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Abstract

Descent directions such as movement towards Frank-Wolfe vertices, away steps,
in-face away steps and pairwise directions have been an important design consider-
ation in conditional gradient descent (CGD) variants. In this work, we attempt to
demystify the impact of movement in these directions towards attaining constrained
minimizers. The best local direction of descent is the directional derivative of the
projection of the gradient, which we refer to as the shadow of the gradient. We
show that the continuous-time dynamics of moving in the shadow are equivalent to
those of PGD however non-trivial to discretize. By projecting gradients in PGD,
one not only ensures feasibility but also is able to “wrap” around the convex region.
We show that Frank-Wolfe (FW) vertices in fact recover the maximal wrap one can
obtain by projecting gradients, thus providing a new perspective to these steps. We
also claim that the shadow steps give the best direction of descent emanating from
the convex hull of all possible away-vertices. Opening up the PGD movements
in terms of shadow steps gives linear convergence, dependent on the number of
faces. We combine these insights into a novel SHADOW-CG method that uses FW
steps (i.e., wrap around the polytope) and shadow steps (i.e., optimal local descent
direction), while enjoying linear convergence. Our analysis develops properties of
directional derivatives of projections (which may be of independent interest), while
providing a unifying view of various descent directions in the CGD literature.

1 Introduction

We consider the problem minyep f(x), where P C R™ is a polytope with vertex set vert(P), and
f + P — Ris a smooth and strongly convex function. Smooth convex optimization problems
over polytopes are an important class of problems that appear in many settings, such as low-rank
matrix completion [1], structured supervised learning [2, 3], electrical flows over graphs [4], video
co-localization in computer vision [5], traffic assignment problems [6], and submodular function
minimization [7]. First-order methods in convex optimization rely on movement in the best local
direction for descent (e.g., negative gradient), and this is enough to obtain linear convergence for
unconstrained optimization. In constrained settings however, the gradient may no longer be a feasible
direction of descent, and there are two broad classes of methods traditionally: projection-based
methods (i.e., move in direction of negative gradient, but project to ensure feasibility), and conditional
gradient methods (i.e., move in feasible directions that approximate the gradient). Projection-based
methods such as projected gradient descent or mirror descent [8] enjoy dimension independent linear
rates of convergence (assuming no acceleration), i.e., (1 — %) contraction in the objective per iteration
(so that the number of iterations to get an e-accurate solution is O(% log %)), for p-strongly convex
and L-smooth functions, but need to compute an expensive projection step (another constrained
convex optimization) in (almost) every iteration. On the other hand, conditional gradient methods
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Figure 1: Left: Piecewise linear structure of the parametric projection curve g(A) = IIp(x¢ — AV f(x¢))
(yellow line). The end point is the FW vertex v; and d2" the FW direction. Note that g(\) does not change at
the same speed as A, e.g., g(A) = v for each A such that x; — AV f(x¢) — v € Np(v) (purple normal cone).
Right: Moving along the shadow might lead to arbitrarily small progress even once we reach the optimal face
F* 5 x*. On the contrary, the away-steps FW does not leave F'* after a polytope-dependent iteration [11].

(such as the Frank-Wolfe algorithm [9]) need to solve linear optimization (LO) problems in every
iteration and the rates of convergence become dimension-dependent, for e.g., the away-step Frank-

Wolfe algorithm has a linear rate of (1 — f—f;), where ¢ is a geometric constant (polytope dependent)
and D is the diameter of the polytope [10].

The vanilla Conditional Gradient method (CG) or the Frank-Wolfe algorithm (FW) [9, 12] has received
a lot of interest from the ML. community mainly because of its iteration complexity, tractability and
sparsity of iterates. In each iteration, the CG algorithm computes the Frank-Wolfe vertex v; with
respect to the current iterate and moves towards the vertex:

Vi = arg min <Vf(xt)av> , Xt41 = X¢ + ’Yt(Vt - Xt)a% € [Oa 1]- (D
vevert(P)

CG’s primary direction of descent is v; — x; (df"V in Figure 1) and its step-size y; can be selected,
e.g., using line-search; this ensures feasibility of x; ;. This algorithm however, can only guarantee a
sub-linear rate of O(1/t) for smooth and strongly convex optimization on a compact domain [9, 2],
moreover, this rate is tight [13, 14]. An active area of research, therefore, has been to find other
descent directions that can enable linear convergence. One reason for vanilla CG’s O(1/t) rate is
the fact that the algorithm might zig-zag as it approaches the optimal face, slowing down progress
[10, 13]. The key idea for obtaining linear convergence was to use the so-called away-steps that help
push iterates quickly to the optimal face:

a; = argmax (Vf(x),v), for F C P, 2)
vevert(F)
X1 = X¢ + Ye(x¢ — a;), where 14 € R, such that x;11 € P, 3)

thus, augmenting the potential directions of descent using directions of the form x; — a;, for some
a; € F, where the precise choice of F'in (2) has evolved in CG variants. As early as 1986, Guélat and
Marcotte showed that by adding away-steps (with F' = minimal face of the current iterate') to vanilla
CG, their algorithm has an asymptotic linear convergence rate [11]. In 2015, Lacoste-Julien and Jaggi
[10] showed linear convergence results for CG with away-steps® (over I’ = the current active set, i.e.,
a specific convex decomposition of the current iterate). They also showed linear rate for CG with
pairwise-steps (i.e., v; — a;), another direction of descent. In 2015, Freund et. al [1] showed a O(1/t)
convergence for convex functions, with F' as the minimal face of the current iterate. In 2016, Garber
and Meshi [16] showed that pairwise-steps (over 0/1 polytopes) with respect to non-zero components
of the gradient are enough for linear convergence, i.e., they also set F' to be the minimal face with
respect to x;. In 2017, Bashiri and Zhang [3] generalized this result to show linear convergence
for the same F' for general polytopes (however at the cost of two expensive oracles). Other CG
variants have explored movement towards either the convex or affine minimizer over current active
set [10], constraining the Frank-Wolfe vertex to a norm ball around the current iterate ([14], [15]),
and mixing FW with gradient descent steps (with the aim of better computational performance) while
enjoying linear convergence [17], [18]. Although these variants obtain linear convergence, their rates
depend on polytope-dependent geometric, affine-variant constants (that can be arbitrarily small for

!The minimal face F' with respect to x; is a face of the polytope that contains x; in its relative interior, i.e.,
all active constraints at x; are tight.

2To the best of our knowledge, Garber and Hazan [15] were the first to present a CG variant with global
linear convergence for polytopes.



non-polyhedral sets like the £5-ball) such as the pyramidal width [10], vertex-facet distance [19],
eccentricity of the polytope [10] or sparsity-dependent constants [3], which have been shown to be
essentially equivalent® [20]. The iterates in these are (basically) affine-invariant, which is the reason
why a dimension-dependent factor is unavoidable in the current arguments. We include more details
on related work (and a summary in Table 1) in Appendix A, with updated references to recent results
that appeared after this work [21, 22].

A natural question at this point is why are these different descent directions useful and which of
these are necessary for linear convergence. If one had oracle access to the “best” local direction of
descent for constrained minimization, what would it be and is it enough to get linear convergence (as
in unconstrained optimization)? Moreover, can we avoid rates of convergence that are dependent on
the geometry of the polytope? We partially answer these questions below.

Contributions. We show that the “best” local feasible direction of descent, that gives the maximum
function value decrease in the diminishing neighborhood of the current iterate x,, is the directional
derivative dEﬁ of the projection of the gradient, which we refer to as the shadow of the gradient:

HP(Xt - GVf(Xt)) — Xt

)

dEﬁ = lim

el0 €

where IIp(y) = argmin,.p ||x — y||? is the Euclidean projection operator. A continuous time

dynamical system can be defined using descent in the shadow direction at the current point: X (t) =
dg(( £ for X (0) = xo € P. We show that this ODE is equivalent to that of projected gradient descent

(Theorem 9), however, it is non-trivial to discretize due to non-differentiability of the curve.

Second, we explore structural properties of shadow steps. For any x € P, we characterize the curve
g(A\) =IIp(x — AV f(x)) as a piecewise linear curve, where the breakpoints of the curve typically
occur at points where there is a change in the normal cone (Theorem 1) and show how to compute this
curve for all A > 0 (Theorem 3). Moreover, we show the following properties for descent directions:

(i) Shadow Steps (dgﬁ): These are the best “normalized” feasible directions of descent (Lemma
3). Moreover, we show that [|d} || = 0 if and only if x; = argminkep f(x) (Lemma 12).

Hence, Hd,ri || is a natural quantity to use for bounding primal gaps without any dependence on
geometric constants like those used in other CG variants. We show that multiple shadow steps
approximate a single projected gradient descent step (Theorem 3). The rate of linear convergence
using shadow steps is dependent on number of facets (independent of geometric constants but
dimension dependent due to number of facets), and interpolate smoothly between projected
gradient and conditional gradient methods (Theorem 6).

(ii) FW Steps (v, —x;): Projected gradient steps provide a contraction in the objective independent of
the geometric constants or facets of the polytope; they are also able to “wrap” around the polytope
by taking unconstrained gradient steps and then projecting. Under mild technical conditions (of
uniqueness of v;), the Frank-Wolfe vertices are in fact the projection of an infinite descent in
the negative gradient direction (Theorem 4). This allows the CG methods to wrap around the
polytope maximally, compared to PGD methods, thereby giving FW steps a new perspective.

(iii) Away Steps (x; — a;): Shadow steps are the best normalized away-direction in the following
sense: let F' be the minimal face containing the current iterate x; (similar to [16, 3]); then,
Xt — fyd,r([t € conv(F) (i.e., the backward extension from x; in the shadow direction), and the

resultant direction (dEt) is indeed the most aligned with —V f(x;) (Lemma 3). Shadow-steps
are, however, in general convex combinations of potential active vertices minus the current iterate
(Lemma 4) and therefore loose combinatorial properties such as dimension drop in active sets.
They can bounce off faces (and add facets back) unlike away-steps that use vertices and have a
monotone decrease in dimension when they are consecutive (see Figure 1 (right)).

(iv) Pairwise Steps (v; — a;): The progress in CG variants is bounded crucially using the inner
product of the descent direction with the negative gradient. In this sense, pairwise steps are simply
the sum of the FW step and away directions, and a simple algorithm that uses these steps only
does converge linearly (with geometric constants) [10, 3]. Moreover, for feasibility of the descent
direction, one requires a; to be in an active set (shown in [3], and Lemma 13, Appendix C.4).

3Eccentricity = D/§, where D and § are the diameter and pyramidal width of the domain respectively [10].



Armed with these structural properties, we consider a descent algorithm SHADOW-WALK: trace the
projections curve by moving in the shadow (or in-face directional derivative) with respect to a fixed
iterate until sufficient progress, then update the shadow based on the current iterate. Using properties
of normal cones, we can show that once the projections curve at a fixed iterate leaves a face, it can
never visit the face again (Theorem 8). We are thus able to break a single PGD step into descent
steps, and show linear convergence with rate dependent on the number of facets, but independent
of geometric constants like the pyramidal width. Finally, we combine these insights into a novel
SHADOW-CG method which uses FW steps (i.e., wrap around the polytope) and shadow steps (i.e.,
optimal local descent direction), while enjoying linear convergence. This method prioritizes FW
steps that achieve maximal “coarse” progress in earlier iterations and shadow steps avoid zig-zagging
in the latter iterations. Garber and Meshi [16] and Bashiri and Zhang [3] both compute the best away
vertex in the minimal face containing the current iterate, whereas the shadow step recovers the best
convex combination of such vertices aligned with the negative gradient. Therefore, these previously
mentioned CG methods can both be viewed as approximations of SHADOW-CG. Moreover, Garber
and Hazan [15] emulate a shadow computation by constraining the FW vertex to a ball around the
current iterate. Therefore, their algorithm can be interpreted as an approximation of SHADOW-WALK.

Outline We next review preliminaries in Section 2. In Section 3, we derive theoretical properties of
the directional derivative and the piecewise-linear curve parameterized by projections. This allows us
to dig deeper into properties of descent directions in Section 4. We defer equivalence of continuous
time dynamics for movement along the shadow and PGD, as well as SHADOW-WALK algorithm to
Section D in the appendix. We next propose a novel SHADOW-CG algorithm that combines FW and
shadow steps to obtain linear convergence in Section 6. Finally, preliminary experiments demonstrate
that SHADOW-CG outperforms classical and state of the art methods, when assuming oracle access
to the shadow. Without oracle access, it interpolates lower iteration count than CG variants (i.e., close
to PGD) and higher speed than PGD (i.e., close to CG), thus obtaining the best of both worlds.

2 Preliminaries
Let || - || denote the Euclidean norm. Denote [m] = {1, ..., m} and let P be defined in the form
P={xeR":(a;,x)<b;Vie[m|} “4)

We use vert(P) to denote the vertices of P. A function f : D — R (for D C R™ and P C D) is said
to be L—smooth if f(y) < f(x) + (Vf(x),y — x) + éHy — x||? for all x,y € D. Furthermore,
[+ D — Ris said to be p—strongly-convex if f(y) > f(x) + (Vf(x),y —x) + &y — x||* for
allx,y € D. Let D := supy y¢p ||x — y|| be the diameter of P and x* = arg minyep f(x), where
uniqueness follows from the strong convexity of the f. For any x € P, let I(x) = {i € [m] :
(a;,x) = b;} be the index set of active constraints at x. Similarly, let J(x) be the index set of
inactive constraints at x. Denote by A I(x) = [a;]ic I(x) the sub-matrix of active constraints at x and
brx) = [bi]ic I(x) the corresponding right-hand side. The normal cone at a point x € P is defined as

Np(x)={yeR":{y,z—x)<0Vze P} ={yeR":3u:y= (A[(x))Tp,, w >0} (5)

which is essentially the the cone of the normals of constraints tight at x. Let IIp(y) =
argmin, . p %Hx — y||? be the Euclidean projection operator. Using first-order optimality,

(y—%x2z—-%x)<0 Vze P < (y—x)€ Np(x), (6)

which implies that x = IIp(y) if and only if (y — x) € Np(x), i.e., moving any closer to y from
x will violate feasibility in P. Finally, it is well known that the Euclidean projection operator over
convex sets is non-expansive (see for example [23]): | IIp(y) —IIp(x)|| < ||y —x]| forall x,y € R™.
Given any point x € P and w € R", let the directional derivative of w at x be:
IMp(x —ew) — x

d(w) := lim
el0 €

(7

When w = V f(x), then we call dI(V f(x)) the shadow of the gradient at x, and use notation d.!
for brevity. In [24], Tapia et. al show that d; is the projection of —V f(x) onto the tangent cone at x
(i.e. the set of feasible directions at x), that is d}} = argming{|| — Vf(x) — d[|* : Aj)d < 0},
where the uniqueness of the solution follows from strong convexity of the objective. Further, let

QL(V f(x)) = arg ming (|| - V£(x) |2 : Asped = 0} = (I Al As)(~V(x)) be the
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projection of —V f(x) onto the minimal face of x, where I € R™*" is the identity matrix, and A (%)

is the Moore-Penrose inverse of A () (see Section 5.13 in [25] for example).

We assume access to (i) a linear optimization (LO) oracle where we can compute v =
argmin, . p (c,x) for any ¢ € R", (ii) a shadow oracle: given any x € P we can compute
dE, and (iii) line-search oracle: given any x € P and direction d € R", we can evaluate

maX = max{d : x +dd € P}. This helps us focus on properties of descent directions and
studying their necessity for linear convergence.

3 Structure of the Parametric Projections Curve

In this section, we characterize properties of the directional derivative at any x € P and the structure
of the parametric projections curve gx w(A) = IIp(x — Aw), for A € R, under Euclidean projections.
For brevity, we use ¢(-) when x and w are clear from context. The following theorem summarizes
our results on characterization and is crucial to our analysis of descent directions:

Theorem 1 (Structure of Parametric Projection Curve). Let P C R"™ be a polytope, with m facet
inequalities (e.g., as in (4)). For any xg € P,w € R", let g(\) = IIp(xg — Aw) be the projections
curve at xg with respect to w parametrized by A € R. Then, this curve is piecewise linear starting
at xg: there exist k breakpoints x1,Xa, ..., X, € P, corresponding to projections with \ equal to
0:)\6§/\3<)\f§)\1+<)\5 S)\;r...<)\,; S)\;r,where

(@) \] :==min{\ > 0| g(A\) = x;}, and \] := max{\ > 0| g(\) = x;}, fori > 0,

(b) g(\) =x;_1 + ;‘(;__);‘ill A= X" ) for X € [NF |, A\ | foralli > 1.

Moreover, we show the following properties for each i > 1, and all \, \' € (/\j'_l, AD):

(i) Potentially drop tight constraints on leaving breakpoints: Np(x;—1) = Np(g(A\[,)) 2
Np(g(\)) fori > 1. Moreover, if \,__; < X}, then the containment is strict.
(ii) Constant normal cone between breakpoints: Np(g(\)) = Np(g(\')),
(iii) Potentially add tight constraints on reaching breakpoint: Np(g(\)) € Np(g(A;)) = Np(x;).
Further, the following properties also hold:

(iv) Equivalence of constant normal cones with linearity: If Np(g(\)) = Np(g(X\)) for some
A < XN, then the curve between g(\) and g(XN') is linear (Lemma 2).

(v) Bound on breakpoints: The number of breakpoints of g(-) is at most the number of faces of the
polytope (Theorem 8, Appendix B.5).

(vi) Limit of g(-): The end point of the curve g(\) is imy_,oc g(A) = X, € argmin, . p (x, w). In
fact, xj, minimizes ||y — Xo|| over y € arg min,p (x, w) (Theorem 4, Section 4).

To show the above theorem, we need to develop the properties of the projection curve. Even though
our results hold for any w € R™, we will prove the statements for w = V f(x¢) for readability in the
context of the paper, in Appendix B. We first show that if the direction w is in the normal cone at the
starting point, then the parametric curve reduces to a single point x.

Lemma 1. If —V f(x¢) € Np(x¢), then g(\) = IIp(xg — AV f(%0)) = x¢ forall X € R.

This means, in the notation of Theorem 1, )\3' is either infinity (when w € Np(xg)) or it is zero. In
the former case, Theorem 1 hold trivially with g(\) = xq for all A\ € R. We will therefore assume
henceforth that A = 0, without loss of generality. We next prove property (iv) of Theorem 1 about
equivalence of constant normal cones with linearity of the parametric projections between two points.

Lemma 2 (Linearity of projections). Let P C R"™ be a polytope defined using m facet inequalities
(e.g., asin (4)). Let xg € P and we are given V f(xg) € R™. Let g(\) = Up(xg — AV f(x0)) be
the parametric projections curve. Then, if Np(g(\)) = Np(g(X')) for some X\ < N, then the curve
between g(\) and g(X') is linear, i.e., g(6N + (1 — 6)N') = dg(A) + (1 — §)g(N'), where 6 € [0, 1].

We next show that the normal cones do not change in the strict neighborhood of xg, i.e., there exists
a ball B(xq, 0) around xg of radius 6 > 0 such that the normal cone Np(g(\)) = Np(g(\')) for all
g(A), g(N) € B(x0,0) \ {X0}. Using Lemma 2, we get that the first piece of g()) is linear until the
normal cone changes. Moreover, some inequalities tight at xy might become inactive for A > 0:



Theorem 2. Let P C R"™ be a polytope defined using m facet inequalities (e.g., as in (4)). Let
Xo € P and we are given V f(xg) € R™. Let g(A\) = Ip(xo — AV f(x0)) be the parametric
projections curve. Let A7 = max{\ | xo + AdL € P} be finite and let x; = g(\] ). We claim that
(i) Np(g(A)) = Np(g(\)) C Np(xo),forall() <A< N <[, and
(ii) Np(x1) = Np(g(A7)) D Np(g(X)), forall X € (0,A]).
Moreover, the projections curve is given by g(A\) = xo + )\de, Sforall A\ € [0, A\]].
The proof of the above theorem uses the first-order optimality of projections given in (6) and the
structure of normal cones for polytopes (5). Theorem 2 characterizes the first linear piece in the

parametric projections trajectory. This means that the direction d = (x; — x¢)/A; is the directional
derivative at xq, since by definition of the directional derivative at xg, we get:
H xg— eV f(xg)) —x .
dl_I =1 p(xo f(x0)) 0 = lim —
ew € €l0 € /\1

g(€) —xo _ X1 —Xo

. (®)

where the limit exists since g(A) forms a line on the interval A € [0, A7) (and hence is a continuous
function on that interval).* This theorem also gives a way of computing the directional derivative d.!
using a single projection (when we know the breakpoint A;).

We now show that g(\) = IIp(xo — AV f(xg)) can be constructed for all A > 0 iteratively as follows:

given a breakpoint x;_1, the next segment and breakpoint x; of the curve can be obtained (a) by either

projecting V f(x¢) onto the minimal face of x;_; (i.e., in-face movement, using a linear program,

(see Appendix B.5 for more details)); or (b) by projecting V f (x¢) onto the tangent cone at x;_1, and

computing this using line search in the directional derivative at x,;_; with respect to V f(xg)). This

proves Theorem 1 (i), (ii), and (iii) by induction.

Theorem 3 (Tracing the projections curve). Let P C R™ be a polytope defined using m facet

inequalities (e.g., as in (4)). Let x,_1 € P be the ith breakpoint in the projections curve g(\) =

p(xo — AV f(x0)), with x;—1 = Xq for i = 1. Suppose we are given \;_;,\j | € R so that

they are respectively the minimum and the maximum step-sizes \ such that g(\) = x;_1. Let

Ai—1 :=sup{A | Np(g (X)) Np(xi—1) VA" € [A\;_1, A)}. Then, we show that:

LIfA7, < Af |, then \f 1—/\Z 1. Otherwise, \;_; = A} 1<)\1 1.

2. Linearity of the curve between g(\;_,) and g(Ai_1): i.e., (A, + (1 — 8)Ai_1) = dg(Mi_1) +
(1= 8)g(Ai_1), where & € [0,1). In particular, g(\) = x;_1 for all A € [\, A\,

3.1 (Vf(x0)) =0, then limy_ o0 g(X) = Xi_1 is the end point of the projections curve g(\).

4. Otherwise dH (Vf(x0)) # 0, we get )\;"_1 < A1 < 00 (from (1)). We then claim:

(a) In-face movements: If Nio1 > )\l 1» then the next breakpoint in the curve occurs by walk-
ing in-face up to Ni_1, ie, X; = g()\i,l) = X;_1 + (5\ 1= AL )dxl (Vf(x0)) and

A7 = \i_1. Moreover, Np(x;_1) C Np(g(Ai_1)), with strict containment only when

the maximum movement along in-face direction takes place, i.e., Nil1 = )\z 1 + max{0 :
X;—1 + 5dH (Vf(Xo)) S P} )
(b) Shadow movements Otherwise if \;_1 = /\ 1, then the movement is in the shadow direction,
ie, x; == g(A7) = x;—1 + (A; — A )AY (Vf(xo)) where A := A | + max{J :
xi—1 +0dy,_ (Vf(xo)) € P}
In particular, the prOJecnons curve is linear between )\+ 1 and X} . Further, we show that properties

(i), (ii) and (iii) in Theorem 1 hold for their respective normal conesfor NN e ()\:r_l, A; ), where
the containments in (i) and (iii) are strict for case (b).

Assuming oracle access to compute di} (w) and Ni_1 for any x € P, Theorem 3 gives a constructive
method for tracing the whole piecewise linear curve of gx w(-). We include this as an algorithm,
TRACE(x, w) and discuss more details on its implementation in Appendix B.5. We defer the proof
on the number of breakpoints (Theorem 1 (v)) in the parametric projections curve to Appendix B.5
(Theorem 8), which crucially uses Lemma 2. Using Theorem 1, it is easy to see that multiple line
searches in shadow directions with respect to x are equivalent to computing a single projected
gradient descent step from x. This will be useful in our analysis of SHADOW-CG in Section 6.

“This gives a different proof for existence of d for polytopes, compared to Tapia et. al [24].



4 Descent Directions

Having characterized the properties of the parametric projections curve, we highlight connections
with descent directions in conditional gradient variants. We first claim that the shadow is the best
local feasible direction of descent in the following sense - it has the highest inner product with the
negative gradient at x compared to any other normalized feasible direction (proof in Appendix C.1):

Lemma 3 (Local Optimality of Shadow Steps). Let P be a polytope defined as in (4) and let x € P
with gradient V f (x). Let'y be any feasible direction at x, i.e., 3y > 0 s.t. x + vy € P. Then

<Vf(X) dn> — al? > <d“ y>2 > <Vf(><) y>2. ©)
] <2 (G gyy) 2 Tyl

The above lemma will be useful in convergence proof for our novel SHADOW-CG method (Theorem
7). We also show that the shadow steps give a true estimate of convergence to optimal®, in the
sense that ||d}. || = 0 if and only if x; = arg minyep f(x) (Lemma 12). On the other hand, note
that ||V f(x;)|| does not satisfy this property and can be strictly positive at the constrained optimal
solution [12]. We next show that the end point of the projections curve is in fact the FW vertex under
mild technical conditions. FW vertices are therefore able to wrap around the polytope maximally
compared to any projected gradient method and serve as an anchor point in the projections curve.

Theorem 4 (Optimism in Frank-Wolfe Vertices). Let P C R" be a polytope and let x € P. Let
g(\) = p(x — AV f(x)) for A\ > 0. Then, the end point of this curve is: limy_,o, g(\) = v* =
argmin, . [|x — v||?, where F = argmin, . p (Vf(x),V), i.e., the face of P that minimizes the
gradient V f(x). In particular, if F' is a vertex, then limy_,o, g(\) = v* is the Frank-Wolfe vertex.

To give a quick proof sketch, using the proximal definition of the projection (see e.g., [23]) we have:

x — 12
) = argminx ~ A1) 17} = angmin { £+ (V1 Go.y -0 + P2 Y
yeP yeP

Assuming that the FW vertex arg ming p{(V f(x),y)} is unique and we show that one can inter-
change the limit and arg min operator, we get lim_, », g(\) = arg mingc p{ f(x) +(Vf(x),y — x),
thus recovering the FW vertex. The complete analysis is technical and included in Appendix C.3.

Next, we show that the shadow-steps also give the best away direction emanating from away-vertices
in the minimal face at any x € P (which is precisely the set of possible away vertices (see Appendix
C.4)), using Lemma 3 and the following result:

Lemma 4 (Away-Steps). Let P be a polytope defined as in (4) and fixx € P. Let F = {z € P :
A (x)z = by(x)} be the minimal face containing x. Further, choose dmayx = max{d : X — sdll e P}
and consider the maximal backward away point ax = x — 5maxd}}. Then, ay lies in F' and the
corresponding away-direction is simply X — ax = Omaxdy.

Lemma 4 states that the backward extension from x in the shadow direction, ay, lies in the convex
hull of A := {v € vert(P) N F'}. The set A is precisely the set of all possible away vertices (see
Appendix C.4). Thus, the shadow gives the best direction of descent emanating from the convex hull
of all possible away-vertices. We include a proof of this lemma in Appendix C.4.

5 Shadow-Walk and Continuous-time Dynamics

We established in the last section that the shadow of the negative gradient d,r(lt is indeed the best
“local" direction of descent (Lemma 3), and a true measure of primal gaps since convergence in HdEt I
implies optimality (Lemma 12). Having characterized the parametric projections curve, the natural
question is if a shadow-descent algorithm that walks along the directional derivative with respect to
negative gradient at iterate x; (using say line search), converge linearly? We start by answering that
question positively for continuous-time dynamics.

5.1 ODE for moving in the shadow of gradient

We now present the continuous-time dynamics for moving along the shadow of the gradient in the

polytope. Let X (¢) denote the continuous-time trajectory of our dynamics and X denote the time-

derivative of X (1), i.e., X (t) = 4 X (t). The continuous time dynamics of tracing the shadow are

Lemma 3 with y = x* — x can be used to estimate the primal gap: ||d%||? > 2u(f(x) — f(x*)) (see (63))



Algorithm 1 SHADOW-WALK Algorithm

Input: Polytope P C R", function f : P — R and initialization xog € P.
1: fort =0,....7 do
2: Update x¢41 := TRACE(x¢, V f(x¢)) . > trace projections curve
3: end for

Return: x741

Algorithm 2 Shadow Conditional Gradient (SHADOW-CG)

Input: Polytope P C R", function f : P — R, initialization xo € P and accuracy parameter €.
1: fort =0,....7 do

2: Let v; := argmingcp (Vf(x¢), v) and df¥ := v — x. >FW direction
3: if<—Vf(xt),de> < ¢ then return x; > primal gap is small enough
4: Compute the derivative of projection of the gradient d,{ﬂ

500 i (=Vf(xe), di, /A ) < (= VF(xe), diY)

6: d; :=di™ and x;11 := X + edy (¢ € [0,1]). >use line-search towards FW vertex
7: else d; := dY, and x;11 := TRACE(x¢, V f(x¢)) - > trace projection curve
8: end for

Return: xr41

simply X (t) = dg( 1> X(0) = xo € P. We show that those continuous time dynamics of movement

in the shadow, are equivalent to those of projected gradient descent (Theorem 9 in Appendix D).
Moreover, we also show the following convergence result of those dynamics (proof in Appendix D):

Theorem 5. Let P C R" be a polytope and suppose that f : P — R is differentiable and yi-strongly
convex over P. Consider the shadow dynamics X (t) = d?((t) with initial conditions X (0) = xq € P.

Then for each t > 0, we have X (t) € P. Moreover, the primal gap h(X (t)) := f(X(¢t)) — f(x*)
associated with the shadow dynamics decreases as: h(X (t)) < e=?Hth(x).

5.2 Shadow-Walk Method

Although the continuous-dynamics of moving along the shadow are the same as those of PGD and
achieve linear convergence, it is unclear how to discretize this continuous-time process and obtain a
linearly convergent algorithm. To ensure feasibility we may have arbitrarily small step-sizes, and
therefore, cannot show sufficient progress in such cases. This is a phenomenon similar to that in the
Away-Step and Pairwise CG variants, where the maximum step-size that one can take might not be
big enough to show sufficient progress. In [10], the authors overcome this problem by bounding the
number of such ‘bad’ steps using dimension reduction arguments crucially relying on the fact that
these algorithms maintain their iterates as a convex combination of vertices. However, unlike away-
steps in CG variants, we consider d,rcI as direction for descent, which is independent from the vertices
of P and thus eliminating the need to maintain active sets for the iterates of the algorithm. In general,
the shadow ODE might revisit a fixed facet a large number times (see Figure 1) with decreasing
step-sizes. This problem does not occur when discretizing PGD’s continuous time dynamics since we
can take unconstrained gradient steps and then the projections ensure feasibility.

Inspired by PGD’s discretization and the structure of the parametric projections curve, we propose a
SHADOW-WALK algorithm (Algorithm 1) with a slight twist: trace the projections curve by walking
along the shadow at an iterate x; using line search or the in-face condition, until the maximum step
size is not selected. To do this, we use the TRACE (Algorithm 3 in Appendix B.5) process to trace the
projections curve, which chains consecutive short descent steps until it ensures enough progress as a
single PGD step with fixed 1/L step size. One important property of TRACE is that it only requires
one gradient oracle call. Also, if we know the smoothness constant L, then TRACE can be terminated
early once we have traced the projections curve until we reach the PGD step. This results in linear
convergence, as long as the number of steps by TRACE are bounded polynomially, i.e., the number
of “bad” boundary cases. Using fundamental properties of normal cones attained in the projections
curve, we are able bound these steps to be at most the number of faces of the polytope (Theorem 8):

Theorem 6. Let P C R™ be a polytope and suppose that f : P — R is L-smooth and -strongly
convex over P. Then the primal gap h(x;) := f(x:) — f(x*) of the SHADOW WALK algorithm
decreases geometrically: h(x,1) < (1 — £) h(x;) with each iteration of the SHADOW WALK

algorithm (assuming TRACE is a single step). Moreover, the number of oracle calls to shadow, in-face



=
o

H
2

—— DICG

—— Shadow Walk
Shadow CG
PGD

H
2

1074

log(fix;) — f(x*))
S
&
log(fix;) — f(x*))
log(f(x) — f(x*))

10-6 |

1074

o 10 20 30 40 50 60 0 20 40 60 80 100 0 2 a 6 3
Iteration Wall-clock time (s) Wall-clock time assuming shadow oracle (s)
Figure 2: Comparing the performance of away-step FW (AFW) [10], pairwise FW (PFW) [10], decomposition-
invariant CG (DICG) [16], SHADOW-WALK (Alg. 1), and SHADOW-CG (Alg. 2). Left plot compares iteration
count, middle plot compares wall-clock time (including shadow computation and line search), right plot compares
wall-clock time assuming oracle access to shadow. The right plot does not include PGD for a fair comparison.

direction and line-search oracles to obtain an e-accurate solution is O (6 % log(%) , where 3 is the
maximum number of breakpoints of the parametric projections curve that the TRACE method visits.

This result is the key interpolation between PGD and CGD methods, attaining geometric constant
independent rates. Comparing this convergence rate with the one in Theorem 5, we see that we pay
for discretization of the ODE with the constants L and . Although the constant 5 depends on the
number of facets m and in fact the combinatorial structure of the face-lattice of the polytope, it is
invariant under any deformations of the actual geometry of the polytope preserving the face-lattice
(in contrast to vertex-facet distance and pyramidal width); See for example Figure 4’s discussion in
Appendix D. Although we show 8 < O(2™), we believe that it can be much smaller (i.e., O(nm))
for structured polytopes. Moreover, computationally we see much fewer oracles than O(2™).

6 Shadow Conditional Gradient Method

Using our insights on descent directions, we propose the SHADOW-CG algorithm (Algorithm 2),
which uses Frank-Wolfe steps earlier in the algorithm, and uses shadow steps more frequently towards
the end of the algorithm. Frank-Wolfe steps allow us to greedily skip a lot of facets by wrapping
maximally over the polytope (Lemma 4). Shadow steps operate as “optimal" away-steps (Lemma
4) thus reducing zig-zagging phenomenon [10] close to the optimal solution. As the algorithm
progresses, one can expect Frank-Wolfe directions to become close to orthogonal to negative gradient.
However, in this case the norm of the shadow also starts diminishing. Therefore, we choose FW
direction whenever (—V f(x;),dfV) > (=V f(x;),d}. /||[d.||) = [|d%, ||, and shadow direction
otherwise. This is sufficient to give us linear convergence (proof in Appendix E):

Theorem 7. Let P C R™ be a polytope with diameter D and suppose that f : P — R is L-smooth
and p-strongly convex over P. Then, the primal gap h(x;) = f(x¢) — f(x*) of SHADOW-CG
decreases geometrically: h(xyi1) < (1 — £553) h(x), with each iteration of the SHADOW-CG
algorithm (assuming TRACE is a single step). Moreover, the number of shadow, in-face directions

and line oracle calls for an e-accurate solution is O ((D2 + ﬂ)l% log(%)), where (3 is the number of

breakpoints of the parametric projections curve that the TRACE method visits.

The theoretical bound on iteration complexity for a given fixed accuracy is better for SHADOW-WALK
compared to SHADOW-CG. However, the computational complexity for SHADOW-CG is better since
FW steps are cheaper to compute compared to the shadow and we can avoid the potentially expensive
computation via the TRACE-routine. This is also observed in the experiments next (and Appendix F).

7 Computations

We consider the video co-localization problem from computer vision, where the goal is to track an
object across different video frames. We used the YouTube-Objects dataset [10] and the problem
formulation of Joulin et. al [5]. This consists of minimizing a quadratic function f(x) = %XTAX =+

bTx, where x € RY, A ¢ RO60x660 and b € RO, over a flow polytope, the convex hull of
paths in a network. For preliminary computations, we utilize an approximate TRACE procedure
that excludes the in-face trace steps (algorithm 7 in Appendix F). We observe that SHADOW-CG
has lower iteration count than CG variants (slightly higher than PGD), while also improving on
wall-clock time compared to PGD (i.e., close to CG) without assuming any oracle access. Moreover,
when assuming access to shadow oracle, SHADOW-CG outperforms the CG variants both in iteration
count and wall-clock time. Finally, we observe that the number of iterations spent in TRACE is much
smaller (bounded by 10 for SHADOW-WALK and by 4 for Shadow-CG) than the number of faces of
the polytope. SHADOW CG spends much fewer iterations in TRACE than SHADOW-WALK due to
the addition of FW steps. We refer the reader to Appendix F for additional computational results,
with qualitatively similar findings.
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