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AbstractÐ Modelling and learning the dynamics of intricate
dynamic interactions prevalent in common tasks such as push-
ing a heavy door or picking up an object in one sweeping
motion is a challenging problem. One needs to consider both
the dynamics of the individual objects and of the interactions
among objects. In this work, we present a method that enables
efficient learning of the dynamics of interacting systems by
simultaneously learning a dynamic graph structure and a stable
and locally linear forward dynamic model of the system. The
dynamic graph structure encodes evolving contact modes along
a trajectory by making probabilistic predictions over the edge
activations. Introducing a temporal dependence in the learned
graph structure enables incorporating contact measurement
updates which allows for more accurate forward predictions.
The learned stable and locally linear dynamics enable the use
of optimal control algorithms such as iLQR for long-horizon
planning and control for complex interactive tasks. Through
experiments in simulation and in the real world, we evaluate
the performance of our method by using the learned inter-
action dynamics for control and demonstrate generalization
to more objects and interactions not seen during training.
We also introduce a control scheme that takes advantage of
contact measurement updates and hence is robust to prediction
inaccuracies during execution.

I. INTRODUCTION

Common tasks such as pushing a heavy door using the

momentum of our bodies or picking up an object while

walking past it involve complex dynamic interactions with

these objects. To learn how to effectively perform such tasks

using a robot, we need to consider the dynamics of the robot,

the individual objects, as well as the interactions between

them. These learned interaction models can then be used

to intentionally utilize dynamic interactions to accomplish

complex tasks.

Learning interaction dynamics becomes more and more

challenging as the number of interacting bodies in the

scene increases, resulting in a combinatorial explosion in the

number of interactions to reason about. Recent developments

use graph neural networks (GNNs) [1], [2] to model and

learn object-centric interaction dynamics of such systems.

These networks provide a principled way of approaching this

problem by incorporating a relational inductive bias in the

learned dynamics. However, many GNN based approaches

suffer from scaling issues as the number of interactions in-

creases [3] which makes learning the dynamics of interactive

tasks harder.
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In this work, we develop a method for efficiently learn-

ing the dynamics of interacting systems by simultaneously

learning a relational dynamic graph structure and a stable

locally linear forward dynamic model of the system. The

learned dynamic graph structure encodes information about

dynamics and contact modes evolving along the task trajec-

tory by adding and removing edges from the graph as contact

is made and broken. This allows for strong generalization

of the learned dynamics when more nodes are added to

the graph. Starting by representing our system as a fully

connected graph, we learn time-varying and state dependent

edge activations using a graph inference module. An edge is

inferred to be active when the nodes connected via the edge

interact and influence the forward dynamics, thus making

it critical for the edge activations and the forward model

to be learned together. When a new object is added to the

scene, the graph inference module can predict whether or

not the new nodes influences the system dynamics based on

edge predictions. This allows the learned model to generalize

more effectively to new objects and new interactions in the

environment.

We use the spring-mass-damper model as a structural prior

over the local object-centric dynamics of our system. This

provides us with two benefits: linearity and stability. For

positive values of mass, stiffness and damping parameters,

the linear spring-mass-damper model is always stable about

the equilibrium point (which is also learned) [4]. Assuming

a locally linear and stable prior structure over our dynamics

model allows us to effectively learn the dynamics and to

use the learned dynamics for long-horizon planning and

control by precluding the rollout trajectories from growing

unbounded. The learned locally linear dynamics also enable

the use of optimal control algorithms, such as iLQR, to

exploit the interaction dynamics and perform complex tasks

optimally by predicting future edge activations and thus

contact modes as well.

Control strategies that use a learned model are naturally

sensitive to model inaccuracies, especially near the contact

regions. This can lead to catastrophic failures during execu-

tion. To alleviate this issue, we use gated recurrent units

(GRUs) to learn a probabilistic model that predicts edge

activations. These units introduce a temporal dependency of

the current edge activation on the previous edge activations.

During execution, observed contact modes are used to eval-

uate a posterior over the edge activations and update them

which enables more accurate future rollouts. We use model

predictive control (MPC) to replan using the observed current

state and contact modes.

We explore an exciting application of this work in the field
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of apprenticeship learning wherein the learned locally linear

model can be used for learning the quadratic cost function

underlying expert demonstrations using differentiable LQR

as the policy class [5], [6]. The learned behavior can then

be generalized to unseen goal conditions.

The key contributions of this work are two-fold: 1) a

method for learning stable locally linear dynamics for non-

linear interactive systems using graph neural networks by

encoding changing dynamics and contacts as part of the

graph structure, enabling strong generalization properties to

more objects in the scene, and 2) using the learned locally

linear dynamics to devise a robust control scheme that

utilizes the recurrent nature of the learned graph structure

to adapt the model predictions and the policy to observed

contact events.

We evaluate our results in simulation on tasks such as

multiple object dynamic pickup and dynamic door-opening.

We also perform real world experiments using the 7DOF

Franka-Emika Panda robot arm for a dynamic pickup task.

II. RELATED WORK

Learning the interaction dynamics of contact-rich tasks is

a problem of interest in many areas of robotics research such

as manipulation [7], collaborative robotics and assistive sys-

tems. In some recent works the dynamics of such interactive

systems is learned implicitly [8], [9], while in others [6],

[10], [11], [12] the focus is on modelling these changing

dynamics as explicit dynamic modes. In our method, we aim

to exploit the inherent structure underlying interactions in

physical systems by modelling them as graphs and taking

advantage of the generalization benefits of graph based

approaches.

There has been tremendous progress towards the devel-

opment of graph neural networks for modelling and learn-

ing the forward interaction dynamics of physical systems.

Approaches such as [1], [13], [2], [14], [15] learn the

dynamics model assuming a static fully connected or known

graph structure. Such models can require a large amount of

interaction data and training time to accurately learn the

interaction dynamics. There has also been work towards

using static graphs for planning and control [16], [17], [18].

We focus on the problem of simultaneously learning the

dynamic graph structure and the forward dynamic model of

the system in a purely unsupervised fashion and using that

model for control.

Some approaches [19], [20], [21] for learning the graph

structure assume that the graph structure is static for a

task, or along a single task trajectory, while other methods

learn to actively predict edge interactions [3], [22], [23]

using attention mechanisms. We take inspiration from these

approaches for learning probabilistic predictions of edge

activations that evolve with the state of the system.

Learning to control non-linear systems using locally op-

timal control algorithms such as iLQR is an exciting area

of research. Such methods require learning locally linear

and stable dynamics models of the system. Some recent

approaches that aim to learn locally linear dynamics of

the system for control include [24], [25], [26], [27] but

these approaches have rarely been extended to graph based

interactive dynamic systems. We derive inspiration from

these works and model our system dynamics as locally linear

which enables the use of optimal control algorithms such as

iLQR. In our work, we also explore methods developed in

[5], [6], [28] for utilizing the learned linearized dynamics

for learning simple quadratic cost functions of differentiable

controllers such as LQR.

III. METHOD

In this section, we discuss in detail our method for learn-

ing stable locally linear dynamics for non-linear interactive

systems using graph neural networks. Our training pipeline

is composed of two main modules that are trained together,

1) a graph inference module that learns the dynamic graph

structure, and 2) a forward dynamics module that learns

the stable locally linear forward dynamics given the graph

structure.

A. Graph Inference Module

This module predicts the dynamic interaction graph struc-

ture Ð which edges in the dynamic graph are active or

inactive at a certain time step. In our domain where physical

objects are represented as nodes in the graph, this module

infers whether or not, at a certain time step, objects influence

each other’s dynamics. For example, in a scenario where a

robot gripper picks up an object, an edge connects the gripper

and the object only after the object has been grasped.

The state of the system at time t is represented as a graph

Gt = (Nt, Et) where nodes Nt represent objects in the scene

and edges Et connect interacting nodes. Node ni
t ∈ Nt is

represented using a feature vector xi
t where xi

t = [qi
t, q̇

i
t].

qi
t and q̇i

t are the position and velocity of the ith object

respectively. The edge eijt ∈ Et connecting nodes i and j is

represented with edge features d
ij
t where d

ij
t is the distance

between nodes ni
t and nj

t .

An overview of the graph inference module is shown in

Fig. 1. We start with a set of trajectories of fully connected

graphs (G0,u0, . . . ,GT ,uT ) where ut is the control applied

at time t, and T is the length of the trajectory. We consider

only one actuated node (agent) in all our tasks and share

the control effort applied to the agent with all other nodes.

Unactuated objects are influenced by the control indirectly

via the agent; for example, when an object is picked up by a

gripper. This is a design choice and one can apply different

actions to all the actuated nodes in the scene and apply zero

actions to unactuated objects if desired.

In order to learn the dynamic graph structure, we first use

a graph neural network to propagate information spatially

over each of the graphs (G0, . . . ,GT ) via message passing

between the nodes using a node feature network f inf
n and an

edge feature network f inf
e :

m
ij
t = f inf

e (xi
t,x

j
t ,d

ij
t )

zit = f inf
n (xi

t,
∑

j

m
ij
t )
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Fig. 1. Method overview: Our method has two main parts 1) Graph inference module: we start with a set of fully connected graphs and pass them through
the inference graph network that performs message passing between the nodes and outputs embedded graphs. Next, to aggregate information temporally,

we pass the edge embeddings m
ij

0,...,T
through a GRU that outputs a discrete probability distribution p

ij
t over the edge types (active or inactive) for each

edge. We sample from this distribution to get the edge activations a
ij
t (see III-A). 2) Forward dynamics module: using the edge activations, we remove

the inactive edges from the fully connected input graphs and then pass them through the forward dynamics graph network that outputs another set of

embedded graphs. The node embeddings z̃
ij
t are passed though a fully connected neural network that outputs stable locally linear transition dynamics (see

III-B). We forward propagate the learned dynamics using the input control and get the next state which is used for loss calculation during training (4).

where f inf
e and f inf

n are fully connected neural networks

representing the Inference GNN and zit and m
ij
t are the

output node and edge embeddings respectively. After two

steps of message passing, the output edge embeddings m
ij
0:T

for each edge are passed though a gated recurrent unit (GRU)

to allow temporal information flow:

p
ij
0:T = GRUϕ(m

ij
0:T )

a
ij
0:T = sample(pij

0:T )
(1)

where ϕ are the trainable parameters of the GRU and p
ij
t

is a discrete probability distribution over the edge types.

We consider two edge types: active and inactive. Sampling

from probability distribution p
ij
t gives us a one hot vector

representing the edge activation a
ij
t . If an edge is active

at time t, a
ij
t = [1, 0] else a

ij
t = [0, 1]. Naturally, this

representation can be extended to include more than two

edge types. Differentiability of this sampling procedure can

be ensured by employing techniques such as Gumbel softmax

[29]. If an edge eijt is sampled to be inactive it is removed

from the graph Gt for the subsequent calculations and no

messages pass through that edge. The output of the graph

inference module is a trajectory of graphs (G̃0, . . . , G̃T )
where G̃t = (Nt, Ẽt) and Ẽt ⊆ Et is the set of active edges.

Given this inferred graph structure, our next step is to model

the forward dynamics of the system.

B. Forward Dynamics Module

An overview of the forward dynamics module is shown

in Fig. 1. To learn the object-centric interaction dynamics

of the system, we use another GNN to perform two steps

of message passing over each of the graphs (G̃0, . . . , G̃T ) to

propagate information spatially between connected nodes.

m̃
ij
t = f dyn

e (xi
t,x

j
t ,d

ij
t )

z̃it = f dyn
n (xi

t,
∑

j

m̃
ij
t )

where f dyn
e and f dyn

n are fully connected neural networks

representing the Forward Dynamics GNN. Here, for scenar-

ios where more than two edge types are considered, for

example to capture varied behavior over active edges, one

can use a different edge feature network f dyn
e for each edge

type. The output node embeddings z̃it now encode interaction

information between the connected nodes and can be used

to learn the forward dynamic parameters of the interactive

system independently for each node. To learn stable locally

linear dynamics, we approximate the dynamics of each node

to resemble a spring-mass-damper system, the parameters of

which are derived from the node embeddings at each time

step. This representation was chosen since the dynamics of a

spring-mass-damper system can be constrained to be stable

by constraining the mass, stiffness and damping parameters

to be greater than zero [4]. This is easily achieved by using

activations such as sigmoid and relu. We use a fully con-

nected neural network gdyn to output the dynamic parameters

for each node as,

α
i
t = gdyn(z̃it) (2)

where α
i
t = [ 1

mi

t

, kit, c
i
t, x̂

i
t] where mi

t is the mass, kit is the

stiffness of the spring, cit is the damping, x̂i
t is the equilibrium

point. These parameters can then be used to write the stable

locally linear dynamics of the system as:

xi
t+1 = Ai

tx
i
t +Bi

tut + oi
t (3)

where

Ai
t =

[

1 dt
−ki

t
dt

mi

t

1− ci
t
dt

mi

t

]

,Bi
t =

[

0
dt
mi

t

]

,oi
t =

[

0
ki

t
x̂i

t
dt

mi

t

]

for a discrete-time one degree of freedom system.

C. Training

The graph inference module and the forward dynamics

module are trained together to simultaneously learn the

dynamic graph structure and the locally linear forward

dynamics. We collect a set of N trajectories containing

multiple interacting objects and represent them as graphs

{(G∗

0 ,u0, . . . ,G
∗

T−1
,uT−1)n}n=0,...,N . The loss function for

training the model is written as,

Ldyn =
∑

i

||xi∗

1:T −xipred

1:T ||2+
∑

i,j

KL[pij
0:T−1

||qij
0:T−1

] (4)
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where xi∗
t+1 is the observed next state and xipred

t+1 = Ai
tx

i∗
t +

Bi
tut + oi

t is the predicted next state for node ni. p
ij
0:T−1

is the probability distribution over predicted edge activations

and q
ij
0:T−1

is a prior on the edge activations. In prior work

[19], [20], where the focus is on learning a static graph

structure, the prior is designed such that a sparse graph is

learned. However, in our scenario, since the graph structure

is not static and can be sparse or dense depending upon the

state, we design a prior using the relative distances between

the nodes. In particular, when two nodes are spatially close to

each other, the prior suggests that the probability of the edge

connecting these nodes being active, is high. In particular, for

a given distance threshold of dth, the prior over edge eijt at

time t is given by:

q
ij
t = Softmax(

[

dth − dijt
dijt − dth

]

)

where the edge feature dijt is the distance between nodes

ni
t and nj

t . The neural networks f inf
e , f inf

n , GRUϕ, f dyn
e , f dyn

n

and gdyn are trained simultaneously using stochastic gradient

descent to minimize the loss Ldyn.

D. Execution

While it is common practice to use model predictive

control for replanning using the current observed state, for

interactive tasks where contacts are critical, it is essential

to utilize observed contact information for replanning as

well. Since we use GRU to learn the edge activations,

it introduces a temporal dependency of the current edge

activation on the previous edge activations. For one time step

prediction, this recurrent process looks as follows, p
ij
t+1 =

GRUCell(pij
t ,d

ij
t ). During execution, using the observed

contact modes, we update the current probabilistic edge

activations by calculating a posterior on the edge activations

as follows,

p̃
ij
t = z pij

t c
ij
t

where c
ij
t is a discrete probability distribution representing

the observed contact between node ni and nj at time t and

z is the normalization constant. Since GRU aggregates past

information for future rollouts, the updated edge activation

p̃
ij
t allows for more accurate future predictions. In particular,

we use the posterior edge activations p̃
ij
t to make updated

future predictions as follows, p
ij
t+1 = GRUCell(p̃ij

t ,d
ij
t ).

IV. EXPERIMENTS

The proposed method is evaluated in simulation using

Box2D and Isaac Gym environments and in the real-world

on the 7DOF Franka-Emika Panda robot arm. Through our

experiments, we aim to evaluate 1) How useful is our graph

inference module in enabling efficient and accurate learning

of the dynamics of the interactive system? 2) What are

the generalization properties of the learned dynamics model

as more objects (not seen during training) are added to

the system? 3) How robust is our execution strategy to

inaccuracies in the learned model? 4) Can our learned stable

linearized dynamics be used for learning the cost function of

a differentiable LQR controller using expert demonstrations

of a task?

Ablation studies: To answer the first three questions we

perform the following three ablation studies: 1) Training

the dynamic model without the graph inference module i.e.

learning the forward dynamics module given fully connected

graphs. The dataset for this study is the same as the dataset

used for training the full model. We call this model No-

GIM. 2) Training the dynamic model without the graph

inference module but with an augmented dataset containing

more objects and interactions. We call this model No-GIM-

Aug. 3) Training the full dynamic model with the graph

inference module but replacing the GRU in (1) with a

fully connected neural network that takes as input only the

current edge embedding m
ij
t to output the edge activation

i.e. there is no temporal relationship between the predicted

edge activations. We call this model GIM-Non-Temp. Due

to this modification in the network architecture, we will no

longer be able to utilize the robust control scheme elaborated

on in III-D. We call our model GIM-Temp. In addition to the

above ablation studies, we also train a model that uses our

graph inference module but instead of using a spring-mass-

damper system based stable dynamics model in the forward

dynamics module, learns the full A and B matrices from

scratch.

Application: Apprenticeship learning. To answer ques-

tion 4, given the learned stable locally linear interaction

dynamics, we learn the cost matrices Q and R of a discrete-

time linear quadratic regulator (LQR) using expert demon-

strations. We demonstrate generalization of learned expert

behavior to goal regions not visited by the expert. We closely

follow the cost learning method in [6], but instead of learning

a different cost function and goal condition for each dynamic

mode, modeled as a discrete global variable, we learn a single

cost function for a certain task with a fixed goal.

Evaluation metrics: To test for generalization, all the

ablation models mentioned above, including our model, are

tested with more objects and interactions than seen during

training. For evaluating the accuracy of the learned model,

the generalization properties and the effectiveness of the

robust control scheme, we use N-step prediction error as the

metric. This error is calculated upon using the learned locally

linear models for control using iLQR-MPC (receding horizon

control) and calculating the root mean square error between

the predicted trajectory and the executed trajectory for a

rollout length of N . For each environment, N is calculated

such that the rollout time is 0.5 seconds i.e N = 0.5/dt.
The prediction error is calculated over all the nodes in the

graph. For GIM-Non-Temp, in addition to N-step prediction

error, we also evaluate the accuracy of the predicted edge

activations for a rollout length of N and compare it with

our method GIM-Temp. We get the ground truth edge

activations by observing contacts during execution. Contact

information is not used during training. For No-GIM-Aug,

we also present results for the sample complexity, i.e how

much more interaction data is needed in order to achieve

similar level of performance as with our method. This will
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Fig. 2. (a) Row 1: Box2D Task 1 with same number of objects as seen during training. Row 2: Box2D Task 1 generalization scenario with many distractor
objects (orange) in the scene. Row 3: Box2D Task 2 with same number of objects as seen during training. Row 4: Box2D Task 2 generalization scenario for
picking up many more objects than during training. (b) N-step root mean square error between the predicted and executed trajectories. These experiments
are performed with the same number of objects and interactions as seen during training. (c) N-step root mean square error between the predicted and
executed trajectories. These experiments are performed to test for generalization by including many more objects and interactions in the task than seen
during training.

demonstrate the efficiency of our method as compared to

models where the graph inference module is not used.

Fig. 2(b) shows the N-step prediction error when the

learned models are tested in environments with the same

number of objects and interactions as seen during training.

Fig. 2(c) shows the N-step prediction error for generaliza-

tion scenarios i.e. testing with more interactions and more

distractor objects in the scene. Fig. 3(b) shows the N-step

edge activation prediction accuracy.

Box2D Tasks: We consider three tasks in this environ-

ment: Task 1: Dynamically (without stopping) picking up

a 2D object using a 2D gripper and taking it to a goal

region (Fig. 2(a) Rows 1 & 2), Task 2: Dynamic pickup

of multiple objects (Fig. 2(a) Rows 3 & 4), and Task 3:

Dynamic door opening (Fig. 3(a)). For task 1, No-GIM,

GIM-Non-Temp and GIM-Temp are trained on a dataset

consisting of 40 trajectories of the gripper picking up one

target objects and taking it to goal location. Initial positions

of the gripper and object and goal locations are sampled

to collect data. No-GIM-Aug is trained with an augmented

dataset consisting of up to three distractor objects which do

not interact (160 trajectories). For task 2, No-GIM, GIM-

Non-Temp and GIM-Temp are trained on a dataset consist-

ing of 40 trajectories of the gripper picking up two target

object and taking it to a goal. No-GIM-Aug is trained with

an augmented dataset consisting of trajectories where the

gripper picks up a maximum of three objects and takes them

to a goal (120 trajectories). For task 3, No-GIM, GIM-Non-

Temp and GIM-Temp are trained on a dataset consisting of

40 trajectories of the gripper dynamically opening a door.

All these learned models are then tested for generalization.

For task 1, we test in environments with up to ten distractor

objects. For task 2, we test for generalization by picking up

up to five objects. For task 3, we test in environments with

up to ten distractor doors.

Isaac Franka Task: We consider the task of dynamically

picking up an object of mass 0.5kg using a 7DOF Franka-

Emika Panda arm and taking it to a goal location (Fig. 4(a)

and (b)). The robot is controlled using task space impedance

control [30] during data collection wherein the orientation

of the gripper is kept fixed. The initial cartesian position

of the gripper, object (on a table) and goal are sampled for

data collection. No-GIM, GIM-Non-Temp and GIM-Temp

are trained on a dataset consisting of 200 trajectories of the

gripper picking up the target object and taking it to a goal. A

cartesian space model of the robot is learned while assuming

fixed orientation. We test for generalization in environments

with up to five distractor objects.

Real robot experiments: Real world experiments are

performed for the task of dynamically picking up an object

of mass 0.83kg and taking it to a goal location using a

7DOF Franka-Emika Panda robot arm (Fig. 4(c)). The setup,
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Fig. 3. (a) Row 1: Box2D Task 3 with same number of doors as seen during training. Row 2: Box2D Task 3 generalization scenario with many distractor
doors in the scene. (b) N-step edge activation prediction accuracy.

controller, data collection and training strategy is the same

as for the Isaac Gym Franka pickup task. The location of

the object was tracked using April tags and a Kinect depth

sensor [31]. Due to lack of reliable contact sensing, we

do not update edge activation predictions using observed

contacts during execution but still rely solely on GRU for

edge activation predictions. No-GIM, GIM-Non-Temp and

GIM-Temp are trained on a dataset of 25 trajectories.

Training parameters and network architecture: All the

models are trained using ADAM [32] with default parameters

and a learning rate of 1e − 5. The inference GNN and for-

wards dynamics GNN are composed of two fully connected

neural networks each having two layers with 64 units each

and ReLU activation. gdyn in (3) is also a fully connected

neural network having two layers with 64 units each and

ReLU activation. We use GRUCell in PyTorch [33] and

apply a softmax to its output for learning the edge activation

probabilistic model. The reader is encouraged to refer to the

supplementary material for additional details regarding the

experiments and results (link).

V. RESULTS AND DISCUSSION

For each of the tasks, we use the learned dynamic models

for control using iLQR-MPC and calculate the N-step pre-

diction error as shown in Fig. 2(b & c). We observe that,

when tested with the same number of object interactions as

seen during training, the N-step prediction error for all the

models trained using simulation data is less than a centimeter

and around 2.5cm for the real world Franka task (Fig. 2(b)).

However, when tested for generalization, the performance

of No-GIM deteriorates significantly across all the tasks as

shown in Fig. 2(c). For the Isaac Gym Franka task, control

using the learned model is not able to successfully pick up

the object in many trials when distractor objects are present

in the scene. This is because in the absence of the graph

inference module, No-GIM cannot infer that edges to addi-

tional objects that do not interact can be rendered inactive.

This model also fails to infer the implicit mechanism behind

the dynamic interaction that occurs when an edge becomes

active and hence cannot generalize to additional objects.

We also observe that No-GIM-Aug generalizes well and

that No-GIM-Aug and GIM-Non-Temp have comparative

performance. Training with augmented data consisting of

multiple interactions and distractor objects helps No-GIM-

Aug ignore distractor objects and generalize to more interac-

tions, however, this comes at the cost of three to four times

more data and longer training time. In comparison, GIM-

Non-Temp and our model GIM-Temp, trained on the same

dataset as No-GIM generalize well to scenarios involving

more interactions and distractor objects that seen during

training. Overall, the N-step prediction performance of GIM-

Temp exceeds all the other models in all tasks except for

the real world Franka task. Since we do not use contact

information for updating the edge predictions for the real

world Franka task, the performance of our method, compared

to other ablation studies, is not as good as in the other

tasks. However, using iLQR-MPC with our learned linear

model, we were able to perform the pickup task successfully

as shown in Fig. 4(c). This demonstrates the benefit of

learning a dynamic graph structure that encodes temporal

dependence in the edge activations and of using a robust

execution strategy that adapts to observed contact events.

This can be quantitatively observed in Fig. 3(b). Both GIM-

Non-Temp and our model GIM-Temp show interpretable

results where edges were learned to be active only between

objects and agents in contact. However, the edge activation

prediction accuracy of our model is higher as compared to

GIM-Non-Temp. This is because GIM-Non-Temp shows

inaccuracies in regions close to contact and, in the absence

of a mechanism for updating future predictions based on

contact observations, its performance suffers.

For the model trained using our graph inference module

but instead of using a spring-mass-damper system based

stable dynamics model learns the full A and B matrices

from scratch, we observed that even though the model

trained to convergence, using this learned model for LQR

was infeasible. This is because, without any constraints or

prior structure in A and B ensuring stability, the learned
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Fig. 4. (a) Isaac Gym Task with same number of objects as seen during training. (b) Isaac Gym Task generalization scenario with distractor (green)
objects in the scene. (c) Real world experiments with the 7DOF Franka-Emika Panda arm performing a dynamic pickup task using our learned model.

model causes the predicted trajectories to become unstable,

resulting in unbounded behavior upon forward rollout.

We also trained a model similar to our model GIM-

Temp and using the same data but without including the KL

divergence loss between the predicted edge activations and

the distance-based prior in the loss function (4). We observe

that without an informative prior, the model tends to quickly

fall into a local minima where the graph stays fully connected

for all time steps. This results in a model learned similar to

No-GIM with poor generalization performance.

Finally, we use our learned model GIM-Temp to learn the

quadratic cost matrices of a LQR controller using the method

described in [6] for the Box2D pickup task 1. We learn

the cost function underlying this dynamic task using expert

demonstrations collected by sampling the initial position of

the gripper but keeping the goal and object locations fixed.

Our aim is to evaluate if the learned controller mimics the

behavior of the expert and if it generalizes to unseen goal and

object locations. We evaluate the performance of the learned

controller using task success as the metric. If the gripper is

able to pick up the object and take it within a goal region

in time T then the task is considered successful. We observe

that the learned controller can perform the task with 98%

success rate.

VI. LIMITATIONS AND FUTURE WORK

One of the limitations of our method is that it cannot, in

the present state, incorporate high-dimensional sensor inputs

such as images. Similar to prior work [24], [25], [26], [27],

we plan to extend our method to end-to-end learn a low-

dimensional feature vector from sensory inputs along with

the dynamic graph structure and the forward dynamic model.

Using long-horizon predictions to reason about occluded or

invisible objects is another exciting direction for future work

[15]. The dependence of our control strategy on reliable

contact measurement is another direction of improvement,

since reliable contact measurements are not always available.

One direction that can be considered is using the approach

in [34] to evaluate the probability of seeing the observed

transition for all possible edge activations and use that to

calculate the posterior. Another exciting future direction is

learning a graph network based LQR controller that encodes

relative costs between connected nodes and a goal node

and implicitly infers the combined cost over tasks involving

varying number of objects.

VII. CONCLUSION

In this work, we demonstrated the benefits of learning

the forward model of interactive systems by simultaneously

learning a dynamic interaction graph and a stable locally

linear forward dynamic model given the graph. We showed

that using a spring-mass-damper system as an approximation

to the local dynamics allows us to effectively learn the

parameters of a stable system that can be used for long-

horizon planning. We then elaborated on the generalization

benefits of learning a dynamic graph structure over using a

fully connected graph and demonstrated that by introducing

a temporal dependency of the current edge activation on the

previous edge activations, we allow for contact measurement

updates, ensuring more accurate future predictions. As an

application of our work, we also discussed how our learned

model can be used to learn the quadratic cost function

underlying expert demonstrations using the method described

in [5], [6]. The learned behavior can then be generalized to

unseen goals.
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