CONFIDENTIAL. Limited circulation. For review only.

Dynamic Inference on Graphs using Structured Transition Models

Saumya Saxena' and Oliver Kroemer

Abstract— Modelling and learning the dynamics of intricate
dynamic interactions prevalent in common tasks such as push-
ing a heavy door or picking up an object in one sweeping
motion is a challenging problem. One needs to consider both
the dynamics of the individual objects and of the interactions
among objects. In this work, we present a method that enables
efficient learning of the dynamics of interacting systems by
simultaneously learning a dynamic graph structure and a stable
and locally linear forward dynamic model of the system. The
dynamic graph structure encodes evolving contact modes along
a trajectory by making probabilistic predictions over the edge
activations. Introducing a temporal dependence in the learned
graph structure enables incorporating contact measurement
updates which allows for more accurate forward predictions.
The learned stable and locally linear dynamics enable the use
of optimal control algorithms such as iLQR for long-horizon
planning and control for complex interactive tasks. Through
experiments in simulation and in the real world, we evaluate
the performance of our method by using the learned inter-
action dynamics for control and demonstrate generalization
to more objects and interactions not seen during training.
We also introduce a control scheme that takes advantage of
contact measurement updates and hence is robust to prediction
inaccuracies during execution.

[. INTRODUCTION

Common tasks such as pushing a heavy door using the
momentum of our bodies or picking up an object while
walking past it involve complex dynamic interactions with
these objects. To learn how to effectively perform such tasks
using a robot, we need to consider the dynamics of the robot,
the individual objects, as well as the interactions between
them. These learned interaction models can then be used
to intentionally utilize dynamic interactions to accomplish
complex tasks.

Learning interaction dynamics becomes more and more
challenging as the number of interacting bodies in the
scene increases, resulting in a combinatorial explosion in the
number of interactions to reason about. Recent developments
use graph neural networks (GNNs) [1], [2] to model and
learn object-centric interaction dynamics of such systems.
These networks provide a principled way of approaching this
problem by incorporating a relational inductive bias in the
learned dynamics. However, many GNN based approaches
suffer from scaling issues as the number of interactions in-
creases [3] which makes learning the dynamics of interactive
tasks harder.
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In this work, we develop a method for efficiently learn-
ing the dynamics of interacting systems by simultaneously
learning a relational dynamic graph structure and a stable
locally linear forward dynamic model of the system. The
learned dynamic graph structure encodes information about
dynamics and contact modes evolving along the task trajec-
tory by adding and removing edges from the graph as contact
is made and broken. This allows for strong generalization
of the learned dynamics when more nodes are added to
the graph. Starting by representing our system as a fully
connected graph, we learn time-varying and state dependent
edge activations using a graph inference module. An edge is
inferred to be active when the nodes connected via the edge
interact and influence the forward dynamics, thus making
it critical for the edge activations and the forward model
to be learned together. When a new object is added to the
scene, the graph inference module can predict whether or
not the new nodes influences the system dynamics based on
edge predictions. This allows the learned model to generalize
more effectively to new objects and new interactions in the
environment.

We use the spring-mass-damper model as a structural prior
over the local object-centric dynamics of our system. This
provides us with two benefits: linearity and stability. For
positive values of mass, stiffness and damping parameters,
the linear spring-mass-damper model is always stable about
the equilibrium point (which is also learned) [4]. Assuming
a locally linear and stable prior structure over our dynamics
model allows us to effectively learn the dynamics and to
use the learned dynamics for long-horizon planning and
control by precluding the rollout trajectories from growing
unbounded. The learned locally linear dynamics also enable
the use of optimal control algorithms, such as iLQR, to
exploit the interaction dynamics and perform complex tasks
optimally by predicting future edge activations and thus
contact modes as well.

Control strategies that use a learned model are naturally
sensitive to model inaccuracies, especially near the contact
regions. This can lead to catastrophic failures during execu-
tion. To alleviate this issue, we use gated recurrent units
(GRUs) to learn a probabilistic model that predicts edge
activations. These units introduce a temporal dependency of
the current edge activation on the previous edge activations.
During execution, observed contact modes are used to eval-
uate a posterior over the edge activations and update them
which enables more accurate future rollouts. We use model
predictive control (MPC) to replan using the observed current
state and contact modes.

We explore an exciting application of this work in the field
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of apprenticeship learning wherein the learned locally linear
model can be used for learning the quadratic cost function
underlying expert demonstrations using differentiable LQR
as the policy class [5], [6]. The learned behavior can then
be generalized to unseen goal conditions.

The key contributions of this work are two-fold: 1) a
method for learning stable locally linear dynamics for non-
linear interactive systems using graph neural networks by
encoding changing dynamics and contacts as part of the
graph structure, enabling strong generalization properties to
more objects in the scene, and 2) using the learned locally
linear dynamics to devise a robust control scheme that
utilizes the recurrent nature of the learned graph structure
to adapt the model predictions and the policy to observed
contact events.

We evaluate our results in simulation on tasks such as
multiple object dynamic pickup and dynamic door-opening.
We also perform real world experiments using the 7DOF
Franka-Emika Panda robot arm for a dynamic pickup task.

II. RELATED WORK

Learning the interaction dynamics of contact-rich tasks is
a problem of interest in many areas of robotics research such
as manipulation [7], collaborative robotics and assistive sys-
tems. In some recent works the dynamics of such interactive
systems is learned implicitly [8], [9], while in others [6],
[10], [11], [12] the focus is on modelling these changing
dynamics as explicit dynamic modes. In our method, we aim
to exploit the inherent structure underlying interactions in
physical systems by modelling them as graphs and taking
advantage of the generalization benefits of graph based
approaches.

There has been tremendous progress towards the devel-
opment of graph neural networks for modelling and learn-
ing the forward interaction dynamics of physical systems.
Approaches such as [1], [13], [2], [14], [15] learn the
dynamics model assuming a static fully connected or known
graph structure. Such models can require a large amount of
interaction data and training time to accurately learn the
interaction dynamics. There has also been work towards
using static graphs for planning and control [16], [17], [18].
We focus on the problem of simultaneously learning the
dynamic graph structure and the forward dynamic model of
the system in a purely unsupervised fashion and using that
model for control.

Some approaches [19], [20], [21] for learning the graph
structure assume that the graph structure is static for a
task, or along a single task trajectory, while other methods
learn to actively predict edge interactions [3], [22], [23]
using attention mechanisms. We take inspiration from these
approaches for learning probabilistic predictions of edge
activations that evolve with the state of the system.

Learning to control non-linear systems using locally op-
timal control algorithms such as iLQR is an exciting area
of research. Such methods require learning locally linear
and stable dynamics models of the system. Some recent
approaches that aim to learn locally linear dynamics of

the system for control include [24], [25], [26], [27] but
these approaches have rarely been extended to graph based
interactive dynamic systems. We derive inspiration from
these works and model our system dynamics as locally linear
which enables the use of optimal control algorithms such as
iLQR. In our work, we also explore methods developed in
[5], [6], [28] for utilizing the learned linearized dynamics
for learning simple quadratic cost functions of differentiable
controllers such as LQR.

I1I. METHOD

In this section, we discuss in detail our method for learn-
ing stable locally linear dynamics for non-linear interactive
systems using graph neural networks. Our training pipeline
is composed of two main modules that are trained together,
1) a graph inference module that learns the dynamic graph
structure, and 2) a forward dynamics module that learns
the stable locally linear forward dynamics given the graph
structure.

A. Graph Inference Module

This module predicts the dynamic interaction graph struc-
ture — which edges in the dynamic graph are active or
inactive at a certain time step. In our domain where physical
objects are represented as nodes in the graph, this module
infers whether or not, at a certain time step, objects influence
each other’s dynamics. For example, in a scenario where a
robot gripper picks up an object, an edge connects the gripper
and the object only after the object has been grasped.

The state of the system at time ¢ is represented as a graph
G: = (Ny, &) where nodes N; represent objects in the scene
and edges & connect interacting nodes. Node ni € A is
represented using a feature vector xi where x! = [q, ¢}].
q; and ¢ are the position and velocity of the ith object
respectively. The edge e,/ € & connecting nodes i and j is
represented with edge features d;’ where d}’ is the distance
between nodes n? and nj.

An overview of the graph inference module is shown in
Fig. 1. We start with a set of trajectories of fully connected
graphs (Go, uo, ..., Gr, ur) where u; is the control applied
at time t, and 7T is the length of the trajectory. We consider
only one actuated node (agent) in all our tasks and share
the control effort applied to the agent with all other nodes.
Unactuated objects are influenced by the control indirectly
via the agent; for example, when an object is picked up by a
gripper. This is a design choice and one can apply different
actions to all the actuated nodes in the scene and apply zero
actions to unactuated objects if desired.

In order to learn the dynamic graph structure, we first use
a graph neural network to propagate information spatially
over each of the graphs (Go,...,Gr) via message passing
between the nodes using a node feature network fi"f and an

edge feature network finf:

m, = f"(x},x],d})

z; = [ (x}, )_my)
J
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Method overview: Our method has two main parts 1) Graph inference module: we start with a set of fully connected graphs and pass them through

the inference graph network that performs message passing between the nodes and outputs embedded graphs. Next, to aggregate information temporally,

we pass the edge embeddings m, ”

_,p through a GRU that outputs a discrete probability distribution py

over the edge types (active or inactive) for each

edge. We sample from this dlstrlbutlon to get the edge activations at (see III-A). 2) Forward dynamics module: using the edge activations, we remove
the inactive edges from the fully connected input graphs and then pass them through the forward dynamics graph network that outputs another set of

embedded graphs. The node embeddings 2?

are passed though a fully connected neural network that outputs stable locally linear transition dynamics (see

III-B). We forward propagate the learned dynamics using the input control and get the next state which is used for loss calculation during training (4).

where fi™ and fi" are fully connected neural networks
representing the Inference GNN and z: and m;’ are the
output node and edge embeddings respectively. After two
steps of message passing, the output edge embeddings m .
for each edge are passed though a gated recurrent unit (GRU)
to allow temporal information flow:

Por = GRU(mgy) )

aé];T = sample(pé{T)
where ¢ are the trainable parameters of the GRU and pij
is a discrete probability distribution over the edge types.
We consider two edge types: active and inactive. Sampling
from probability distribution p;’ gives us a one hot vector
representing the edge activation a;’. If an edge is active
at time t, a/ = [1,0] else a; = [0,1]. Naturally, this
representation can be extended to include more than two
edge types. Differentiability of this sampling procedure can
be ensured by employing techniques such as Gumbel softmax
[29]. If an edge ey’ is sampled to be inactive it is removed
from the graph G; for the subsequent calculations and no
messages pass through that edge. The output of the graph
inference module is a trajectory of graphs (Go,...,Gr)
where G, = (N, gt) and & C & is the set of active edges.
Given this inferred graph structure, our next step is to model
the forward dynamics of the system.

B. Forward Dynamics Module

An overview of the forward dynamics module is shown
in Fig. 1. To learn the object-centric interaction dynamics
of the system, we use another GNN to perform two steps
of message passing over each of the graphs (go, ceey QT) to
propagate information spatially between connected nodes.

my = fO"(x}, x],dy’)

dn ~2]
Zt*fy Xt7§

where & and f&" are fully connected neural networks
representing the Forward Dynamics GNN. Here, for scenar-
ios where more than two edge types are considered, for

example to capture varied behavior over active edges, one
can use a different edge feature network fgy" for each edge
type. The output node embeddings z: now encode interaction
information between the connected nodes and can be used
to learn the forward dynamic parameters of the interactive
system independently for each node. To learn stable locally
linear dynamics, we approximate the dynamics of each node
to resemble a spring-mass-damper system, the parameters of
which are derived from the node embeddings at each time
step. This representation was chosen since the dynamics of a
spring-mass-damper system can be constrained to be stable
by constraining the mass, stiffness and damping parameters
to be greater than zero [4]. This is easily achieved by using
activations such as sigmoid and relu. We use a fully con-
nected neural network g™ to output the dynamic parameters
for each node as,

= g™ (#) @
where a! = [mz , kt,cf,xf] where m! is the mass, k! is the

stiffness of the spring, ¢! is the damping, ! is the equilibrium
point. These parameters can then be used to write the stable
locally linear dynamics of the system as:

Xj11 = Ajx; + Biu; + o 3)
where
; 1 dt ; 0 ; 0
Al = | kiat _chat|,Bi=|at|.0p = |kiaidt
'rni ml my mt

for a discrete-time one degree of freedom system.

C. Training

The graph inference module and the forward dynamics
module are trained together to simultaneously learn the
dynamic graph structure and the locally linear forward
dynamics. We collect a set of N trajectories containing
multiple interacting objects and represent them as graphs
{(Gg,u0,...,G5_1,ur—1)n}tn=0,....n. The loss function for
training the model is written as,

ored Y py
Layn = Z |IxEr = x|l +ZKL[POJ;T—1 lagr—1] 4

(2%
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where x'7, | is the observed next state and iy, = Aix'F +
Biu; + o} is the predicted next state for node n’. pii,_,
is the probability distribution over predicted edge activations
and qgj;-_, is a prior on the edge activations. In prior work
[19], [20], where the focus is on learning a static graph
structure, the prior is designed such that a sparse graph is
learned. However, in our scenario, since the graph structure
is not static and can be sparse or dense depending upon the
state, we design a prior using the relative distances between
the nodes. In particular, when two nodes are spatially close to
each other, the prior suggests that the probability of the edge
connecting these nodes being active, is high. In particular, for
a given distance threshold of d;y, the prior over edge e;’ at
time t is given by:

- dep, — 4
¥ = Softmax(| ot
qt ( d; J dth )
where the edge feature dij is the distance between nodes
ni and nj. The neural networks finf, finf GRUS,, dyn - pdyn
and g% are trained simultaneously using stochastic gradient
descent to minimize the loss Lgyn.

D. Execution

While it is common practice to use model predictive
control for replanning using the current observed state, for
interactive tasks where contacts are critical, it is essential
to utilize observed contact information for replanning as
well. Since we use GRU to learn the edge activations,
it introduces a temporal dependency of the current edge
activation on the previous edge activations. For one time step
prediction, this recurrent process looks as follows, py,; =
GRUCell(pi?,d). During execution, using the observed
contact modes, we update the current probabilistic edge
activations by calculating a posterior on the edge activations
as follows, N A ‘

p; = zp{ ¢

where cf;j is a discrete probability distribution representing
the observed contact between node n; and n; at time ¢ and
z is the normalization constant. Since GRU aggregates past
information for future rollouts, the updated edge activation
p;’ allows for more accurate future predictions. In particular,
we use the posterior edge activations p;’ to make updated
future predictions as follows, py,; = GRUCell(p;’,d;’).

IV. EXPERIMENTS

The proposed method is evaluated in simulation using
Box2D and Isaac Gym environments and in the real-world
on the 7DOF Franka-Emika Panda robot arm. Through our
experiments, we aim to evaluate 1) How useful is our graph
inference module in enabling efficient and accurate learning
of the dynamics of the interactive system? 2) What are
the generalization properties of the learned dynamics model
as more objects (not seen during training) are added to
the system? 3) How robust is our execution strategy to
inaccuracies in the learned model? 4) Can our learned stable
linearized dynamics be used for learning the cost function of

a differentiable LQR controller using expert demonstrations
of a task?

Ablation studies: To answer the first three questions we
perform the following three ablation studies: 1) Training
the dynamic model without the graph inference module i.e.
learning the forward dynamics module given fully connected
graphs. The dataset for this study is the same as the dataset
used for training the full model. We call this model No-
GIM. 2) Training the dynamic model without the graph
inference module but with an augmented dataset containing
more objects and interactions. We call this model No-GIM-
Aug. 3) Training the full dynamic model with the graph
inference module but replacing the GRU in (1) with a
fully connected neural network that takes as input only the
current edge embedding m,’ to output the edge activation
i.e. there is no temporal relationship between the predicted
edge activations. We call this model GIM-Non-Temp. Due
to this modification in the network architecture, we will no
longer be able to utilize the robust control scheme elaborated
on in III-D. We call our model GIM-Temp. In addition to the
above ablation studies, we also train a model that uses our
graph inference module but instead of using a spring-mass-
damper system based stable dynamics model in the forward
dynamics module, learns the full A and B matrices from
scratch.

Application: Apprenticeship learning. To answer ques-
tion 4, given the learned stable locally linear interaction
dynamics, we learn the cost matrices Q and R of a discrete-
time linear quadratic regulator (LQR) using expert demon-
strations. We demonstrate generalization of learned expert
behavior to goal regions not visited by the expert. We closely
follow the cost learning method in [6], but instead of learning
a different cost function and goal condition for each dynamic
mode, modeled as a discrete global variable, we learn a single
cost function for a certain task with a fixed goal.

Evaluation metrics: To test for generalization, all the
ablation models mentioned above, including our model, are
tested with more objects and interactions than seen during
training. For evaluating the accuracy of the learned model,
the generalization properties and the effectiveness of the
robust control scheme, we use N-step prediction error as the
metric. This error is calculated upon using the learned locally
linear models for control using iLQR-MPC (receding horizon
control) and calculating the root mean square error between
the predicted trajectory and the executed trajectory for a
rollout length of V. For each environment, [V is calculated
such that the rollout time is 0.5 seconds i.e N = 0.5/dt.
The prediction error is calculated over all the nodes in the
graph. For GIM-Non-Temp, in addition to N-step prediction
error, we also evaluate the accuracy of the predicted edge
activations for a rollout length of N and compare it with
our method GIM-Temp. We get the ground truth edge
activations by observing contacts during execution. Contact
information is not used during training. For No-GIM-Aug,
we also present results for the sample complexity, i.e how
much more interaction data is needed in order to achieve
similar level of performance as with our method. This will
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Fig. 2. (a) Row 1: Box2D Task 1 with same number of objects as seen during training. Row 2: Box2D Task 1 generalization scenario with many distractor

objects (orange) in the scene. Row 3: Box2D Task 2 with same number of objects as seen during training. Row 4: Box2D Task 2 generalization scenario for
picking up many more objects than during training. (b) N-step root mean square error between the predicted and executed trajectories. These experiments
are performed with the same number of objects and interactions as seen during training. (c) N-step root mean square error between the predicted and
executed trajectories. These experiments are performed to test for generalization by including many more objects and interactions in the task than seen

during training.

demonstrate the efficiency of our method as compared to
models where the graph inference module is not used.

Fig. 2(b) shows the N-step prediction error when the
learned models are tested in environments with the same
number of objects and interactions as seen during training.
Fig. 2(c) shows the N-step prediction error for generaliza-
tion scenarios i.e. testing with more interactions and more
distractor objects in the scene. Fig. 3(b) shows the N-step
edge activation prediction accuracy.

Box2D Tasks: We consider three tasks in this environ-
ment: Task 1: Dynamically (without stopping) picking up
a 2D object using a 2D gripper and taking it to a goal
region (Fig. 2(a) Rows 1 & 2), Task 2: Dynamic pickup
of multiple objects (Fig. 2(a) Rows 3 & 4), and Task 3:
Dynamic door opening (Fig. 3(a)). For task 1, No-GIM,
GIM-Non-Temp and GIM-Temp are trained on a dataset
consisting of 40 trajectories of the gripper picking up one
target objects and taking it to goal location. Initial positions
of the gripper and object and goal locations are sampled
to collect data. No-GIM-Aug is trained with an augmented
dataset consisting of up to three distractor objects which do
not interact (160 trajectories). For task 2, No-GIM, GIM-
Non-Temp and GIM-Temp are trained on a dataset consist-
ing of 40 trajectories of the gripper picking up two target
object and taking it to a goal. No-GIM-Aug is trained with
an augmented dataset consisting of trajectories where the

gripper picks up a maximum of three objects and takes them
to a goal (120 trajectories). For task 3, No-GIM, GIM-Non-
Temp and GIM-Temp are trained on a dataset consisting of
40 trajectories of the gripper dynamically opening a door.
All these learned models are then tested for generalization.
For task 1, we test in environments with up to ten distractor
objects. For task 2, we test for generalization by picking up
up to five objects. For task 3, we test in environments with
up to ten distractor doors.

Isaac Franka Task: We consider the task of dynamically
picking up an object of mass 0.5kg using a 7DOF Franka-
Emika Panda arm and taking it to a goal location (Fig. 4(a)
and (b)). The robot is controlled using task space impedance
control [30] during data collection wherein the orientation
of the gripper is kept fixed. The initial cartesian position
of the gripper, object (on a table) and goal are sampled for
data collection. No-GIM, GIM-Non-Temp and GIM-Temp
are trained on a dataset consisting of 200 trajectories of the
gripper picking up the target object and taking it to a goal. A
cartesian space model of the robot is learned while assuming
fixed orientation. We test for generalization in environments
with up to five distractor objects.

Real robot experiments: Real world experiments are
performed for the task of dynamically picking up an object
of mass 0.83kg and taking it to a goal location using a
7DOF Franka-Emika Panda robot arm (Fig. 4(c)). The setup,
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doors in the scene. (b) N-step edge activation prediction accuracy.

controller, data collection and training strategy is the same
as for the Isaac Gym Franka pickup task. The location of
the object was tracked using April tags and a Kinect depth
sensor [31]. Due to lack of reliable contact sensing, we
do not update edge activation predictions using observed
contacts during execution but still rely solely on GRU for
edge activation predictions. No-GIM, GIM-Non-Temp and
GIM-Temp are trained on a dataset of 25 trajectories.

Training parameters and network architecture: All the
models are trained using ADAM [32] with default parameters
and a learning rate of le — 5. The inference GNN and for-
wards dynamics GNN are composed of two fully connected
neural networks each having two layers with 64 units each
and ReLU activation. g%" in (3) is also a fully connected
neural network having two layers with 64 units each and
ReLU activation. We use GRUCell in PyTorch [33] and
apply a softmax to its output for learning the edge activation
probabilistic model. The reader is encouraged to refer to the
supplementary material for additional details regarding the
experiments and results (link).

V. RESULTS AND DISCUSSION

For each of the tasks, we use the learned dynamic models
for control using iLQR-MPC and calculate the N-step pre-
diction error as shown in Fig. 2(b & c). We observe that,
when tested with the same number of object interactions as
seen during training, the N-step prediction error for all the
models trained using simulation data is less than a centimeter
and around 2.5cm for the real world Franka task (Fig. 2(b)).
However, when tested for generalization, the performance
of No-GIM deteriorates significantly across all the tasks as
shown in Fig. 2(c). For the Isaac Gym Franka task, control
using the learned model is not able to successfully pick up
the object in many trials when distractor objects are present
in the scene. This is because in the absence of the graph
inference module, No-GIM cannot infer that edges to addi-
tional objects that do not interact can be rendered inactive.
This model also fails to infer the implicit mechanism behind
the dynamic interaction that occurs when an edge becomes

(®)

(a) Row 1: Box2D Task 3 with same number of doors as seen during training. Row 2: Box2D Task 3 generalization scenario with many distractor

active and hence cannot generalize to additional objects.
We also observe that No-GIM-Aug generalizes well and
that No-GIM-Aug and GIM-Non-Temp have comparative
performance. Training with augmented data consisting of
multiple interactions and distractor objects helps No-GIM-
Aug ignore distractor objects and generalize to more interac-
tions, however, this comes at the cost of three to four times
more data and longer training time. In comparison, GIM-
Non-Temp and our model GIM-Temp, trained on the same
dataset as No-GIM generalize well to scenarios involving
more interactions and distractor objects that seen during
training. Overall, the N-step prediction performance of GIM-
Temp exceeds all the other models in all tasks except for
the real world Franka task. Since we do not use contact
information for updating the edge predictions for the real
world Franka task, the performance of our method, compared
to other ablation studies, is not as good as in the other
tasks. However, using iLQR-MPC with our learned linear
model, we were able to perform the pickup task successfully
as shown in Fig. 4(c). This demonstrates the benefit of
learning a dynamic graph structure that encodes temporal
dependence in the edge activations and of using a robust
execution strategy that adapts to observed contact events.
This can be quantitatively observed in Fig. 3(b). Both GIM-
Non-Temp and our model GIM-Temp show interpretable
results where edges were learned to be active only between
objects and agents in contact. However, the edge activation
prediction accuracy of our model is higher as compared to
GIM-Non-Temp. This is because GIM-Non-Temp shows
inaccuracies in regions close to contact and, in the absence
of a mechanism for updating future predictions based on
contact observations, its performance suffers.

For the model trained using our graph inference module
but instead of using a spring-mass-damper system based
stable dynamics model learns the full A and B matrices
from scratch, we observed that even though the model
trained to convergence, using this learned model for LQR
was infeasible. This is because, without any constraints or
prior structure in A and B ensuring stability, the learned
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Fig. 4.

(a) Isaac Gym Task with same number of objects as seen during training. (b) Isaac Gym Task generalization scenario with distractor (green)

objects in the scene. (c) Real world experiments with the 7DOF Franka-Emika Panda arm performing a dynamic pickup task using our learned model.

model causes the predicted trajectories to become unstable,
resulting in unbounded behavior upon forward rollout.

We also trained a model similar to our model GIM-
Temp and using the same data but without including the KL
divergence loss between the predicted edge activations and
the distance-based prior in the loss function (4). We observe
that without an informative prior, the model tends to quickly
fall into a local minima where the graph stays fully connected
for all time steps. This results in a model learned similar to
No-GIM with poor generalization performance.

Finally, we use our learned model GIM-Temp to learn the
quadratic cost matrices of a LQR controller using the method
described in [6] for the Box2D pickup task 1. We learn
the cost function underlying this dynamic task using expert
demonstrations collected by sampling the initial position of
the gripper but keeping the goal and object locations fixed.
Our aim is to evaluate if the learned controller mimics the
behavior of the expert and if it generalizes to unseen goal and
object locations. We evaluate the performance of the learned
controller using task success as the metric. If the gripper is
able to pick up the object and take it within a goal region
in time T then the task is considered successful. We observe
that the learned controller can perform the task with 98%
success rate.

VI. LIMITATIONS AND FUTURE WORK

One of the limitations of our method is that it cannot, in
the present state, incorporate high-dimensional sensor inputs
such as images. Similar to prior work [24], [25], [26], [27],
we plan to extend our method to end-to-end learn a low-
dimensional feature vector from sensory inputs along with
the dynamic graph structure and the forward dynamic model.
Using long-horizon predictions to reason about occluded or
invisible objects is another exciting direction for future work
[15]. The dependence of our control strategy on reliable
contact measurement is another direction of improvement,
since reliable contact measurements are not always available.
One direction that can be considered is using the approach

in [34] to evaluate the probability of seeing the observed
transition for all possible edge activations and use that to
calculate the posterior. Another exciting future direction is
learning a graph network based LQR controller that encodes
relative costs between connected nodes and a goal node
and implicitly infers the combined cost over tasks involving
varying number of objects.

VII. CONCLUSION

In this work, we demonstrated the benefits of learning
the forward model of interactive systems by simultaneously
learning a dynamic interaction graph and a stable locally
linear forward dynamic model given the graph. We showed
that using a spring-mass-damper system as an approximation
to the local dynamics allows us to effectively learn the
parameters of a stable system that can be used for long-
horizon planning. We then elaborated on the generalization
benefits of learning a dynamic graph structure over using a
fully connected graph and demonstrated that by introducing
a temporal dependency of the current edge activation on the
previous edge activations, we allow for contact measurement
updates, ensuring more accurate future predictions. As an
application of our work, we also discussed how our learned
model can be used to learn the quadratic cost function
underlying expert demonstrations using the method described
in [5], [6]. The learned behavior can then be generalized to
unseen goals.
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