
Learning to Attack Federated Learning: A
Model-based Reinforcement Learning Attack

Framework

Henger Li˚, Xiaolin Sun˚, and Zizhan Zheng
Department of Computer Science

Tulane University
New Orleans, LA 70118

{hli30, xsun12, zzheng3}@tulane.edu

Abstract

We propose a model-based reinforcement learning framework to derive untargeted
poisoning attacks against federated learning (FL) systems. Our framework first
approximates the distribution of the clients’ aggregated data using model updates
from the server. The learned distribution is then used to build a simulator of the FL
environment, which is utilized to learn an adaptive attack policy through reinforce-
ment learning. Our framework is capable of learning strong attacks automatically
even when the server adopts a robust aggregation rule. We further derive an upper
bound on the attacker’s performance loss due to inaccurate distribution estima-
tion. Experimental results on real-world datasets demonstrate that the proposed
attack framework significantly outperforms state-of-the-art poisoning attacks. This
indicates the importance of developing adaptive defenses for FL systems.

1 Introduction

Federated learning (FL) is a promising machine learning framework that allows multiple devices
with private data to jointly train a learning model (coordinated by a server) without sharing their
local data. It has recently been applied to consumer digital products [41], credit risk prediction [1],
drug discovery [42], and digital health [49]. However, federated learning systems are vulnerable to
adversarial attacks [39] such as model poisoning attacks [11, 65, 20, 8], data poisoning attacks [9,
23, 26], and inference attacks [43, 29, 74]. To this end, various robust aggregation rules such
as coordinate-wise median [67], trimmed mean [67], Krum [12], norm clipping [59], geometric
median [46], and FLTrust [15] have been proposed. However, these defenses are mainly evaluated
against manually crafted myopic attack policies [53]. Their robustness in the face of advanced attacks
remains unknown.

Due to the distributed nature of FL systems, a malicious device typically has limited knowledge about
benign devices and system dynamics. To fully reveal the vulnerabilities of FL systems, it is therefore
crucial to develop strong attacks that can best utilize the limited global knowledge. In this work,
we take a first step in this direction by considering the white-box attack setting where the attacker
has some global knowledge about the FL system and the server’s algorithm, but has no access to
the private data of benign devices, a reasonable assumption for real-world FL systems. To derive
strong adaptive attacks, we propose to leverage the power of model-based reinforcement learning
(RL) by integrating distribution learning and policy learning. A key observation of our approach is
that although accurate information about individual devices can be hard to obtain in FL, it is often
possible to infer their aggregated data distribution from publicly available model updates, which

˚Equal contribution.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



is sufficient to derive strong attacks. In particular, the set of malicious devices first cooperatively
estimate the aggregated data distribution through gradient inversion [29, 74]. The learned distribution
is then used to build a simulator of the FL environment, which is utilized to derive an adaptive attack
policy through reinforcement learning. We focus on untargeted model poisoning in this work, where
the malicious devices aim to reduce the accuracy of the global model as much as possible by sending
crafted gradient information to the server. However, our proposed framework can potentially be
applied to other types of attacks in both the white-box and the more challenging black-box settings.

Our model-based approach distinguishes from existing work on reinforcement learning based ad-
versarial attacks against machine learning systems [58, 71, 72]. In particular, we consider a more
realistic threat model where the attacker might not always be selected due to subsampling nor does it
have prior information about the distribution of the aggregated data. The attackers need to efficiently
learn the distribution along the federated learning process in real time. In contrast, previous works
typically assume more powerful attackers that can attack at any time and have full knowledge about
the environment. Thus, they typically adopt a purely model-free approach, which is infeasible in
attacking FL systems due to the large number of samples needed to be effective.

Our contributions. We advance the state-of-the-art in the following aspects. First, we propose a novel
reinforcement learning attack framework against federated learning systems by integrating distribution
learning and policy learning. Second, we theoretically quantify the effect of inaccurate distribution
learning and heterogeneous local data distributions on the optimal attack performance. Third,
our experiments on real-world datasets demonstrate that our RL-based attack method consistently
outperforms existing model poisoning attacks [11, 20, 65] and significantly reduces the global model
accuracy even when robust aggregation rules are applied. These findings indicate the importance of
developing adaptive defenses for FL systems.

2 Related Work

Poisoning attacks and defenses. To compromise the integrity of the target model in federated
learning, both targeted poisoning attacks [11, 8, 9] that aim to misclassify a specific set of inputs,
and untargeted attacks [20, 65, 52] aiming to reduce the global model accuracy have been proposed.
Existing approaches typically adopt a heuristics-based method [65]) or optimize a myopic goal [20,
52]), and are usually sub-optimal, especially when a robust aggregation rule is adopted. Further, they
often require access to benign agents’ local updates or the accurate global model parameters of the
next round [65, 20]) to make significant attack impact. In contrast, our reinforcement learning based
attack requires less global knowledge and targets a long-term attack goal.

Various defenses have been proposed for model poisoning attacks including robust-aggregation-
based approaches and detection-based approaches. The former includes dimension-wise filtering
that considers each dimension of local updates separately [10, 67], client-wise filtering that aims to
restrict or even remove the impact of potentially malicious clients [12, 12, 46, 59], and approaches
that require the server to have access to a small amount of root data [15]. Our RL-based attack is
effective against all these defenses. In addition, time-coupled robust aggregation methods [4, 5, 32]
that target adaptive attacks and anomaly detection-based defenses [35] have been proposed recently.
Our approach can potentially be extended to compromise them by explicitly encoding the history
information into states or utilizing a recurrent structure.

RL-based attacks. Reinforcement learning has recently been utilized for developing strong at-
tacks in various settings, including corrupting training data of online supervised and unsupervised
learning [72], manipulating the combinatorial structure of graph data [18], and injecting malicious
nodes into a graph [58]. RL-based attacks have also been developed to damage the performance
of reinforcement learning itself, by perturbing the reward signals during the training stage [71] and
corrupting the state signals received by an agent during the testing stage [70, 56]. However, these
methods typically assume that the attacker has access to an accurate MDP model or simulator and
has unlimited time for training the attack policy. In contrast, our method first builds a world model by
learning a data distribution from the FL model updates and then constructs an approximate simulator
for training our attacks. Both distribution learning and policy learning happen when FL training is
ongoing. Further, previous work has mainly focused on attacking a single RL agent by an external
agent rather than an insider attack in a distributed learning environment as we consider in this work.

2



Figure 1: An overview of the RL-based attack framework against federated learning.

3 Approach Overview

In this section, we describe the federated learning setting considered in this work, the threat model,
and the proposed RL-based attack framework.

Federated learning. We consider an FL setting that is similar to federated averaging (FedAvg) [40].
The FL system consists of a server and K workers (also known as devices or clients) in which each
worker has some private data. Let rKs “ t1, 2, ...,Ku denote the set of workers. Coordinated by the
server, the set of workers cooperate to train a machine learning model within T epochs by solving
the following problem: minθ fpθq where fpθq :“

řK
k“1 pkFkpθq. Here Fkp¨q is the local objective

of worker k and pk is the weight assigned to worker k and satisfies pk ě 0 and
ř

k pk “ 1. The
local objective Fkpθq is usually defined as the empirical risk over worker k’s local data with model
parameter θ P Θ. That is, Fkpθq “ 1

Nk

řNk

j“1 ℓpθ; zjkq, where Nk is the number of data samples
available locally on worker k, ℓp¨; ¨q is the loss function, and zjk :“ pxjk, yjkq is the jth data sample
that is drawn i.i.d. from some distribution Pk. It is typical to set pk “

Nk

N , where N “
ř

k Nk is the
total number of data samples across workers.

If all the workers’ local data distributions are the same (i.e., Pk “ Pk1 for all k, k1 P rKs), we call the
workers’ data are i.i.d.; otherwise, the data are non-i.i.d.. We write pPk as the empirical distribution
of the Nk data samples drawn from Pk, and let pP :“

řK
k“1

Nk

N
pPk denote the mixture empirical

distribution across workers.

The FL algorithm (see Algorithm 1 in Appendix B) works as follows: at each time step t ě 0, a
random subset St of size w is uniformly sampled without replacement from the workers set rKs

by the server for synchronous aggregation [37]. The process of selecting workers for aggregation
is called subsampling. Let κ “ w{N denote the subsampling rate, i.e., the ratio of the selected
workers number w to the total number of workers K. Each selected worker k P rws then samples a
minibatch bk of size B from its local data distribution pPk. The worker then calculates the average
local gradient gt`1

k Ð 1
B

ř

zPbk
∇θℓpθ

t; zq and sends the gradient to the server. The server then uses
an aggregation rule to compute the aggregated gradient gt`1 Ð Aggrpgt`1

k1
, ..., gt`1

kw
q where ki P St,

and updates the global model parameters θt`1 Ð θt ´ ηgt`1 where η is the learning rate. The newly
updated model parameters θt`1 is then sent to the selected workers to perform another FL iteration.

Threat Model. We assume that among the K workers, Mp1 ď M ă Kq of them are malicious.
Let A denote the set of malicious workers. They are coordinated either by one leading attacker or
an external agent. We refer such agent as a leader agent. These attackers are assumed to be fully
cooperative and share the same goal of compromising the FL system. We consider untargeted model
poisoning attacks in this work where the M cooperative attackers send crafted local updates trgtkukPA
to the server in order to maximize the empirical loss fpθq. the batch size B), and their local data
distributions t pPkukPA (but not the benign workers’ local data distributions). We further assume
that the attackers obtain information about the server’s training algorithm (i.e., the white-box attack
setting). This information includes the server’s learning rate η, the subsampling rate κ, the total
number of workers K, the aggregation rule Aggr, and the total number of training epochs T .

3



RL-based online attack framework. Our attack framework consists of the following three phases.

• Distribution learning: The malicious workers first jointly learn an approximation of rP from the
model updates tθtu received from the server, using a gradient inversion based inference attack [24].

• Policy learning: The leader agent then builds a simulator of the FL environment using the
attackers’ local data and the learned distribution. An optimal attack policy is then derived through
reinforcement learning using data sampled from the simulator. Note that policy learning can start
together with distribution learning and continue after a reasonable distribution is learned.

• Attack execution: The learned policy is distributed to all the malicious workers to generate attack
actions. Note that attack execution can start once an initial policy is learned, which can be updated
during attack execution.

We note that all the three phases happen while the federated learning process is ongoing, thus the
lengths of these phases are important hyperparameters to be determined. For example, with more
observations, an attacker can learn a more accurate distribution, which will help obtain a better attack
policy. However, when the total time window available to attacks is limited, a longer distribution
learning phase reduces the attack opportunities in Phase 3. Compared with a purely model-free
approach, our model-based approach is more sample efficient, which is especially important for
federated learning as a malicious worker can only attack when it is sampled by the server.

4 Model-based Reinforcement Learning Attack Framework

In this section, we first formulate the model poisoning attack problem as a Markov decision process
(MDP). We then discuss our model-based reinforcement learning attack framework in more details.

4.1 Attackers’ problem as a Markov decision process

The attackers’ problem is formulated as an undiscounted MDP, denoted by M “ pS,A, T, r,Hq,
where

• S is the state space. Let τ P t0, 1, ...,H ´ 1u denote the index of the attack step and tpτq P

t0, 1, ..., T ´ 1u the corresponding FL epoch when at least one attacker is selected by the server.
The state at step τ is defined as sτ :“ pθtpτq,Atpτqq where Atpτqq is the set of attackers selected at
time tpτq, which is shared between all malicious workers.

• A “ AM is the space of the attackers’ joint actions where each attacker shares the same action
space A. If attacker i is selected at tpτq, its action aτi :“ rg

tpτq`1
i P Rd is the local update that

attacker i sends to the server at time step tpτq, where d is the dimension of the model parameters.
The only action available to an attacker not selected at tpτq is K, indicating that the attacker does
not send any information in that step.

• T : S ˆA Ñ PpSq is the state transition function that represents the probability of reaching a
state s1 P S from the current state s P S when attackers choose actions aτ1 , ..., a

τ
M , respectively.

• r : S ˆ A ˆ S Ñ Rě0 is the reward function. We define the reward at step τ as rτ :“
fpθtpτ`1qq ´ fpθtpτqq, which is determined by the current state, the next state, and the joint attack
actions and is shared by all the attackers.

• H is the number of attack steps in each episode and we have tpH ´ 1q ă T .

The attackers’ goal is to find a joint attack policy π “ pπ1, ..., πM q that maximizes the expected total
rewards over H attack steps, i.e., Er

řH´1
τ“0 rτ s, where πi : S Ñ PpAq denotes a stationary policy

of attacker i that maps the state to a probability measure over A. Using the definition of rτ , this
objective is equivalent to finding a joint policy π that maximizes EθtpHqrfpθtpHqqs.

A key obstacle to solving the MDP is that both the transition probabilities T and the reward function
r depend on the joint empirical distribution across workers t pPkukPrKs, which is fixed but unknown
to the attackers. Although model-free reinforcement learning can bypass this difficulty, it requires
a large number of samples to be effective, which is infeasible in the online attacking scenario we
consider. We therefore adopt model-based reinforcement learning as a principled approach for
designing adaptive attacks in the online setting. An important observation is that although the joint
empirical distribution t pPkukPrKs is unknown, the attackers can learn an approximation of the mixture

4



distribution pP “
řK

k“1
Nk

N
pPk, denoted by rP , from model updates shared by the server, which is

often sufficient to simulate the behavior of benign agents and the server by assuming that each benign
agent samples data from rP . This gives rise to a new MDP ĂM “ pS,A, T 1, r1, Hq where T 1 and
r1 are derived from rP . Thus, our proposed model-based reinforcement learning attack framework
naturally consists of the distribution learning, policy learning, and attack execution phases.

4.2 Distribution learning

Initially, the attackers do not perform model-poisoning attacks. Instead, they jointly learn a
mixture distribution rP from the model updates tθtu using a gradient inversion based infer-
ence attack [24, 74]. Various gradient inversion attacks have been proposed in the literature.

Figure 2: Examples of reconstructed images (be-
fore and after denoising) for MNIST (upper) and
Fashion-MNIST (lower) datasets.

In this work, we adapt the inverting gradients
(IG) method [24] to distribution learning. The
IG method reconstructs data samples by optimiz-
ing a loss function based on the angle (i.e., co-
sine similarity) between the gradient generated
from true data and that from the reconstructed
data. The primary goal of IG is to reconstruct
the original data samples, which is more ambi-
tious than what the attackers need in our setting.
On the other hand, recent works on gradient in-
version including IG have focused on the server
side, where the true gradients of each individ-
ual worker can be easily obtained from model
updates. In contrast, the attackers only obtain ap-
proximated and aggregated gradient information
from consecutive model updates received from the server, due to model aggregation and subsampling.
Despite these differences, our experiment results show that the rP learned using IG can help derive an
effective attacker policy (see Figure 4(c)).

As shown in Algorithm 2 in Appendix B, for each epoch tpτq that at least one attacker is selected,
the leader agent obtains the model update from one of the attackers and calculates the batch-level
gradient as ḡτ :“ pθtpτ´1q ´ θtpτqq{pηptpτq ´ tpτ ´ 1qqq. The leader agent then starts with a batch
of (randomly generated) dummy data and dummy labels Ddummy , which is updated iteratively
by solving the following optimization problem: argminDdummy

1´ cosp∇θFdummypθ
tpτqq, ḡτ q `

β
B1

ř

px,yqPDdummy
TVpxq, where cospA,Bq :“ xA,By

}A}}B}
is the cosine similarity between two vectors

A and B, Fdummypθq “
1
B1

ř

px,yqPDdummy
ℓpθ; px, yqq, B1 is the number of reconstructed data per

epoch (the size of the dummy data batch), TVpxq is the total variation [50] of x, and β is a fixed
parameter. The process terminates after max iter iterations, then outputs the updated data as the
reconstructed data samples. We observed that although the data samples generated by IG resemble
true samples, they contain a certain amount of noise as shown in Figure 2, making the learned
distribution less representative of the true distribution. To reduce noise, we adapt the method of
denoising auto-encoder [62]. We utilize the clean data owned by attackers and add Gaussian noise
to them to simulate the noise in the reconstructed data samples. The clean data and the synthetic
noisy data are then paired to train an autoencoder for denoising, which is then used to remove the
noise in reconstructed data samples as shown in the figure. The approximated mixture distribution
rP pτq consists of the reconstructed data up to tpτq and the M attackers’ local data. The distribution
learning phase starts at the first FL epoch and continues for τE steps. The learned distribution is
shared with all the attackers.

Although we adopt the IG method in this work due to its simplicity, other more recent approaches
such as the GradInversion method [68] and gradient inversion with a trained generative model [30]
can be easily incorporated into our framework, which can potentially learn rP in more challenging
settings for complex datasets like ImageNet [19], deep networks, and large batch sizes. On the
other hand, we show in the experiments that our RL-based attack trained using attackers’ local data
only is still effective and surpasses all the baselines, while distribution learning further boosts the
attack performance. A detailed discussion on gradient inversion attacks and defenses is provided in
Appendix C

5



4.3 Policy learning

Once the leader agent obtains the approximated distribution rP , it can simulate the behavior of the
server and that of normal workers. In particular, to simulate the behavior of a normal worker in each
FL training step, a minibatch of size B is i.i.d. sampled from rP . With experiences sampled from the
simulated environment, the leader agent can learn a joint attack policy that maximizes the empirical
loss using a state-of-the-art (deep) reinforcement learning algorithm, e.g., TD3 [22] or PPO [51].

Note that the leader agent does not need to wait until a good distribution has been learned to start
training the policy. Instead, policy learning can start together with distribution learning. Initially, the
leader agent uses the attackers’ local data to train the policy, which will be continuously updated
while more data samples are being generated. To reduce the training overhead, we assume that all
the malicious workers share the same attack policy (i.e., π1 “ π2 “ ¨ ¨ ¨ “ πM ) in this work, which
achieves good attack performance in our experiments. Extension to general joint policies will be
considered in our future work.

When we train a small neural network with federated learning, it is natural to use pθtpτq,Atpτqq as the
state, and the crafted gradient rgtpτq as the action. When we use the federated learning system to train
a large neural network, however, this approach does not scale as it results in an extremely large search
space that requires both large runtime memory and long training time, which is usually prohibitive.
To solve this problem, we propose to compress the state and action spaces for high-dimensional
models as follows.

To compress the state space, we first observe that as the set of attackers are fully cooperative and
share the same policy, there is no need to distinguish them in the state when the server does not track
the behavior of individual workers. Thus, we replace Atpτq by the number of attackers sampled in
tpτq, denoted by mtpτq. Further, instead of using the entire set of model parameters θtpτq in the state,
the parameters of the last hidden layer of the current neural network model is used. This is because
the last hidden layer passes on values to the output layer and typically carries information about
important features of the model [57]. Note that the approximated state is used to define the policy
only. The true state is still the full FL model that determines transition probabilities and rewards.

It is more challenging to compress the action space. We observe that a policy that manipulates the
model parameters of the last hidden layer only works well for certain aggregation rules such as
Krum and coordinate-wise median. However, it becomes less effective for stronger defenses such as
coordinate-wise median with clipping. Given that it is challenging to identify a small subset of model
parameters that can lead to most damage to model accuracy when manipulated, we adopt a different
approach in this work.

The main idea is to search for a model update direction that can lead to a large empirical loss using
gradient ascent, with its parameters identified by reinforcement learning. To this end, we define
the local search objective as Lpθq :“ p1 ´ λqF pθq ` λ cospθtpτq ´ θ, gpθtpτqqq where F pθq “

Ez„ rP rℓpθ; zqs models the empirical loss and gpθtpτqq “ Ez„ rP r∇θℓpθ
tpτq; zqs captures the average

update direction from normal devices, both are estimated from rP . The second term in Lpθq is used
to control the deviation of the model update from the normal direction (measured by the cosine
similarity) so that the adversarial input cannot be easily identified by the server. The parameter
λ P r0, 1s is used to balance the loss and the deviation. To solve the problem, we start with θ “ θtpτq

and generate G trajectories, where each trajectory involves E model updates. Each model update
involves a single gradient ascent step using a minibatch of size rB sampled from rP . Let θk denote the
new model parameters found by the k-th trajectory after E updates. The update direction is then set
as 1

G

řG
k“1 θk and each attacker’s action in tpτq is computed as rgtpτq`1 “ γpθtpτq ´ 1

G

řG
k“1 θkq.

The scaling factor γ ě 0 is used to control the magnitude of the crafted gradient, which is needed as
most robust aggregation rules apply a certain type of filtering rule to mitigate the effect of malicious
attacks. We assume that G is fixed while γ, E, λ are parameters to be learned by reinforcement
learning. Thus, the action space for the attackers’ MDP becomes a 3-dimensional real space.

4.4 Attack execution

Both distribution learning and policy learning can start from the first epoch of federating learning
and continue while federating learning is ongoing. The simulated environment is updated when a

6



new estimated distribution rP is learned. Although the attackers may choose to start attacking during
distribution learning, we observe that this can blur the gradient information and make distribution
learning less accurate. Thus, we assume that each attacker starts attacking once the distribution
learning phase is finished, and applies the latest learned attack policy during the remaining epochs
of the federated learning process. During attack execution, each selected attacker first notifies other
attackers so that every one knows the number of attackers that are sampled in that epoch. Each
selected attacker then generates a crafted gradient according to the process described above with the
parameters obtained from the latest learned policy.

The attackers’ total training time (including distribution learning and policy learning) should be
significantly less than the total FL training time so that the attackers have time to execute the attacks.
In real-world FL training, the server usually must wait for some time (typically ranging from 1 minute
to 10 minutes) before it receives responses from the clients [66, 13, 31]. In contrast, the leader
agent does not incur such time cost in training attackers’ policies using a simulated FL environment.
Therefore, an epoch in policy learning is typically much shorter than an FL epoch, making it possible
to train the attack policy with a large number of episodes. In addition, the leader agent is usually
equipped with GPUs, or other parallel computing facilities and can run multiple training episodes in
parallel [16]. We compare the actual running time of our RL-based attack against different defenses
in our experiment setting in Appendix E.2.

5 Impact of Inaccurate Distribution Learning and Data Heterogeneity

Our model-based RL attack employs the estimated data distribution rP to simulate the behavior of
benign workers, which can suffer from two types of errors. First, rP can be far away from the true
mixture distribution pP due to inaccurate distribution learning. Second, benign workers may vary in
their local data distributions pPk, which cannot be fully captured by a single mixture distribution. In
this section, we study how the attack performance is affected by these two factors, which provides
insights into properly distributing resources between the three phases of our attack method.

Our analysis is adapted from recent works that study the impact of model inaccuracy on the per-
formance of model-based reinforcement learning [69, 38, 71] by addressing two new challenges.
First, we need to establish the connection between the inaccuracy in data distribution rP and the
inaccuracy in the corresponding MDP as both the reward function and the transition dynamics depend
on rP . Second, although there are different ways to measure the distance between two models [69],
it makes more sense to use the 1-Wasserstein distance [61] to measure the distance between two
data distributions. This, however, requires bounding the Lipschitz constant of the optimal value
function [69]. Although this is a challenging task for general RL tasks, we are able to show that this
is indeed the case in our setting under the following assumptions. The first assumption models the
inaccuracy of distribution learning as well as the heterogeneity of benign workers’ local data.

Assumption 1. W1p rP , pPkq ď δ for any benign worker k, where W1p¨, ¨q is the 1-Wasserstein
distance [61].

We further need the following standard assumptions on the loss function.

Assumption 2. Let Z denote the domain of data samples across all the workers. For any s1, s2 P S
and z1, z2 P Z, the loss function ℓ : S ˆ Z Ñ R satisfies:

1. |ℓps1, z1q ´ ℓps2, z2q| ď L}ps1, z1q ´ ps2, z2q}2 (Lipschitz continuity w.r.t. s and z);
2. }∇sℓps1, z1q ´∇sℓps1, z2q}2 ď Lz}z1 ´ z2}2 (Lipschitz smoothness w.r.t. z);
3. ℓps2, z1q ě ℓps1, z1q ` x∇sℓps1, z1q, s2 ´ s1y `

α
2 }s2 ´ s1}

2
2 (strong convexity w.r.t. s);

4. ℓps2, z1q ď ℓps1, z1q ` x∇sℓps1, z1q, s2 ´ s1y `
β
2 }s2 ´ s1}

2
2 (strong smoothness w.r.t. s);

5. ℓp¨, ¨q is twice continuously differentiable with respect to s.

where }ps1, z1q´ps2, z2q}
2
2 :“ }s1´s2}

2
2`}z1´z2}

2
2. For simplicity, we further make the following

assumption on the FL environment, although our analysis can be readily applied to more general
settings.

Assumption 3. The server adopts FedAvg without subsampling (w “ K). All workers have same
amount of data (pk “ 1

K ) and the local minibatch size B “ 1. In each epoch of federated learning,

7



each normal worker’s local minibatch is sampled independently from the local empirical data
distribution pPk.

Since no subsampling is considered in this section, with a slight abuse of notation, we let index t
denote both an attack step and the corresponding FL epoch. Let M “ pS,A, T, r,Hq denote the true
MDP for the attackers, and ĂM “ pS,A, T 1, r1, Hq the simulated MDP when the local distribution of
any benign worker is estimated as rP . The following theorem captures the attack performance loss
due to inaccurate distribution learning (see Appendix D for the proof).

Theorem 1. Let JMpπq :“ Eπ,T,µ0
r
řH´1

t“0 rpst, at, st`1qs denote the expected return over H attack
steps under M, policy π and initial state distribution µ0. Let π˚ and rπ˚ be the optimal policies for
M and ĂM respectively, with the same initial state distribution µ0. Then,

|JMpπ˚q ´ JMprπ˚q| ď 2HϵδrpL` LvqLzη ` 2Ls,

where ϵ “ K´M
K is the fraction of benign nodes, Lv ď

řH´1
t“0 pKF q

tpL ` LKF q, and KF ď

ϵmaxt|1´ ηα|, |1´ ηβ|u.

In practice, the learning rate η is typically small enough so that maxt|1 ´ ηα|, |1 ´ ηβ|u ď 1. In
this case, Lv is bounded by Lp1`KF q

1´KF
ď

Lp1`ϵq
1´ϵ . Therefore, we have |JMpπ˚q ´ JMprπ˚q| “

OpH ϵ
1´ϵηδq. To ensure convergence, we typically have η “ Op 1?

H
q [47], thus |JMpπ˚q ´

JMprπ˚q| “ Op ϵ
1´ϵδ

?
Hq. This result clearly shows how the loss of attack performance depends on

the fraction of benign nodes, the inaccuracy of distribution learning, and the time horizon.

6 Experiments

In this section, we compare our RL-based attack with state-of-the-art model poisoning attacks on
real-world datasets. Our code is available at https://github.com/SliencerX/Learning-to-
Attack-Federated-Learning.

6.1 Experiment setup

Datasets. We conduct extensive experiments on four real-world datasets: MNIST [34], Fashion-
MNIST [64], EMNIST [17], and CIFAR-10 [33]. Due to space limitation, experiment results for
Fashion-MNIST, EMNIST, and CIFAR-10 are provided in Appendix E. For the i.i.d. setting, we
randomly split the dataset into K groups, each of which consists of the same number of training
samples. For the non-i.i.d. setting, we follow the method of [20] to quantify the heterogeneity of
local data distribution across clients. Suppose there are C classes in the dataset, e.g., C “ 10 for the
MNIST and Fashion-MNIST datasets. We evenly split the worker devices into C groups (with the
M attackers evenly distributed across the C groups), where each group is assigned 1{C of training
samples as follows. A training instance with label c is assigned to the c-th group with probability
q ě 1{C and to every other group with probability p1´ qq{pC ´ 1q. Within each group, instances
are evenly distributed. A higher q indicates a higher non-i.i.d. degree. We set q “ 0.5 as the default
non-i.i.d. degree. To demonstrate the power of distribution learning, we assume that the set of
attackers share m true data points sampled from the training instances assigned to them. We set
m “ 200 as the default value for MNIST.

Baselines. We compare our RL-based attack (RL) with no attack (NA), and the state-of-the-art model
poisoning FL attack methods: explicit boosting (EB) [11], inner product manipulation (IPM) [65],
and local model poisoning attack (LMP) [20]. IPM manipulates the attackers’ gradients so that the
inner product between the aggregation result and the true gradient is negative. This requires access to
the average of normal workers’ gradients in each FL epoch, which is usually unavailable in practice.
LMP generates myopic attacks by solving an optimization problem in each FL epoch. In addition
to the server’s aggregation rule, it also requires access to normal workers’ local models. Although
LMP with partial knowledge is also presented in [20], it performs substantially worse than the full
knowledge case when the server uses the coordinate-wise median defense. We compare the RL-based
attack with the more powerful full knowledge LMP below.

8

https://github.com/SliencerX/Learning-to-Attack-Federated-Learning
https://github.com/SliencerX/Learning-to-Attack-Federated-Learning


Figure 3: A comparison of global model accuracy under Krum and clipping median for both i.i.d. data and
non-i.i.d. data. All parameters are set as default.

(a) (b) (c) (d)

Figure 4: Attack performance on MNIST under (a) different number of attackers; (b) different non-iid degrees;
(c) RL with and without distribution learning and RL0 (zero initial data for policy learning); and (d) different
policy learning lengths. Non-iid degree q “ 0.5 in (a) and q “ 0.3 in (c) and (d). Other parameters are set as
default.

We consider four representative robust aggregation rules of different types [53]: Krum [12], geometric
median [46], both of which apply client-wise filtering to model updates, coordinate-wise median [67],
which adopts a dimension-wise filtering, and FLTrust [15], which requires the server to have access
to a small amount of root data. In the experiments, we actually consider an extension of the vanilla
coordinate-wise median where a norm clipping [59] step is first applied. This gives a more powerful
defense as we observed in experiments. We set the default norm threshold to 2.

Default FL and RL settings. We adopt the following default parameters for the FL models: number
of total workers “ 100, number of attackers “ 20, learning rate η “ 0.01, subsampling rate “ 10%,
the number of total FL epochs “ 1, 000. For our RL-based attack, both the distribution learning
and policy learning phase start at the first FL epoch. The former ends at the 100th FL epoch when
RL-based attack starts (all other attacks start at epoch 0). The policy learning phase ends at the
400th epoch. Since both the action space and state space are continuous in our setting, we choose
the state-of-the-art Twin Delayed DDPG (TD3) [22] and Proximal Policy Optimization (PPO) [51]
algorithms for training the attack policy in our experiments and find that TD3 gives better results in
most cases. Below we report the results for TD3. We fix the initial model and the random seeds for
subsampling and local data sampling for fair comparisons. See Appendix E for details of the datasets,
experimental setups, and additional results.

6.2 Attack performance

Figure 3 shows how the test accuracy of the global model varies over FL epochs under different
attacks when the server uses Krum and clipping median as the aggregation rule, respectively. Results
for geometric median and FLTrust are provided in Appendix E.2.We observe that our RL-based attack
performs significantly better in all the settings, despite the fact that IPM and LMP use the model
updates of normal clients while RL does not. Note that for Krum, RL-based attack quickly drives the
global model to a poor state („10% accuracy) once the attack starts at epoch 100 under both i.i.d.
and non-i.i.d. local data distributions. Attacks become harder under clipping median due to the norm
clipping but our RL-based attack still reduces global model accuracy to around 50% on average. This
is mainly because it targets long-term return while all other baselines are myopic. For example, in
Figure 3(c), the global model accuracy drops significantly under all the attacks when five malicious
devices are sampled around epoch 200. After that, the RL method keeps the accuracy at a low level,
while other baselines’ accuracy rebounds rapidly.

9



6.3 Ablation studies

Impact of the number of attackers. Previous studies on untargeted model poisoning in federated
learning typically assume a relatively large fraction of attackers. For example, the default setting is
20% in [20] and 40% in [65]. Figure 4(a) shows that our RL-based attack obtains superb performance
even when the number of attackers (among 100 total clients) is as low as 8. In contrast, neither IPM
nor LMP obtains meaningful attack performance even with 10 attackers. For 7 attackers, none of the
baselines including the RL-based attack can cause significant damage to the FL system.

Impact of non-i.i.d. degree. Figure 4(b) shows the impact of data heterogeneity on attack performace.
We use 5 different random seeds for all attacks and show the error bars. We observe that all the
baselines obtain similar performance under different non-i.i.d. degrees and the impact of randomness
in the testing environment on their performance is limited. On the other hand, we observe that the RL
policies for q “ 0.1 and q “ 0.5 exhibit large variances, but even the worst-case performance of our
attack outperforms the best cases of all the baselines. For q “ 0.3, the RL-based attack can always
lead to a model with a very high loss so that the model accuracy stays at a low level and is close to a
constant, which explains the observed low variance in model accuracy. We expect that the variation
across different RL policies is in part because the attackers always use the latest trained policy for
attack execution, which does not necessarily give the best performance among all the intermediate
policies trained (see also Figure 4(d)).

Importance of distribution learning. Figure 4(c) compares the global model accuracy of RL-based
attack with distribution learning (RL) and that without distribution learning (RL w/o DL). We observe
that in both cases, the model accuracy decreases dramatically after the attack starts at FL epoch 100.
Further, the accuracy of RL w/o DL slightly increases up to 20%, while the accuracy of RL stays
below 10%, which is consistent with our expectation that distribution learning allows the attackers to
learn a better attack policy. Figure 4(c) also shows the attack performance of RL0, a variant of the
RL-based attack where the attackers only have 200 unlabeled true images used to train the denoising
autoencoders, thus completely relying on distribution learning to generate labeled samples needed for
policy learning. Compared with the baseline results in Figure 4(b) (q “ 0.3), we observe that RL0

still outperforms other baseline methods, further indicating the power of distribution learning. On the
other hand, the fact that RL w/o DL surpasses all the baselines indicates that our approach is still
applicable even when distribution learning becomes less effective in the presence of a strong defense
against gradient inversion.

Impact of training length on policy learning. Figure 4(d) shows how the global model loss at the
end of an FL training episode (in the simulated environment) varies over the RL policy training steps.
We observe that longer training usually provides a better attack policy, although the training process
is not stable. To fix this, one approach is to set up a separate testing environment to identify best
trained policies. As mentioned above, our RL-based attack achieves promising performance even
when the attackers always use the latest policy obtained during policy learning.

7 Conclusion

We propose a new approach for developing non-myopic attacks that can effectively compromise FL
systems even with advanced defense mechanisms applied, by utilizing model-based reinforcement
learning as a principled approach. While we focus on untargeted model poisoning against FL systems
in this paper, our attack framework can be extended to targeted attacks (e.g., backdoor attacks) and to
objectives beyond global model accuracy (e.g., fairness across clients [44, 36]). Further, our attack
framework can be integrated with meta-learning [21, 27] to generalize the learned policy to different
training tasks and develop black-box attacks. Another direction is to investigate novel methods
to defend our adaptive attack methods. One possible solution would be to dynamically adjust FL
parameters such as the subsampling rate or the aggregation rule.

Acknowledgments

This work has been funded in part by NSF grants CNS-1816495 and CNS-2146548 and Tulane
University Jurist Center for Artificial Intelligence. We thank the anonymous reviewers for their
valuable and insightful feedback.

10



References
[1] Utilization of FATE in Risk Management of Credit in Small and Micro Enterprises.

https://www.fedai.org/cases/utilization-of-fate-in-risk-management-of-
credit-in-small-and-micro-enterprises/.

[2] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar,
and Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, 2016.

[3] Milton Abramowitz and Irene A Stegun. Handbook of mathematical functions with formulas,
graphs, and mathematical tables, volume 55. US Government printing office, 1964.

[4] Dan Alistarh, Zeyuan Allen-Zhu, and Jerry Li. Byzantine stochastic gradient descent. Advances
in Neural Information Processing Systems(NeurIPS), 31, 2018.

[5] Zeyuan Allen-Zhu, Faeze Ebrahimianghazani, Jerry Li, and Dan Alistarh. Byzantine-resilient
non-convex stochastic gradient descent. In International Conference on Learning Representa-
tions(ICLR), 2020.

[6] Kavosh Asadi and Michael L Littman. An alternative softmax operator for reinforcement
learning. In International Conference on Machine Learning(ICML), 2017.

[7] Kavosh Asadi, Dipendra Misra, and Michael Littman. Lipschitz continuity in model-based
reinforcement learning. In International Conference on Machine Learning(ICML), 2018.

[8] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly Shmatikov. How to
backdoor federated learning. In International Conference on Artificial Intelligence and Statistics
(AISTATS), 2020.

[9] Gilad Baruch, Moran Baruch, and Yoav Goldberg. A little is enough: Circumventing defenses
for distributed learning. In Advances in Neural Information Processing Systems(NeurIPS),
2019.

[10] Jeremy Bernstein, Jiawei Zhao, Kamyar Azizzadenesheli, and Anima Anandkumar. signsgd
with majority vote is communication efficient and fault tolerant. In International Conference on
Learning Representations(ICLR), 2018.

[11] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin Calo. Analyzing
federated learning through an adversarial lens. In International Conference on Machine Learn-
ing(ICML), 2019.

[12] Peva Blanchard, Rachid Guerraoui, Julien Stainer, et al. Machine learning with adversaries:
Byzantine tolerant gradient descent. In Advances in Neural Information Processing Sys-
tems(NeurIPS), 2017.

[13] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir
Ivanov, Chloé Kiddon, Jakub Konečný, Stefano Mazzocchi, Brendan McMahan, Timon
Van Overveldt, David Petrou, Daniel Ramage, and Jason Roselander. Towards federated
learning at scale: System design. In Proceedings of Machine Learning and Systems, 2019.

[14] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym, 2016.

[15] Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhenqiang Gong. Fltrust: Byzantine-robust
federated learning via trust bootstrapping. In NDSS, 2021.

[16] Alfredo V Clemente, Humberto N Castejón, and Arjun Chandra. Efficient parallel methods for
deep reinforcement learning. arXiv preprint arXiv:1705.04862, 2017.

[17] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist: Extending
mnist to handwritten letters. In International Joint Conference on Neural Networks (IJCNN),
2017.

11

https://www.fedai.org/cases/utilization-of-fate-in-risk-management-of-credit-in-small-and-micro-enterprises/
https://www.fedai.org/cases/utilization-of-fate-in-risk-management-of-credit-in-small-and-micro-enterprises/


[18] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial attack
on graph structured data. In International Conference on Machine Learning(ICML), 2018.

[19] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In IEEE Conference on Computer Vision and Pattern
Recognition(CVPR), 2009.

[20] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Gong. Local model poisoning attacks to
byzantine-robust federated learning. In 29th USENIX Security Symposium, 2020.

[21] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. In International Conference on Machine Learning(ICML), 2017.

[22] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In International Conference on Machine Learning (ICML), 2018.

[23] Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. Mitigating sybils in federated learning
poisoning. arXiv preprint arXiv:1808.04866, 2018.

[24] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting gradients
- how easy is it to break privacy in federated learning? In Advances in Neural Information
Processing Systems(NeurIPS), 2020.

[25] Robin C Geyer, Tassilo Klein, and Moin Nabi. Differentially private federated learning: A
client level perspective. arXiv preprint arXiv:1712.07557, 2017.

[26] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in
the machine learning model supply chain. CoRR, abs/1708.06733, 2017.

[27] Abhishek Gupta, Benjamin Eysenbach, Chelsea Finn, and Sergey Levine. Unsupervised
meta-learning for reinforcement learning. arXiv preprint arXiv:1806.04640, 2018.

[28] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for im-
age recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition(CVPR), 2016.

[29] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. Deep models under the gan:
information leakage from collaborative deep learning. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, 2017.

[30] Jinwoo Jeon, Kangwook Lee, Sewoong Oh, Jungseul Ok, et al. Gradient inversion with
generative image prior. Advances in Neural Information Processing Systems(NeurIPS), 2021.

[31] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-
jun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings,
et al. Advances and open problems in federated learning. Foundations and Trends® in Machine
Learning, 14(1–2):1–210, 2021.

[32] Sai Praneeth Karimireddy, Lie He, and Martin Jaggi. Learning from history for byzantine robust
optimization. In International Conference on Machine Learning(ICML), 2021.

[33] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[34] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[35] Suyi Li, Yong Cheng, Wei Wang, Yang Liu, and Tianjian Chen. Learning to detect malicious
clients for robust federated learning. arXiv preprint arXiv:2002.00211, 2020.

[36] Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated
learning through personalization. In International Conference on Machine Learning(ICML),
2021.

12



[37] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence
of fedavg on non-iid data. In International Conference on Learning Representations(ICLR),
2020.

[38] Yuping Luo, Huazhe Xu, Yuanzhi Li, Yuandong Tian, Trevor Darrell, , and Tengyu Ma.
Algorithmic framework for model-based deep reinforcement learning with theoretical guarantees.
In International Conference on Learning Representations (ICLR), 2019.

[39] Lingjuan Lyu, Han Yu, and Qiang Yang. Threats to federated learning: A survey. arXiv preprint
arXiv:2003.02133, 2020.

[40] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial
Intelligence and Statistics, pages 1273–1282. PMLR, 2017.

[41] Brendan McMahan and Daniel Ramage. Federated Learning: Collaborative Machine Learning
without Centralized Training Data. https://ai.googleblog.com/2017/04/federated-
learning-collaborative.html.

[42] Brendan McMahan and Daniel Ramage. Machine Learning Ledger Orchestration For Drug
Discovery (MELLODDY). https://www.melloddy.eu/.

[43] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov. Exploiting
unintended feature leakage in collaborative learning. In 2019 IEEE Symposium on Security and
Privacy, 2019.

[44] Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. Agnostic federated learning. In
International Conference on Machine Learning(ICML), 2019.

[45] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. arXiv preprint arXiv:1912.01703, 2019.

[46] Krishna Pillutla, Sham M Kakade, and Zaid Harchaoui. Robust aggregation for federated
learning. IEEE Transactions on Signal Processing, 70:1142–1154, 2022.

[47] Boris T. Polyak. Introduction to optimization. Optimization Software, 1987.

[48] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021.

[49] Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletari, et al. The future of digital health with
federated learning. NPJ digital medicine, 3(1):1–7, 2020.

[50] Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise removal
algorithms. Physica D: nonlinear phenomena, 60(1-4):259–268, 1992.

[51] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[52] Virat Shejwalkar and Amir Houmansadr. Manipulating the byzantine: Optimizing model
poisoning attacks and defenses for federated learning. In NDSS, 2021.

[53] Virat Shejwalkar, Amir Houmansadr, Peter Kairouz, and Daniel Ramage. Back to the drawing
board: A critical evaluation of poisoning attacks on production federated learning. In IEEE
Symposium on Security and Privacy, 2022.

[54] Aman Sinha, Hongseok Namkoong, and John Duchi. Certifying some distributional robustness
with principled adversarial training. In International Conference on Learning Representa-
tions(ICLR), 2018.

13

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://www.melloddy.eu/


[55] Jingwei Sun, Ang Li, Binghui Wang, Huanrui Yang, Hai Li, and Yiran Chen. Soteria: Provable
defense against privacy leakage in federated learning from representation perspective. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),
2021.

[56] Yanchao Sun, Ruijie Zheng, Yongyuan Liang, and Furong Huang. Who is the strongest enemy?
towards optimal and efficient evasion attacks in deep RL. In International Conference on
Learning Representations(ICLR), 2022.

[57] Yi Sun, Xiaogang Wang, and Xiaoou Tang. Deep learning face representation from predicting
10,000 classes. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2014.

[58] Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, and Vasant Honavar. Adversarial
attacks on graph neural networks via node injections: A hierarchical reinforcement learning
approach. In Proceedings of The Web Conference 2020, 2020.

[59] Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh, and H Brendan McMahan. Can you really
backdoor federated learning? arXiv preprint arXiv:1911.07963, 2019.

[60] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[61] Leonid Nisonovich Vaserstein. Markov processes over denumerable products of spaces, de-
scribing large systems of automata. Problemy Peredachi Informatsii, 5(3):64–72, 1969.

[62] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting
and composing robust features with denoising autoencoders. In International Conference on
Machine Learning (ICML), 2008.

[63] Wenqi Wei, Ling Liu, Margaret Loper, Ka-Ho Chow, Mehmet Emre Gursoy, Stacey Truex, and
Yanzhao Wu. A framework for evaluating gradient leakage attacks in federated learning. arXiv
preprint arXiv:2004.10397, 2020.

[64] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[65] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Fall of empires: Breaking byzantine-
tolerant sgd by inner product manipulation. In Uncertainty in Artificial Intelligence (UAI),
pages 261–270. PMLR, 2020.

[66] Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas Kong, Daniel
Ramage, and Françoise Beaufays. Applied federated learning: Improving google keyboard
query suggestions. arXiv preprint arXiv:1812.02903, 2018.

[67] Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. Byzantine-robust distributed
learning: Towards optimal statistical rates. In Proceedings of the 35th International Conference
on Machine Learning(ICML), 2018.

[68] Hongxu Yin, Arun Mallya, Arash Vahdat, José Manuel Álvarez, Jan Kautz, and Pavlo
Molchanov. See through gradients: Image batch recovery via gradinversion. 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

[69] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. In Advances in Neural
Information Processing Systems (NeurIPS), 2020.

[70] Huan Zhang, Hongge Chen, Duane S Boning, and Cho-Jui Hsieh. Robust reinforcement learning
on state observations with learned optimal adversary. In International Conference on Learning
Representations(ICLR), 2021.

[71] Xuezhou Zhang, Yuzhe Ma, Adish Singla, and Xiaojin Zhu. Adaptive reward-poisoning attacks
against reinforcement learning. In International Conference on Machine Learning(ICML),
2020.

14



[72] Xuezhou Zhang, Xiaojin Zhu, and Laurent Lessard. Online data poisoning attacks. In Learning
for Dynamics and Control, pages 201–210. PMLR, 2020.

[73] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. iDLG: Improved Deep Leakage from
Gradients. arXiv preprint arXiv:2001.02610, 2020.

[74] Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. In Advances in Neural
Information Processing Systems(NeurIPS), 2019.

15



Appendix

A Broader Impact

To study the vulnerabilities of federated learning, we propose a model-based reinforcement learning
attack framework. Our work shows that non-myopic attacks can break federated learning systems
even when they are equipped with sophisticated defense rules. This reveals the urgent need of
developing more advanced defense mechanisms for federated learning systems. While we have
focused on adversarial attacks against federated learning in our work, we note that one possible
solution to defending RL-based attacks would be to dynamically adjust FL parameters such as the
subsampling rate or the aggregation rule. Future work is needed to identify how best to do so.

B Algorithms

Algorithm 1 gives the framework of a standard federated learning algorithm where the aggregation
function, Aggrp¨q, can be either a simple average or a robust aggregation rule. Algorithm 2 gives
the details of our distribution learning procedure. The algorithm first initializes Dreconstructed with
attackers’ local data. A synthetic noisy dataset is built by adding Gaussian noise to Dreconstructed.
A denoising autoencoder is then learned using paired clean data and noisy data. In each FL epoch,
a batch of dummay data samples are first generated randomly, which are then updated iteratively
by matching their average gradient with the aggregated gradient estimated from received model
parameters. When no attacker is sampled in an FL epoch, the same process is applied by reusing the
most recent model parameters received from the server. Due to the randomness of the algorithm, new
data samples are generated and added (after denoising) to Dreconstructed in each FL epoch during
distribution learning.

Algorithm 1 Federated Learning
Input: Initial weight θ0, K workers indexed by k, size of subsampling w, local minibatch size B,
step size η, number of global training steps T
Output: θT
Server executes:

for t “ 0 to T ´ 1 do
St Ð randomly select w workers from K workers
for each worker j P St in parallel do

gt`1
j Ð WorkerUpdate(j, θt)

end for
gt`1 Ð Aggrpgt`1

k1
, ..., gt`1

kw
q, ki P St

θt`1 Ð θt ´ ηgt`1

end for
WorkerUpdatepj, θq:

Sample a minibatch b of size B
g Ð 1

B

ř

zPb ∇θℓpθ, zq
return g to server

C Discussion on Gradient Inversion Attacks and Defenses

Although federated learning is expected to protect clients’ local data, it has been recently observed
that sensitive information can still be inferred from the gradients or model updates shared by
clients [29, 74]. In particular, it is shown in [74, 73] that using an optimization based approach,
a curious server can extract both the training inputs and labels from the gradients shared by a
client for a small batch size (ď 8). This approach is further improved in [24], where it is shown
that by exploiting a magnitude-invariant loss, the proposed inverting gradients (IG) method can
reconstruct images in deep non-smooth architectures even in batches of 100 images. More recently,
the GradInversion method [68] and gradient inversion with a trained generative model [30] are capable
of reconstructing individual images with high fidelity from averaging gradients even for complex
datasets like ImageNet [19], deep networks, and large batch sizes. Several approaches have been

16



Algorithm 2 Distribution Learning
Input: number of steps for distribution learning τE , number of iterations for each step max iter,
learning rate for FL η learning rate for inverting gradients η1, number of reconstructed data per
epoch B1, and model parameters tθtpτqu
Output: Dreconstructed

DReconstructed Ð M attackers’ local data
DNoisy Ð Add Gaussian noise to Dreconstructed and clip data to the valid range
Train a denoising autoencoder Adenoise using Dreconstructed and Dnoisy

for τ “ 0 to τE do
Generate Ddummy with B1 random data and label pairs
Compute aggregated gradient ḡτ Ð pθtpτ´1q ´ θtpτqq{pηptpτq ´ tpτ ´ 1qqq
for i “ 0 to max iter ´ 1 do
Fdummypθq Ð

1
B1

ř

pxj ,yjqPDdummy
ℓpθ; pxj , yjqq

L Ð 1´
x∇θFdummypθ

tpτq
q,ḡτ

y

||∇θFdummypθtpτqq||¨||ḡτ ||
`

β
B1

ř

pxj ,yjqPDdummy
TV pxjq

xj Ð xj ´ η1∇xj
L, yj Ð yj ´ η1∇yj

L, @pxj , yjq P Ddummy

end for
Denoise the dummy batch Ddummy using Adenoise and add it to Dreconstructed

end for

proposed to counter inference attacks. This includes methods that inject a limited amount of statistical
noise into model updates [2, 25] and approaches that learn to perturb data representation [55] such
that the data reconstructed from the perturbed representation is dissimilar to the raw data, while FL
performance is maintained. However, it is unclear if these defenses can provide sufficient protection
in the face of more advanced attacks. Further, they introduce extra overhead on the client side. On the
other hand, our attack framework only requires a rough estimate of the joint distribution of clients’
local data and can tolerate a certain level of inaccuracy in the learned dataset, which provides the
attacker with extra flexibility.

D Proof of Theorem 1

D.1 Preliminaries

Our theoretic analysis relies on the following definitions and results. First, we formally define the
Wasserstein distance [61], which will be used to measure the distance between the estimated and true
data distributions as well as the distance between the corresponding transition dynamics introduced
by different data distributions.
Definition 1. (Wasserstein distance) Let pM, dq be a metric space and PppMq the set of all probabil-
ity measures on M with finite pth moment, then the pth Wasserstein distance between two probability
distributions µ1 and µ2 in PppMq is defined as:

Wppµ1, µ2q :“

ˆ

inf
jPJ

ż ż

dps1, s2q
pjps1, s2qds1ds2

˙1{p

where J is the collection of all joint distributions j on MˆM with marginals µ1 and µ2.

In the following, we focus on 1-Wasserstein distance and denote W pµ1, µ2q :“ W1pµ1, µ2q. Wasser-
stein distance is also known as “Earth Mover’s distance” and measures the minimum expected distance
between two sets of points where the joint distribution is constrained to match their corresponding
marginals. Compared with Kullback-Leibler (KL) divergence and Total Variation (TV) distance,
Wasserstein distance is more sensitive to how far the points are from each other [7].

We will also need the following special form of Lipschitz continuity from [7].
Definition 2. (Lipschitz Continuity) Given two metric spaces pM1, d1q and pM2, d2q, a function
f : M1 Ñ M2 is Lipschiz continuous if the Lipschiz constant, defined as

Kd1,d2pfq :“ sup
s1PM1,s2PM2

d2pfps1q, fps2qq

d1ps1, s2q

17



is finite. Similarly, a function f : M1 ˆA Ñ M2 is uniformly Lipschitz continuous in A if:

KA
d1,d2

pfq :“ sup
aPA

sup
s1,s2

d2pfps1, aq, fps2, aqq

d1ps1, s2q

is finite.

Let M “ pS,A, T, rq be a generic MDP, where S and A denote the state space and the action space
respectively, T ps1|s, aq denotes the probability of reaching a state s1 from the current state s and
action a, and rps, a, s1q denotes the reward given the current state s, action a, and the next state s1.
We then introduce the concept of Lipschiz model class from [7], which allows us to represent the
stochastic transition dynamics of an MDP as a distribution over a set of deterministic transitions.
Definition 3. (Lipschitz model class) Given a metric state space pS, dSq and an action space A, let
Fg be a collection of functions: Fg “ tf : S Ñ Su distributed according to gpf |aq where a P A. We
say that Fg is a Lipschitz model class if

KF :“ sup
fPFg

KdS ,dS
pfq

is finite. We say that a transition function T is induced by a Lipschitz model class Fg if T ps1|s, aq “
ř

f 1pfpsq “ s1qgpf |aq for any s, s1 P S and a P A.

We will later show that the transition dynamics of our MDP model for attackers is induced by a
Lipschitz model class.

Finally we give a formal definition of finite-horizon value functions [60].
Definition 4. Given an MDP M and a stationary policy π, the value function of π at time l is defined
as V π

M,lpsq :“ Eπ,T r
řH´1

t“l rpst, atq|sl “ ss, where rps, aq :“ Es1„T p¨|s,aqrrps, a, s
1qs. V π

M,lp¨q

satisfies the following backward recursion form:

V π
M,lpsq “ Ea„πpsqrrps, aq `

ÿ

s1PS

T ps1|s, aqV π
M,l`1ps

1qs

with V π
M,H´1psq “ Ea„πpsqrrps, aqs. The optimal value function is defined as V ˚

M,lpsq :“

maxπ V
π
M,lpsq for any s.

To analyze the impact of inaccurate transition probabilities on the value function, we also make use
of the following lemmas [7].
Lemma 1. Given two distributions µ1 and µ2 over states S, a transition function T induced by a
Lipschitz model class Fg is uniformly Lipschitz continuous in action space A with a constant:

KA
W,W pT q :“ sup

aPA
sup
µ1,µ2

W pT p.|µ1, aq, T p.|µ2, aqq

W pµ1, µ2q
ď KF

Lemma 2. Given a Lipschiz function f : S Ñ R with constant KdS ,dRpfq:

KA
dS ,dR

ˆ
ż

fps1qT ps1|s, aqds1
˙

ď KdS ,dRpfqK
A
dS ,W pT q

Below we state the assumptions needed for establishing Theorem 1. The first assumption models the
inaccuracy of distribution learning as well as the heterogeneity of benign workers’ local data.

Assumption 1. W p rP , pPkq ď δ for any benign worker k.

We further need the following standard assumptions on the loss function.
Assumption 2. Let Z denote the domain of data samples across all the workers. For any s1, s2 P S
and z1, z2 P Z, the loss function ℓ : S ˆ Z Ñ R satisfies:

1. |ℓps1, z1q ´ ℓps2, z2q| ď L}ps1, z1q ´ ps2, z2q}2 (Lipschitz continuity w.r.t. s and z);
2. }∇sℓps1, z1q ´∇sℓps1, z2q}2 ď Lz}z1 ´ z2}2 (Lipschitz smoothness w.r.t. z);
3. ℓps2, z1q ě ℓps1, z1q ` x∇sℓps1, z1q, s2 ´ s1y `

α
2 }s2 ´ s1}

2
2 (strong convexity w.r.t. s);

4. ℓps2, z1q ď ℓps1, z1q ` x∇sℓps1, z1q, s2 ´ s1y `
β
2 }s2 ´ s1}

2
2 (strong smoothness w.r.t. s);

18



5. ℓp¨, ¨q is twice continuously differentiable with respect to s.

where }ps1, z1q ´ ps2, z2q}
2
2 :“ }s1 ´ s2}

2
2 ` }z1 ´ z2}

2
2.

For simplicity, we further make the following assumption on the FL environment, although our
analysis can be readily applied to more general settings.
Assumption 3. The server adopts FedAvg without subsampling (w “ K). All workers have same
amount of data (pk “ 1

K ) and the local minibatch size B “ 1. In each epoch of federated learning,
each normal worker’s local minibatch is sampled independently from the local empirical data
distribution pPk.

D.2 Measuring the uncertainty: from data distributions to total returns

Let M “ pS,A, T, r,Hq denote the true MDP for attacking the federated learning system, and
ĂM “ pS,A, T 1, r1, Hq the estimated MDP used in the policy learning stage, where T 1 and r1 are
derived from the estimated joint data distribution t rPku where rPk “ pPk when k is an attacker and
rPk “ rP otherwise. Our main goal is to compare the optimal attack performance that can be obtained
from the true MDP M and that derived from the simulated MDP ĂM. We will focus on understanding
the impact of inaccurate data distributions (obtained from distribution learning) and assume that other
system parameters are known to the attackers.

Without loss of generality, we assume that the M attackers’ indexes are from K ´M ` 1 to K. Let
rM s “ tK ´M ` 1, ...,Ku denote the set of attackers and ϵ “ K´M

M the fraction of benign nodes.
We consider the idealized setting where the M attackers are perfectly coordinated by a single leading
attacker. Because of these simplifications, the state st in each epoch t is completely defined by the
current model parameters θt. With a slight abuse of notation, we assume S “ Θ in the following.

Let JMpπq :“ Eπ,T,µ0
r
řH´1

t“0 rpst, at, st`1qs denote the expected return over H attack steps under
the MDP M, policy π and initial state distribution µ0. Let π˚ be an optimal policy of M that
maximizes JMpπq. Define J

ĂMpπq similarly and let rπ˚ be an optimal policy for ĂM, with the same
initial state distribution µ0.

Our analysis is built upon the following lemma that compares the performance of π˚ and that of rπ˚

with respect to the true MDP M. It extends a similar result in [69] to a finite-horizon MDP where the
reward in each step depends on not only the current state and action but also the next state. Note that
the lemma relies on the key assumption that both V ˚

M,lp¨q and V ˚
ĂM,l

p¨q are Lv-Lipschitz continuous
(with respect to the l2 norm of states) for all l. That is, |V ˚

M,lps1q ´ V ˚
M,lps2q| ď Lv}s1 ´ s2}2 for

any s1, s2 P S where Lv is a constant independent of l. A similar requirement holds for V ˚
ĂM,l

p¨q. Let

W pT, T 1q :“ sup
aPA

sup
sPS

W pT p¨|s, aq, T 1p¨|s, aqq.

Lemma 3. Assume Assumption 1 and Assumption 2.1 holds and both V ˚
M,lp¨q and V ˚

ĂM,l
p¨q are

Lv-Lipschitz continuous for all l. Then,

|JMpπ˚q ´ JMprπ˚q| ď 2HrpL` LvqW pT, T 1q ` 2Lϵδs

Proof. Let Fl be the expected return when π˚ is applied to ĂM for the first l steps, then switching to
M for l to H ´ 1. That is,

Fl “ E
at

„π˚
pstq

tăl:st`1
„T 1

pst,at
q,rt“r1

těl:st`1
„T pst,at

q,rt“r

«

H´1
ÿ

t“0

rtpst, at, st`1q

ff

By the definition of Fl, we have JM pπ˚q “ F0 and J
ĂMpπ˚q “ FH , which implies that JMpπ˚q ´

J
ĂMpπ˚q “

řH´1
l“0 pFl ´ Fl`1q. Note that

Fl “ Rl´1 ` Esl,al„T 1,π˚rEsl`1„T psl,alqrrps
l, al, sl`1q ` V ˚

M,l`1ps
l`1qss

Fl`1 “ Rl´1 ` Esl,al„T 1,π˚rEsl`1„T 1psl,alqrr
1psl, al, sl`1q ` V ˚

M,l`1ps
l`1qss

19



where Rl´1 is the expected return of the first l´ 1 steps, which are taken with respect to ĂM. Thus,

Fl ´ Fl`1 “ Esl,al„T 1,π˚rEsl`1„T psl,alqrrps
l, al, sl`1qs ´ Esl`1„T 1psl,alqrr

1psl, al, sl`1qss

` Esl,al„T 1,π˚rEsl`1„T psl,alqrV
˚
M,l`1ps

l`1qs ´ Esl`1„T 1psl,alqrV
˚
M,l`1ps

l`1qss

Define G˚
ĂM,l

psl, alq :“ Esl`1„T psl,alqrV
˚
M,lps

l`1qs ´ Esl`1„T 1psl,alqrV
˚
M,lps

l`1qs. We have

JMpπ˚q ´ J
ĂMpπ˚q “

H´1
ÿ

l“0

pFl ´ Fl`1q

“

H´1
ÿ

l“0

Esl,al„T 1,π˚

´

Esl`1„T psl,alqrrps
l, al, sl`1qs ´ Esl`1„T 1psl,alqrr

1psl, al, sl`1qs

¯

`

H´1
ÿ

l“0

Esl,al„T 1,π˚rG˚
ĂM,l

psl, alqs

“

H´1
ÿ

l“0

Esl,al„T 1,π˚

ˆ

Esl`1„T psl,alqr
1

K

K
ÿ

k“1

pℓkps
l`1q ´ ℓkps

lqqs

´ Esl`1„T 1psl,alqr
1

K

K
ÿ

k“1

ℓ1kps
l`1q ´ ℓ1kps

lqqs

˙

`

H´1
ÿ

l“0

Esl,al„T 1,π˚rG˚
ĂM,l

psl, alqs

“

H´1
ÿ

l“0

Esl,al„T 1,π˚

˜

Esl`1„T psl,alqr
1

K

K
ÿ

k“1

ℓkps
l`1qs ´ Esl`1„T 1psl,alqr

1

K

K
ÿ

k“1

ℓ1kps
l`1qs

¸

`

H´1
ÿ

l“0

Esl,al„T 1,π˚

˜

1

K

K
ÿ

k“1

ℓ1kps
lq ´

1

K

K
ÿ

k“1

ℓkps
lq

¸

`

H´1
ÿ

l“0

Esl,al„T 1,π˚rG˚
ĂM,l

psl, alqs

where ℓkpsq :“ Ezk„ pPk
rℓps, zkqs, ℓ1kpsq :“ Ezk„ rPk

rℓps, zkqs and the third equality follows from

the definition of reward function rps, a, s1q “ 1
K

řK
k“1 ℓkps

1q ´ 1
K

řK
k“1 ℓkpsq, and r1ps, a, s1q “

1
K

řK
k“1 ℓ

1
kps

1q ´ 1
K

řK
k“1 ℓ

1
kpsq.

Since V ˚
M,l is Lv-Lipschitz, we have |G˚

ĂM,l
ps, aq| ď LvW pT ps, aq, T 1ps, aqq from the definition of

1-Wasserstein distance. We further have
ˇ

ˇ

ˇ

ˇ

ˇ

1

K

K
ÿ

k“1

ℓ1kpsq ´
1

K

K
ÿ

k“1

ℓkpsq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

K

K
ÿ

k“1

|ℓ1kpsq ´ ℓkpsq|

“
1

K

K
ÿ

k“1

ˇ

ˇ

ˇ
Ezk„ rPk

ℓkps, zkq ´ Ezk„ pPk
ℓkps, zkq

ˇ

ˇ

ˇ

ď
1

K

K
ÿ

k“1

LW p rPk, pPkq

ď Lϵδ,

where the second inequality follows from the definition of 1-Wasserstein distance and Assumption 2.1,
and the last inequality follows from Assumption 1 and the fact that rPk “ pPk for any attacker k.
Similarly, we have

ˇ

ˇ

ˇ

ˇ

ˇ

Es1„T ps,aq

«

1

K

K
ÿ

k“1

ℓkps
1q

ff

´ Es1„T 1ps,aq

«

1

K

K
ÿ

k“1

ℓ1kps
1q

ffˇ

ˇ

ˇ

ˇ

ˇ

ď
1

K

K
ÿ

k“1

ˇ

ˇEs1„T ps,aqrℓkps
1qs ´ Es1„T 1ps,aqrℓ

1
kps

1qs
ˇ

ˇ

20



“
1

K

K
ÿ

k“1

ˇ

ˇ

ˇ
Es1„T ps,aq,zk„ pPk

rℓkps
1, zkqs ´ Es1„T 1ps,aq,zk„ rPk

rℓkps
1, zkqs

ˇ

ˇ

ˇ

ďLpW pT, T 1q ` ϵδq,

where the last inequality follows Assumption 1, Assumption 2.1, and the property of 1-Wasserstein
distance with respect to product measures. Combining the above results, we have

JMpπ˚q ´ J
ĂMpπ˚q ď HpLv ` LqW pT, T 1q ` 2HLϵδ.

A similar argument shows that

J
ĂMprπ˚q ´ JMprπ˚q ď HpLv ` LqW pT, T 1q ` 2HLϵδ.

Let U :“ HpLv ` LqW pT, T 1q ` 2HLϵδ. We have

JMpπ˚q ď J
ĂMpπ˚q ` U ď J

ĂMprπ˚q ` U ď JMprπ˚q ` 2U.

As indicated in [69], an important obstacle to applying Lemma 3 to real reinforcement learning
problems is to bound the Lipschitz constant Lv for optimal value functions. Further, we need to
bound W pT, T 1q, the 1-Wasserstein distance between two transition functions. We study these two
problems in the following two subsections, respectively.

D.3 Lipschitz constants of value functions

In this section, we show that the Lipschitz constant Lv can be upper bounded for any optimal value
function in our setting. We first rewrite the update of model parameters in each epoch of FedAvg as
follows:

fzps, tg̃iuiPrMsq :“ s´ η
1

K

«

K´M
ÿ

k“1

∇sℓps, zkq `
K
ÿ

k“K´M`1

g̃k

ff

(1)

where s denotes the parameters of the current global model, z “ tzku denotes the set of data points
sampled by each worker. Note that the above equation gives the one-step deterministic transition
when the data samples are fixed. An important observation is that the transition function T is induced
by a Lipschitz model class Fg “ tfz : z P ZKuwith gpfz|aq equal to the probability that z is
sampled according to the joint distribution

ś

kPrKs
pPk. Similarly, T 1 is induced by Fg1 “ tfz :

z P ZKu with g1pfz|aq equal to the probability that z is sampled according to the joint distribution
rPK´M

śK
k“K´M`1

pPk. This observation allows us to apply the techniques in [7] to bound the
Lipschitz constant Lv of an optimal value function once we bound the Lipschitz continuity of
individual fz .

We first show that for any joint action a “ tg̃iuiPrMs, the deterministic transition fzp¨, aq is Lipschitz
continuous with a Lipschitz constant KdS ,dS

pfzp¨, aqq that can be upper bounded independent of z.
Lemma 4. Assume Assumptions 2.3, 2.4, and 2.5 hold. For any Lipschitz model class Fg “ tfz :
z P ZKu, we have KF ď maxtϵ|1´ ηα|, ϵ|1´ ηβ|u.

Proof. It suffices to show that for any action a, KdS ,dS
pfzp¨, aqq ď maxtϵ|1´ ηα|, ϵ|1´ ηβ|u. By

(1), we have for any s1, s2 P S,

}fzps1, aq ´ fzps2, aq}2 “

›

›

›

›

›

s1 ´ η
1

K

K´M
ÿ

k“1

∇sℓps1, zkq ´ ps2 ´ η
1

K

K´M
ÿ

k“1

∇sℓps2, zkqq

›

›

›

›

›

2

paq
ď

1

K

K´M
ÿ

k“1

}s1 ´ η∇sℓps1, zkq ´ ps2 ´ η∇sℓps2, zkqq}2

pbq
“

1

K

K´M
ÿ

k“1

›

›

›

›

ˆ

I ´ η
B2ℓps̄, zkq

Bs2

˙

ps1 ´ s2q

›

›

›

›

2

21



pcq
ď

1

K

K´M
ÿ

k“1

›

›

›

›

I ´ η
B2ℓps̄, zkq

Bs2

›

›

›

›

2

}s1 ´ s2}2

where (a) follows from the triangle inequality, (b) follows from the fact that ℓps, zq is twice contin-
uously differentiable with respect to s and the mean value theorem, where s̄ is a point on the line
segment connecting s1 and s2, and I is the identity matrix with its dimension equal to the dimension
of the model parameters, and (c) is due to the Cauchy–Schwarz inequality.

By the strong convexity and smoothness of ℓps, zq with respect to s, the eigenvalues of B
2ℓps̄,zkq
Bs2 are

between α and β [47]. It follows that
›

›

›

›

I ´ η
B2ℓps̄, zkq

Bs2

›

›

›

›

2

ď maxt|1´ ηα|, |1´ ηβ|u, @k

Therefore, for any s1, s2,

}fzps1, aq ´ fzps2, aq}2
}s1 ´ s2}2

ď maxtϵ|1´ ηα|, ϵ|1´ ηβ|u

By Definition 2, we then have

KdS ,dS
pfzp¨, aqq :“ sup

s1,s2

}fzps1, aq ´ fzps2, aq}2
}s1 ´ s2}2

ď maxtϵ|1´ ηα|, ϵ|1´ ηβ|u

Note that by using a small enough learning rate η, KF can be made less than 1 so that the one-step
deterministic transition becomes a contraction. We next show that the optimal value function V ˚

M,lp¨q

has a bounded Lipschitz constant. Note that the bound is independent of M; hence it also applies to
V ˚

ĂM,l
p¨q

Lemma 5. Assume Assumptions 2.1, 2.3, 2.4, and 2.5 hold. The optimal value function V ˚
M,lp¨q is

Lipschitz continuous with a Lipschitz constant bounded by
řH´l´1

t“0 pKF q
tpL` LKF q.

Proof. The proof is adapted from the proof of Theorem 3 in [7]. Let Qπ
M,lps, aq :“

rps, aq `
ř

s1PS T ps1|s, aqV π
M,l`1ps

1q denote the state-action value function, where rps, aq “

Es1„T ps1|s,aqrrps, a, s
1qs. We have for the optimal state-action value function

Q˚
M,lps, aq “ rps, aq `

ÿ

s1PS

T ps1|s, aqmax
a1PA

Q˚
M,l`1ps

1, a1q

with Q˚
M,H´1ps, aq “ rps, aq. The Lipschitz constant of Q˚

M,l is bounded by:

KA
dS ,dR

pQ˚
M,lq ď KA

dS ,dR
prq `KA

dS ,dR

˜

ÿ

s1PS

T ps1|s, aqmax
a1PA

Q˚
M,l`1ps

1, a1q

¸

paq
ď KA

dS ,dR
prq `KA

dS ,W pT qKA
dS ,dR

pmax
a1PA

Q˚
M,l`1q

pbq
ď KA

dS ,dR
prq `KA

dS ,W pT qKA
dS ,dR

pQ˚
M,l`1q

ď KA
dS ,dR

prq `KA
dS ,W pT qrKA

dS ,dR
prq `KA

dS ,W pT qKA
dS ,dR

pQ˚
M,l`2qs

ď KA
dS ,dR

prq `
H´l´2

ÿ

t“1

pKA
dS ,W pT qqtKA

dS ,dR
prq `KA

dS ,W pT qH´l´1KA
dS ,dR

pQ˚
M,H´1q

“

H´l´1
ÿ

t“0

pKA
dS ,W pT qqtKA

dS ,dR
prq

ď

H´l´1
ÿ

t“0

pKA
W,W pT qqtKA

dS ,dR
prq

22



where (a) follows Lemma 2 and (b) is due to the fact that the max operator is 1-Lipschitz, that is,
K}}8,dRpmaxpxqq “ 1 [6]. From the definition of rps, aq, we further have

|rps1, aq ´ rps2, aq| ď
1

K

K
ÿ

k“1

|ℓkps1q ´ ℓkps2q| `
1

K

K
ÿ

k“1

|Es11„T ps1,aqrℓkps
1
1qs ´ Es12„T ps2,aqrℓkps

1
2qs|

ď pL` LKA
W,W pT qq}s1 ´ s2}2

where ℓkpsq :“ Ezk„ pPk
rℓps, zkqs. The first term of the second inequality comes from the

Lipschitz continuity of the loss function ℓ, which gives |ℓkps1q ´ ℓkps2q| ď L}s1 ´ s2}2 for
any k, and the second term follows from Lemma 2 by letting fpsq “ ℓkpsq, which gives
KA

dS ,dR
pEs1„T rℓkps

1qsq ď LKA
W,W pT q for all k. Since the above inequality holds for any

a P A, rps, aq is uniformly Lipschitz continuous in action space A with a Lipschitz constant
KA

dS ,dR
prq ď L ` LKA

W,W pT q. Thus, KA
dS ,dR

pQ˚
M,lq ď

řH´l
t“0 pKA

W,W pT qqtpL ` LKA
W,W pT qq.

Since the optimal value function V ˚
M,lpsq “ maxaPA Q˚

M,lps, aq and the max operator is 1-

Lipschitz [6], we have KdS ,dRpV
˚
M,lq ď KA

dS ,dR
pQ˚

M,lq ď
řH´l´1

t“0 pKA
W,W pT qqtpL`LKA

W,W pT qq.
We obtain the desired result by applying Lemma 1.

The lemma immediately implies that V ˚
M,lp¨q is Lv-Lipschitz for any l where Lv ď

řH´1
t“0 pKF q

tpL`

LKF q.

D.4 Wasserstein distance between transitions

In this section, we bound the 1-Wasserstein distance of transition functions. Recall that the true
transition dynamics T p¨|s, aq depends on the joint distribution

śK
k“1

pPk, while T 1p¨|s, aq depends on
rPK´M

śK
k“K´M`1

pPk. We have the following lemma.

Lemma 6. Assume Assumptions 1-3 hold. For any state-action pair ps, aq, the 1-Wasserstein distance
between transition dynamics T p¨|s, aq and T 1p¨|s, aq generated from the real FL environment and the
estimated environment, respectively, is bounded by ηLzϵδ, that is,

W pT p¨|s, aq, T 1p¨|s, aqq ď ηLzϵδ

Proof. Let z1 “ tz1kuk“1,...,K´M and z2 “ tz2kuk“1,...,K´M denote two data sets of normal
workers sampled from

śK´M
k“1

pPk and rPK´M respectively. Let j “
śK´M

k“1 jk denote an arbitrary
coupling between the two joint distributions that is independent across workers where jk denotes a
coupling between pPk and rP . Let J denote the set of all such couplings. Let Js denote the collection
of couplings between T p¨|s, aq and T 1p¨|s, aq generated from the couplings of joint distributions in J .
To simplify the notation, let spzq :“ fzps, aq denote the successive state given the current state-action
pair ps, aq and the sampled data z of normal workers. From the definition of 1-Wasserstein distance,
we have

W pT p¨|s, aq, T 1p¨|s, aqq
paq
ď inf

jsPJs

ÿ

ps11,s
1
2q

}s11 ´ s12}2jsps
1
1, s

1
2q

pbq
ď inf

jPJ

ÿ

pz1,z2q

}spz1q ´ spz2q}2jpz1, z2q

“ inf
jPJ

ÿ

pz1,z2q

›

›

›
s´

1

K
p

K´M
ÿ

k“1

∇sℓps, z1kq ` aq

´ rs´
1

K
p

K´M
ÿ

k“1

∇sℓps, z2kq ` aqs
›

›

›

2

K´M
ź

k“1

jkpz1k, z2kq

23



“ inf
jPJ

ÿ

pz1,z2q

›

›

›

›

›

1

K

K´M
ÿ

k“1

∇sℓps, z1kq ´
1

K

K´M
ÿ

k“1

∇sℓps, z2kq

›

›

›

›

›

2

K´M
ź

k“1

jkpz1k, z2kq

pcq
ď

ηLz

K
inf
jPJ

ÿ

pz1,z2q

K´M
ÿ

k“1

}z1k ´ z2k}2

K´M
ź

k“1

jkpz1k, z2kq

pdq
ď

ηLz

K
inf
jPJ

ÿ

pz1,z2q

K´M
ÿ

k“1

}z1k ´ z2k}2jkpz1k, z2kq

ď
ηLz

K

K´M
ÿ

k“1

inf
jk

ÿ

pz1k,z2kq

}z1k ´ z2k}2jkpz1k, z2kq

“
ηLz

K

K´M
ÿ

k“1

W p pPk, rP q

peq
ď

ηLz

K
pK ´Mqδ

where (a) is due to the fact that we consider a restrictive collection of couplings, (b) is due to the fact
that Js is generated from J , (c) follows from the smoothness of ℓps, zq with respect to z, (d) is due
to jkpz1k, z2kq ď 1,@k, and (e) follows from Assumption 1.

D.5 Difference between expected returns

Combining the results from the previous three sections, we have the following main result.

Theorem 1. Assume Assumptions 1-3 hold. Let JMpπq :“ Eπ,T,µ0
r
řH´1

t“0 rpst, at, st`1qs denote
the expected return over H attack steps under MDP M, policy π and initial state distribution µ0.
Let π˚ and rπ˚ be optimal policies for M and ĂM respectively, with the same initial state distribution
µ0. Then,

|JMpπ˚q ´ JMprπ˚q| ď 2HϵδrpL` LvqηLz ` 2Ls

where Lv ď
řH´1

t“0 pKF q
tpL` LKF q and KF ď ϵmaxt|1´ ηα|, |1´ ηβ|u.

Proof. By Lemma 3, |JMpπ˚q ´ JMprπ˚q| ď 2HrpL ` LvqW pT, T 1q ` 2Lϵδs. From Lemma 6,
we have W pT, T 1q ď ηLzϵδ. Thus, |JMpπ˚q ´ JMprπ˚q| ď 2HrpL ` LvqηLzϵδ ` 2Lϵδs. By
Lemma 5 and the comment below it, Lv ď

řH´1
t“0 pKF q

tpL` LKF q where KF ď ϵmaxt|1 ´

ηα|, |1´ ηβ|u.

E Experiments

E.1 Experiment setup

Datasets. We consider four real world datasets: MNIST [34], Fashion-MNIST [64], Balanced
EMNIST [17], and CIFAR-10 [33], and a synthetic dataset. Both MNIST and Fashion-MNIST
include 60, 000 training examples and 10, 000 testing examples, where each example is a 28ˆ28
grayscale image, associated with a label from 10 classes. Balanced EMNIST includes 112, 800
training examples and 18, 800 testing examples, where each example is a 28ˆ28 grayscale image,
associated with a label from 47 classes. CIFAR-10 consists of 60,000 color images in 10 classes of
which there are 50, 000 training examples and 10,000 testing examples. Details about the synthetic
data are given in Appendix E.2. For the i.i.d. setting, we randomly split the dataset into K groups,
each of which consists of the same number of training samples. For the non-i.i.d. setting, we follow
the method of [20] to quantify the heterogeneity of local data distribution across clients. Suppose
there are C classes in the dataset, e.g., C “ 10 for the MNIST, Fashion-MNIST, and CIFAR-10
datasets. We evenly split the worker devices into C groups, where each group is assigned 1{C
of training samples as follows. A training instance with label c is assigned to the c-th group with
probability q ě 1{C and to every other group with probability p1´ qq{pC ´ 1q. Within each group,

24



instances are evenly distributed. A higher q indicates a higher non-i.i.d. degree. We set q “ 0.5
as the default non-i.i.d. degree. To demonstrate the power of distribution learning, we assume that
the set of attackers share m true data points sampled from the training instances assigned to them.
We set m “ 200 for MNIST and Fashion-MNIST, m “ 500 for EMNIST, and m P t500, 5000u for
CIFAR-10.

Federated learning setting. We adopt the following parameters for the federated learning models:
learning rate η “ 0.01 (0.05 for EMNIST and the synthetic data), total number of workers “ 100,
number of attackers “ 20, subsampling rate “ 10%, and number of total epochs “ 1000. For the
MNIST, Fashin-MNIST, and EMNIST datasets, we train a neural network classifier consisting of 8×8,
6×6, and 5×5 convolutional filter layers with ReLU activations followed by a fully connected layer
and softmax output. The cross-entropy loss is used to optimize the model. For CIFAR-10, we use
the ResNet-18 model [28]. We set the local batch size B “ 128. We implement the FL model with
PyTorch [45] and run all the experiments on the same 2.30GHz Linux machine with 16GB NVIDIA
Tesla P100 GPU. We simulate subsampling and local data sampling with different random seeds in
each test run. Error bars are reported in Figure 4(c) in the main paper. We set cross-entropy as our
default loss function, and stochastic gradient descent (SGD) as our default optimizer.

Baselines. We compare our RL-based attack (RL) with no attack (NA), and the state-of-the-
art model poisoning FL attack methods: explicit boosting (EB) [11], inner product manipulation
(IPM) [65], and local model poisoning attack (LMP) [20]. The EB attack [11] is originally proposed
for the targeted setting. We adapt it to the untargeted setting by using empirical loss as the objective,
which is optimized through multi-step gradient ascent using attackers’ local data, where the number
of steps is 5 and the step size equals to the FL learning rate η. The model update is then boosted
by a factor of K

M . We compare our RL-based attack with the full knowledge LMP [20], where the
attackers have access to not only the aggregation rule but also all normal workers’ updates. We use
the LMP attack tailored to Krum when the Krum defense is used, and the LMP attack tailored to
coordinate-wise median when the clipping median defense or the geometric median defense is used.
Further, we implement the adaptive version of LMP introduced in [15], which requires the attackers
to know the server’s updates derived from its root data, as a baseline against the FLTrust defense [15].
In our implementation of IPM [65], we set the default boosting factor (i.e., ϵ in [65]) as 5.

We consider four representative robust aggregation rules of different types [53]: Krum [12] and
geometric median [46], both of which apply client-wise filterings to model updates, coordinate-wise
median [67], which adopts a dimension-wise filtering, and FLTrust [15], which requires the server to
collect a small training dataset D0 (called root dataset). In the experiments, we actually consider an
extension of the vanilla coordinate-wise median where a norm clipping step [59] is first applied. This
gives a more powerful defense as we observed in experiments. We set the default clipping threshold
to 2. In geometric median [46], we set the iteration number of the smoothed Weiszfeld algorithm
for computing the geometric median [46] to 10 to balance effectiveness and efficiency. In FLTrust,
the root data is used to calculate a server model update g0 “ 1

|D0|

ř

zPD0
r∇θℓpθ; zqs in each epoch.

The aggregation weight of each received client’ update is then determined through its ReLU-clipped
cosine similarity with g0. Given that the server has no access to the true training data distribution, the
root dataset is often biased in practice. We adopt the approach in [15] to model such bias. Among the
|D0| root data samples, a fraction q0 of them are sampled from a certain class c in the training data,
and the rest are sampled from other classes with equal probabilities. For a dataset with C classes, D0

is unbiased only when q0 “ 1{C. We set the size of root dataset |D0| “ 100 following [15].

Distribution learning setting. In distribution learning, we set the step size for inverting gradients
η1 “ 0.05, the total variation parameter β “ 0.02, optimizer as Adam, the number of iterations for
inverting gradients max iter “ 10, 000, and learn the data distribution from scratch. The number of
steps for distribution learning is set to τE “ 100. 32 images are reconstructed (i.e., B1 “ 32) and
denoised in each FL epoch. If no attacker is selected in the current epoch, the aggregate gradient
estimated from previous model updates is reused for reconstructing data. To build the denoising
autoencoder, a Gaussian noise sampled from 0.3N p0, 1q is added to each dimension of images in
Dreconstructed, which are then clipped to the range of [0,1] in each dimension.

Policy learning setting. In policy learning, we implement our simulated environment with OpenAI
Gym [14] and adopt OpenAI Stable Baseline3 [48] to implement Twin Delayed DDPG (TD3) [22]

25



and Proximal Policy Optimization (PPO) [51] algorithms. We find that TD3 gives better results in
most cases and report the results for TD3 below. The default parameters are described as follows: the
length of simulating environment = 1, 000 epochs, policy learning rate = 1e´ 7, the policy model is
MultiInputPolicy, batch size = 256 and gamma = 1 for updating the target networks.

As described in Section 4.3, we compress the MDP state to include the parameters of the last hidden
layer of θtpτq and the number of attackers sampled, mtpτq, where each last hidden layer parameter
is in r´8,`8s and mtpτq is in t0, . . . , 10u. In our experiment, we restrict all attackers to take the
same action in each epoch. In solving the local search problem, we fix the number of trajectories
G “ 1 and the size of minibatch rB “ 200 (except for FLTrust where rB “ 500).

For the Krum, clipping median, and geometric median defenses, the local search objective is F pθq “
Ez„ rP rℓpθ; zqs (i.e., λ “ 0). In this case, the action space becomes pγ,Eq, where γ P r0, 10s and
E P t0, . . . , 20u for the Krum defense, and γ P r0, 10s and E P t0, . . . , 50u for the clipping median
and geometric median defenses. Since TD3 can only be applied to a continuous action space, we
consider a continuous interval for E (e.g., E P r0, 20s for Krum) when updating the policy and round
its value to an integer in the feasible range before the action is applied.

For FLTrust, we consider two cases, when the attackers have access to the server’s root data D0 or
equivalently, the model update g0 in each epoch, and when they only know how D0 is sampled from
the true training data distribution. Note that even the former setting is more realistic than the adaptive
LMP setting in [15], which also requires access to normal workers’ updates. In the former case, we
slightly modify the local search method described in Section 4.3 by fixing γpθtpτqq “ }g0pθ

tpτqq}2

and considering the same local search objective Lpθq :“ p1´ λqF pθq ` λ cospθtpτq ´ θ, g0pθ
tpτqqq

with the extra constraint that }θtpτq ´ θ}2 ď }g0pθ
tpτqq}2. This is because FLTrust normalizes

all the local model updates using the magnitude of the root update. In the latter case, we use the
same objective but approximate g0pθ

tpτqq with E
z
q0
„ rP

r∇θℓpθ
tpτq; zqs, where q0 models the bias of

root data, which is assumed to be known to the attackers. In both cases, the action space is then
pE, λq with E P t0, . . . , 20u and λ P r0, 1s. We further find that when the root data D0 is known
(or can be well approximated), the RL-based attack can be made more efficient by considering an
alternate local search objective Lpθq :“ p1´λqF pθq´λF0pθq, where F0pθq “

1
|D0|

ř

zPD0
rℓpθ; zqs

is the empirical loss associated with the root data. Intuitively, the attackers aim to push the model
parameters towards the region that can overfit the root data.

In our experiments, the initial model for all training episodes is set as the first model the attackers
received from the actual FL environment. We assume that the server waits for 72 seconds to receive
the updates from the workers before performing a model aggregation, which allows 80, 000 total time
steps (i.e., 80 episodes) of policy learning for Krum, 40, 000 total time steps (i.e., 40 episodes) of
policy learning for clipping median, and 40, 000 total time steps (i.e., 40 episodes) of policy learning
for FLTrust within 400 FL epochs in our experiment setting. It is more time consuming to train
an RL policy for clipping median and FLTrust because large attack bounds need to be considered.
See E.2 for a detailed comparison of the running time of different stages of the RL-based attack under
different defense scenarios.

Attack execution setting. Both the distribution learning and policy learning phases in the RL-based
attack start at the first FL epoch. The former ends at the 100th FL epoch when RL-based attack starts.
All other attacks start at epoch 0. For fair comparisons, we fix all the random seeds for generating the
initial model and the root data (for FLTrust), subsampling, and local data sampling when evaluating
different attacks. We observe that both EB and RL can occasionally produce NaNs in model updates,
which when incorporated by the server, can lead to bad models in all future steps. This produces
unrealistic attack scenarios as NaNs can be easily detected by the server. To have a fair comparison
with other attacks, we use the built-in VecCheckNan Wrapper in OpenAI Stable Baseline3 [48] to
detect abnormal values. We assume that attackers take less ambitious actions (i.e., p0.5γ,E ´ 1q)
in that epoch once they detect a NaN value. If E “ 0 or γ “ 0, the attackers send rgtpτq “ 0 to the
server.

E.2 More experiment results

Attack performance on other datasets. Figures 5 and 6 compare the test accuracy of the global
model under different attacks when the server uses Krum or clipping median as the defense for the

26



Figure 5: A comparison of global model accuracy on Fashion-MNIST under Krum and clipping median for
both i.i.d. data and non-i.i.d. data. All parameters are set as default.

Figure 6: A comparison of global model accuracy on EMNIST under Krum and clipping median for both i.i.d.
data and non-i.i.d. data. All parameters are set as default.

Fashion-MNIST and EMNIST datasets. We consider both i.i.d. and non-i.i.d. (q “ 0.5) settings.
Our RL-based attack constantly outperforms other baselines by a large margin in all the settings.
We observe that in most cases, all attacks are more effective in the non-i.i.d. setting. This is mainly
because a higher degree of local data heterogeneity increases the variance across normal workers’
updates, making it more difficult to filter out adversarial updates. Further, clipping median, which
adopts both dimension-wise filtering and client-wise norm clipping to model updates, provides a
stronger level of defense than Krum, which only applies client-wise filtering to model updates. In
particular, our attack can reduce the model accuracy to an extremely low level under the Krum
defense, depending on the number of classes of the dataset used („10% for Fashion-MNIST and
„2% for EMNIST).

Figure 7 compares the test accuracy of the global model under different attacks for the CIFAR-10
dataset in the i .i .d . setting. Here we assume that our RL-based attack does not perform distribution
learning, and the attackers use their local data to train the attack policy and start to execute attack at
epoch 100. This is mainly due to the fact that image reconstruction for CIFAR-10 takes prohibitive
amount of time in our experiment environment. Further, state-of-the-art gradient inversion attacks
either cannot reconstruct a large batch of images for CIFAR-10 accurately or have not made their
code available yet. We consider two cases where 500 and 5,000 local samples are used to train the
attack policy, respectively. We observe that in both cases, our approach surpasses all the baselines. In
particular, the RL policy trained using only 500 local samples quickly drives the model accuracy to a
very low level („%9.52) under the Krum defense.

Attack performance under geometric median. We compare the attack performance of RL-based
attack and other baselines (i.e., NA, EB, IPM, and LMP) against geometric median [46] on MNIST
dataset in the i.i.d. setting. As shown in Figure 8(a), RL-based attack and LMP significantly
outperform other baselines. Further, although our RL-based attack starts attacking at the 100th epoch,
it quickly drives the model accuracy to a very low level, while LMP takes much longer time to achieve
similar attack performance.

Attack performance under noisy gradients. We also compare the attack performance of our
RL-based attack and other baselines against clipping median aggregation (with the clipping threshold
set to 2) under noisy gradients [63]. In particular, the server injects noise into the global model
parameters shared with clients, where the noise is sampled from a Laplace distribution [3] (i.e., double
exponential distribution) with 0 mean and 1e´ 4 exponential decay. We observe that although adding
noise indeed decreases the quality of reconstructed images, distribution learning is still effective for
the MNIST dataset. Further, our RL-based method still outperforms other baselines in this setting as
shown in Figure 8(b).

27



Figure 7: A comparison of global model accuracy on CIFAR-10 under the Krum and clipping median defenses.
The RL policy is trained using 500 or 5,000 local samples without distribution learning.

(a) (b) (c) (d)

Figure 8: More results on different defenses. (a) Attack performance on MNIST under the geometric median
defense. (b) Attack performance on MNIST under the clipping median defense and noisy gradients. (c) and (d)
Attack performance on EMNIST under FLTrust defense with unbiased and biased root data.

Attack performance under FLTrust. We compare the attack performance of our RL-based attack
with and without access to server’s root data (details are given in E.1 policy learning setting) and other
baselines (i.e., NA, IPM, and adaptive LMP) against the FLTrust defense on the EMNIST dataset. For
RL-based attacks, the attackers use 5,000 local data samples to simulate the environment and skip
the distribution learning phase, and start attacking at FL epoch 100. All the baselines start from the
beginning of FL. We consider both the cases when the root data are unbiased (q0 “ 1{47) and when
they are biased against a single class (q0 “ 0.3). In the former case, our attack with access to root
data leads to a significantly low test accuracy („50%) as shown in Figure 8(c), while other attacks,
including RL-based attack without access to root data, have limited effect against FLTrust. This is
due to the fact that when the root data are unbiased and representative of the true training dataset,
the root update g0 in each epoch provides a good estimate of the right direction for model updates,
making it difficult to reverse the trend. On the other hand, when the root data is biased, which is
likely to happen in practice, the root updates are less representative or even misleading. As shown
in Figure 8(d), our RL-based attack with root data access becomes more effective as expected. Our
RL-based attack without root data also achieves significant although unstable attack performance.
Here we ignore the second term in the local search objective Lpθq by fixing λ “ 0 to minimize the
impact of inaccurate estimate of g0.

Actual runtime comparison. The actual runtime varies across the FL environment, the training
method used, and most importantly, the amount of computational resource available. The tables
below report the numbers from our current experiment settings (see Appendix E.1) and the way the
simulator is implemented (clients are simulated sequentially in each FL epoch).

For MNIST, Fashion-MNIST, and EMNIST, distribution learning takes around 100 seconds to
reconstruct a batch of 32 images and we construct 50 batches within 2 hours. Note that multiple
batches can be generated from a single gradient. We start policy training from the beginning of FL
training, and we set 8 hours limit for policy training. It takes around 0.05 seconds to simulate a single
FL epoch with 10 sampled clients without parallelization. Total training steps vary across defense
policies as stated in Appendix E.1.

With the above numbers, if we assume that each FL epoch takes 72 seconds to finish and there are in
total of 1000 FL epochs during FL training, then distribution learning will end before the 100th FL
epoch and policy training ends by the 400th FL epochs, and the total FL training time is around 20
hours.

28



Stages FL Epochs Real Time
Distribution Learning 100 ď 2 hours

Policy Learning 400 ď 8 hours
Total FL Training 1000 20 hours

Table 1: The running time of each stage in our RL-based attack in terms of FL epochs and real
running time for small networks.

Attacks MNIST CIFAR-10
IPM 0.25s 2.5s
LMP 7.7s 30s
EB 0.5s 5.5s
RL 5.8s 6s

Table 2: Execution time of various attacks against the clipping median defense for the MNIST and
CIFAR-10 datasets.

Figure 9: Classification boundaries of the final model on the synthetic data under various attacks and the
clipping median defense. The classification accuracy of the final model: 100% (NA), 96.70% (IPM), 89.04%
(LMP), 88.04% (RL with 2d actions), and 68.90% (RL with 28-dimensional actions). All parameters are set as
default.

Figure 10: Classification boundaries of the final model on the synthetic data under various attacks and the
FLTrust defense. The classification accuracy of the final model: 100% (NA), 100% (IPM), 100% (LMP), 100%
(RL with 2d actions), and 68.90% (RL with 28-dimensional actions). All parameters are set as default.

For CIFAR-10, we do not perform distribution learning in this work and policy learning alone
takes about 20 hours in our experiment environment as we use a much bigger network (i.e., Resnet-
18). However, we expect that once equipped with more powerful devices, the training time can be
significantly reduced by parallelly simulating multiple clients using multiprocessing and multiple
episodes using vectorized environments, which will make it possible to simulate large FL systems.

In terms of attack executing time, for MNIST with clipping median defense, IPM takes around 0.25
seconds to execute an attack in each FL epoch, LMP takes around 7.7 seconds, EB takes around 0.5
seconds. For CIFAR-10 with clipping median defense, IPM takes around 2.55 seconds to execute an
attack in each FL epoch, LMP takes around 30 seconds, EB takes around 5.5 seconds. The execution
time of our RL-based method varies over the action space used and it takes around 5.8 seconds and 6
seconds for MNIST and CIFAR-10 respectively with the default action space described in Section 4.3.
Given that each FL epoch typically lasts a minute or longer (72 seconds in our experiment), a few
seconds of search time is completely acceptable. We observe that for defenses such as Krum, it
suffices to use the gradients of the last two layers of model parameters as the action. This approach
does not require any online searching and reduces the attack execution time to 0.5s.

29



Attacks 5% attackers 10% attackers 20% attackers
NA 99.70% 99.02% 99.86%
IPM 99.66% 88.88% 68.96%
EB 99.68% 84.26% 70.06%

LMP 99.68% 89.38% 69.04%
RL 68.90% 68.90% 68.90%

Table 3: Global model accuracy under various attacks and the Krum defense on the synthetic dataset.

Results for the synthetic data. In addition to the four real datasets discussed above, we also
consider a two-dimensional synthetic dataset and a small network with 28 model parameters to
demonstrate the full potential of our RL-based attack framework (i.e., without state and action
compression). We generate the synthetic data based on the method described in [54]. In particular,
we generate 55, 000 data instances (including 50, 000 training instances and 5, 000 testing instances),
where for each instance z “ px, yq, the data x P R2„N p0, Iq and its label y “ signp}x}2q´ 2. Each
worker has 500 data instances. We train a multilayer perceptron (MLP) with two hidden layers of
size four and two, respectively, and use ReLU as the activation function. For our RL-based attack,
we consider both the 2-dimensional action space pγ,Eq discussed above as well as the general 28
dimensional action space where the attackers directly decide rgtpτq to be sent to the server in each
epoch. In both cases, the state space includes the full 28 model parameters and the number of
attackers in each epoch. Policy learning takes 8, 000 total time steps (i.e., 8 episodes) to learn the
policy, within 10 FL epochs. The attackers use their local data (10, 000 samples) to build a simulated
environment without using distribution learning, and start attacking at epoch 0. We fix all random
seeds for a fair comparison across different attacks.

Figure 9 and Figure 10 illustrate the classification boundaries at the end of a federated learning episode
for all the attacks when the clipping median defense and the FLTrust defense are applied respectively.
The root dataset D0 for FLTrust is assumed to be known for RL-based attacks. We observe that all
the baseline methods and our RL-based attack with 2d actions have limited effect under clipping
median and completely fail under FLTrust. On the other hand, the RL-based attack with the full
28-dimensional action space reduces the classification accuracy to 68.90% (worst-case accuracy for
the given environment) under both defenses. These results indicate the potential of considering large
state and action spaces in our RL-based attack when equipped with more computational power and
longer training time.

Table 3 shows how the global model accuracy under different attacks and the Krum defense varies
over the number of attackers. The results show that our approach is effective even when the fraction
of malicious clients is as low as 5%.

30


	Introduction
	Related Work
	Approach Overview
	Model-based Reinforcement Learning Attack Framework
	Attackers' problem as a Markov decision process
	Distribution learning
	Policy learning
	Attack execution

	Impact of Inaccurate Distribution Learning and Data Heterogeneity
	Experiments
	Experiment setup
	Attack performance
	Ablation studies

	Conclusion
	Broader Impact
	Algorithms
	Discussion on Gradient Inversion Attacks and Defenses
	Proof of Theorem 1
	Preliminaries
	Measuring the uncertainty: from data distributions to total returns
	Lipschitz constants of value functions
	Wasserstein distance between transitions
	Difference between expected returns

	Experiments
	Experiment setup
	More experiment results


