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Abstract

Optimization algorithms such as projected Newton’s method, FISTA, mirror de-
scent and its variants enjoy near-optimal regret bounds and convergence rates, but
suffer from a computational bottleneck of computing “projections” in potentially
each iteration (e.g., O(T 1/ 2) regret of online mirror descent) [1, 2, 3, 4]. On the
other hand, conditional gradient variants solve a linear optimization in each iter-
ation, but result in suboptimal rates (e.g., O(T%/3) regret of online Frank-Wolfe)
[, 6, 7]. Motivated by this trade-off in runtime v/s convergence rates, we consider
iterative projections of close-by points over widely-prevalent submodular base
polytopes B(f). We develop a toolkit to speed up the computation of projections
using both discrete and continuous perspectives (e.g., [8, 9, 10]). We subsequently
adapt the away-step Frank-Wolfe algorithm to use this information and enable
early termination. For the special case of cardinality based submodular polytopes,
we improve the runtime of computing certain Bregman projections by a factor
of Q(n/log(n)). Our theoretical results show orders of magnitude reduction in
runtime in preliminary computational experiments.

1 Introduction

Though the theory of discrete and continuous optimization methods has evolved independently over
the last many years, machine learning applications have often brought the two regimes together to
solve structured problems such as combinatorial online learning over rankings and permutations
[11, 12, 13, 14], shortest-paths [15] and trees [16, 17], regularized structured regression [5], MAP
inference, document summarization [18] (and references therein). One of the most prevalent forms of
constrained optimization in machine learning is the use of iterative optimization methods such as
online stochastic gradient descent, mirror descent variants, projected Newton’s method, conditional
gradient descent variants, fast iterative shrinkage-thresholding algorithm (FISTA). These methods
repeatedly compute two main subproblems: either a projection (i.e., a convex minimization) or a
linear optimization in each iteration. The former class of algorithms is known as projection-based
optimization methods (e.g., projected Newton’s method, see Table 1), and they enjoy near-optimal
regret bounds in online optimization and near-optimal convergence rates in convex optimization
compared to projection-free methods. These projection-based methods however suffer form high
computational complexity per iteration due to the projection subproblem [1, 2, 19, 20, 4, 21]. E.g.,
online mirror descent is near-optimal in terms of regret (i.e., O(+/T)) for most online learning
problems, however it is computationally restrictive for large scale problems [3]. On the other hand,
online Frank-Wolfe is computationally efficient, but has a suboptimal regret of O(TQ/ 3 171.
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[ Algorithm | Subproblem solved | Steps for e-error |
Vanilla Frank-Wolfe [5] LO over polytope (0] (LTDQ)
Away-steps Frank-Wolfe [6] LO over polytope and active sets (0] (/-c (%)2 log %)
*Projected gradient descent [24] Euclidean projection over polytope O (klog 1)
*Mirror descent (MD) [25] Bregman Projection 0] (nuz log %)
*Projected Newton’s method [24] Euclidean projection over polytope | O ( (xB)%1og 1)

scaled by (approximate) Hessian
*Accelerated Proximal Gradient [26] Euclidean projection over polytope 0] (\/E log l)
*Fast Iterative Shrinkage-Thresholding Al- | Euclidean projection over polytope (0] (\/E log %)
gorithm (FISTA) [27]

Table 1: Some iterative optimization algorithms which solve a linear or convex optimization problem in each
iteration. Here, x := L/ is the condition number of the main optimization, v is condition number of the mirror
map used in MD, D is the diameter of the domain, ¢ is the pyramidal width, 3 > 1 measures on how well the
Hessian is approximated. Starred algorithms have dimension independent optimal convergence rates.

Discrete optimizers, in parallel, have developed beautiful characterizations of properties of convex
minimizers over combinatorial polytopes, which typically results in non-iterative exact algorithms
(upto solution of a univariate equation) for such polytopes. This theory however has not been properly
integrated within the iterative optimization framework. Each subproblem within the above-mentioned
iterative methods is typically solved from scratch, using a black-box subroutine, leaving a significant
opportunity to speed-up “perturbed” subproblems using combinatorial structure. Motivated by these
trade-offs in convergence guarantees and computational complexity, we ask if:

Is it possible to speed up iterative subproblems of computing projections over combinatorial
polytopes by reusing structural information from previous minimizers?

This question becomes important in settings where the rate of convergence is more impactful than
the time for computation, for e.g., regret impacts revenue for online retail platforms. However, the
computational cost of solving a non-trivial projection sub-problem from scratch every iteration is
the reason why these methods have remained of “theoretical” nature. We investigate if one can
speed up iterative projections by reusing combinatorial information from past projections. Our
techniques apply to iterative online and offline optimization methods such as Projected Newton’s
Method, Accelerated Proximal Gradient, FISTA, and mirror descent variants.

To give an example setup of our iterative framework, we consider the overarching optimization
problem of minimizing a convex function i : P — R™ over a constrained set P C R" be (P1),
which we wish to solve using a regularized optimization method such as mirror descent and its
variants. Typically, in such methods, iterates z; are obtained by taking an unconstrained gradient step,
followed by a projection onto P. We will refer to a subproblem of computing a single projection as
(P2). Note that (P1) can be replaced by an online optimization problem as well, and similarly the
iterative method to solve (P1) can be any one of those in Table 1.

: 1. t — Lt — ch T
(P1) min h(z) } Y Ve Vh(zi-1)

(P1) can be solved iteratively .
subject toxr eP using, e.g., mirror descent: 2. Ty = arg min D¢, (Z, yt) (PZ)
z€P

To solve (P2), we will typically aim for convex and discrete methods that can obtain arbitrary accuracy,
to be able to bound errors in (P1). We will refer to iterates in (P1) as z1, o, . .. x4, and if (P2) is
solved using an iterative method like Away-step Frank-Wolfe [22, 23], we will refer to those iterates
as 201, ..., 2(%) (depicted in Figure 1 (left, middle)). Our goal is to speed up the computation of z;
by using the combinatorial structure of x1,...,2;—1, 20 2y Ly, To the best of our
knowledge, we are the first to consider using the structure of previously projected points.

To capture a broad class of interesting combinatorial polytopes, we focus on submodular base
polytopes. Submodularity is a discrete analogue of convexity, and captures the notion of diminishing
returns. Submodular polytopes have been used in a wide variety of online and machine learning
applications (see Table 2 in appendix). A typical example is when B(f) is permutahedron, a
polytope whose vertices are the permutations of {1, ...,n}, and is used for learning over rankings.
Other machine learning applications include learning over spanning trees to reduce communication
delays in networks, [12]), permutations to model scheduling delays [13], and k-sets for principal
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Figure 1: Left: (P1) represents an iterative optimization algorithm that computes projections z; for points y;
in every iteration (see Table 1). Middle: (P2) represents subproblem of computing a single projection of y
using an iterative method with easier subproblems, e.g., away-step Frank-Wolfe where 2 are iterates during a
single run of AFW and converge to projection x; (of y.). The goal is speed up the subproblems using both past
projections 1, ..., x:—1, as well as iterates PO Right: We show how to detect tight sets S1 and .S
for close-by points by looking at the maximum error in VA(z:) (tools INFER1, INFER2).

component analysis [28], background subtraction in video processing and topographic dictionary
learning [29], and structured sparse PCA [30]. Other example applications of convex minimization
over submodular polytopes include computation of densest subgraphs [31], bounds on the partition
function of log-submodular distributions [32] and distributed routing [33].

Though (Bregman) projections can be computed efficiently in closed form for certain simple polytopes
(such as the n-dimensional simplex), the submodular base polytopes pose a unique challenge since
they are defined using 2" linear inequalities [34], and there exist instances with exponential extension
complexity as well [35] (i.e., there exists no extended formulation with polynomial number of
constraints for some submodular polytopes). Existing combinatorial algorithms for minimizing
separable convex functions over base polytopes typically require iterative submodular function
minimizations (SFM) [9, 8, 14], which are quite expensive in practice [36, 37]. However, these
combinatorial methods highlight important structure in convex minimizers which can be exploited to
speed up the continuous optimization methods.

In this paper, we bridge discrete and continuous optimization insights to speed up projections over
submodular polytopes as follows:

(1) Bregman Projections over cardinality-based polytopes: We first show that the results of Lim
and Wright [38] extend to all cardinality-based submodular polytopes (where f(S) = g(|S])
for some concave function g) to give an O(n log n)-time algorithm for computing a Bregman
projection, improving the current best-known O(n log n + n?) algorithm [14], in Section 3. These
are exact algorithms (up to the solution of a univariate equation), compared to iterative continuous
optimization methods.

(ii) Toolkit for Exploiting Combinatorial Structure: We next develop a toolkit (tools T1-T6) of
provable ways for detecting tight inequalities, reusing active sets, restrict to optimal inequalities
and rounding approximate projections to enable early termination:

(a) INFER: We first show that for “close” points y, § where the projection Z of § on B(f) is
known, we can infer some tight sets for = using the structure of & without explicitly computing
z (T1). Further, suppose that we use a convergent iterative optimization method to solve the
projection subproblem (P2) for 4, to compute z;, then given any iterate z(*) in such a method,
we know that ||2(*) — z,|| < ¢, is bounded for strongly convex functions. Using this, we show
how to infer some tight sets (provably) for x; for small enough €; (T2), in Section 4.1.

(b) REUSE: Suppose we compute the projection Z of § on B(f) using AFW, and obtain an active
set of vertices A for Z. Our next tool (T3) gives conditions under which A is also an active set
for . Thus, = can be computed by projecting y onto Conv(A) instead of B(f) in Section 4.2.

(c) RESTRICT: While solving the subproblem (P2), we show that discovered tight inequalities
for the optimum solution can be incorporated into the linear optimization (LO) oracle over
submodular polytopes, in Section 4.2. We modify Edmonds’ greedy algorithm to do LO over
any lower dimensional face of the submodular base polytope, while maintaining its efficient
O(nlogn) running time. Note that in general, while there may exist efficient algorithms to do
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Figure 2: Toolkit to Speed Up Projections: INFER1 (T1) uses previously projected points to infer tight sets
defining the optimal face of x; and is formally described by Theorem 3 (see also Figure 1-Right). On the other
hand, INFER2 (T2) uses the closeness of iterates z(*) of an algorithm solving the projection subproblems (e.g.
AFW) to the optimal ¢, to find more tight sets at z; (than those found by (T1) (Lemma 4). REUSE (T3) uses
active sets of previous projections computed using AFW (Lemma 1).

LO over the entire polytope (e.g. shortest-paths polytope), restricting to lower dimensional
faces may not be trivial.

(d) RELAX and ROUND: We give two approaches for rounding an approximate projection to an
exact one in Section 4.3, which helps terminate iterative algorithms early. The first method
uses INFER to iteratively finds tight sets at projection z, and then checks if we have found all
such tight sets defining the optimal face by projecting onto the affine space of tight inequalities.
If the affine projection x is feasible in the base polytope, then this is optimal projection. The
second rounding tool is algebraic in nature, and applicable only to base polytopes of integral
submodular functions. It only requires a guarantee that the approximate projection be within a
(Euclidean) distance of 1/(2n?) to the optimal for Euclidean projections.

(iii) Adaptive Away-Step Frank-Wolfe (A2FW): We combine the above-mentioned tools to give a novel
adaptive away-step Frank-Wolfe variant in Section 5. We first use INFER (T1) to detect tight
inequalities using past projections of x;_;. Next, we start away-step FW to compute projection x;
in iteration ¢ by REUSING the optimal active set from computation of ;. During the course of
A%FW, we INFER tight inequalities iteratively using distance of iterates z(*) from optimal (T2).
To adapt to discovered tight inequalities, we use the modified greedy oracle (T4). We check in
each iteration if RELAX allows us to terminate early (TS). In case of Euclidean projections, we
also detect if rounding to lattice of feasible points is possible (T6). We finally show an order of
magnitude reduction in running time of online mirror descent by using A2FW as a subroutine for
computing projections in Section 5.1 and conclude with limitations in Section 5.2.

Although we show that our toolkit can help speed up iterative continuous optimization algorithms
like mirror descent, the tools are more general and can be used to speed up other combinatorial
algorithms like Groenvelt’s Decomposition algorithm, Fujishige’s minimum norm point, and Gupta et.
al’s Inc-Fix [39, 9, 14]. A special case of our rounding approach is used within the Fujishige-Wolfe
minimum norm point algorithm to find approximate submodular function minimizers [40, 41].

Minimizing separable convex functions over submodular base polytopes was first studied by Fujishige
[10] in 1980, followed by a series of results by Groenevelt [9], Hochbaum [42], and recently by
Nagano and Aihara [8], and Gupta et. al. [43]. Each of these approaches considers different problem
classes, but uses O(n) calls to either parametric submodular function or submodular function
minimization, with each computation discovering a tight set and reducing the subproblem size for
future iterations. Both subroutines, however, can be expensive in practice. Frank-Wolfe variants on
the other hand have attempted at incorporating geometry of the problem in various ways: restricting
FW vertices to norm balls [44, 45, 46], or restricting away vertices to best possible active sets [47],
or prioritizing in-face steps [48], or theoretical results such as [23] and [49] show that FW variants
must use active sets that containing the optimal solution after crossing a polytope dependent radius of
convergence. These results, however, do not use combinatorial properties of previous minimizers
or detect tight sets with provable guarantees and round to those. To the best of our knowledge,
we are the first to adapt away-step Frank-Wolfe to consider combinatorial structure from previous
projections, and accordingly obtain improvements over the basic AFW algorithm. Although our
A2FW algorithm is most effective for computing projections (since we can invoke all our toolkit for
projections, i.e.(T1-T6)), it is a standalone algorithm for convex optimization over base polytopes
that enables early termination with the exact optimal solution (compared to the basic AFW) via
rounding (T5) and improved convergence rates visa restricting (T4). This might be of independent
interest given the various applications mentioned above.
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2 Preliminaries

Consider a compact and convex set X C R", and let D C R” be a convex set such that X is included
in its closure. A mirror map ¢ : D — R is a strictly (or u- strongly) convex® and continuously
differentiable function over D, and satisfies additional properties of divergence of the gradient on the
boundary of D, i.e., lim,_,sp ||[VP(x)|| = oo (see [1, 20] for more details). We further assume that
the mirror map ¢ is uniformly separable: ¢ = " _ ¢. where ¢, : D. — R is the same function for all
e € E. We use || - || to denote the Euclidean norm unless otherwise stated. We say ¢ is L- smooth if
IVé(x) — Vé(z)|| < L||x — z|| for all 2, z € D. The Bregman divergence generated by a mirror
map ¢ is defined as Dy (x,y) := ¢(x) — ¢(y) — (Vé(y), z — y). For example, the Euclidean mirror
map is given by ¢ = %HxHQ, for D = R¥ and is 1-strongly convex with respect to the /5 norm. In
this case Dy(z,y) = 1|/ — yl|3 reduces to the Euclidean squared distance (see Table 3). We denote
the Fenchel-conjugate of the divergence by D}(z,y) = sup,cp{(2, ) — Dy (x,y)} for any 2 € D,
where D* is the dual space to D (in our case since D C R”, D* can also be identified with R™).

Submodularity and Convex Minimizers over Base Polytopes

Let f : 2 — R be a submodular function defined on a ground set of elements £ (|E| = n), i.e.
fA) + f(B) > f(AUB) + f(AN B) forall A,B C E. Assume without loss of generality
that () = 0, f(A) > 0 for A # ) and that f is monotone’. We denote by FO the time taken
to evaluate f on any set. For z € R¥, we use the shorthand z(S) for }___q z(e), and by both
z(e) and z, we mean the value of = on element e. Given such a submodular function f, the
polymatroid is defined as P(f) = {z € R¥ : z(S) < f(S)VS C E} and the base polytope as
B(f) ={z e R¥ : z(S) < f(S)VS C E, z(E) = f(E)} [51]. A typical example is when f is
the rank function of a matroid, and the corresponding base polytope corresponds to the convex hull
of its bases (see Table 2).

Consider a submodular function f : 2¥ — R with f()) = 0, and let ¢ € R™. Edmonds gave
the greedy algorithm to perform linear optimization max ¢’ = over submodular base polytopes for
monotone submodular functions. Order elements in £ = {e1, ..., e, } such that c(e;) > c(e;) for all
i < j.Define U; = {e1,...,e;}, and let z*(e;) = f(U;) — f(Uj—1). Then, z* = max,cp(s) c' <.
Further, we will use the following characterization of convex minimizers over base polytopes:

Theorem 1 (Theorem 4 in [14]). Consider any continuously differentiable and strictly convex function
h : D — R and submodular function f : 2F — R with f(0) = 0. Assume that B(f) N'D # (. For
any v* € R¥, let F\, Fy, ..., Fy be a partition of the ground set E such that (Vh(z*)). = c; for all
e € Iy and c; < ¢ fori <. Then x* = argmin,¢ (s h(x) if and only if x* lies on the face H* of
B(f)givenby H* :={zx € B(f) |z(FLUF>,U---UF;,)= f(FRUFRU---UF)V1<i<lI}

To see why this holds, note that the first-order optimal condition for convex optimization gives us
the following certificate * = arg min, ¢ g(s) h(z) & Vh(z*)T (2 —2* > 0Vz € B(f) & 2* €
argmin, ¢ p( s Vh(z*)T 2. The theorem then follows by applying Edmond’s greedy algorithm to

argmin, ¢ gy Vh(z*)T 2 to obtain the levels of the partial derivatives of z* as Fy, Fy, ... F},, which
form the optimal face H* of x*. For separable convex functions like Bregman divergences (in Table
3), we can thus compute z* by solving univariate equations in a single variable if the tight sets
Fy, ..., Fy of z* are known. We equivalently refer to corresponding inequalities z(F;) = f(F}) as
the optimal tight inequalities.

3 Bregman Projections over Cardinality-based Submodular Polytopes

We first improve the runtime of exact combinatorial algorithms for computing uniform Bregman
projections over cardinality-based submodular polytopes. The key observation that allows us to
do that is the following generalization of Lim and Wright’s result [38], which, to the best of our
knowledge is the first result to explicitly state the relation between Bregman projections on general
cardinality-based submodular polytopes and isotonic optimization:

*A differentiable function h is said to be strictly convex over domain D if h(y) > h(z) + (Vh(z),y — z)
for all z,y € D. Moreover, a differentiable function h is said to be u-strongly convex over domain D with
respect to a norm || - || if h(y) > h(z) + (Vh(z),y — z) + £|ly — z||* forall z,y € D.

¥ f is monotone if f(A) < f(B) YA C B C E. For any non-negative submodular function f, we can
consider a corresponding monotone submodular function f such that P(f) = P(f) (see Section 44.4 of [50]).
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Figure 3: Proposed Toolkit (contd): RESTRICT (T4) restricts the LO oracle in AFW to the lower dimensional
face defined by the tight sets found by (T1) and (T2) (Theorems 5, 6). Note that the restricted vertex w® gives
better progress than the orginal FW vertex v®_ RELAX (T5) enables early termination of algorithms solving
projection subproblems (e.g. AFW) as soon as all tight sets defining the optimal face are found (Theorem 2).
Finally, ROUND (T6) gives an integral rounding approach for special cases (Lemma 3).

Theorem 2 (Dual of projection is isotonic optimization). Let f : 2 — R be a cardinality-based
monotone submodular function, that is f(S) = g(|S|) function for some nondecreasing concave
Sunction g. Let ¢; :== g(i)—g(i—1) foralli € [E]. Let ¢ : D — R be a strictly convex and uniformly
seperable mirror map. Let B(f) N'D # () and consider any y € R™. Let {e1, ..., e,} be an ordering
of the ground set E such that yy > - - - > yp. Then, the following problems are primal-dual pairs

min Dy(z,y) py max — D(z,y) + 2Te

. (1)
subjectto x € B(f) subjectto zy < -+ < zp

Moreover, from a dual optimal solution z*, we can recover the optimal primal solution x*.

To prove this result, we derive the Fenchel dual problem (D) by using the structure of cardinality-
based polytopes, and restricting the minimizer to the optimal face (see Appendix C). Problem (D) in
(1) is in fact a separable isotonic optimization problem*, which highlights an interesting connection
between projections on cardinality-based polytopes [52, 53, 18]. In particular, when ¢(z) = %2,
the dual problem (D) in (1) becomes the following min.{1(z — (c — y)[? | 21 < -+ < 2z}
isotonic regression problem. Learning over projections is therefore dual to performing isotonic
regression for perturbed data sets. Using the same algorithm as Lim and Wright’s, i.e., the Pool
Adjacent Violators (PAV) [54], we can solve the dual problem (D) with a faster running time of
O(nlogn+nEO) compared to O(n?+nEO) of [43]. We include the details about the algorithm and
correctness in Appendix C. It is worth noting that linear optimization over B(f) also has a running
time of O(nlogn + nFEO) using Edmonds’ greedy algorithm [34]. Therefore, for cardinality-based
polytopes, when solving the projection sub-problem (P2), it is better to use a combinatorial algorithm
(e.g. PAV) than any iterative optimization method (e.g. FW). Note that any FW iteration needs to
sort the gradient vector (i.e., linear optimization over the base polytope) which is also O(n logn)
in runtime. For cardinality-based polytopes, therefore, projection-based methods to solve (P1) are
computationally competitive with conditional gradient methods.

4 Toolkit to Adapt to Previous Combinatorial Structure

In the previous section, we gave an O(n logn) exact algorithm for computing Bregman projections
over cardinality-based polytopes. However, the pool-adjacent-violator algorithm is very specific to
the cardinality-based polytopes and does not extend to general submodular polyhedra. To compute
a projection over the challenging submodular base polytope, there are currently only two potential
ways of doing so: (i) using Frank-Wolfe variants (due to simple linear sub-problems), (ii) using
combinatorial algorithms such as those of [9, 8] (which typically rely on submodular function
minimization for detecting tight sets). In this section, we construct a toolkit to speed up these
approaches, and consequently speed up iterative projections over general submodular polytopes.

4.1 INFER tight inequalities

We first present our INFER tool T1 that recovers some tight inequalities of projection of y by using
the tight inequalities of the projection of a close-by perturbed point y € R™. The motivation of this
result stems from the fact that projection-based optimization methods often move slowly, i.e., points

*A separable isotonic optimization problem is of the form min >0 hi(xi) subjecttox; < xo < -+ < ay,
where h; are univariate strictly convex functions



y, 9 to be projected are often close to each other, and so are their corresponding projections z, z. Our
first result is specifically for Euclidean projections.

Theorem 3 (Recovering tight sets from previous projections (T1)). Let f : 2¥ — R be a monotone
submodular function with f(0) = 0. Further, let y and § € RY be such that ||y — j|| < ¢, and z, %
be the Euclidean projections of y,§ on B(f) respectively. Let F, Fs, ..., Fy be a partition of the
ground set I such that x. — y. = c; forall e € F; and ¢; < ¢ fori <. If ;41 — ¢; > 4e for some
j € [k — 1), then the set S = Fy U - - - U F} is also a tight set for Z, i.e. £(S) = f(95).

Note that x, — y. is the partial derivative of the distance function from y at z. The proof shows that
fore € E, . — 9. is close to x. — y. and relies on the smoothness and non-expansivity of Euclidean
projection. This helps us infer that the relative order of coordinates in £ — ¥ (i.e., the coordinate-wise
partial derivatives) is close to the relative order of coordinates in z — y. This relative order then
determines tight sets for x, due to first-order optimality characterization of Theorem 1. See Appendix
D.2 for a complete proof, where we also generalize the theorem to any Bregman projection that is
L-smooth and non-expansive. In Section 5.1, we will show that this theorem infers most of the tight
inequalities computationally (see Figure 4-left).

Next, consider the subproblem (P2) of computing the projection x, of a point y,. Let z(*) be the
iterates in the subproblem that are convergent to ;. The points z(*) grow progressively closer to x;,
and our next tool INFER T2 helps us recover tight sets for z; using the gradients of points ().

Theorem 4 (Adaptively inferring the optimal face (T2)). Let f : 2¥ — R be monotone submodular
with (@) = 0, h : D — R be a strictly convex and L-smooth function, where B(f) N'D # (). Let

T := argmin,¢ gy h(2). Consider any z € B(f) such that ||z — z|| < €. Let F\,Fy, ..., Fybea

partition of the ground set E such that (Vh(z)). = & for all e € Fy and & < & fori < l. Suppose
Cjy1 — €j > 2Le for some j € [k — 1]. Then, S = F1 U --- U F} is tight for z, i.e. x(S) = f(S).

The proof of this theorem, similar to Theorem 3, relies on the L-smoothness of h to show that the
relative order of coordinates in Vh(x;) is close to the relative order of coordinates in Vh(z(¥)),
which helps infer some tight sets for . See Appendix D.2 for a complete proof and Figure 1-right for
an example. Note that while Theorem 3 is restricted to Euclidean projections, Theorem 4 applies to
any smooth strictly convex function.

4.2 ReUse and Restrict

We now consider computing a single projection (P2) using Frank-Wolfe variants, that have two main
advantages: (i) they maintain an active set for their iterates as a (sparse) convex combination of
vertices, (ii) they only solve LO every iteration. Our first REUSE tool gives conditions under which a
new projection has the same active set A as a point previously projected, which allows for a faster
projection onto the convex hull of A (proof is included in Appendix D.2).

Lemma 1 (Reusing active sets (T3)). Ler P C R" be a polytope with vertex set vert(P). Let x
be the Euclidean projection of some y € R™ on P. Let A = {v1,...,v5} C vert(P) be an active
set for @, i.e, v = 3 g Aivi for Al = 1 and X > 0. Let F be the minimal face of x and
A = min,epconv(A) [|T — v|| be the minimum distance between x and the boundary of Conv(A).
Then, A is also an active set for the Euclidean projection of any point § € B (y) N Cone(F'), where
Ba(y) ={g € R" | ||§g — y|| < min{A, ||z — y||}} is a closed ball centered at y.

In the previous section, we presented combinatorial tools to detect tight sets at the optimal solution.
We now use our RESTRICT tool to strengthen the LO oracle in FW by restricting it to the lower
dimensional faces defined by the tight sets we found (instead of doing LO over the whole polytope).
Note that doing linear optimization over lower dimensional faces of polytopes, in general, is signifi-
cantly harder (e.g., for shortest paths polytope). For submodular polytopes however, we show that
we can do LO over any face of B(f) efficiently using a modified greedy algorithm (Algorithm 2 in
Appendix B). Given a set of tight inequalities, one can uncross these to form a chain of tight sets, i.e.,
any face of B(f) can be written using a chain of subsets that are tight (see e.g. Section 44.6 in [55]).
Given such a chain, our modified greedy algorithm then orders the cost vector in decreasing order
so that it respects a given tight chain family of subsets. Once it has that ordering, it proceeds in the
same way as in Edmonds’ greedy algorithm [34]. We include a proof of the following theorem in
Appendix D.2.

Theorem 5 (Linear optimization over faces of B(f) (T4)). Let f : 2¥ — R be a monotone
submodular function with f(0) = 0. Further, let F = {x € B(f) | ©(S;) = f(S;) for S; € S} be a



face of B(f), where S = {S1,...Sk|S1 C S ... C Si}. Then the modified greedy algorithm (Alg.
2) returns x* = argmax, . (c, ) in O(nlogn + nEQ) time.

4.3 Rounding

Approximation errors in projection subproblems often impact (adversely) the convergence rate of the
overarching iterative method unless the errors decrease at a sufficient rate [56, 57]. Our goal in this
section is to detect if all tight sets at the optimum have been inferred, and enable early termination by
computing the exact minimizer. In 2020, [58] gave primal gap bounds after which away-step FW
reaches the optimal face, assuming strict complementarity assumption which need not hold even for
computing a Euclidean projection. Further, [59], showed that there exists some convergence radius R
such that for any iterate z(®) of AFW, if ||2(Y) — 2*|| < R, then any active set for z(*) must contain
x*, but the parameter R existential and is non-trivial to compute. We complement these results by
rounding our approximate projections to an exact one based on structure in partial derivatives.

Suppose that we have a candidate chain S = {Si,... Sy} of tight sets (e.g., using INFER). We
observe that if the affine minimizer over S, i.e., Z := argmin{h(z) | z(S) = f(S)VS € S} is
feasible in B( f), then this is indeed the optimum solution & = z*.

Lemma 2 (Rounding to optimal face (T5)). Let f : 2E 5 R be a monotone submodular function with
f(0) =0. Let h : D — R be a strictly convex, where B(f) N'D # (). Let 2* := arg min ¢ g h(2),
and let § = {S1,... Sk} contain some of the tight sets at ©*, i.e. x*(S;) = f(S;) for all i € [k].
Further, let T := argmin{h(x) | (S) = f(S)VS € S} be the optimal solution restricted to the
face defined by the tight set inequalities corresponding to S. Then, ©* = T iff & is feasible in B(f).
In particular, if S contains all the tight sets at x*, then x* = 7.

The proof of this lemma can be found in Appendix D.3, and as a subroutine in Appendix B. We note
that this holds for any polytope: if we know that tight inequalities at the minimizer we can restrict the
optimization problem to the face defined by those tight inequalities and ignore the other constraints
defining the polytope (see Lemma 4 in Appendix C). To check whether Z € B(f) in general requires
an expensive submodular function minimization, but instead we just check whether 2 is in the convex
hull of {v™), ... v®}, where v(*) are the FW vertices of B(f) that we have computed in Line 3
of Algorithm A2FW up to iteration ¢. Using [59], we know that there will be a point at which the
optimal solution is contained in the current active set.

We now present our second rounding tool ROUND for base polytopes of integral submodular functions.
It only requires a guarantee that the approximate projection be within a (Euclidean) distance of
1/(2|E|?) to the optimal projection. This generalizes the robust version of Fujishige’s theorem given
in [41], connecting the MNP over B( f) and the set minimizing the submodular function value.

Lemma 3 (Combinatorial Integer Rounding Euclidean Projections (T6)). Let f : 2¥ — Z (|E| = n)

be a monotone submodular function with f(0) = 0. Consider y € ZF and let h(z) = %Hx —y|I%.

Let x* = argminge gy h(x). Consider any x € B(f) such that ||z — z*|| < 525. Define
Q:=ZULZU...ULZ, andforanyr € R, let q(r) := arg minge g |1 — s|. Then, q(z.) is unique
for all e € E, and the optimal solution is given by ©* = q(z.) forall e € E.

This rounding algorithm runs in time O(n?logn) and is given in Algorithm 5 in Appendix B. The
proof proceeds by showing that 2} € S for all e € E, and that the distance between two points in S
is at least ﬁ so that one can always round to x* correctly (complete proof is in Appendix D.3).

5 Adaptive Away-steps Frank-Wolfe (A2FW)

We are now ready to present our Adaptive AFW (Alg. 1) by combining tools presented in the
previous section. First using the INFER 1, we detect some of the tight sets S at the optimal solution
before even running A2FW, and accordingly warm-start A’FW with z(9) in the tight face of S.
A2FW operates similar to the away-step Frank-Wolfe, but during the course of the algorithm it
restricts to tight faces as it discovers them (using INFER2), adapts the linear optimization oracle
(using RESTRICT), and attempts to round to optimum (using ROUND, RELAX). To apply INFER2
(subroutine included as Algorithm 3), consider an iteration ¢ of A2FW, where we have computed
the FW gap g™V := max,c p(s) (—Vh(2()),v — 2()) (see line 11 in Algorithm 1). For p-strongly
convex h, we have:

LIl =2 < h(=9) = h(a) < max (=VA(z10),0 = 20) = g, )



Algorithm 1 Adaptive Away-steps Frank-Wolfe (A2FW)

Input: Submodular f : 2% — R, (u, L)-strongly convex and smooth h : B(f) — R, chain of tight cuts S
(e.g., using INFER1), 20 € B(f) N {z(S) = f(S), S € S} with active set Ao, tolerance e.

1: Initialize t = 0, g§~ = 400, v® = 2@
2: while gV > e do
3 Snew = SUINFER2(h, 2, 20/29™ / 11) >use toolkit to find new tight sets
4: & Flag = RELAX(Snew, {v'? ... 0®})
5: if Flag = True, return &
6.
7
8
9

if |Snew| > |S| then

Set 2+ € arg milye r(s,.0) <Vh(z(t))7 v> and Agy1 = 2D >round and restart
else >do iteration of AFW restricted to F(S)
Compute v € arg min, e p(s) <Vh(z(t)), v> > use toolkit
10: Compute away-vertex a'’) € argmax, ¢ 4, <Vh(z(t)), v>
11: 20D Ay, g = AFW-update(z®,0® a® | A,)
12: end if

13: Updatet :=t+ 1 and S = Snew
14: end while
Return: z%

and so ||z(Y) — z*|| < \/2¢"™V/p. Let F\, Fs, ..., F}, be a partition of the ground set £ such that
(Vh(z®)), = ¢ foralle € Fyand & < ¢ foralli < I. If ;11 — & > 2L+/2gFV /u for some
Jj € [k — 1], then Theorem 4 implies that S = Fy U - - - U F} is tight for z*, i.e. 2*(S) = f(5).

Overall in A?FW, we maintain a set S containing all such tight sets S at the optimal solution that
we have found so far. We use those tight sets as follows: (i) we restrict our LO oracle to the lower
dimensional face we identified using the modified greedy algorithm (RESTRICT- (T4)). (ii) We use
our RELAX ((TS)) tool to check weather we have identified all the tight-sets defining the optimal
face (Lemma 2). If yes, then we round the current iterate to the optimal face and terminate the
algorithm early. For (Euclidean) projections over an integral submodular polytope, we can also use
our ROUND (T6) tool to round an iterate close to optimal without knowing the tight sets. Whenever
the algorithm detects a new chain of tight sets S,,¢y, it is restarted from a vertex in F'(Sy,¢q ), Which
possibly has a higher function value than the current iterate. However, this increase in the primal gap
is bounded as h is finite over B(f) and can happen at most n times; thus, these restarts do not impact
the convergence rate. The pseudocode of A2FW is included in Algorithm 1.

Convergence Rate: As depicted in (T4) in Figure 3, restricting FW vertices to the optimal face
results in better progress per iteration during the latter runs of the algorithm. The convergence rate of
A2FW depends on a geometric constant § called the pyramidal width [6]. This constant is computed
over the worst case face of the polytope. By iterative restricting the linear optimization oracle to
optimal faces, we improve this worst case dependence in the convergence rate (proof in Appendix F):
Theorem 6 (Convergence rate of A2FW). Let f : 2F — R be a monotone submodular function with
f(0) = 0 and f monotone. Consider any smooth strongly convex function h(-) with unique optimal
x* € B(f). Let S be the tight sets found up to iteration t and F(S) be the face defined by these tight
sets. Then, the primal gap w(z"+t1)) := h(z*+D)) — h(x*) of A2’FW decreases geometrically at
each step that is not a drop step® nor a restart step:

2
1p
w(zH) < (1 - 4;5?) w(z®), where D is the diameter of B(f) and (3)

pr(s) is the pyramidal width of B(f) restricted to F/(S) (as defined by (24)). Moreover, in the worst
case, the number of iterations to get an e-accurate solution is O ((nLD?/(upg(s))?)log(1/€)).

Note that pr(s) can be strictly larger than the worst-case pyramidal width over the entire polytope.
For example, for the probability simplex (a submodular polytope; see Table 2), the pyramidal width
restricted to a face F' is 2/1/dim(F’) (assuming dim(F’) is even for simplicity) [60]. To the best of
our knowledge, we are the first to adapt AFW to tight faces as they are detected. This might be of
independent interest to the SFM community.

YA drop step is when we take an away step with a maximal step size so that we drop a vertex from the current
active set.
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Figure 4: (left) 15-85% percentile plot of fraction of tight sets inferred by using INFER1 (blue) v/s highest
number of tight sets common for ith iterate compared to previous ¢ — 1 iterates (in green) for close points
generated randomly using Gaussian noise, over 500 runs. (middle) 25-75 percentile plots of normalized run
times for OMD-AFW variants for first loss setting averaged over 20 runs. (right) 25-75 percentile plots of
normalized run times for OMD-AFW variants with second loss setting averaged over 20 runs.

5.1 Computations

The code for our computations can be found on GitHub!. In our first experiment, we iteratively
compute the Euclidean projections of 500 randomly generated points on the permutahedron. The
cloud of these 500 points is generated by fixing a random mean point and perturbing it using
multivariate Gaussian noise with mean zero and standard deviation ¢ = 1/50. We compute the
projections of each point in the cloud exactly, and plot percentile plots of fraction of discovered tight
sets from previous projections in Figure 4-left. The fraction of tight inequalities for each point y; that
were already tight for some other previous point yg, . . ., y;—1 is in green, the fraction of tight sets for
y; inferred by using Theorem 3 is in blue. The plots average over 20 runs of this experiment. Note
that our theoretical results give almost tight computational results, that is, we can recover most of the
tight sets common between close points using Theorem 3.

In our second experiment (detailed in appendix G), motivated by the trade-off in regret versus time
for online mirror descent and online Frank-Wolfe (OFW) variants, we conduct an experiment on the
permutahedron P with n = 50 elements. We consider a time horizon of 7' = 1000, and construct
two noisy (linear) loss settings. For each of the two loss settings, we run Online Frank-Wolfe (OFW)
and five variants of Online Mirror Descent (OMD) using the toolkit proposed: (1) OMD-UAFW:
OMD with projection using vanilla away-step Frank-Wolfe (baseline), (2) OMD-ASAFW: OMD
with AFW with reused active sets, (3) OMD-TSAFW: OMD with AFW with INFER, RESTRICT, and
ROUNDING, (4) OMD-A%2FW OMD with A2FW, and (5) OMD-PAV: OMD with PAV. We call the
first four “OMD-AFW variants". Recall that OMD performs projections in potentially each iteration.

‘We normalized each OMD-UAFW run time to be 1000, and run times for all other variants in this
run are correspondingly scaled in Figures 4-middle and 4-right. Each iteration of OMD involves
projecting a point on the permutahedron, and the cumulative run times for these projections are
plotted. The plots are averaged over 20 runs of this experiment for both the settings.

We see more than three orders of magnitude improvement in run time for OMD-ASAFW and OMD-
A2FW compared to the unoptimized OMD-AFW. Both OMD-PAV and OFW run 4 to 6 orders of
magnitudes faster on average than OMD-UAFW; however, OMD-PAV suffers from the limitation
that it only applies to cardinality-based submodular polytopes, while OFW has significantly higher
regret in computations. We summarize these results in Table 4 in Appendix G.

OMD has a regret 1 to 2 orders of magnitude lower than OFW on average, thus bolstering the claim
that we need to invest research to speed-up this optimal learning method and its variants. This drop in
regret is significant in terms of revenue for an online retail platform. The regret for all OMD variants
was observed to be nearly the same. Overall, speeding up OMD is an example of the impact of our
toolkit, which can be applied in the broader setting of iterative optimization methods.

5.2 Limitations and Open questions

There is still is a long way from closing the computational gap with Online Frank Wolfe. Our
work inspires many future research questions, e.g., procedures to infer tight sets on non-submodular
polytopes such as matchings and procedures to round iterates to the nearest tight face for combinatorial
polytopes. We hope that our results can inspire future work that goes beyond looking at projection
subroutines as black boxes. We believe that our work does not have any foreseeable negative ethical
or societal impact.

Ihttps://github.com/jaimoondra/submodular-polytope-projections
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the variability in the results obtained across multiple plots. The number of times each
experiment was run is documented in the paper and the seeds used are highlighted in
the code.

Did you include the total amount of compute and the type of resources used (e.g., type
of GPUgs, internal cluster, or cloud provider)? [Yes] We include all our computing
details, i.e. total amount of compute and the type of resources used, in Appendix G

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a)

(b)
()

If your work uses existing assets, did you cite the creators? [N/A]| Our work does not
use existing assets. We instead use synthetic data that we created

Did you mention the license of the assets? [N/A] Our work does not use existing assets.
Did you include any new assets either in the supplemental material or as a URL? [N/A]
Our setup is an online learning setup that is not data based. However, our setup is in
the code provided and can be used for other experiments.

(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] Our work does not use existing data.

(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A| Our work does not use existing data.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A] Our work does not crowdsource any data.

(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A] Not applicable as our work does not
crowdsource any data.

(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A] Not applicable as our work does not
crowdsource any data.
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