched at * = —dz,0, and dx. Since fp;ps evolves in time according to the convection
equation in Eq. (14) in the absence of body forces and collisions, the phase space density
f at x = 0 a short time dt later appears as sketched in Fig. 2(d). The phase space density
f does not broaden in the parallel v, direction, but does broaden in the v, direction. This
is the kinetic manifestation of heating from PDU via converging flow in the x direction,
corresponding to — Py, (Ou, /0x) in Eq. (12b). In both examples, heating due to converging
flow contains contributions from both dilatation and normal deformation, a key point we
return to in the next section.

Finally, we return to the effect of the presence of a body force F. As stated earlier, it is
clear from the expression for pressure-strain interaction that a body force cannot contribute
to it, even though the forces impact the motion of the particles. The sketches used here can
still provide information for how to interpret the terms in the pressure-strain interaction
when there is a body force present. First consider a uniform body force, i.e., it is the same
at every position. The body force F changes the velocity of all particles of mass m at a given
position by the same increment dv = Fdt/m in a small increment in time dt, so it merely
translates the phase space density in velocity space. In the Lagrangian reference frame, this
shift does not lead to a change in the thermal energy at the point in question beyond what
is shown in the sketches in this section. If there is a force that is not uniform, a similar
procedure happens except that the shift in velocity space of the particles is different at
every location. In our example, the phase space density is uniform in space, so the result is
unchanged. In the more general case for which the phase space density is also not uniform,
it would require a detailed analysis to understand the evolution of the particles and the
associated phase space densities, which is beyond the scope of the present study. However,
we know the result for an arbitrary force and initial phase space density must be that the
body force does not alter the pressure-strain interaction in the Lagrangian reference frame.

C. Kinetic Description of Pi — Dgpcar

We next turn to the kinetic interpretation of heating via shear deformation. As noted
in the introduction®%8 the symmetric strain rate tensor S needs to be non-zero for the
pressure-strain interaction to be non-zero, and the pressure-strain interaction is indepen-
dent of the anti-symmetric strain rate tensor €. Moreover, from Eq. (9b), the pressure
tensor must have a non-zero off-diagonal element in order for there to be heating via shear
deformation. Consequently, we consider flow shear of a phase space density with non-zero
off-diagonal pressure tensor elements.

Consider flow in the zz plane; dynamics in the other planes is analogous. Figure 3(a)
contains sketches in a region near (z, z) = 0 at initial time ¢ = ¢o, with phase space densities
sketched in (v,,v,) space at an array of spatial locations given by x = dz,0, and —dx and
z =dz,0, and —dz. In the kinetic picture, P, is non-zero if the phase space density lacks
symmetry in both the v, and v, directions relative to the bulk flow speed (uy,u.). One way
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(a) t =t (b) t=to+dt

FIG. 3. Sketch illustrating the kinetic theory explanation of why Pi — Dgpear leads to heating or
cooling. (a) Array of sketches at locations in position space (z,z) near the origin at the initial
time to. Each sketch contains a phase space density f in the (vy,v.) plane in blue and red, where
blue represents relatively low f and red represents relatively high f. Such phase space densities
have P,. < 0. The placement of the phase space density in each axis system reveals its bulk
flow u, denoted for each f by the magenta arrow. The flow profile has a representative form
(uz,uz) = (0,z). (b) Sketch of the phase space density at the origin at a slightly later time
t = to + dt. The portions of the phase space densities in (a) labeled 1 and 2 evolve to make up
the portions of the phase space densities in (b) labeled 1 and 2, respectively. For this flow profile,
there is a net displacement of particles away from the velocity space origin, implying an increase
in thermal energy density.

a phase space density can have a positive P, is if it is elongated in the first and/or third
quadrant in the (v, v,) plane compared to the second and/or fourth quadrants; similarly a
negative Py, is elongated in the second and/or fourth quadrants in (v,,v,) space. Another
is if f weighted higher in the first and/or third quadrants than the second and/or fourth
quadrants. Figure 3(a) includes a phase space density with P,, < 0 due to the weighting
of f that is uniform in space, displayed with red signifying larger f and blue signifying
smaller f. To impose a bulk velocity shear, the phase space densities are shifted relative to
the velocity space origin, with the bulk flow direction denoted by the magenta arrows. For
this illustration, we assume a profile with u = u,(x)z, where u, is positive for > 0 and
negative for u, < 0.

In the next increment in time dt, particles with v, > 0,v, < 0 at (—dz,dz) (labeled 2)
move towards the origin (in the absence of body forces and collisions), appearing in the
vy > 0,0, < 0 quadrant at the origin at t = tg + dt (labeled 2) in Fig. 3(b). This portion of
the phase space density is blue, meaning f is relatively low there. Similarly, in the phase
space density at (dz,—dz), particles in the left part of the distribution (labeled 1) have
vy < 0,v, > 0, so they also move toward the origin. At ¢t = ty + dt, they become the
population in the v, < 0,v, > 0 portion of the phase space density (labeled 1) in Fig. 3(b).
The red portion in Fig. 3(b) is the portion of the phase space density at ¢t = tg + dt with
higher f values than elsewhere in the phase space density.

To interpret this result, we note the phase space density at the origin at ¢ = tg + dt
effectively stretches away from the velocity space origin in the second and fourth quadrants
relative to the phase space density at the origin at t = 3, and moves closer to the velocity
space origin in the first and third quadrants than at ¢ = to. If f had begun at ¢t = t; as
symmetric in (v, v,) space (i.e., if P, had been 0), this would lead to no net heating at
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(a) Pure Straining Motion: (b) Rigid Body Rotation:
P heating/cooling possible > heating/cooling impossible
u s s
ol g I

FIG. 4. Sketch illustrating the kinetic theory explanation of why (a) symmetric shear (pure strain-
ing motion) can lead to heating/cooling, while (b) anti-symmetric shear (rigid body rotation)
cannot. In each sketch, the grid in x and z denotes physical positions in the environment of the
origin (z,z) = (0,0). Each red and blue box denotes a phase space density f with a negative P,
in the (vg,v.) plane at the location in question. The local bulk flow u is denoted for each f with
a magenta arrow. The flow profiles are (a) (usz,u-) = (z,z) and (b) (uz,u:) = (2, —x).

t = ty + dt, since there would be equal numbers of particles brought closer to the velocity
space origin as those brought further away. However, in this case, there are more particles in
quadrant 2 than the other quadrants at ¢ = ¢y + dt, so there are more particles further from
the origin. This is the kinetic manifestation of heating. This example provides motivation
for the kinetic theory of heating via pressure-strain interaction due to Pi — Dgpear, with
the same caveat as in the previous subsection that body forces and collisions can alter
the particle trajectories and phase space density evolution, but cannot directly impact the
pressure-strain interaction. We note that P,, < 0 and Ou./dz > 0 in this example, so
the term — P, (0u,/0x) in Eq. (9b) is positive. This is associated with heating, consistent
with the physical picture given here. A similar construction with the higher f region in the
fourth quadrant (so that P, is again negative) also leads to heating. If the higher f region
is in the first or third quadrant, it would lead to cooling because there are more particles
closer to the velocity space origin than farther away from it. In this case P, is positive, and
the Pi — Dgpear contribution to the pressure-strain interaction is negative, consistent with
cooling. Thus, Pi — Dgpear can contribute to heating or cooling depending on the flow profile
and the sign of the off-diagonal pressure-tensor elements, and it is in principle reversible.

We conclude this subsection with a kinetic theory interpretation of why pure straining
motion leads to a contribution to the pressure-strain interaction, but rigid body rotation
does not. Figure 4(a) is a sketch analogous to Fig. 3(a) of a hyperbolic bulk flow profile
corresponding to pure straining motion with duy/0r; = Ou;/0r, so @ = 0. Analogous
to Fig. 3(b), there is a flow of particles towards (and away from) the origin in the next
small increment in time, which serves to increase the thermal energy density at the origin
at t = tg + dt. In contrast, Fig. 4(b) shows a similar sketch, but for rigid body rotation
for which duy/0r; = —0u;/0ry, so S = 0. In this case, the flow profile imposes that the
particles in the phase space densities surrounding the origin predominantly go around the
origin rather than changing the phase space density at the origin, leaving the thermal energy
density at the origin unchanged. This is the kinetic explanation for why rigid body rotation
does not contribute to the pressure-strain interaction.
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IV. KINETIC INTERPRETATION OF NORMAL DEFORMATION AND IMPLICATIONS
FOR THE SIGN OF Pi—D

It has been shown numerically and observationally that Pi — D, i.e., collisionless viscous
heating, can be positive or negative, which has been puzzling because collisional viscous
heating must be non-negative. We use the present results to interpret the sign of Pi— D
within the kinetic description. We emphasized in Sec. II that Pi — D contains both normal
deformation and shear deformation. Consequently, it is not a well-posed question to ask
what a negative value of Pi — D means physically because it is ambiguous; it could have
contributions from either term. The physics of Pi — Dgpear was discussed in Sec. IIIC,
including what it means physically for it to be positive or negative. The example of heating
due to converging flow in Sec. III B explained the sign only for PDU, i.e., the sum of the
dilatation and normal deformation terms, so we reconsider the example given there to isolate
the normal deformation and explain the kinetic interpretation of its sign.

Consider again the bi-Maxwellian distribution fyins with Py = Py, = P and P,, = P
with P| > P, discussed in the previous section. For the two bulk flow profiles in Fig. 2,
analytic expressions for Pi— Dpormal are readily calculated from Eq. (9a). For parallel
converging flow u = u,(2)z, we get

1
-z 0 0
ou 3
Dnorma = = z 0 -1 0 5 17
1 82 0 3 9 ( )
3
so that
2 Ou,
Pi— Dyormal = Pi—D = = P, — Py. 18
1 ormal 1 3 02 ( il H) ( )
A similar derivation reveals that if u = u, (x)% for perpendicular converging flow,
. . 10u
Pl_Dnormal:Pl_D:_gaixx(PL_PH)- (19)

Importantly, Pi — Dyorma) for parallel and perpendicular converging flow have opposite signs.

For the flow profiles in Fig. 2, Pi — Dyormal 18 positive for parallel converging flow but
negative for perpendicular converging flow. We know the net dilatation plus normal defor-
mation due to converging flow leads to heating as quantified by PDU for converging flow in
either direction. Thus, it may not be surprising that Pi — Dyormal > 0 for parallel converg-
ing flow. However, it is counterintuitive that Pi — Dyorma < 0 for perpendicular converging
flow because negative Pi — D has been referred to as “cooling.”

The resolution of this apparent paradox is to consider Pi — Dyormar in the context of
pressure dilatation —P(V - u). For the perpendicular converging flow case,

duz <2PL + P|) duy

o 3 ) o (20)

—P(V-u)=-P
This quantity is non-negative for converging flow, which reflects that there is heating. The
sum of dilatation and normal deformation from Egs. (19) and (20) to get PDU is

Ougy
ox’

PDU = —-P; (21)
as expected from Eq. (12b). This is positive for converging flow, corresponding to a net
heating, as expected.

This simple example suggests the kinetic theory interpretation of Pi— Dpormal. The
quantity PDU describes the total volumetric heating rate due to converging flow. Pressure
dilatation describes the volumetric rate of compressible heating if the system was in equi-
librium with a (scalar) pressure P since it has the form —P(V - u). Kinetically, pressure
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dilatation describes the heating that would take place if the phase space density f were
replaced by a Maxwellian distribution fj; with the density n = [ fd®v and with its pres-
sure P given by the effective pressure P found from the local phase space density f. The
phase space density fi; is known as the Maxwellianized distribution of f. The contribu-
tion from Pi — Dyormal, then, describes the correction to the total of the volumetric heating
rate due to converging flow due to the phase space density f not being the Maxwellianized
distribution fa,.

In the example of the bi-Maxwellian distributions with P > P, in Fig. 2(a), the
Maxwellianized distribution fa; of the phase space density fy;ps is round in velocity space,
so it is cooler in the parallel direction and hotter in the perpendicular direction than f.
Compression of fj; in the perpendicular = direction would heat the plasma, making the
phase space density at t = tg + dt broader in the v, direction than it would be due to
compression of fy;pr. This means there would be a higher volumetric heating rate of fas
than there would be of fy;3s since Py > P,. Therefore, Pi — Dypormar is negative in this
example because it represents the correction to the volumetric heating rate of the actual
phase space density fy;ps because it is not the Maxwellianized distribution fj;; in this case,
the correction is negative. Thus, Pi — Dygrmal < 0 during converging flow does not repre-
sent physical cooling, because when combined with —P(V -u) to form PDU, the volumetric
heating rate into thermal energy is positive, as is expected for converging flow. This is in
contrast to Pi — Dgpear, which necessarily contributes to cooling when it is negative.

Similar reasoning holds for parallel converging flow. As shown in Fig. 2(b), the result of
converging parallel flow is to generate a phase space density at the origin that is even more
elongated than fy;ps at t = 0. In this case, pressure dilatation is again positive because there
is converging flow, but here Pi — Dy,o1ma) is also positive. This is because the Maxwellianized
distribution fj; is narrower in the parallel direction than fy;as, so the heating of fas is less
than the heating of fy;37. The contribution from Pi— Dyorma is positive to make up for
the part of the heating omitted from the converging flow acting on fy,.

Thus, simply knowing that Pi — D is negative is insufficient to know if it is caused by
normal deformation or shear deformation, and it is insufficient to know if there is overall
cooling via the pressure-strain interaction. If Pi — D < 0 and Pi — Dgpea, dominates, there
is a contribution towards cooling. However, if Pi — D < 0 and is dominated by Pi — Dyormal,
one cannot know if there is heating or cooling due to converging or diverging flow because
—P(V -u) can have either sign depending on whether there is converging or diverging flow.
It is PDU that must be measured to assess if heating/cooling due to converging/diverging
flow is taking place.

V. DISCUSSION AND CONCLUSIONS

The pressure-strain interaction, including Pi — D, has undergone intense scrutiny in the
past few years because it concisely describes the rate that energy density is converted
between bulk flow and thermal. Pressure dilatation is the portion of pressure-strain inter-
action associated with compression and expansion, while Pi — D is the portion associated
with incompressible heating® and has been described as collisionless viscosity®. Despite
the scrutiny, fundamental questions about the physical interpretation of the pressure-strain
interaction and Pi — D have persisted, including what it means for Pi — D to be negative.

In this study, we use the fact that Pi — D contains both normal deformation and shear
deformation to propose an alternate decomposition of the pressure-strain interaction with
the PDU and Pi — Dgpear terms, which separate the pressure-strain interaction into the
power densities associated with converging/diverging flow and flow shear, respectively. The
PDU term is a combination of the dilatation and normal deformation terms, and gives the
reasonable generalization of dilatation for systems not in local thermodynamic equilibrium.
In the large magnetic field limit, it was shown® that the Pi — Dypear term (—7gy : U in their
notation) vanishes to low order in the strong magnetic field expansion. This is because
the magnetic field dominates all other collisionless physics in the limit in question, and
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the magnetic field itself does not directly contribute to the pressure-strain interaction [see
Eq. (1) and Ref.3]. Outside of this limit, as shown here, Pi — Dgpear need not vanish.

Using these results, we provide a physical understanding of the contributions to the
pressure-strain interaction both from a fluid perspective, with one modification from previ-
ous work on the subject that ignored the vector heat flux density®, and fully in the kinetic
picture at the phase space density-level. We use the results to explain kinetically why pure
straining motion (a symmetric strain rate tensor) can lead to a change in thermal energy but
rigid body rotation (an asymmetric strain rate tensor) cannot. We finally use these results
to give the physical mechanisms that cause Pi — D, including giving a new kinetic theory
interpretation for the normal deformation term. We further show the counterintuitive result
that while converging flow must contribute to a positive pressure-strain interaction, it can
contribute to a negative Pi — D for systems not in LTE.

We emphasize a number of consequences of this study that may be of use to the field:

1. As has been recognized elsewhere®*4  the pressure-strain interaction —(P - V) - u is
the most relevant quantity to determine the rate of change of bulk flow energy density
into thermal energy density (heating or cooling), rather than Pi — D in isolation.

2. Tt is correct that the pressure dilatation —P(V - u) describes the volumetric rate of
heating/cooling due to compression/expansion, but it is not the full description of
energy conversion in converging or diverging flow. Similarly, Pi — D is the measure of
incompressible heating, but contains both normal deformation and shear deformation.
In contrast, PDU gives the effect of converging/diverging flows, and Pi — Dgpear gives
the effect of flow shear. We believe both decompositions have merit for analyzing
the energy conversion in physical processes and provide complementary information.
We envision that keeping all three terms — pressure dilatation, Pi — Dyormal, and
Pi — Dgpear — may also prove useful in some circumstances.

3. A local measurement of a negative Pi — D does not imply there is cooling. If Pi — D is
negative due to normal deformation, the net effect of normal deformation and dilata-
tion in the total pressure-strain interaction is still positive if the flow is converging.
Meanwhile, a negative Pi — D could also be the result of shear deformation, so there
is no way to unambiguously identify the key physical processes at play from the sign
of Pi — D alone.

4. The physical interpretation of the normal deformation portion of Pi — D in kinetic
theory is the difference between the rate of compressional heating and the rate of
compressional heating of the same process were the phase space density replaced by
a Maxwellian distribution of the same effective pressure.

5. The introduction of the traceless strain-rate tensor D, which has been carried into
plasma physics following a long history in the study of neutral fluids®, is only advan-
tageous to study the rate of heating/cooling that is compressible vs. incompressible.
However, it is not useful for distinguishing the heating between converging/diverging
flows and flow shear. While the difference may be negligible in neutral fluids that are
near local thermodynamic equilibrium, they can be very different in plasmas that are
far from local thermodynamic equilibrium.

6. It bears noting that the pressure-strain interaction is rigorously the quantity that
describes the rate of conversion between bulk flow and thermal energy density, but it
is not the only term that determines the local thermal energy density. In particular,
thermal energy density flux and/or heat flux can also change the local thermal energy
density'?2°, even though these terms do not contribute to changes in the net thermal
energy in a closed or isolated system?.

7. The thermal energy density describes the random energy in a phase space density,
i.e., [(1/2)mv" fd*v. However, other forms of energy such as [(1/2)mu} v, fd*v or
higher order moments are not contained in the thermal energy density, yet represent
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a possible energy channel during a physical process. The energy going into channels
beyond thermal energy density is treated in a separate study>2.

In Paper II, we derive the pressure-strain interaction in magnetic field-aligned coordi-
nates. In Paper III, we display the pressure-strain interaction in Cartesian and magnetic
field-aligned coordinates in PIC simulations and use the results to determine the mecha-
nisms that contribute to the pressure-strain interaction during collisionless reconnection.
For future work, it would be interesting to employ the decomposition of the pressure-strain
interaction discussed here more broadly in simulation data and observational data to sep-
arate converging/diverging flow effects from shear flow effects. Example systems where
such studies would be interesting include collisionless reconnection, plasma turbulence, and
collisionless shocks.

Also, we again point out from Egs. (1) and (2), the presence of collisions and body
forces such as electric, magnetic, or gravitational forces, enters directly into the bulk flow
energy density equation but not directly into the pressure-strain interaction. Body forces
are quantified by the nu - F term in Eq. (2), which for the electromagnetic force is gnu - E
for a species of charge ¢q. This quantity, including the version summed over species given
by J - E, has also been under intense scrutiny in the study for describing the conversion
between bulk flow energy and electromagnetic energy®* 39, A better understanding of how
body forces impact thermal energy should remain a topic of future work®.
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