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Abstract

We introduce a representation learning framework for spatial trajectories. We
represent partial observations of trajectories as probability distributions in a learned
latent space, which characterize the uncertainty about unobserved parts of the
trajectory. Our framework allows us to obtain samples from a trajectory for
any continuous point in time—both interpolating and extrapolating. Our flexible
approach supports directly modifying specific attributes of a trajectory, such as its
pace, as well as combining different partial observations into single representations.
Experiments show our method’s advantage over baselines in prediction tasks. See
trajectories.cs.columbia.edu for video results and code.

1 Introduction

The visual world is full of objects moving around in predictable ways. Examples of these spatial
trajectories include human motion, such as people dancing or exercising; objects moving, such as
a ball rolling; trajectories of cars and bicycles; or animal migration patterns. Evidence suggests
that the human perceptual system encodes motion into high-level neural codes that represent the
motion holistically, going beyond the specific input observations [22]. Humans use this abstract
representation for downstream tasks like inferring intention [6]. Computer vision systems likely need
similar mechanisms to encode trajectories and motions into global representations.

Representation learning has been transformative in other domains such as images and text for its
ability to obtain high-level representations that reorganize the information in the input, and are better
at downstream tasks than the original signals. A global representation of trajectories would allow
us to evaluate a trajectory at any point in time, even ones not yet observed. However, modeling
trajectories presents a series of challenges for representation learning. First, in real-time scenarios,
the future of the trajectory is never observed. Second, temporal and spatial occlusions may impede
observing part of a trajectory. Third, trajectories are by nature continuous in time. And finally, a
trajectory-level metric is usually not well defined and application-dependent.

We propose a representation learning framework for trajectories that deals with all these challenges
in a unified way. Our key contribution is the representation of a partial observation of a trajectory
as a probability distribution in a learned latent space, that represents all the possible trajectories the
observation could have been sampled from. Our framework’s simplicity and generality allows it to be
flexible: it does not constrain the input-space metric, accepts observations of different lengths and at
any (irregularly sampled) point in time, can be implemented using different families of latent space
distributions, and is capable of performing inference-time tasks for which it has not been explicitly
trained. Our experiments on human movement datasets show that our method can accurately predict
the past and future of a trajectory segment, as well as the interpolation between two different segments,
outperforming autoregressive baselines. Additionally, it can do so for any continuous point in time.
We also show how we can modify given trajectories by manipulating their representations.
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Figure 1: Predictions on figure skating data (FisV). Our model is capable of predicting the future
(top row), past, and interpolation (bottom row) of a trajectory given partial observations, at any
continuous time. The inputs to the model are the keypoints in the images. See more examples in Fig. El

2 Method

2.1 Framework, Definitions and Notation

The input to our framework is a sequence of samples obtained from a (continuous in time and
infinite) spatial trajectory u, which we define as the continuous temporal evolution of a set of spatial
coordinates. We call each sample a point x, which lives in the input space R™ . We call the sequence
of points, together with the times ¢ at which they were sampled, a segment s, which can be understood
as a partial observation of u. We define a distance metric § between points x in the input space.

Our goal is to transform these measurements of motion s into a representation z that will be useful for
downstream tasks. We define a latent space R™ of trajectories z. Each z in this space represents the
full extent of a trajectory, both in time and in space. We use @) to represent probability distributions
over trajectories z, in the latent space. We define a distance function D between distributions of
trajectories, which assumes an underlying distance function d between trajectories z.

We use an encoder © to encode every segment s to a probability distribution Q(+;s) = O(s)
over trajectories, where ((z; s) represents the probability that s was sampled from the trajectory
represented by z. Additionally, we can decode a trajectory z at a specific time ¢ by using a decoder P,
obtaining a point x = ®(z,t). ® takes any continuous ¢ as input. See Fig. for a schematic.

2.2 Representation Learning

When observing a segment s, one may have some uncertainty about the specific trajectory it was
sampled from. For instance, a segment showing a person jumping may correspond to a trajectory
that continues with the person falling, or to a trajectory that proceeds with them doing a backflip
and landing on their feet, but it will not belong to a trajectory of a person swimming. Therefore, we
represent the segment as a distribution over trajectories, where Q(z; s) represents the likelihood of a
trajectory given the segment. During training, the goal is to learn this mapping from the input space
(segments of trajectories) to the latent space (distributions over trajectories).

Concretely, given two segments s%, s” that have been obtained from the same underlying trajectory,
we want some z to exist such that its likelihood under the distributions Q* and Q° representing each
of the segments is high. To encourage this, we train the model to maximize the overlap between
the distributions Q¢ and Q°. Similarly, we minimize the overlap between (the distribution repre-
sentations of) segments sampled from different trajectories, under the assumption that no trajectory
z exists that contains both segments. Specifically, we minimize a self-supervised triplet loss:

Loe= > max[D(QQ")-D(Q.Q" ) +a0], )

(i,k*T,k—)eT

where « is a margin hyperparameter, and 7 is a set of triplets: for every segment ¢ in the dataset, we
define several triplets by sampling pairs consisting of a positive segment k™ (such that (i, kT) is a
positive pair) and a negative segment &~ (such that (i, k™) is a negative pair).

In addition to learning representations of trajectories, we also wish to be able decode them back to
input-space points. To achieve this, we train a decoder ® that allows us to obtain the specific value
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Figure 2: Schematic of our framework. We show the input space R, the latent space RV, and the
mappings between the two (encoder © and decoder ®). A segment s belonging to a trajectory w is
encoded into a distribution ), from which a trajectory z is sampled and decoded at a time ¢, to get ;.

of any trajectory at any continuous time ¢. In order to train the decoder ®, we sample trajectories
z ~ Q(+; s) from each segment representation, and decode them at specific time-steps ¢ which were
contained in s, obtaining a prediction &; = ®(z,t) for which we have ground truth ;. There is no
uncertainty in this prediction, as z; was part of the segment s in the first place; the decoder is only
explicitly trained for reconstruction, not extrapolation. We train the decoder via regression, using
the point-wise distance 6. Note that we never explicitly define a trajectory-level distance in the input
space; it is implicitly learned by the model. The reconstruction loss is mathematically defined as:
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where N is the number of segments in the dataset, and T is the number of points in segment s*. We
minimize Egs. (I)) and ) jointly and end-to-end. We implement the encoder © using a Transformer
Encoder architecture [54], and the decoder ® using a ResNet [[L7]. See Appendix Qfor more details.

2.3 Creating Positive and Negative Pairs
In order to define positives and negative pairs for Eq. (), we use the following:

* Input-space relationships. The simplest way is to take segments from the same trajectory as
positives and segments from other random trajectories as negatives. The initial segments can have
different relationships, such as precedence, containment, or overlap [3]]. In our experiments, we
sample three segments for every trajectory: a past segment (P in Fig.[3), a future segment (F)
whose starting time comes right after the end of the past segment, and a combination segment ("),
which contains both the past and the future segments.

Intersection. An intersection | of two distributions () in the latent space will represent all the
trajectories that have a high likelihood for both intersected segments. Note that an intersection in
the latent space is a union in the input space: the intersection constrains the possible trajectories
to those that are consistent simultaneously for the two segments. Similarly, an intersection in the
input space (assuming an overlap between segments) is a union in the latent space. In the latent
space, the intersection of the past and future segments should be equal to the representation of the
combination segment, and therefore the pair (", I) is a positive one.

L]

Re-encoding. Given a trajectory z, we can decode it into any set of times ¢, obtaining a new
segment. This segment can be (re-)encoded using ©, and a representation () can be obtained for
it, resulting in a new positive or negative for other segment representations. For example, when
given the past we randomly sample a possible the future, the resulting segment (FP - future given
past) will be different than the ground truth future, so the pair (F, FP) will be treated as a negative.

We exemplify a combination of these possibilities in Fig.[3\ In order to determine which pairs of
segments are positive, and which are negative, the rule is always the same: if they can belong to the
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Figure 3: Examples of segments. We illustrate how spatial trajectories (left) are ideally encoded into
the latent space (right). The intersection between two segment representations (boxes in the figure)
represents the trajectories that contain the two segments. “Future given past” represents a segment
decoded at a future time, from a trajectory sampled from the past representation. It is effectively a
sample of a possible future given the past. Other segments are defined similarly. For clarity, we do not
show other options like “past given past”, which would be the same box as past P. Best viewed in color.

same trajectory they are positives, otherwise they are negatives. For example, looking at Fig. [3]it
is clear that, as discussed above, there is no trajectory that can contain both F and FP. We list all
negative and positive pairs in Appendix[C.T.

2.4 Comparing Distributions

Eq. (I) uses the distance function D to compare distributions of trajectories. In this section, we
introduce two different ways of designing D, resulting in different intuitions about the latent space.

Symmetric Distance If two segments can belong to the same trajectory, the distributions () rep-
resenting each segment should be similar and close to each other (positives), and the (symmetric)
distance D between them should be small. For example, in Fig. 3, the representations of the past P
and future F segments belonging to the same trajectory are treated as positives.

Conditional Instead of computing a distance or a similarity, we compute the probability that a
segment s® belongs to the same trajectory as another segment s”. We model this as a conditional
probability P(Q?|Q"). There are four possibilities:

1. P(Q%Q") = 1, when s® includes s¢, like the combination segment " including the past P.

2. 0 < P(Q% Q") < 1, when Q is possible but not necessary given by Q?, like P and F in Fig.
3. 0 < P(Q"|Q%) < 1, defined in a similar manner.

4. P(Q*|Q®) = 0, for unrelated segments, like * and

We treat the first three cases as positives, and the last case as a negative. Because pairs belonging to
the first case have a stricter correspondence than those belonging to the second and third cases, we
sample them more often during training. Note that under this interpretation, a past P and a future F
from the same trajectory do not have a strong correspondence (first case), but a softer one (second
and third cases): one does not fully define the other. This approach results in probability values that
we either maximize (positives) or minimize (negatives), so we define D(A, B) = 1 — P(A|B).

The previous approaches require a way of computing either a distance between the distributions (), or
a conditional probability between them. In the next section, we show two families of distributions for
which these can be defined.



2.5 Trajectory Segments as Distributions

In order to obtain (), the encoder © predicts the parameters of a distribution family. Conditions for
the distribution families are: 1) we can sample from it in a differentiable way, 2) we can parameterize
it, 3) we can compute, in closed form, an intersection that returns a distribution from the same family,
and 4) we can compute either a similarity function or a conditional probability, or both (see Sec[2.4).
Next, we introduce two distribution families that meet the previous criteria.

Normal distributions We use uncorrelated multivariate normal distributions, and parameterize
them with a mean p and a standard deviation o. We compute the intersection as the product of two
normal distributions, which remains normal when the dimensions are uncorrelated (see Appendix D).
We use the symmetrized Kullback-Leibler (KL) divergence between distributions as a distance
function. This distance is not a proper metric; alternatives are discussed in Appendix [D| Normal
distributions assume an underlying Euclidean distance metric d between trajectories z.

Box embeddings Box embeddings [55] represent objects with high-dimensional products-of-
intervals (or boxes), parameterized by their two extreme vertices z” and zV. The intersection be-
tween box embeddings is well defined and results in another box embedding. This makes them a
natural choice to represent conditional probabilities, which can be computed as P(A|B) = Vol(AN

B)/Vol(B), where Vol(A) = [T max(z) — 2}, 0) is the volume of the box, and N represents the
intersection operation. These operations are straightforward to compute. Boxes are not actual distri-
butions, as they need not integrate to one. However, they are easily normalized by dividing by their
volume, and therefore they can be treated as distributions for all the practical purposes required in our
framework (i.e. sampling, where we approximate the boxes with a uniform distribution). Symmetric
distance functions can also be defined on box embeddings; we define a few in Appendix [D.2]

In both cases, we use the reparameterization trick [24] in order to sample from the distributions while
keeping gradient information. We found the best-performing option was using box embeddings under
the conditional scenario; the values reported in Section [3.2] use this setting.

2.6 Inference

Once trained, our decoder @ is able to decode a trajectory at any continuous time ¢, including times
that were not part of the input. For example, our framework can decode a future segment given an
input past segment, by sampling from its representation, and evaluating that sample at some future
times. This future segment will not necessarily be equal to the ground truth future segment (in case it
exists), because a single past can have multiple futures.

Overall, our framework is capable of doing 1) future and past prediction, by decoding a segment at
times outside of its range; 2) continuous reconstruction given a discrete input, by decoding at any
continuous time ¢; 3) interpolation between two segments, by decoding trajectories in their latent-
space intersection; and 4) modifying existing trajectories, by manipulating the latent space. All the
previous tasks are possible without explicitly training to do any of them. We show examples in Sec. 3]

3 Experiments

3.1 Datasets

For our experiments, we selected data adhering to the following criteria. First, there has to be
uncertainty in the trajectory when given just a segment (for instance, the future is not fully specified
given the past). Second, the prediction should not require external contextual information. Context can
be seamlessly added to our architecture, but it involves additional task-specific engineering decisions,
and we want our evaluation to be orthogonal to them. Similarly, we avoid trajectories that require
highly-engineered point-level distances §. Finally, we prefer our trajectories to be obtained from real-
world data. For all the previous reasons, we implement our framework on human movement datasets.

Specifically, we extract keypoints from human action datasets using OpenPose [10]]. For every video,
we keep the most salient human trajectories. This results in sequences of dimension [L, 25, 2], where
L is the number of frames in the trajectory, 25 is the number of joints in a human skeleton extracted
by OpenPose, and 2 corresponds to the number of spatial coordinates for every joint. We refer to the



Table 1: Prediction results. We report the mean squared error (the lower the better) across keypoints,
after normalizing each trajectory to be contained in a region of size 100 x 100. F, P and I stand for
“future”, “past” and “interpolation”, respectively. Values are obtained over 10 runs with different
test-time random seeds (changes include sampled segments and sampled z). An extended table with
standard deviations is in Appendix E

(a) Long sequences

FineGym Diving48 FisV
F P | F P | F P |
VRNN [[13] 15.85 1593 16.10 23.51 27.97 25.66 1495 15.03 15.08
Trajectron++ uni. [44] 954 998 9.73 11.67 16.52 1198 1142 11.85 11.68
Trajectron++ [44] 9.72 10.01 9.89 11.59 16.23 12.68 1141 11.71 11.63
TrajRep (ours, ablation) 882 9.07 17.57 10.00 11.74 10.06 10.62 11.27 9.70
+ re-encoding (ours) 850 8.83 7.11 981 1200 9.58 10.32 10.77 9.22

(b) Short sequences

FineGym Diving48 FisV
F P I F P I F P I
VRNN [[13] 12.77 13.20 13.40 18.36 20.14 19.86 13.26 13.44 13.45
Trajectron++ uni. [44] 7.80 8.28 7.48 9.05 1036 8.29 9.23 9.68 8.86
Trajectron++ [44] 726 793 6.94 8.74 1135 8.31 8.70 9.28 828
TrajRep (ours, ablation) 649 659 5.15 6.94 699 5.00 7.83 817 6.01
+ re-encoding (ours) 620 6.36 4.88 6.76 6.85 5.04 754 778 5.88

whole skeleton at every time-step —the combination of all joints, resulting in a K = 50-dimensional
vector— as a point. As a distance function & between points (i.e. skeletons) we use [2-norm distance
per-joint, and average across all visible joints. We extract human movement trajectories from the
FineGym [43]], Diving48 [29]] and FisV [57]] datasets, which correspond to gymnastics, diving and
figure skating, respectively.

For each of the datasets, we experiment with short sequences (up to 10 time-steps, or slightly over one
second) and long ones (up to 30 time-steps, representing slightly under four seconds of the trajectory),
and report results for both. We provide more details on the dataset creation in Appendix

3.2 Quantitative Experiments

Baselines and ablations As baselines, we select trajectory-modeling methods that are capable of
encoding uncertainty about the future. Variational RNNs [[13] extend recurrent neural networks
(RNNG5) to the non-deterministic case, by modeling every step with a variational auto-encoder (VAE)
[24]]. Trajectron++ [44] is a state-of-the-art trajectory-modeling framework which also builds on top
of RNNs and (conditional) VAEs [23]]. Uncertainty is modeled as a Gaussian mixture model (GMM).
We adapt Trajectron++ to our data, making the encoding and decoding as similar to our setting as
possible (for fairness), while keeping the core of the framework intact. We train two Trajectron++
versions, one with uniformly-sampled inputs and outputs (“Trajectron++ uni.”), and a second one
with non-uniform sampling, following the setup in our models (“Trajectron++). We also ablate our
model, and report results with and without training with re-encoded segments.

Tasks and metric We evaluate our framework on three different tasks: future prediction, past
prediction, and interpolation between two segments. Future prediction consists in predicting points
from a future segment given a past segment. Past prediction is defined symmetrically. In the
interpolation task, we input two separated segments (past and future) from a trajectory, and predict
the segment in between them. In our model, we do so by decoding from the latent-space intersection
of the two input segments. Baselines (which are autoregressive) are not capable of doing this
combination, so we only use the past segment as input. Baselines are also not capable of directly
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(a) Future prediction. We show an example of a future prediction, where the input are eight irregularly sampled
frames during one second (we only show three of them), and we predict up to three seconds into the future.
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(b) Past prediction. We show an example of a past prediction, where the input are eight irregularly sampled
frames during one second (we only show three of them), and we predict up to three seconds into the past.

Input: past and future Prediction: middle

(c) Interpolation. We provide the model with skeleton keypoints coming from two separate segments, and
sample points at times in between these two segments, from the intersection of the two segments in latent space.
The model produces sensible interpolations that are not simply a linear interpolation at the joint level: in the first
example, the gymnast first stands, then turns; in the second example, the gymnast swings right and left, just in
time to end up meeting the future segment at the right position.

Figure 4: Predictions on gymnastics data (FineGym). We show examples of past, future, and
interpolation predictions. The input to our model are (irregularly in time) sampled keypoints obtained
from human movement datasets, and the outputs are predictions of the trajectories at different
continuous times (past, future, or in between the inputs). The only input to the model are the keypoints,
not the images. Results show our model’s capabilities for modeling trajectories well outside of the
input’s temporal range, for dealing with spatial and temporal occlusions, and for doing so at a large
temporal resolution. See Sectionfor a deeper analysis.
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Figure 5: Temporal editing. We decode, for the same times ¢, different trajectories z in the latent
space. These trajectories have been obtained by encoding the segment in the top row, and moving
in small increments in the latent space along directions that represent speed (a) or temporal offset
(b). We highlight in green and pink some correspondences between different decoded trajectories, to
emphasize that the spatial trajectories are the same but with variations in some time-related attribute,
such as speed or temporal offset.

performing past prediction, so we predict the future of the reversed trajectory instead. As a metric,
we use the average of the /2-norm distance across joints, which is used by all methods during training,
and report the best out of M/ = 10 samples, to account for multiple modes and uncertainty in the
prediction. Note that our model has never been explicitly trained to perform any of the previous tasks.

We show results in Tables [la| and for long and short trajectories respectively. Our model
outperforms baselines in all the tasks, which proves its value and flexibility. We also show how
creating more interesting negatives with the re-encoding of decoded trajectories results in more
accurate prediction results. However, our method performs well even without re-encoding.

3.3 Qualitative Experiments

We show examples of our model’s inputs and outputs in Fig. ] Specifically, we show future, past and
interpolation predictions. The results reflect that the model learns to predict sequences up to four
times longer than the input. They also show the large temporal resolution of our model: the model
predictions evolve smoothly and sensibly for time-steps separated by a few hundredths of a second
(Figs.fa and[Ab). When not all joints are present in the input (first frame in Fig. fa), our model is still
capable of reconstructing the full spatial extent of the position. Finally, note how the model can take
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Figure 6: Multiple futures. Given a few input frames, our model is capable of predicting the future.
It does so by modeling a distribution over the possible trajectories: by sampling from this distribution,
we can obtain different plausible futures given the input (past) segment. In this figure we show,
for specific inputs, the ground truth future, as well as two different futures sampled from the input

segment distribution, which have been sampled randomly. This figure shows that our model is indeed
capturing the multi-modal nature of the trajectories under uncertainty.




as inputs irregularly sampled time-steps (Fig. [4b)), which makes it adaptable to temporal occlusions.
Baselines are only capable of predicting the future, and are restricted to predicting uniform time-steps.

Temporal editing The segments are directly tied to the temporal span they represent. For example,
two segments with the exact same coordinates and evolution across time, but starting at different
times will result in different (albeit similar) representations. The speed of a movement and the
time in the trajectory where the movement is done are important attributes of that movement, and
the representation should not be invariant to them: they belong to different trajectories. However,
because these trajectories are very similar, our model learns to represent them close in the latent
space. In Fig.[5] we show that the model encodes different temporal variations. Moving along specific
directions in the latent space results in progressively faster trajectories (Fig.[5a), or in trajectories with
an increasing temporal offset with respect to the original one (Fig.[5b). See Appendix [E for details.

Representing multiple futures A crucial aspect of our formulation is the assumption that the
future is uncertain, and that our model has to be capable of modeling the different modes of the
trajectory distribution. In Fig.[6] we show examples of multiple predicted futures given a single past
segment, proving that our model captures the multi-modal nature of the trajectories under uncertainty.

4 Related work

Modeling trajectories Spatial trajectories are usually modeled in the literature in an autoregressive
(AR) fashion [47}133] 26| 2| 1491 120} 144} 130, 158} 152, 25| [19], where trajectories are defined conditioned
on previous time-steps. Despite their success, AR models are incapable of dealing with some of the
challenges stated in Section |1} most notably they do not represent time as a continuous variable, they
cannot model the full extent of a trajectory (simultaneously both past and future), and no learned
trajectory-level metric can be obtained from them. Some of them model the uncertainty in the
prediction [52} 125,19} 1201 1441113, 149], and we use two representative ones 13} 44] as our baselines.
A different line of work is focused on representing segments of trajectories (not just points) as points
in a latent space [[62} 165} 160, 61} 128 164,19, 131]]. However, they are not capable of modeling the full
extent of a trajectory outside the limits of the considered segment. Additionally, the segment-level
metric is either unstructured [[62], or is explicitly given [65, 63, 164]].

Continuous time Modeling time as a continuous signal has gained traction recently in fields such as
graphics [56} 531139, 46] or physics modeling [8} [11]], because it accurately represents the underlying
(continuous) world being modeled. In the graphics neural implicit functions literature, time is used to
condition the prediction of the network. We adopt the same approach in our decoder. We encode the
set of continuous times in a segment by using a Transformer network [54], which by construction
is permutation invariant, but allows temporal embeddings to be concatenated with the input, both
discrete [15, 14]] and continuous [|53}51].

Self-supervised representation learning Finding self-supervised representations for temporal data
has been the subject of a large amount of work in domains such as trajectories [31], video [35,16,40],
or audio processing [21} 42} [15]. Most methods, however, represent segments as simple points in a
Euclidean space. Structured representations for temporal data [50,36] allow the latent space to follow
certain inductive biases, like our framework’s idea that segments compose trajectories. We model
segments as either normal distributions or box embeddings [55]. The latter have been used to represent
hierarchical relationships in domans such as text [38} 134], knowledge bases [[1]], or images [41]. We
use them to represent temporal information. In recent work, Park et al. [36] also model segments
using normal distributions, where trajectories are weighted sums of the segment representations.
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Table 2: Dataset details.
FineGym Diving48 FisV
Long Short Long Short Long Short

Training trajectories 404k 665k 787 27k 231k 276k
Validation trajectories 50k 83k 98 3k 29k 35k

Test trajectories 50k 83k 98 3k 29k 35k
Total trajectories 505k 832k 984 33647 289k 345k
Total videos 13k 18k 500

A Limitations and Societal Impact

Limitations Our approach assumes all the information about a trajectory can be represented by
a single latent-space embedding. While this holds true in our experiments, it is unclear how well
it can scale to more complex data (like pixel-space videos) or longer trajectories (of the order of
minutes). See Subramani et al. [48]] for a related discussion. Another limitation we noticed from our
model is that, while it is in principle capable of generating diverse trajectories from given segments,
it tends to predict “average” trajectories when asked to predict far into the future (or past). Baselines
have a similar behavior. A generative approach to the decoding, which would naturally fit into our
framework, would probably help generating diverse trajectories far into the future; we leave it to
future work. Finally, we mention in Section@]that, by construction, contextual information can
easily be added to the model, but we did not try it. We leave this exploration to future work.

Negative societal impact Our approach is data-driven, and thus it will replicate the biases seen in
the data. Trajectory data is not as sensitive as image data on its own. However, trajectory-modeling
methods can be used in sensible applications such as tracking of people for surveillance purposes.

B Dataset Details

For each one of the considered datasets, we process all the frames individually with OpenPose [10]
to extract human skeleton keypoints. OpenPose returns the keypoints of all the detected humans. We
then post-process the extracted keypoints, in order to group the ones belonging to the same person
over time. We use heuristics that include spatial closeness between two consecutive frames and
similar size of the skeleton. Once the correspondences have been obtained, and we get a series of
trajectories, we filter out those that are either too small, too short, or too noisy. The minimum length
(in seconds) of the trajectories is set to be the maximum length of the combination segments being
sampled, so that, from the point of view of the segments, the trajectories are not limited in time.

In the short-segment experiments, the segment length is up to 30 frames, from which we randomly
(read: non-uniformly) sample a third of them (this is, up to 10), for slightly over a second long
segments. In the long-segment experiments, the segment length is up to 90 frames, from which we
randomly sample a third of them (this is, up to 30), for slightly under four seconds long segments.
Note that our model is not limited to predicting trajectories within this time-span, and it can extrapolate
to larger time values.

We randomly divide the obtained trajectories into training, validation and test splits in a 80/10/10
proportion. We report the size of each dataset in Table[2] Because Diving48 is a small dataset, we fine-
tune the FineGym-trained models for it, both in our models and in baselines. The reason there are very
few long trajectories for Diving48 is that OpenPose extracts noisy keypoints due to out-of-distribution
positions, which get filtered-out in our post-processing. The amount of videos reported for FineGym
and Diving48§ corresponds to the number of events; there is more than one event in each original video,
but we pre-process them into separate event-level videos before extracting the keypoint trajectories.

C Implementation Details

Architecture 'We implement the encoder network © using a Transformer Encoder [54] with two
layers and two heads, and hidden size 512. The latent space dimensionality /N is also 512. The input
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to the Transformer are the spatial positions at every sampled time-step, as well as a [CLS] token to
represent the whole trajectory. We use the output of the [CLS] token to represent the distributions ().
We append a temporal embedding to each input, corresponding to the time each point was sampled.
We use Fourier encodings [51]] to encode the continuous time value to its vector representation. We
found using MLPs had similar results but slightly worse generalization to extrapolation to out-of-
distribution time-steps.

The decoder network @ is implemented using a ResNet with four blocks and hidden size 512. The
temporal indices are also encoded using Fourier encodings, and they are concatenated to the z value
to be decoded, following prior work [53]]. We use the same architecture for the decoder network in
the baselines. The capacity of the baselines is the same as our method’s (~10M parameters).

Inputs In order to avoid learning shortcuts by ©, the combination segment has the same temporal
span as the combination of the past and future segments, but the specific sampled points are different
(different times), so that the model cannot simply identify that the values are exactly the same and use
that information to bring representations together. For every trajectory in the dataset, we randomly
sample a start and end point for the segments to be used.

Losses We classify segment pairs as hard positives, which we deem very important, soft positives,
soft negatives, and hard negatives, and sample hard positives and negatives more often. For example,
the pair consisting of the past P and its reconstruction PP is deemed important enough to be a hard
positive, and samples from other random elements in the batch are considered soft negatives. We
found in initial experiments that the selection of which pairs are hard or soft is only marginally
important, as long as the overall intuition described in Section[2.2 is followed. We report the specific
choices in Fig.[7. Note that in the conditional setting, where we are minimizing and maximizing
probability values, optimizing a binary cross-entropy loss instead of a triplet loss may seem more
adequate. However, we found in initial experiments that the triplet loss performed better, so we kept it.

We found using I'-norm for the distance function § to perform similarly to the [2-norm, so we kept
using /2-norm but /'-norm is a viable alternative. This shows that our model is general and not
dependant on the specific §.

In the triplet loss in Eq. (I)), we set the margin o = 1.

When sampling trajectories to be decoded, we sample 3 trajectories for every distribution (). These
will be either positives or negatives among themselves, depending on the case (see Fig.[7).

Optimization The model parameters are optimized using AdamW [32] with weight decay of 0.05.
For the learning rate, we use a cosine annealing strategy, with ranges [le — 6, le — 4], a period of 4k
steps, and a warmup of 1k steps. Additionally, we clip the gradients by norm for values larger than
0.01. We did not run a hyperparameter search on the previous parameters, as we found that the initial
ones worked well, except for the gradient clipping, which we found necessary to stabilize the training
of the Transformer. Finally, we trained the model using mixed precision.

We use PyTorch [37]], and the box embeddings library [12]. The models take two days to train on
four RTX208-Ti GPUs.

Code, models, and data are provided.

C.1 All pair-to-pair negative/positive relationships

We follow the notation in Fig. 3| and show pairwise negatives and positives in Fig. [/} Note that some
segments have a negative or positive value defined with respect to themselves: this corresponds to
the relationship between different samples. For example, given a past P, multiple futures FP can
be defined, with a specific relationship between them (in this case, they will be hard negatives).
Additionally, we add other options that are not shown in Fig.[3] We list all of them here:

P Past.
F Future.
Combination.
FP Future given past. Representation that has been obtained from encoding a segment that has
been decoded from the past P representation at times ¢ obtained from the future F segment.
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LR T

Figure 7: Positive and negative pairs. HP, SP, SN, HN stand for “hard positive”, “soft positive”,
’soft negative” and “hard negative”, respectively. Note that the two matrices are the same if we
consider hard and soft to be equal. The symmetric approach results in symmetric negatives and
positives, while the conditional one results in an asymmetric one, because P(A|B) # P(B|A) in
general. However, as expected, it is symmetric if we consider hard and soft negatives to be equal. In
that case, the two approaches result in the same matrices. Best seen in color.

PF Past given future.
Combination given past.
CF Combination given future.
PP Past given past. As in the previous cases, this corresponds to decoding the past P representation
into the times in the past segment, and then re-encoding the obtained segment.
FF Future given future.
CC Combination given combination.
Intersection. Distribution that results from intersecting the past P and future F representations
in the latent space.
Past given intersection.
FI Future given intersection.
Past given combination.
FC Future given combination.
O Other (segment from a different trajectory in the batch).

In practice, not all positive and negative pairs are equally important. We differentiate between soft
and hard positives and negatives, where hard ones are deemed more relevant and we give them a more
important role in the optimization, by sampling them more often during training. The motivation
behind distinguishing between hard and soft pairs is that we want to mostly rely on strong signals, and
not add too much noise to the training. However, the distinction between hard and soft pairs is not as
crucial and fundamental to our framework as the distinction between positives and negatives. Different
criteria to select hard and soft pairs could be used, and the rules we used to differentiate between hard
and soft positives and negatives are as follows. First, let us define the representations of segments
that come directly from the data as “first encodings”, to distinguish them from the re-encoded ones.

For the symmetric approach, where positives are defined as those segments that can belong to the
same trajectory, hard positives are the positive pairs where either of these conditions is met:

¢ The pair consists of two first encodings. For example, (P, F).

* Pairs that encode exactly the same segment, and thus the distribution should be exactly the
same. For example, (P, PP).

* Additionally, we add four extra hard positives that do not meet either of the previous conditions,
but are necessary so that some hard negatives can act as such. In a triplet loss, a (hard) negative

16



requires a (hard) positive to be contrasted to. Some hard negatives like (PF, PF) would not
have a hard positive associated to them if we only followed the two previous conditions (PF
would not be hard positive with any other segment), and for this reason we explicitly create
these four hard positives, which are (P, FP), (F, PF), (PP, FP) and (FF, PF).

Hard negatives in the symmetric case are the negative pairs where both of these conditions are met:

* One element of the pair represents either the past or the future.
* The other element is either a first encoding (e.g. the pair (PF, P)), or it represents the same
segment as the first element of the pair, but a different sample (e.g. the pair (PF, PF)).

For the conditional approach, the distinction between hard and soft positives is more clear: hard
positives are those where P(A|B) = 1 (this is, the first case in the list, where given B we can be
certain of A), for example for P(P|") = 1. Other positives (second and third cases) are treated as
soft. All negatives are treated as hard negatives except for the ones coming from different elements in
the batch.

An ablations where we make all positives hard is included in Tab. 3]

D Distribution Families

D.1 Normal Distributions

Multivariate normal (also called Gaussian) distributions have the following probability density
function (PDF):

1 1 Tl
p(z; p, 3 =e><p[—z—u D) z—u}, (3)
(@ D) = s | 50— ) )
where z is a real N-dimensional column vector, p is the mean, and 3 is the covariance matrix. In the
main paper all variables z and x are vectors, so we do not use their bold versions z and x, as they
cannot possibly be confused with scalars.

We assume an uncorrelated multivariate normal distribution, so the previous equation is simplified to:
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where o is a vector representing the individual-dimension standard deviations.

The product of two normal PDFs (not the product of two normal random variables) results in a scaled
normal distribution when the IV variables are uncorrelated. This is not general for other multivariate
normal distributions. See Bomiley [7] for derivations in the two scenarios. The resulting PDF is the
product of the individual dimension density functions, which follow the equation:
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In the previous equation, p(z) and g(z) are univariate normal PDFs with mean and variance p,,, o
and p,,, 04, respectively, and the scaling factor Sy, is itself a normal PDF on both p,, and f4 with

standard deviation , /Ug + O'gl
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In order to compute the intersection of the two original normal PDFs, we simply ignore the scaling
factor.
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Kullback-Leibler divergence For two distributions P and @ of a continuous random variable, the
Kullback-Leibler (KL) divergence is defined to be the integral:
= p(z)
DkL(P||@Q :/ p(z)log —= dz, @)
(PIQ) = | ple)os 25
where p and ¢ denote the probability densities of P and ). The KL divergence measures how
well a probability distribution () represented another distribution P. In the specific case of normal
distributions, the previous equation is [18]]:
[
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Note that D1, (P||Q) is technically not a distance metric, just a divergence. Also, D 1,(p||q) is asym-
metric, so in the symmetric approach we use the symmetrized version Dk1,(P, Q) = (Dk1(P||Q) +

DkL(Q[1P))/2.

Proper distance metrics between normal distributions can be defined. For example, the p'" Wasserstein
distance between two distributions P and @ is generally defined as:

veT(P,Q)

where I'(P, Q) denotes the collection of all measures on Z x Z with marginals P and () on the
first and second factors, respectively. When the underlying distance metric d is the /?-norm distance
function, the Wasserstein distance between normal distributions has the closed-form expression [43]]:
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Defining a distribution metric using an optimal transport approach has two main advantages. First,
it results in an actual metric, as opposed to just a divergence or non-metric distance function. And
second, it makes it very explicit what the underlying distance function d is in the latent space. However,
it is less clear than in the KL case that minimizing the W5 distance between normal distributions will
result in a large overlap between them, as opposed to just spatial proximity. Therefore, we use KL
divergence instead.

D.2 Box Embeddings

Box embeddings are /NV-dimensional hyperrectangles that can represent relationships such as intersec-
tion and containment. Boxes are parameterized by their two extreme points z” and zV. They are de-
signed to represent unary and joint probabilities of events (segments, in our case), where large boxes
represent highly probable and general concepts. The original paper [S5] defines boxes as step func-
tions (rectangles), but posterior papers smooth the edges of the boxes so that all pairs of boxes have
positive intersections. Specifically, Li et al. [27]] use Gaussian convolutions, and Dasgupta&Boratko
et al. [14] improve on the previous paper using min and max Gumbel distributions. This results in
better gradients during optimization, while keeping the intuition and parameters the same. We use
the latter, which is conveniently implemented in an open source library [12]].

We sample from a box by assuming the edges are hard instead of soft, and assuming a uniform
distribution in the range [2", 2V]. The volume of a box is computed as:

N
Vol(A4) = Hmax(z;/ —z1,0) (11)
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In practice, the max operation is replaced by soft versions. The intersection between two boxes A
and B can be computed as z/) = max(z/, z}') and z = min(z,, z;’). Note that if the intersection
is zero (e.g. if 2z, < z{'), this will result in z/; > z¥. Gumbel boxes [14] naturally handle these cases
and the volume of such “negative” boxes is close to zero.

The conditional probability of one box given another one can be defined as:

P(AB) = W. (12)

When using the conditional approach (Section [2.4), the values we maximize in Eq. (I) are the
conditional probability values obtained in Eq. (I2). For the symmetric approach, box embeddings
offer a variety of possibilities. We list a few of them next (Sim stands for “similarity function”):

* Symmetric conditional. Sim = (P(A|B) + P(B|A))/2

* Intersection over Union (IoU). Sim = IoU — D =1 — IoU = Vol(A U B)/Vol(A N B).
This distance is known as the Jaccard distance, and it is a proper metric.

* Serensen-Dice coefficient. Sim = Vol(A U B)/(Vol(A) + Vol(B))

* Symmetric difference. Sim = Vol(AAB) = Vol(AU B) — Vol(AN B).

For the values defined as similarities, we obtain the distance functions (not necessariliy metrics) as
D =1-—Sim.

E Additional Results and Experimental Details

Prediction into the future Our model is better than baselines for every time into the future that we
tested. In Figure[T0O we show a graph of error for future prediction, with respect to the time elapsed
from the end of the past (input) segment.

Representing multiple futures In addition to Fig.[6|in the main paper, in Fig |9 we show how the
evaluation results change depending on how many samples M we use at inference time (the reported
value is the best out of the M predictions). Sampling M > 1 clearly improves the results, which
demonstrates that our model represents (and predicts) more than one mode in the distribution. This
applies not only to future prediction, but also to past and interpolation prediction.

Error bars We also report the quantitative results with standard deviations. At test time there are
two factors of randomness. First, the input segments can be sampled at different times. Second, there
is a sampling process to obtain trajectories z given segment representations ). We run the test with
10 different random seeds, using the same seeds for all the experiments (this is, given a seed, both
our method and the baselines use the same sampled segments). In Table[T we report the average of
the obtained values across the 10 random seeds. In this section we repeat the same results, but add
information about the standard deviation across the seeds, shown in parentheses. See Table [d] Again,
we report the [2 error (the lower the better) across keypoints, after normalizing each trajectory to be
contained in a region of size 100 x 100. FU, FR, P and I stand for “future uniform”, “future random”,
“past” and “interpolation”, respectively. The low standard deviation values imply that the significance
of the average values reported in Table|[T is strong. The larger standard deviation values in the long
version of the Diving48 dataset reflect the small number of test samples.

Ablations We report additional ablations of our framework in Tab.[3] for the FineGym short dataset.
Specifically, we show the following ablations:

* No re-encoding. Same ablation as the main paper one, included here for completeness.

* No trajectory loss. We train without Eq. [1| which leads to a significant increase in prediction
error.

* Gaussian symmetric. We use Gaussian distributions instead of box embeddings, and train
using the symmetric scenario with KL divergence. The conditional case trained with box
embeddings (“TrajRep (ours)” in the table) obtains better results, but that the symmetric case
with Gaussian distributions is also competitive, and clearly outperforms the baselines.

* Modify margin o. The choice of « is rather arbitrary. Because the range of the distance
function (for the distances used in our experiments) is in [0, 00), « influences the norm of
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Table 3: Ablations on the FineGym short dataset. Values represent mean squared error. See
Appendix [E for a discussion.

F P 1
TrajRep (ours) 6.20 636 4.88
w/o re-encoding 649 659 5.5
w/o trajectory loss (Eq. 737 755 7.02
w/ Gaussian symmetric 6.64 6.65 5.05
w/ margin o = 0.1 6.18 6.32 4289
w/ margin o = 10 6.25 640 4.83
w/ all hard positives 6.32 651 5.03
w/ uniform sampling 6.58 6.70 5.36
w/ ST-GCN 6.77 699 526

the distances, but not the relative distances between segments. We run two experiments with
different values of « (0.1 and 10), on top of the default « = 1 and show that the model
performance is not very sensitive to this hyperparameter.

* All hard positives. We replace all soft positives by hard negatives, in order to assess how
important is to distinguish them. We notice an increase in error with respect to the original
model, showing that distinguishing between hard and soft negatives has some influence in the
final model.

¢ Uniform sampling. We train using uniform time-steps, and test regularly, with irregular time-
steps. This model does not generalize as well to irregular time-steps as the one trained directly
on irregular time-steps.

¢ ST-GCN. We implement the encoder © using an ST-GCN network [58] instead of a Trans-
former. ST-GCN is the most established model to process temporal skeleton data. We use
the implementation in Yan et. al. [59]]. ST-GCN performs worse than the Transformer net-
work (although the results are competitive), probably because temporal information cannot be
added to an out-of-the-box ST-GCN architecture.

Stable optimization The optimization process is stable across the training. We show loss curves in
Fig. B|both for L. in Eq.[T] (trajectory loss) and for Lgc. in Eq. 2] (reconstruction loss).

Fig.[S|details We find the directions in Fig.|5|by sampling segments from the test set, and for every
segment, we modify their time indices in a progressive way, obtaining 10 modified segments for each
original one. These modified time-steps are created either by multiplying their time indices by a
constant (for Fig.[5a), or by adding a constant to their time indices (for Fig.[5b). We compute their
representations, and for every set of segments we find the main direction of variation across the set
by computing the first PCA component. The overall direction is found by averaging these directions
across the different test-set samples. This overall direction (for example, the direction representing
“speed change”) is general for all trajectories, not trajectory-specific, and therefore we can apply it to
any encoded segment.

Baseline details Regarding the baselines, the Trajecton++ models the GMM with a first step
consisting of a Categorical random variable, followed by a normal distribution. In order to selec the
M = 10 future predictions, we sample the top-10 options in the Categorical variable, and for each
one we sample once from the Gaussian. Note that this is exactly how the Trajectron++ is trained,
both in the original paper and in our implementation. For the VRNN baseline, at test time we sample
the 10 samples in the first time-step, and then sample the mode of the latent distributions for the rest
of the samples.
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Figure 8: Loss curves during training, corresponding to the FineGym short experiment, trained with
bounding boxes.
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Figure 9: In our evaluation, we report the Best-of-M samples, where M = 10. In this figure, we
show how the evaluation results change for different choices of M. These plots show how our model
captures different modes in the distribution, as adding more samples results in better values, indicating
that the samples result in different trajectories. This is qualitatively reinforced by Fig. [ The figure
on the left corresponds to the FineGym long dataset, and the figure on the right corresponds to the
FineGym short dataset.
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Table 4: Results from Table extended with standard deviation information.

(a) FineGym - Long sequences

F P I
VRNN [13] 15.85(0.00) 15.93 (0.00) 16.10 (0.00)
Trajectron++ uni. [44]] 9.54 (0.01) 9.98 (0.01) 9.73 (0.00)
Trajectron++ [44] 9.72 (0.00)  10.01 (0.00)  9.89 (0.00)
TrajRep (ours, ablation) 8.82 (0.01) 9.07 (0.00) 7.57 (0.00)
+ re-encoding (ours) 8.50 (0.01) 8.83 (0.00) 7.11 (0.00)
(b) Diving48 - Long sequences
F P I
VRNN [13] 23.51 (0.13) 27.97 (0.17) 25.66 (0.06)
Trajectron++ uni. [44] 11.67 (0.22) 16.52 (0.55) 11.98 (0.10)
Trajectron++ [44] 11.59 (0.12) 16.23(0.21) 12.68 (0.09)
TrajRep (ours, ablation) 10.00 (0.13) 11.74 (0.17) 10.06 (0.13)
+ re-encoding (ours) 9.81(0.16) 12.00 (0.11)  9.58 (0.18)
(c) FisV - Long sequences
F P I
VRNN [13] 14.95 (0.00) 15.03 (0.01) 15.08 (0.00)
Trajectron++ uni. [44]] 1142 (0.01) 11.85(0.01) 11.68 (0.01)
Trajectron++ [44] 11.41 (0.00) 11.71(0.00) 11.63 (0.00)
TrajRep (ours, ablation) 10.62 (0.01) 11.27 (0.01)  9.70 (0.00)
+ re-encoding (ours) 10.32 (0.01) 10.77 (0.00)  9.22 (0.00)
(d) FineGym - Short sequences
F P 1
VRNN [13] 12.77 (0.00) 13.20 (0.01) 13.40 (0.00)
Trajectron++ uni. [44]] 7.80 (0.01) 8.28 (0.01) 7.48 (0.01)
Trajectron++ [44] 7.26 (0.01) 7.93 (0.01) 6.94 (0.00)
TrajRep (ours, ablation) 6.49 (0.00) 6.59 (0.01) 5.15 (0.00)
+ re-encoding (ours) 6.20 (0.01) 6.36 (0.01) 4.88 (0.00)
(e) Diving48 - Short sequences
F P 1
VRNN [13] 18.36 (0.05) 20.14 (0.07) 19.86 (0.02)
Trajectron++ uni. [44]] 9.05(0.02) 10.36 (0.05)  8.29 (0.03)
Trajectron++ [44] 8.74 (0.03) 11.35(0.03)  8.31(0.03)
TrajRep (ours, ablation) 6.94 (0.03) 6.99 (0.03) 5.00 (0.02)
+ re-encoding (ours) 6.76 (0.02) 6.85 (0.03) 5.04 (0.02)
(f) FisV - Short sequences
F P 1
VRNN [13] 13.26 (0.01) 13.44 (0.01) 13.45 (0.00)
Trajectron++ uni. [44]] 9.23 (0.01) 9.68 (0.01) 8.86 (0.01)
Trajectron++ [44] 8.70 (0.01) 9.28 (0.01) 8.28 (0.00)
TrajRep (ours, ablation) 7.83 (0.01) 8.17 (0.01) 6.01 (0.01)
+ re-encoding (ours) 7.54 (0.01) 7.78 (0.01) 5.88 (0.01)
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Prediction error over time
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Figure 10: [2 error with respect to the the time elapsed from the past (input) segment, where we

evalute future prediction (¢t = O represents the end of the past segment). This result corresponds to
the FineGym long dataset.
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