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ON BERTRAND’S AND RODRIGUEZ VILLEGAS’
HIGHER-DIMENSIONAL LEHMER CONJECTURE

WITH AN APPENDIX BY FERNANDO RODRIGUEZ VILLEGAS
TED CHINBURG, EDUARDO FRIEDMAN AND JAMES SUNDSTROM

ABSTRACT. Let L be a number field and let E C OF be any subgroup of the
units of L. If ranky(E) = 1, Lehmer’s conjecture predicts that the height of
any non-torsion element of F is bounded below by an absolute positive constant.
If rankz(E) = rankz(O;), Zimmert proved a lower bound on the regulator of
E which grows exponentially with [L : Q]. By sharpening a 1997 conjecture of
Daniel Bertrand’s, Fernando Rodriguez Villegas “interpolated” between these two
extremes of rank with a new higher-dimensional version of Lehmer’s conjecture.
Here we prove a high-rank case of the Bertrand-Rodriguez Villegas conjecture.
Namely, it holds if L contains a subfield K for which [L : K] > [K : Q] and F
contains the kernel of the norm map from O3 to O.

1. INTRODUCTION
If P € Z[z] is a polynomial of degree n with leading coefficient ag # 0 and roots
ai,...,q, € C, its Mahler measure is defined as
M(P) = |ao| ] lowl.
oy [>1

In 1933 D. H. Lehmer [15] published an innocent-sounding question:

Is there a P € Z[x| with Mahler measure satisfying 1 < M (P) < M(P) = 1.176---,
where Pp(z) =2 +2° —2" —ab — 2% — 2t — 2 + 2 4+ 17

Lehmer’s question still stands unanswered. The reader is referred to [23] and [26,
§3.6] for surveys of many interesting partial solutions to this problem.
Using Jensen’s formula, Mahler gave the alternate expression

m(P) :=1log M(P) = /0 log | P(e*™™)| dt. (1)

As M(P,P,) = M(P,)M(P,) and M(P) > |ap| > 1, in studying P € Z[x] with
M(P) < 2 we may assume that P is irreducible and ay = +1. Moreover, since
it follows from (1) that the reciprocal polynomial P*(z) := x"P(1/x) satisfies
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2 TED CHINBURG, EDUARDO FRIEDMAN AND JAMES SUNDSTROM

M(P*) = M(P), we find that M(P) < 2 implies that P is the minimal polyno-
mial of an algebraic unit €. Thus, Lehmer’s problem is really about the size of a
unit.

This point of view lead Bertrand in 1997 to propose a higher-dimensional version
of Lehmer’s question involving several units [5]. Suppose €1, ..., are independent
units in some number field L, let A denote the set of Archimedean places of L and
define the logarithmic embedding of the units LOG: Of — R4~ into a Euclidean
space as usual by

1 ifwi 1
(LOG(2)), = e, log e, . ::{ if v is real, o

2 if v is complex ’

where | |, is the absolute value associated to v € A, extending the usual absolute
value on Q. Bertrand asked if for each integer j > 2 there is a universal con-
stant ¢; > 0 such that the j-dimensional co-volume V; of the lattice generated by

LOG(e1),...,LOG(g) satisfies V; > ¢;. He only posed this question for j > 2,

since for j = 1 it was known that the right measure of size is m(P) = 1 [|[LOG(e)]|1,

i.e., one should use an L'-norm instead of length if j = 1 (see §7.3). Bertrand’s
conjecture was soon solved in the affirmative by Amoroso and David for j > 3 [2].

A few years ago Rodriguez Villegas proposed a version of Bertrand’s conjecture
which has a much sharper dependence on the rank j. For 7 = 1 Rodriguez Villegas’
conjecture is equivalent to Lehmer’s, while for j maximal, i.e., j = rankz(O7}), it is
equivalent to Zimmert’s 1981 theorem stating that the regulator of a number field
grows at least exponentially with the degree of the number field [28]. More precisely,
Rodriguez Villegas conjectured a strong lower bound on the natural L'-norm of any
non-trivial element w of the j-th exterior power of the units of a number field.!

To define this L'-norm, start with the orthonormal basis {6%},c4, on RAL,

1 if w=w
0y = ’ 3
v 0 if w#w. (3)

This gives rise to the orthonormal basis {6"},_ 1 of N RAL where A[Lj] denotes the
L
set of subsets I = {v;,,...,v;,} of Ay, having cardinality j and 6" := "1 A--- A §"5.

L 'We are grateful to F. Rodriguez Villegas for allowing his conjecture to appear in print for
the first time as an appendix to this paper. In fact, in 2002 Rodriguez Villegas wrote up a
weaker (unpublished) version of his conjecture without knowing that it followed from Bertrand’s.
Around 2015 we began work on the B-RV conjecture, still embarrassingly ignorant of Bertrand’s
and Amoroso-David’s work on the subject. After posting an earlier arXiv version of this paper,
containing the 2002 write-up by Rodriguez Villegas, our attention was fortunately called to earlier
work.

For the reader who compares our version here with the appendix, we note that although Rodrigez
Villegas phrases the L'-norm in terms of Archimedean embeddings rather than places, his L'-norm
coincides with ours in (4) below because of the factor of 2 at complex places in (2). However, using
places gives a larger L?-norm if the field is not totally real, and so is better for our purposes.
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ON A HIGHER-DIMENSIONAL LEHMER CONJECTURE 3

The L'-norm on /\j RAz is defined with respect to this basis. Namely,

lwlly o= > e (w= > reald ¢r67). (4)

reAy
Let A’LOG(O%) denote the j™ exterior power of the lattice LOG(O%) € RAL.

B-RV Conjecture. (Bertrand-Rodriguez Villegas) There exist two absolute con-
stants co > 0 and ¢y > 1 such that for any number field L and any 7 € N,

|wlli > coc}  for all nonzero  w € /\jLOG((’)I’E) - /\jR.AL' (5)

Aside from Zimmert’s theorem on the regulator [28] and the known cases of
Lehmer’s conjecture [23], the cleanest result in favor of the B-RV conjecture is

HLOG(&Tl) VANREIWAN LOG(EJ)Hl > 0.001 - 1.4j, (6)

proved for all j, but only for totally real fields L. This follows from work of Schinzel
[18] and Pohst [17] dating back to the 1970’s. Indeed, Schinzel showed in 1973 (and
Pohst independently in 1978) for L totally real that for any unit ¢ € Oj, ¢ # +1,

ILOGE: = (3 (evlogleh)?)” = VL@ log((1+ V5)2).

vEA]

Using estimates of Hermite’s constant, Pohst deduced good lower bounds for the

regulator of a totally real field. The same calculations show that the j-dimensional

co-volume i of the lattice spanned by LOG(gy), ..., LOG(g;) satisfies [12, p. 293]
(IL : Q1/5)7/*1.4067

o> G+ 1<j<I[L:Q)). (7)

Since
ILOG(e1) A--- ALOG(gj) |1 > [[LOG(g1) A -+ - ALOG(g))]l2 = p,

a short numerical computation with (7) yields (6).

As far as we know, the only proved cases of the B-RV conjecture involve “pure
wedges” of the form w = LOG(egy) A --- A LOG(¢g;), where the ¢; are independent
elements of OF. If j = rp := rankz(O3%) or j = 1, every element of A’ is (trivially)
a pure wedge, but this also holds if j = r; — 1 (see Lemma 28 below). In particular,
if L is a totally real field of degree n over Q, then ||w|; > 0.001 - 1.4"2 for all
w € /\n_QLOG((’)E). In general, however, the B-RV conjecture makes a stronger
prediction than simply a lower bound on the L!-norm of pure wedges.

Another known case of the B-RV conjecture occurs when

E=E(L/K):={c€0;
is the group of relative units associated to an extension L/K. Skoruppa and Fried-

man [13] proved in 1999 that inequality (5) in the B-RV conjecture holds for pure
wedges if [L : K] > ng for some absolute constant n.>

Normy,k(€) is a root of unity } (8)

2 The inequality proved in [13] is for the relative regulator Reg(L/K) rather than for the co-
volume p of the relative units. This suffices since p = Reg(L/K) [[,c4, vTw > Reg(L/K), where
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To prove their result, Skoruppa and Friedman defined a ©-type series © associ-
ated to any subgroup 2 C Oj of arbitrary rank and used it to produce a complicated
inequality for the co-volume pu(FE) associated to the lattice LOG(FE). In the case of
E = E(L/K) they obtained the desired inequality using the saddle-point method
to estimate the terms in the series ©p as [L : K] — oo. Although the saddle-point
method in one variable is a standard tool, the difficulty in the asymptotic estimates
in [13, §5] was that the estimates needed to depend only on [L : K].

The results cited so far all pre-date the B-RV conjecture and essentially dealt with
regulators or Lehmer’s conjecture. Motivated by the B-RV conjecture, Sundstrom
[24] [25] dealt in his 2016 thesis with a new kind of subgroup of the units. Namely,
suppose L contains two distinct real quadratic subfields K7, K5, and let

E = E(L/K))NE(L/K,).

Here E(L/K) C E, where K := K; K, is the compositum of the K;. The series O is
still defined and yields an inequality for the co-volume pu(E) associated to the lattice
LOG(FE), but to estimate the terms in the inequality Sundstrom had to apply the
saddle-point method to a triple integral. Keeping all estimates uniform in this case
proved considerably harder than in the one-variable case treated in [13]. In the end,
Sundstrom was able to verify the B-RV conjecture in this case for pure wedges. More
precisely, he proved the existence of absolute constants Ny, ¢o > 0 and ¢; > 1 such
that u(Exk, k,) > coc}, where [L : Q] > Ny and j := ranky(FEk, k,) = rankz(O7) —2.
We prove the following generalization of Sundstrom’s result.

Theorem 1. Suppose E C O3 is such that E(L/K) C E for some subfield K C L,
where E(L/K) are the relative units defined in (8). Let e1,...,¢; be independent
elements of E, where j :=rankz(FE), and let k := 1+ rankz (O} /E). Then

ler A Agille > ller A Agglle > 117,
provided that
[L: K] > Ny := max (100k° (#£.Ax )2, 2000062 (#41), 1000(#Ax )?).
Thus the B-RV conjecture (5) holds for w:=¢e; A--- ANej when [L: K] > [K : Q).

Here # denotes cardinality and (Z) = ﬁlb), The hypothesis F(L/K) C E implies
that k < #Ag, so that Ny above could be replaced by a coarser bound involving
only #Ax or [K : Q).

7 is the number of places of L above w. The proof of this relation between the co-volume and

the relative regulator mimics the determinant manipulations in the case K = Q [8, p. 115]. We
note that J. Sundstrom, in the appendix to his doctoral thesis [24], corrected an error in Skoruppa
and Friedman’s proof. Namely, in the bound on what is called J; in the proof of Lemma 5.5 of
[13], the real part of the error term p in the exponential was neglected. This did not affect the
proof of their Main Theorem, but it did affect the numerical constants claimed in Theorem 4.1
and its corollaries. However, if we are willing to settle for ny = 400, the proof in [13] will easily do
after correcting the constants. By improving the asymptotic estimates in [13] and using extensive
computer calculations, Sundstrom was able to prove the estimate in Theorem 4.1 of [13], with the
constants as given in [13]. In particular, ng = 40 is allowed.
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ON A HIGHER-DIMENSIONAL LEHMER CONJECTURE 5

Motivated by a first version of this paper posted on arxiv.org, Amoroso and David
[3] made a comprehensive study of the B-RV conjecture and suggested even stronger
forms [3, Conjs. 1.3 and 1.9]. They also gave a different proof of an improved version
of Theorem 1 and proved interesting new cases of the B-RV conjecture [3, Thms.
1.4-1.7].

Aside from proving Theorem 1, our aim here is to lay the ground work for an
approach to proving the B-RV conjecture for any high-rank subgroup £ C Oj , as
we now explain. Our starting point is Skoruppa and Friedman’s inequality, valid for
any t > 0 and any subgroup E C 07,

1B/ E) 2taz]® N\ sl
| Eor = aGOZL/E /erR ( [Z: Q] 1)e (), (9)

a#0

where O}, denotes the algebraic integers of L, Er = E ®y R, which acts on R4~
since E does, [lax|® := Y7, 4, evlal2}, and p is a suitable Haar measure on Eg.

To make use of (9) one tries to prove that for a well chosen ¢ the terma =1 € Oy,
produces a contribution growing exponentially with [L : Q], while the terms for other
a are at least non-negative. The integral in (9) is not very useful, for this purpose,
because it seems to depend on #.4;, variables, namely on each of the absolute values
lal,. In fact, it depends only on k = #.A; — ranky(FE) variables, as integrating over
Eg removes rankz(FE) of them. Hence our first task is to write the integral in (9)
as a k-dimensional inverse Mellin transform. This we do in §3, as summarized in
Corollary 6.

As in [13] and [25], the next step is to apply the saddle-point method to the k-
dimensional complex contour integral obtained in §2. To do this we need a saddle
point. In the case of [13] one could easily write down a formula for the saddle point in
terms of the logarithmic derivative of the classical I'-function. In [25] the equations
for the critical point were explicit enough that monotonicity arguments proved the
existence of the saddle point. In our case the equations are too complicated to
analyse directly. Instead, in §4 we obtain the existence and uniqueness of the saddle
point by re-interpreting it as the value of the Legendre transform of a convex function
on R¥, closely related to logI'. Since the saddle point o € R* is far from explicit, in
§5 we prove useful inequalities which depend only on its first coordinate oy, which
we can control by choosing t in (9) appropriately.

In §6 we show that the contribution from the saddle point actually dominates the
integral when #.A4,, is large enough compared with the dimension k of the contour
integral. It is only here that we need the hypothesis that that the relative units
E(L/K) CE.

Acknowledgments: The authors would like to thank the anonymous referee for
useful suggestions.

2. OVERVIEW OF THE PROOF

To clarify the proof of Theorem 1 we decribe its main steps in some detail here.
We begin by recalling in §3.1 how theta functions lead to the basic inequality (9).



o b~ W N =

© 0 N O

10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29

6 TED CHINBURG, EDUARDO FRIEDMAN AND JAMES SUNDSTROM

The terms on the right of (9) are indexed by a € (O — {0})/E. We show in
Corollary 6 of §3.2 how the term associated to a can be written as an inverse Mellin
transform of a function of s = (sy,...,sz) € C* of the form exp(&(s) -n 25:1 yjsj),
in which «(s) is a sum of logarithms of the values of the I'-function at linear forms
in sand y = (y,...,y) € R* depends on a.

The saddle point method for estimating this k-dimensional integral consists of
first determining a critical point o of the integrand, moving the integration contour
so that it passes through o, and then attempting to show that the dominant term
arises from a neighborhood of 0. We show in Lemma 8 of §4 that for each a there
is a unique critical point o = o(y) € R¥ associated to the value of y arising from a.
The inverse Mellin transform associated to a then takes the form

/ ea(a+iT)fny-(a+iT) AT =: Q(T) dT.

TERk RK

To control this integral, in §5 we prove some inequalities concerning o and «(o).
In §6 we define the Gaussian #H(7') approximating G(7') in a suitable bounded

neighborhood A of T'= 0. The saddle point method then leads to estimating the

integrals Iy, I, —I3 and I on the right side of

G(T)dT = ’H(T)dTJr/k g(T)dr- | 'H(T)dT+/ (G(T)—H(T))dT

RF RK A
(10)
The first integral I, = ka. H(T)dT is readily computed; see Corollary 16 of §6.1.
To show it is the main term by our method requires the assumption that E is
(M, 2)-dispersed in the sense of Definition 13 for suitable values of M and 2. This
assumption is implied by the hypotheses of Theorem 1. It amounts to requiring
that there be a partition M of the archimedean places Ay, of L into large subsets of
approximately the same size m such that the orthogonal complement of the image
of E under the log map is spanned by vectors whose components are constant over

the places in each subset. This assumption leads to the equality

a(s) = mea,{w(sw(s)) (11)

weM

in equation (60) in which S, is a linear form depending on F, a4, is a linear
combination of log(I'(z)) and log(I'(z + 3), and the number m,, of elements in the
subset w of the partition M is approximately m := min,{m,, }.

The goal of Lemmas 17 through 25 of §6.2 is to show that (11) leads to upper
bounds on the error terms I, —I5 and I, on the right side of (10) that are sufficient
to bound them in terms of |;]|. Namely, |I| + |[I5] + |I4| < 0.01];, as we show in
Lemma 26 for large enough m. The positivity of I; shown in Lemma 26 then leads
to the term associated to every a € Ok /FE being positive. Specializing Lemma 26
to the case a = 1 gives a contribution that establishes the more precise version of
Theorem 1 given by Theorem 27.

Lemmas 17 through 25 also show that there does exist a set of constants for which
the estimates involved in the proof of Theorem 27 lead to exponential growth rather
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ON A HIGHER-DIMENSIONAL LEHMER CONJECTURE 7

than exponential decay in the apppropriate relative regulators. As in the work of
Friedman and Skoruppa, such estimates are tedious to check.

We end this section with an elementary geometric result arising in the proof that
may have other applications (see Lemma 22 and Remark 23).

Lemma 2. Define the sign-symmetrized parallelotope P(n) associated to a setn of k
vectors in R¥ to be the set of all real linear combinations Zten rid with —1 < r; <1,
and suppose we are given a subset S C R¥ containing a basis of R¥. Let ny be any
k-element subset of S for which P(ny) has mazimal volume. Then S C P(np).

3. THE O-FUNCTION

In this section we recall the series Og(t; a) associated to a subgroup E C O}
of the units and to a fractional ideal a of the number field L. We also recall the
inequality for the co-volume of LOG(E) resulting from the functional equation of
Op. This is all quoted from [13, §2]. Our main new task here is to express the terms
in the inequality as an inverse Mellin transform.

3.1. The basic inequality. Given a subgroup E C Oj, we define Eg C ]R“fr‘L as
the group generated by all elements of the form

v = (@)oea, = ([el}) e, (€ E, €€R).

Here R, := (0,00) is the multiplicative group of the positive real numbers, Ay,
denotes the set of Archimedean places of L, and | |, is the (un-normalized) absolute
value associated to the Archimedean place v € A;. Thus, for a € L we have

|Normp,g(a)| = H la|cv, (e, :=11if v is real, e, := 2 if v is complex). (12)

veEA]
Note that
Z e, = [L: Q] =:n, (13)
veEA]
H =1 (z = (2v)vea, € Er), (14)
vEA]
and that € € F acts on = = (x,), € Eg, via (¢ - x), := |g], 2.

We fix a Haar measure on Fr C ]RfL as follows. The standard Euclidean structure
on R4z in which the 6 in (3) form an orthonormal basis of R4z induces a Euclidean
structure (and therefore a unique Haar measure) on any R-subspace of RAL. We
give Er the Haar measure pp, that results from pulling back the Haar measure on
the R-subspace LOG(ER) via the isomorphism LOG in (2), and let pg, (Fr/E) be
the measure of a fundamental domain for the action of £ on Eg.

Following [13, p. 120], for a fractional ideal a C L and ¢ > 0, we let

Er/FE 2
On(tia) i= L L S [ et g (@), Jaal? = 3 ol
tor aca/E € ER vEAL
a#0
(15)
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where | Ei;| is the number of roots of unity in E,

o :=(\/|Dy] NormL/Q(a))_2/n, Dy := discriminant of L, n:=[L:Q].

Note that the integral in (15) depends only on the E-orbit of a, and hence is inde-
pendent of the representative a € a/E taken for the E-orbit of a.

Our starting point for proving lower bounds on co-volumes is the inequality [13,
Corol. p. 121], valid for any ¢ > 0 and any fractional ideal a of L.

210, (t: a) O
n

>0 <t>0, O = — ) (16)

Writing out the individual terms of (16), we have [13, p. 121, eq. (2.6)] the

@E(t; a) +

Basic Inequality.

MER(ER/E) 2t||al’H2 —t|laz|?
(BB z/E (B el d (r)  (1>0). (17)

n
aca/E
a#0

Note that in [13] we find tc, instead of ¢ in (17), but ¢ > 0 is arbitrary there too.

3.2. Mellin transforms. Our main task in this section is to re-write the r-dimen-
sional integral in (15) as an inverse Mellin transform. For this it will prove convenient
to characterize Fr C G := RfL not through generators, but rather through genera-

tors of the orthogonal complement in R*4* of Log(Eg). Here Log: G — R4~ is the
group isomorphism defined by

(Log(g))v .= log(gy) (veAr, g=1(9.)0 € G:= ]RfL). (18)

Note that Log is not the traditional logarithmic embedding LOG in (2), as we do
not insert a factor of e, in (18). Instead we endow R4 with a new inner product

<6a’7> = Z evﬂvr}/v (ﬂ = (ﬁv)va v = (’Vv)v € RAL)a (19)

veAL
: k k :
where e, = 1 or 2 as in (12). Let {qj}j:1 = {(qjv)v}j:1 be an R-basis of the
orthogonal complement of Log(Eg) in R4 such that

G =1 (Yo € Ap), Z eoindiv =0 (1 <i#j<k:=1+rank,(O}/E)). (20)

vEAL
Thus, for g = (g,), € G := R{:,
g€ ER <~ Z €vqjv log(gv) =0 (1 < ] < k) (21)
veA
Let H := R%. Define a homomorphism é: G — H by
(6(9)), = IT gir (1<j<k g=(g)€G:=RY¥), (22)
veEAL

so that by (21) we have an exact sequence

s H v 1. (23)
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ON A HIGHER-DIMENSIONAL LEHMER CONJECTURE 9

Let 0: H — G be a homomorphism splitting the exact sequence (23), i.e., d o ¢ is
the identity map on H. Such a splitting exists because G and H are real vector
spaces. Let

k
dgs, dh;
dug == H J ) dpg = h_] (24)
veAL gv J

j=1
be the usual Haar measures on G := R;‘_‘L and H := Rﬁ.

Recall that in order to define O in (15) we fixed a Haar measure upg, on Eg.
In order to calculate Mellin transforms below, we will need to compare the Haar
measure py X pg, on H x Eg with a Haar measure coming from pg. Namely, if
~v: Fgr x H — (G is the isomorphism defined by the splitting o, i.e.,

V(z,h) == zo(h), (25)
then the measure pg o v is a Haar measure on Eg X H. Hence

CliG O = fmy X M, (26)
where the positive constant c is evaluated in the next lemma.

Lemma 3. Let QQ be the # A, X k matriz whose rows are indexed by v € Aj and
whose columns are indexed by j = 1,...,k, with entry Q, ; := qj, in the v row and
the j™ column, with q;, as in (20). Then c in (26) is independent of the splitting o
in (25) and is given by ¢ = 2"./det(QTQ), where QT is the transpose of Q) and rq
1s the number of complex places of L.

Proof. For z = (x,) and y = (y,) € R4, let x -y be the standard dot product
Ty =) ,ca, Toly- Recall that we defined in (19) another inner product on RAL,
namely (z,y) == >, e,Z,Y,. To relate these products, let T : RAL — RAL be given
by (T(x))v := €,%,. Then

(,y) =2-T(y) =T(x) - y. (27)

Note that det(T) = 2.

Let uy, ..., u, be an orthonormal basis of LOG(ER) (with respect to the dot prod-
uct), let ¢y := {3y, xgud 0 <z, <1} C LOG(ER) be the unit r-cube spanned by
the uy, and let B; := LOG™'(C}). By the definition of the measure jiz, given in the
paragraph preceding (15), pg, (B1) = 1.

We define next an analogous subset B, C H := RY with uy(Bs) = 1. Let
Fy, ..., F} be the “standard” orthonormal basis of Ri as an R-vector space; that is,
(Fj); =eif i = j, and (F}); = 1 otherwise. Let By C R% be the k-cube spanned by
Fi, ..., Fy, so that puy(Bs) = 1.

Set B := By X By C Eg x H, so that (ug, X ug)(B) = 1. Thus c in (26) satisfies
¢t = pg(v(B)). Now, y(z,h) := zo(h) and pg is the measure on G that maps
by Log to the standard Haar measure on RA- (see (18), (24) and (25)). Hence,
¢t = |det(M)|, where M is the (#A[ x #.Ar)-matrix whose first r columns are the
vectors wy := Log(LOG™'(u,)) € R4 (1 < ¢ <r). The remaining k columns of M
are the vectors Log(o(F})) (1< j <k).
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Suppose ¢ is another splitting of (23). Then o(F})a(F;)~" € Eg, and therefore
Log(c(Fj)) — Log((Fj)) lies in the span of the columns wi,...,w,. Hence c is
independent of the splitting o, as claimed in the lemma. We are therefore free to
use the splitting o determined by

(a(F})), = exp(gjv/d;) (v c AL, 1<j<k, d;:= (g, q) = Z epq?p>.
pEAL
Using (22) and the orthogonality relations (20), one checks that this is indeed a
splitting of . With this o, the last k columns of M are just Log(o(Fj)) = dj_lqj €
RAL. As T o Log = LOG and det(T) = 2" (see (27)), we have
¢t = |det(M)| = 27"?|det(N)|,

where N is the (#Ar X #.A.)-matrix whose columns are T applied to the columns
of M, i.e., the columns of N are uy, ..., u,, followed by d;'T(q1), ..., d;, ' T(qx)-

To prove the lemma we must show that |det(N)|™ = /det(QTQ). We calculate
|det(N)| as |det(N)| = |det(RTN)|/+/det(RTR), where R is the (#A; x #Ap)-
matrix whose columns are uy, ..., u,, followed by qi,...,q (i.e., Q). Using the or-
thonormality of the u,’s (with respect to the dot product), we see that RTR can

be divided into four blocks, the upper left one being the r x r identity matrix I,y .
Below it, RTR has a k x r block with entries

¢j - ue = q; - T(Log(LOG ™ (ur))) = (g, Log (LOG ™ (w))) = 0,

where we used (27) and the definition of the ¢;’s as a basis of the orthogonal com-
plement of Log(Egr) C R4t (with respect to ( ), see (21)). Since the bottom

right k£ x k block of RTR is Q'Q, we find that RTR = ([’“” 0”’“). Thus,

kar QTQ
det(RTR) = 4/det(Q'Q). A similar calculation shows RTN = (é”r j—mk)y
kxr kxk
whence det(R"N) = 1. O

In order to study the ©-series (15), we need to consider integrals of the form

/ eI gy () (lgzll” =Y ewgia?), (28)
A DN veAL

for g = (go) € G := Ri&_ For h = (hy,...,hy) € H := Rk define ¢ by substituting
g = o(h) above:

W(h) = / e g (2. (20)

Note that the integral (28) depends only on g modulo Eg, so the function v is
independent of the choice of o splitting the exact sequence (23). The fact that (28)
depends only on g modulo Fg also shows that

[t ) = [ e g ) = 0 (5(9). (30)

rEFER
so we will concentrate on 1, a function of only k variables.
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1 Define a linear map S: C* — C4 by S(s) = Qs, where s € C*¥ and Q is the
2 matrix whose j' column is ¢; € R4 C CA%, as in Lemma 3. Also define maps
3 Sy: C" — C for each v € Ap by Sy(s) = (S(s)),. That is,

k

S(s) = Z 5i4j, Sy(s) = quvsj (3 = (81, s, sk)) (31)

=1

I

Note that S is injective since the ¢; € RAL are linearly independent.
5 Our first aim is to calculate the (k-dimensional) Mellin transform

~dhy  dh
:/1/J(h)h3d,uH / RO 1h—’“ (32)
H h1=0 hy=0 k
6 where Re(s) := (Re(s1),...,Re(sy)) € D, with
D= {0:(01,...,0k)€Rk| Sy(o) >0 VUGAL}. (33)

7 Asq,:=1forallve A (see (20)), for t > 0 we have (¢,0,0,...,0) € D. Hence D
is a non-empty, open, convex subset of R¥. We will presently prove that the Mellin
transform (M1)(s) in (32) converges if Re(s) € D.

In the following calculation of (M1)(s) the reader should initially consider only
real s;, so that the integrand is positive. At the end of the calculation it will become
clear that the integral converges for s in the open subset of C* where Re(s) € D.

(M) (s Aw/dhe@FWdﬂUﬂﬂ(ﬂwm)

:/ma:thm—Mﬂ>n>w%xumuw>

— 22 Jaet(Q'Q) / (4 1)’ exp(— [z W) (e 0 )z, b),

,h) EERXH
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where in the last step we used Lemma 3 and & (y(z, h)) = §(o(h)z) = h, with § as
in (22) and v as in (25). Next we substitute g = y(z, h) to get

(M)(s) = 27 /det(Q"Q) / a(are ! d(o)
T2 /det(QTQ)/ Ge—llg\\2 H5(g);jj duc(g)

=2",/det(Q"Q) / _”gHQ H ge”q”> dpc(g)
Jj=

1 vEA]
ey I?_l v S5 d v
— 972, /det Q'Q) / eXp 61,912,) H o 2j=14 H g
veEAL veEAL veEAL G
2 dg, det(QTQ )/2
o fa@a T [t L VECD [ e
vEAL veAL
(34)
where r; is the number of real places of L.
Lemma 4. For any o € D (see (33)), the Mellin inversion formula holds:
1
h)=—— [ (M h=*d h e R 35
W) = o [ (1w (s) b (he®),  (3)

where s = (81, ..., sx) and I, C C* is the product of the k vertical lines Re(s;) = o},
taken from o; — 100 to o; + i00.

Proof. The calculation (34) shows that the Mellin transform (M41))(s) is defined for

s € I,. Thus Mellin inversion will work provided that [, |(M)(s)h™*ds| < oo.

Smce |h=| and !ee”s” /2‘ are constant on I, we turn to the factors |I'(e,S,(s)/2)|

n (34). Write s = o + 47, T € R¥. In a strip 0 < C; < Re(z) < Cy, we have
|F(z)| < Cs exp(— Im(z)|).* Since Re(e,S,(s)) = euSy(0) > 0 for s € I,,

IT IT(e.Su(s)/2)] < C’4exp( 3 ev|Sv(T)‘/2) < Cyexp(— ||S(T)]1/2),
veEAL vEAL

where |[(my)|[1 == >_,c 4, Mol is the L'-norm on R4*, and S is the linear function
from (31). Since S is injective, there exists C5 > 0 such that ||S(T)||; > C5||T||: ==
Cs Zle |T;|. Thus (M1))(s)h™* is integrable over I, and Mellin inversion (35) holds.

Let

'z if v is real,
Ly(z) = (2) 1 e (36)
L(z)['(z+3) if vis complex,

3 In fact, |T'(2)| < C- exp(—(m — €)|Im(z)|/2) holds for any € > 0 [1, Cor. 1.4.4].
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1 and

Z log T, ( Z log T, ( > = 1q]vsj) (37)

vEAL vEAL
2 We take the branch of logI',(z) which is real when z is real and positive.

3 Lemma 5. Lety = (y1,...,yr) € R* and x := (e¥/?,... e"/?) € H :=RX. Then

det(QT &
P(x) = 2”(2\/;)6323;]6 /SGIU exp(a(s) — > im1 y;s;) ds (for any o € D), (38)

4 with v asin (29), a as in (37), Q as in Lemma 3, I, as in Lemma 4, and r (resp.
5 1) being the number of real (resp. complex) places of L.

Proof. If v is complex, so e, = 2, the duplication formula gives

[(enSu(s))  T(25.(s)  T(Su(8)T(5 + Suls)) rv(sv(s))'

oS T s 2/ 2/
If v is real, so e, = 1, then
I (€,S,(s))

e€vSv(S) = F(S'U<S)) = Fv (SU(S))

From (34) and Mellin inversion (35) we get

L 5. s)ds
V00 = G /SGIWX (M) (s)d

eUSU(s)
_\/detQQ/ H fsJ_H eUSU )ds
sel

2 (2mi)* /2 j=1 vEAL €v
— v v x/ det QT / H —2s5 F(GUSU(S))_ ds
2m () s€lo ’UG.AL 621}51}(8)
4t(Q7Q) /
= YiS; F
20 (2y/m)2 (i) e, XD (= v ,UL[L
det(Q'Q)

k
= — > L yis;)ds. O
211 (2y/7)72 (i) /sefa P(2(5) = Ly 13%3) &
6 Now we apply the lemma to the Basic Inequality (17).
7 Corollary 6. Fort >0 and a € L*, define y = y,; € R* by
log(t) + 2log |[Normp g(a)| if j =1,
Yj = (Yar)j = { (39)

2 D ve, v loglaly if2<j <k

Then, with £ := \/det(QTQ)/ (2" (2y/7)"27"), for any o € D we have
—t |laz||? ﬁ
[ et @) = 5 [ ewlal) -nSips)ds (1)
.Z’EE]R s€l,
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and

2t 2L

Ha:cHQe’t”ax”Q dpp, (z) = = / S1 exp(a(s) -n 2?:1 yjsj) ds. (41)
s€l,

xe bR

Proof. Define r = r,, € G := R}* by r, := t'/?|al,. In view of (30) and Lemma 5,
(40) will follow from ((5(7"))j = e™i/2, Indeed, by (22),

(5), = TT (21al)® = 50 TT jafyo-

vEAY vEAL

If j =1, then by (20) we have g, = 1 for all v € M. Using (12) and (13) we find
(5<7’))1 = tn/leormL/@(a)‘ — owi/2
If j > 1, then Y, e,qj, = 0 (see (20)), so
(6(r)), = T lalsoe = e,
vEAL

as claimed. To prove (41), apply —2< to (40), noting that % =0forj>2. O
4. EXISTENCE AND UNIQUENESS OF THE CRITICAL POINT

We shall show that for every y € R¥ there is a unique o0 = o(y) € D (see (33))
which is a critical point of F,,: D — R, defined as

Fy(o) = @(U)—Zyﬂj:a(g)—yﬁ’ (42)

with « as in (37). The map taking y € R¥ to the critical point o(y) € D is closely
related to the Legendre transform of a.: D — R, but we will develop the theory from
scratch as ours is an easy case of the general theory of the Legendre transform [14,
§E] [20, §1 and §5].
Lemma 7. Let a: D — R be as in (37). Then « is steep [20, p. 30], i.e.,
@ — _i_oo’

loll=oo o]
where the limit is taken over o € D as its Euclidean norm ||o|| tends to infinity.
Proof. Recall that the linear map S in (31) is injective. Hence there exists C' > 0
such that, for all o € D,

max {S,(0) } = max {|S, ()]} = [[S(0)]lc = Clo]].

For any o € D, there is a vy = vo(0) € A, such that S, (o) = max,eca, {S.(0)}.
The previous inequality says that

Suy(0) 2 Clla]| (43)
The known behavior of I'(z) for z > 0 shows that there is a k < 0 such that
logl'y(2) > K (T, as in (36)), (44)
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forall z > 0 and all v € Ay, (k = —1/5 will do). Also, Stirling’s formula shows that

1
logI'y(2) > : (;gz (45)
for z > 0. It follows from (44), (43), and (45) that when ||o|| is large,
a(o) ==Y logTy(Sy(0)) > nk +log Ty, (Syy(0)) > nk + 3C||o| log(C|lo|)),
veEAS
and the lemma follows. U

The next lemma amounts to the fact that the gradient Vf of a steep and differ-
entiable strictly convex function f is a bijection. However, in our case the domain
D # RF, which means that we would need to check the boundary behavior of a
before citing results from convex analysis. We prefer not to quote and instead adapt
the usual proof [20, §1] [14, §E] to our nicely behaved function a.

Lemma 8. For any y € R* there is a unique o = a(y) € D such that y = Va(o).
Proof. For any y € R¥ let F,: D — R be defined by F,(7) :=a(r) —y - 7, and let

o(y) == inf {F, ()}, (46)
which we will now prove to be finite, i.e., af(y) # —oo. Let 74 be a sequence in D
such that F,(7() converges to af(y). By (44), a(r?) is bounded below, so it suffices
to check that the sequence 7 is bounded. By Lemma 7, a(7) > (||y|| + 1)||7]| for
7 € D with ||7]| sufficiently large. For such 7,

Ey(m) > (lyll + DIl =Nl 71l = N7l

which shows that 7(*) is bounded.

We now prove that the infimum defining af(y) is assumed at a point in the open
set D C R*. Passing to a subsequence of the bounded sequence 7%, we may assume
that the 7) € D converge to a point ¢ in the closure of D in R*. Recall from (33)
that D is the (non-empty) open set consisting of 7 € R* such that S,(7) > 0 for all
v e Ap. If o ¢ D, then S,(0) = 0 for some v € Ay,. Since log T, (S,(7?)) — 400 as
S,(7@) — 0%, and the remaining summands in the definition of a remain bounded
from below (as does y-7%), we conclude that o € D. Since o is an interior minimum
of the smooth function F,, we have VF,(c) = 0. By (42), y = Va(o), as claimed.

To prove the uniqueness of o, it suffices to prove that Fj is a strictly convex
function on D.* The strict convexity of F, follows from the strict convexity of

4 That is, F,(t7 + (1 — t)7) < tF,(1) 4+ (1 — t)F,(7) for all t € (0,1) and all 7 # 7 € D. Such

a function cannot have more than one critical point. To prove this, let g(t) := F, (t7 + (1 — t)7).
Assuming that F, is strictly convex, g is a strictly convex function of a single real variable ¢ € [0, 1].
Thus, ¢’ > 0, so ¢ has an increasing derivative ¢'(t) = VF,(tT + (1 —t)7) - (1 — 7). But VF, (1) =
0 = VF,(7) would imply ¢'(0) = 0 = ¢'(1), whence g is constant and therefore not strictly convex.
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logI'(2) for z > 0. Indeed,
F,(tr+(1—-t)7) = —(tr+ (1 —t)7) -y + a(tr + (1 — t)7)
=—(tr+ (1 —=1t)7) y+ > logTy(S,(tr + (1 - )7))

vEAS
< —(tr+ (1 =0)F) -y+ Y tlogl,(Su(r)) + (1 — t)log T, (S,(7))
vEA]

= tE,(1) + (1 = 1) Fy(7),

with strict inequality holding for ¢ € (0,1) unless S,(7) = S,(7) for all v € A;. But
this is impossible because S in (31) is injective. O

The function of in (46) is a concave function of y € R¥, being the infimum over
7 € D of the set of concave (in fact, affine) functions y — —y -7+ «a(7). The convex
function —a' is known as the Legendre transform of a.

5. INEQUALITIES AT THE CRITICAL POINT

To take advantage of the inequality (17), we will later need to drop all terms in
(17) corresponding to algebraic integers a # 1. For this we will need some control
of the first coordinate oy (y) of the function ¢ in Lemma 8. In this section we take
advantage of the concavity of U :=I"/T" to find a lower bound for o;(y). Then we
use the convexity of logI" to find a lower bound for a(o(y)). Let

Ue(z) == 0(z) + V(2 + 3), (47)
) ¥(z) if v is real,
ulz) = {\I/C(z) if v is complex, (ve o) (48)

These definitions ensure that ¥,(z) = Llog',(z) = I',(2)/T(z) (see (36)). Note
that U,(z) is a concave function of z for z > 0. We also note that U, : (0,00) — R
has an inverse function ¥, ': R — (0,00) since W(z) is strictly increasing when
2z > 0, tends to —oo as z — 07, and tends to +o00 as z — +o0.

Writing out the ¢-th coordinate of the equation y = V(o) in Lemma 8, we get

Yo = Z Uy, (Sy(0)) qew (Sy(o) = 2?21 4oy, o :=0(y)), (49)

vEA]

which for ¢ = 1 simplifies to

Y1 = Z \Ijv (SU(U)) (50)

vEAS

Lemma 9. Let L be a number field of degree n, with ro complex places. For y =

(Y1, Y2, .-, ur) € RE et o1(y) be the first coordinate of the function o(y) defined in
Lemma 8. Then

) > O (@)—T—? 51

01(3/173/27 7yk) - n m ( )
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Proof. We prove (51) using the concavity of ¥. Namely, from (50),

=3 U(Su(0) = D U(Su(0) + D U(L+5,(0))

vEA] vEA] v complex

<10 (3 S 5100+ 5 o (4 +5:00))
= V(Y vea, @8u(0) + 53) =n¥ (o1 + 32),

where the last step uses

% Z evSy(0) = 01 (0 = (01,02,...,0%) € Ck)7 (52)

vEA]

which follows from (20) since

k k
Z epSy(o) = Z Zevaijj = Zaj Z eyQjv = 01 Z €y = O1M.
j=1

vEAL vEAL j=1 vEAL vEAL
Inequality (51) now follows, since ¥™! is an increasing function. O
Our next result is a similar inequality for a(c).
Lemma 10. With notation as in Lemma 9, we have
a(o) > nlogl (o) + 32) (0 =(01,...,0) € D). (53)

Proof. We compute directly from the definition (37) of a, using the convexity of
z > logI'(2) for z > 0 and (52):

alo) = Z log ' (Sy(0)) + Z log ' (Sy(0) + 3)

vEATL v complex
> nlogf(% < ZUGAL SU(O') + qu complex (% + S”<O->)>)
=nlogl'(L 3,4, €0Su(0) + 22) = nlogT(o) + 22). -

We now prove a lower bound for S,(o) in terms of o; and y;.

Lemma 11. Let u € Ap, y € R¥, and let o := o(ny) € D be as in Lemma 8.
Assume that yy >ty for some ty € R, and n:=[L: Q] > 2. Then S,(c) > 2/5 or
1 1

Su(o) > > > 0. 54
(@)= (n—1)W¥ (2t + 1) —nty — (n—1)log(201 + 3) — nto (54)

Proof. We shall show below that both denominators in (54) are positive if S, (o) <
2/5, as we may assume. Replacing y with ny in (50), we have

ny; = Z U (S,(0)) + Z U (5 + Su(0)).

vEAL vEAL
v complex
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Since —V is a monotone decreasing convex function on (0, 00), we find

U (Su(0)) =ny: — Z U(S,(0)) — Z V(3 + S,(0))

vEAL veEAY

vFEU v complex
1
>ny; — (n—1) \Il( E —i— Sy ))
n —
UE.AL vEAL
vFEU v complex
_ _ 1
=ny; — (n 1\Il(n g epSy( g 2))
vEAL vEA]
v complex
Su noi T2
- ~1) \If( ) 52
m — (n n—l fasitamon) (e 0?)

noy D)
> nyy — (n— 1 m(
71—1—i_2(71—1))_ny1 (n=1)

From zI'(x) = I'(z + 1) and the fact that ¥(z) < 0 for z < 1.461,

n—1 2/

1
znyl—(n—l)\IJ< o, )

1 1

Hence, as we are assuming S, (o) < 2/5,
—1
Su(0)
Since S, (o) > 0, the right-hand side above is negative. Hence the left-most inequal-

ity in (54) is proved.
Next recall [16, §71, eq. (11)],

log(z) — ¥(z) = 22, + 2/000 (2 + xz)ze%t —1)

Whence ¥(x) < log(z) for 2 > 0, and so

noi 1 noi 1
w( ><1< _><1 20, + 1),
a1 ) <ls( Ty tg) Slos(oty)

Now the second inequality in (54) follows as before. O

noq 1
=) >ty — —1\1/(
n—1+2>_nt0 (n )

no 1
1 _{__)‘

> U (Su(0)) 2ny1—(n—1)‘p< n—1 2

dt >0 (x > 0).

6. ASYMPTOTICS

In this section we prove the estimates needed to prove Theorem 1. We will work in
a somewhat more abstract setting since the assumption in Theorem 1 that £ C Oj
contain the relative units F(L/K) will be useful only through the following property.

Lemma 12. Suppose K C L is a subfield, E(L/K) C E C O, let Log be as in
(18), and suppose q = (qy)ven, € Log(E)* lies in the orthogonal complement of
Log(E) inside RAL with respect to the inner product (19). Then q, = q, whenever
v and v’ lie above the same Archimedean place of K.
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Proof. Tt suffices to show that Log(E)* is contained in the R-span of Log(K*) in
R4z, But, span Log(K*) = Log(E(L/K))* since
Log(E)" C Log(E(L/K))*",  Log(K") C Log(E(L/K))",
dim(span Log(K*)) = #Ax = dim(Log(E(L/K))"). O
We formalize the above property as follows.

Definition 13. For M,Q > 1, a subgroup E C O3 is (M,)-dispersed if there is a
surjective map of sets w : A, — M, where M has cardinality #M = M, with the
following properties.

(i) For w € M, let 114, and ro,, be respectively the number of real and complex
places of L with image w under m, let

My 1= Tl + 2720, m = lrvréljel{mw} (55)

Then my,/m < Q for all w € M.

(i1) If ¢ = (qv)vea, € Log(Er)*, the orthogonal complement of Log(Eg) in RAL
with respect to { , ) in (19), then q, = gy whenever w(v) = 7(v').

This rather ad hoc definition is meant mainly to clarify the proof of the estimates
below. Being (M, Q)-dispersed will prove useful if m > M, with m as in (55).

Remark 14. [t is easy to see that a subgroup E containing relative units E(L/K),
as in Theorem 1, fits in the (M,Q) framework. Indeed, if K is a subfield of L,
let M := Ak and let 7 : A, — M be the restriction map. Then condition (i) of
Definition 13 holds with @ = 2 since m,, = e, - [L : K] < 2[L : K|. Lemma 12
shows that condition (ii) holds if the relative units E(L/K) C E C Of. Thus E in
Theorem 1 is (#Ak,2)-dispersed. Determining if there are interesting examples of
(M, Q)-dispersion beyond that of Theorem 1 seems to be a difficult question.

As outlined in §2, the Basic Inequality (17) and Corollary 6 lead us to estimate
integrals of the type
1 : ,
& ey gg — / eo i) =ny-(o+iT) g . Gg(T)dT, (56)
v Jsel, TERk Rk
where n :=[L: Q], y = (y1,...,u) € R*, 0 :=o(ny) € D C R* as in Lemma 8,
and y - s = Z§:1 y;sj. Let H(T) be the Gaussian approximating G(T') (see (65)
below) in a bounded neighborhood A C R* of T'= 0 (see (87)). As usual with the
saddle point method, we decompose the integral (56) into four pieces

G(T)dT = | H(T) dT+/ G(T)dT — H(T)dT
Rk RF RE—A RE_A
A

The term [y in (57) (i.e., [o. #) is readily computed and gives the main term in
(57). We shall prove that the terms I, I3 and I, are o(I;) as m — oo, uniformly in



10
11

12
13

14

20 TED CHINBURG, EDUARDO FRIEDMAN AND JAMES SUNDSTROM

y € R* provided E is (M, Q)-dispersed, as we shall henceforth assume. We will use
T, M, m,w, my,, 1, and rg,, as in Definition 13.

Let (cf. [13, p. 134])

a(2) == rlogD(2) + (1 — k) logT'(z + 1), Ry 1= M (58)

My

Note that £ < k,, < 1. Recall that in (20) we defined a basis {qi, . .., g} of Log(E)*.
For w € M, define S, : C¥ — C as

k k
Sw(s) == Sy(s) == quvsj =: quwsj (seCr veAr, m(v) =w), (59)
=1 =1

where gj,, := g;, for any v € 7' (w) (this being well defined by (ii) in Definition
13). We can therefore rewrite « in (37) using (58) as

Zlogf Z Z log Ty (Sw(s)) = mea,@w(Sw(s)). (60)

veAL weM ver—1(w) weM

For each w € M and o € D (see (33)), define p,: R¥ — C by

. . 1
Pu(T) := e (Suw(o+iT)) =, (Sw(0)) —icr, (Sw(0)) Sy (T>+§ " (Sw(0)) (Sw(T))27
(61)
i.e., py is the error in the degree-2 Taylor approximation of 7" — Oé,iw(Sw(O' —|—iT)) at

T = 0. We shall henceforth take any y € R* and let o := o (ny) be the corresponding
saddle point in Lemma 8. Thus Va(c) = ny. Using this and (60), we find

Zny]T ZT Z (e ) djw = Z M), (Sw(0))Su(T).  (62)

= weM weM
It follows from (60%(62) that

a(o +iT) —ny - (0 +iT) = a(o) —ny -0 — % > muall (Su(0))Su(T)? + p(T),
weM

= 3" (D). (63)

weM
The linear terms in T have disappeared precisely because o is a critical point of
s a(s) —ny-s.
For fixed y € R* and o := o(ny) € D, define the following functions of T' € R*:

= maal (Su(0))Su(T)?, (64)

weM
H(T) — ea(a)—ny-a—%H(T)’ (65)
G(T) := et =nulotil) — ey (T), (66)

Although H, H,G and p depend on y € R¥, we do not include y in our notation.
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6.1. The main term. In Lemma 3 we defined the #A; x k matrix @ of rank &
whose coefficients are @), ; := ¢;,. Recall that we write ¢;,, := ¢, for any v € A,
with m(v) = w. We will write Q for the M x k matrix with entries Q,,; = ¢;,, and
rank k. In the computation of ¢() in Lemma 5 the term det(QTQ) appears. Using
the smaller matrix Q we have

det(QTQ) = det(QTQ) H (riw+ Tow) (71,5 T2, as in (58)), (67)
weM
as follows from
(QTQ)i; = Z TivQjv = Z Giwjw Z 1= Z Giw i (T10 + T2,0)-
vEAL weM ver—1(w) weM

For future reference we note that
k<M, (68)

as the M x k matrix Q has the same rank as (), namely k.

Let M be the set of subsets of M of cardinality k. For n € M let Q, be
the k£ x k submatrix of Q whose rows are indexed by the elements of 7. Next we
calculate some integrals such as I; in (57), and its derivatives.

Lemma 15. Let E C OF be (M,Q)-dispersed (see Definition 13), for n € MW let
Q, be as above, let (by)wem € R, and define

D, = det*(Qy) [ ] bw, D= ) 9, (69)
wen nEM[k]

Then, with Sy, as in (59),

Furthermore, for any wy € M we have

/ Suy (T)4exp(— % 3 waw(T)2) AT = 3(27r)k/2@—5/2b;§( 3 @n)z

weM n3wo
< 3(2m)MPD 1% 2
and

/ k SwO(T)6eXp(— % 3 waw(T)Q) dT = 15(27r)’f/2©—7/2b;§( 3 :o,,)

weM n2wo

3

< 15(2m)" D123,

Proof. Let P = (P, ) be the M x k matrix with entries P,; = vbuqjw (w €
M, 1 < j < k). Then for T = (T1,...,Ty) € R* considered as a k x 1 matrix,
PT € RM satisfies (PT), = vbuwSw(T). Hence

3" buSu(T)? = (PT)'PT = T"(P'P)T = T"HT (H := P"P).
weM
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The k x k matrix H is clearly positive semi-definite. The Cauchy-Binet formula gives
det(H) = ®, with ® as in (69).> But ® > 0 as ®, > 0 for at least one n € MM,
since Q has rank k. Hence H is positive definite, and so the integral in (70) is the
well-known Gaussian integral attached to a positive definite quadratic form H in k
variables, as claimed in (70).

The other equalities in Lemma 15 are obtained by differentiating (70) with respect

to by, repeatedly. Indeed, noting that the partial derivative a‘Z@ =b, 1 Do D, is
independent of b,,, i.e., g; = 0, we have
1 1 1
—= / swo<T>2exp(— > bwsw<T>2) dT = —(2m)"?*D~3/2 (b;j > Qn),
2 Rk 2w€M 2 EX)
l/ Suuo (T)? e;xp(—1 3 b,S (T)2> dT = §(27T)k/2©_5/2(b_1 Yy @ )2
4 Jpr 2 vt 4 wo et "y
1 . 1 I SN Yy ’
— [ Su(m) exp<— 5 > buSulT) >dT = —2(2n)"D (bwo 3 @n) ,
Rk weM UEL

proving the equalities. The inequalities follow from Znam D,<9D,as9, >0. O
As o//(t) > 0 for t > 0, we can now evaluate I;.

Corollary 16. With H(T) := e*@=wo=sH(T) 45 in (65), for y € RF we have
(Qﬂ)k’/Qea(a)—ny-a

I =L(ny) = [ H(T)dTl =
R det(H(o))

where 0 := o(ny) € D as in Lemma 8 and
det(H Z det?(Q,) H My, (Suw(0)). (71)
neMlk] wEeN
6.2. The small terms. We begin with some one-variable estimates.

Lemma 17. Let p > 1000, s € [%, 1], and r > 0, then
o A V/2mepen(r) 2.31
/ |ePo= i | dt < L()(l + 7), (72)
—00 yye’
/OO |tep@f@(7’+’bt |dt v 27-(67’0‘% T
. pa’é(?“)

Proof. Under the assumptions in the lemma, Sundstrom proved®

foo ‘epa,ﬁ(r—i-it)‘ dt 1 s 3ep1/3 1
ol <14 (10770 4 (2/m) 2 oe i 4 S50
Qﬂep:):,g(;) p ( /7]—) p 2 8/p1/3
pa (T

5 The Cauchy-Binet formula computes det(AB), where A is a k x £ and B is £ X k, in terms of

the k x k minors of A and B.
6 Set D =2 in the inequality displayed immediately before Lemma 4.5 in [25, p. 142].
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1 As the quantity in parenthesis is decreasing for p > (5/2)3, we can bound it by
2.3093 - - -, its value for p = 1000. Thus, (72) is proved.

We now prove (73). From [25, Lemma 4.11] we have

r

3v2

. 792eP(T)

|tepan(r+zt)| dt < 35)6;”’ (74)
3\’“/5 pOén(T‘)

while from [13, Lemma 5.3] we have

, 2r2epaen(7)
|tepom(r+zt)|dt < _ ’ (75)
Afbsh Pk = 2)(1 4 )PRlrl/2(1 4 35) e=2)/2

where |r] is the floor of r. Since 0 < r2a/(r) < 1+ r [13, p. 141], we have

r? 1 1+7r 2

< < .
(1+ 55)Pelrd’2 = afl(r) (1 + g5)Pelrd/2 = agi(r)

Indeed, for 0 < r < 1 the last inequality is obvious, while for » > 1 a much better
inequality follows from px > 500. Hence

, 1 4epors(r) 0.00002ePax(r)
|tePos(r+it)| dt < <
/lt>395 pall(r) (3 — 1o55) (1 4 £5)(00-2)/2 pal(r)

Combining this with (74) we obtain (73).

O
We will need the following inequality, proved by elementary calculus.
5\ 5/2
e < ()7 < 08112 (z > 0). (76)
e

Lemma 18. Suppose p > 1000, 1 <k <1, 0< D < p'3\/k, and let
D
5 R

N 7
p'/3/all(r) (77)

Then, for any r >0,

—76 % r@('f')
/ jePon(rHit) | gt < (10 T po )v 2me?”
[t|>6

p poll(r)
and

/ e3P0 gy < 30T VAT (79)
1t]>6 pD% \/pal(r)

Proof. Inequality (79) follows from

[ emtas 2070 VI S(pUDR /2 e T
e " —
1> T PEDVai(r)  pa(r) pV/mD"

V2m 3.67

< ==,
Vpall(r) pD°
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where the first inequality is from [13, p. 139] and the last one uses (76) with z :=

pY/3D?/2. To prove (78) we use [25, Lemma 4.5],

ozﬁ r zt
Jipsglem =0 dt g PP exp(p DY) g 4143
l\/ﬁepa“(” \/7_TD D6 )
P y/pail(r)
where the second inequality again follows from (76). U

Next we deal with the second order remainder term in the Taylor expansion about
a of logI'(a + ib), taking a = S, (o) and b = S, (T).

Lemma 19. Let E C O be (M,Q)-dispersed. Then forw € M, o € D (see (33)),
T € R¥ and p, as in (61), we have

al(-€3) o 3/2
(o (1) < =205y < Lo (s, ) isumP. 0
Refpu(r)] < 25D g, 7y < Lot (5,000 500 s1)
Im(py(=T)) = ~Im(pu(T)),  Re(pu(=T)) = Re(pu(T)), (82)

if |, (T)] < Su(0), then 0 < Re(py(T)) < M

Proof. The first inequalities in (80) and (81) are proved in [25, Lemma 4.7], as is
also (83). The second inequalities in (80) and (81) follow from [13, Lemma 5.2] and

Kw > 3. The identities in (82) follow from (61) and log I'(z) = log I'(2). O

Su(T)?. (83)

Lemma 20. ([13, (5.11)]) Ifu,v € R with 0 < u < R, then

, vt e -1
R u+iv 1 < =—
Re(e — 1) < 2+ u’—
We first estimate the easier “outer” terms, Iy and I3 in (57), i.e., where the region
of integration is R* — A. For y € R¥, let 1y = no(y) € M correspond to a maximal
summand in (71), so

detQ(Qn) H mwagw(sw(an < det2(Qno> H mwaﬁw(sw(ﬂ)) (Vn € M[k])' (84>

wen wENo

Thus,
det (H(0)) < (J‘If ) det*(Qy) T muol (Su(0)),

and so

(85)
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For y € R¥, w € no(y) and D > 0, let (cf. (77))
D

O = . (86)
mil® /o], (8u(0))
Define the neighborhood A C R¥ of T'= 0 € R as
A= Ay) = {T € R*|[Su(T)| < 0w (Yw € no)}. (87)

The next lemma shows that I, and I3 are small compared to I; in Corollary 16.

Lemma 21. Suppose E C O3 is (M, Q)-dispersed, m := min,e pm{m,} > 1000, 0 <
D <m'3/\/2, andy € R*. Then

|m44kwmﬂb“+%wwowﬁmy(%h (58)

Ll=| [ #T)ar| < I, (89)
Rk,

with A as in (87), 0 := o(ny) € D as in Lemma 8, H and G as in (65) and (66),

Proof. We first prove (88). Note that I'(z) = [~ z%e "% implies

IT(2)] < T'(Re(2)) (Re(z) > 0). (90)
Using this, (66) and (60) we have,

/]Rk_A |Q(T)| dT’ S e—ny~g H emu;anw(sw( 7)) / ‘ H em1uanw(s1u(g+zT ’dT

weMI*] weno
wéno

Let B C R™ denote the k-dimensional box

B=B(y):={T e R"||T,| <6, (VweEny)}, (91)

and let B := R™ — B denote its complement. Making the change of variables
Ty = Syu(T) for w € 1y, we have

1

My Oy (Sw (43T )’ dT =
/ ‘ I |det(

weno Qno)l TeBe wen

My Qg (Sw (U)+iTw)

dT.

e

The latter integral is easy to bound using Lemmas 17 and 18. We integrate over k
(overlapplng) regions, each of which has k — 1 of the T}, range over all of R, and the
remaining T, over |Ty,| > 6y, Since m,, > m, we conclude that

k(2 k/2 1 2.31\k—1 10—76 % a(o)—ny-o
[ amyjar < U AU L e
RE_A mldet(Qu) TTuer, \/mwagw(sw(a))

Now inequality (85) and Corollary 16 prove (88).
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Next we prove (89). Changing variables as before, we have

a(o)—ny-o 1 "
= [ en(-3 3 mwamw<sw<a>>sw<T>2> ar

a(o)—ny-o -
<e Y /Rk 6Xp< Z LLznies f‘iw w )Sw(T)2> dr

wEno

ea(a)—ny~0

1 " ' T
— —]det(QnO)| . exp(— 5 Z mwaﬁw(Sw(a))Tf}) dT.

wENo

Once again, we bound || 5o using k overlapping regions, one for each wy € n9. The
integral over the region given by all T' € R™ such that |T},,| > 6., is bounded by

/ e Qm’woamw Swq ()T, wo dTwo H / —7mwa (oNT2 dTw
T |>0uw

weno ¥
wFwo

We can use (79) to bound the first integral, and the remaining integrals are explicitly
known. Hence, summing over the k regions,

(27T)k/2 afo)— "o 367k
|det(Q770)| 6 weEno \/mw Hw ’UJ )

We again conclude using (85). O

[I3] <

For the “inner” integral Iy = [, (G —H) in (57), we can only expect estimates of
the kind O(I;/m), whereas I, and I5 are essentially O(I; exp(—m!/?)). This allowed
us to use simple estimates for the contribution of w ¢ 7y. However, to estimate I,
we shall need the following geometric result.

Lemma 22. Let R = (r45) be an N X k real matriz of rank k, and leta; >0 (1 <i <
N). Define linear maps P;: RF — R by P(T) := ZJ i Ty, where T = (T4, ..., Ty,).
For any k-element subset n = {i1,...,ix} C {1,2,...,N}, let R, denote the k X k
submatriz of R given by (Rn)m = 1,,j. Define E, = |det(R,)] Hi@7 a;, and let ng
mazximize I,. Then

alP(D) <Y 4| P(T)] (1<i<N, TeRY).
J€o
Proof. Replacing r;; by a,r;;, we may assume a; = 1. Hence 7, simply maximizes
|det(R,)|. Fixie {1,2,...,N}, and deﬁne Aj € Rfor j €ny by P, = deno P;.
For j € no, let R; denote R,7 with the j™ row of R replaced by the i*" row. Then,
by Cramer’s rule, |\; det(R,)| = |det(R;)| < |det(R,)], so |A\;| < 1. Hence

PAT)| = | Yo AB(T)] < IR 0

JEMo JE€No

Remark 23. The argument of the proof shows Lemma 2 of §2. Namely, let S be
the set of rows of R and set a; = 1 for all i. The volume of the sign-symmetrized



ON A HIGHER-DIMENSIONAL LEHMER CONJECTURE 27

1 parallelotope P(n) spanned by the elements of a k-element subset 1 of S is just 2FE,.
2 If this volume is mazimized by ng over all choices of n, the proof shows every element
3 of Sisin P(n).

Lemma 24. Suppose E C O3 is (M,Q)-dispersed. Then, fory € R* and D > 0 we
have, with notation as in (55) and (57),

=] [ (o)~ wryar| < ML) 92)

4 where m := mingepm{my,} and 7 = (eMk4D4m‘1/3 _ 1)/(Mk4D4m—1/3),

5 Proof. Lemma 22, applied to the matrix Q and a,, := \/mwagw(Sw(J)), shows

Vmol, (Su(@) 15D < 37 \fmugall, (Suy(0)) 1S (7)) (93)

woENo

for w € M, T € R* and 7y as in (84). Since x — z* is convex, we have,

ol (Su(0))"Su(T) < (3 ¢mwo 0) 154, (T))’

woENo

<K m2al, (Sue(0) Sue (1)

wo ENo

6 For T e A and wy € 1, by (86) and (87) we have
2 2 _
Mg @, (Suo () Sug (T)* < Mgy, (S (0)) 04, = D)/,

K K

Hence,

4 4 4 M4
Ml (Su(0) S, (T) < k2 S T D" s T 2D*  2k*D

Moy m1/3 = ml/3 13
wo €70 wo €70
Combining this with Lemma 19 and #M = M, we conclude that for T" € A,
[Re(p(T))] = | 3 muRe(pu(D))| < 32 KD'mY* = Mk D1,
weM weM

Lemmas 19 and 20 now show that for T' € A,

Reer® —1)] < D) pofyry) 2
s%(?%mwagw(s @) 5ulT)) +—w€ZMm“’ Su(0))"SulT)"
< % S m2al (Su(0))’Su(T)° +§ > muall (Su(e) Su(T)", (94)
weM weM

7 where in the last step we used the convexity of x +— 2%
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By Lemma 19, Im (™) is odd, while Re(e”™)) is even in T'. Furthermore, H(T')
is a real and even function of T, and A is mapped to itself by T" — —T. Hence,
using (66) and (94),

‘/ (Q(T)—H(T))dT‘ - ‘/A(eP<T>—1 dT‘ - (/ Re(e”®) — dT)

Z / —m ! (Su(0)) S, (T)° +§ Mt (Su(0)) Sw(T)4>H(T) dT.

Using Lemma 15 and Corollary 16, we find

sM + 352 (2m)F2ecl) e
‘/A(Q(T)_MT)) dT‘ : <w€ZM My ) det(H(0))

5 3
_MGM+i2),

0

m

Our next estimate will let us deal with the term fE]R \|az||2e~tlol” dp(x) in the
Basic Inequality (17) and (41).

Lemma 25. [fy € R*, E is (M,Q)-dispersed and m > 1000, then

1.18VQ(1 + Z3L)k=1k, /()

/ ) |Tlea(o+iT)fny-(a'+iT) |dT S 01]17 (95)
TeR

§

with Iy as in (57), a as in (60) and 0 = (o4, ...,0%) := o(ny) as in Lemma 8.

Proof. By (52), for T € R¥ we have

nTi= Y eS(T)=> Y  eSu(l)=> muSu(T). (96)

veEAL weMver—1(w) weM

Hence we will need to bound integrals of the kind [g [S,,(T)e* )| dT.
Let 19 be as in (84) and let wy € n9. Then, using (90) and changing variables as
in the proof of Lemma 21,

/ {Swo O’+ZT) 0’)} dT < / ‘Swo H emwanw (Sw(O"FZT))—mwOénw(Sw((f)) dT

wENo

1 ~ = -
N Met—Ql / ‘Two g0 g (Sug (@) +Twg )7mw0anw0 (Suo () | dTwo
Tlo

H / mwanw(S (0)+iTw ) =My, (Sw (0)) ’dT

wETo
wF#Wo
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Using Lemma 17 we obtain,

1 0. 83\/2 1+ 22)y/2
/ |Sw0(T) a(o+iT)—a(o) ‘dT i ( ) m
Rk

— [ det(Qy)| M, weno \/mw " (Sw(o)
w;éw

~0.83-(1+ 2‘”1)"/‘—1 (2m)*/?

e (5un(©) [ 4et(Q)| Ty /mu (Su(0)
0.83- (1+ {%)’H (%) (2n)ke

\/magwo(swo(a)) \/det(H(a)

By inequality (93),

S il Su(T :ZM\/ ¢mw £(Su(@) 15u(T)|

weM
\/ Q) Z \/mwo ri 0 )) ’Swo( )‘
weM "iw w06770

< m Z mwa(o) Z agwo(swo(o—)) ‘SWO(T)’7

weM woENo

(see (85)). (97)

1 where the last inequality uses m,, < Qm < Qm,, (valid for any w,w, € M by
2 Definition 13) and z®a), () > Ky > 1/2 for & > 0 [13, (5.7)]. Hence, by (96),

Z M| Su(T)| < V20no Z agwo(swo (U)) |Suo (T)]-

weM woENo
It follows that

/ | Tyecto+D=nyto+iD) | gp = & / ’( Z maSa(T) )0 dT
TeRF
a(a) ny-o

Y- \/_no'l Z Nwo ’LUO / |Sw0 Oé(UJrzT ‘dT

woENo

+ %)k—l (1\:) % (27T)k/2ea(a)—ny~o

0.83- (1
< mgl
- w;;o vm det(H (o))
(1737 V(1 4 2Bt (R
a vm

3 where the last equality uses Corollary 16. U

N

0—1117

»~

The next lemma will allow us to ensure that each integral in the Basic Inequality
(17) is positive.

6 Lemma 26. Let E C Oy, be (M, Q)-dispersed,
m > Ny = No(M,Q, k) := max(10*k°M3/2, 10°k*Q (7)), 10°M?), (98)

(&)]
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and let a € O, a # 0. Let t := exp(¥(0.51 + 22)) and ¥(z) :=I"(z)/I(z). For
Yar given by Corollary 6 let

IRV CAL)) | I R

(ZW)k/Zea(a)fny-a

£ eSS
Then the following inequalities hold.
o1 (M) > 0.51, / ) (M —1)e 1l dpgs, (@) > 0.007L, (ngas), (99)
L] + | I3| + |14] < 0.0ilnf. (100)
Proof. By Corollary 6, for a € O, a # 0,
y1 = (Yau)1 = log(t) + 2log [Normy g(a)| > log(t) = ¥(0.51 + 22). (101)
Applying Lemma 9 to ny, since ¥~! is increasing we have,
o1 = 01 (nyay) > T y) — ;—; > U (U(0.51 + 22)) — ;—; =051,  (102)
as claimed.

We now prove inequality (99). Note that £ is as in Corollary 6, except that we
used (67) to express £ in terms of Q rather than (). Letting y := y,, from Corollary
6 we have

az|® —tllax ; a(c+iT)—ny-(o+i
jER(ﬁl_l__;Oe HIHZduER__]%Qwi2gﬁg+zTD-—1)e( +iT)=ny-(o+iT) g

fER e—tllaz|? d,UER - fTe]Rk ec(o+iT)—ny-(o+iT) T

% ka T, ea(UJriT)fny-(chriT) dT
ka ea(o+iT)—ny-(o+iT) T

:20'1—1+

(103)

The numerator in this last quotient is bounded by Lemma 25. As k < k? < Mk? <
10~*m by (98), we have

2.31\ k-1 2.31\m\ k/m
<1+_3) < ((1+—3> ) < e231/10" - 1 9003, (104)

m m
Now Lemma 25 and (98) yield

2.361 0111 (ny)

) T, a(o+iT)—ny-(o+iT) dT < 105
/T@Rk [Tre 4T < 100 (105)
Next we estimate the denominator in (103). By (57) and (56) we have
L[ than? g, [ ot nyorin) gp _
€ d,uER (§] dT ]1 +IQ ]3+I4, (106)
E Eg Rk
where [; := I;(ny) and A in (86) and (87) is defined using
1/12
D=1 (107)

k.Ml/4 :
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The above value of D is chosen so that D*k*AMm~'/3 =1 in Lemma 24. Thus,

M(3M +3(e—1)) M*(3+3(e—1)) 4.3

|I4| < I < I < —]1, (108)

m 1000

where the last step used (98).
One easily checks that m >4, M > 1 and k > 1 imply D < m'/3/4/2, as required
in Lemma 21. Thus,

< 6W7 7 67kr’“6M3/2 L< 3T o)
vm \/_ D6 104
where the last step used (98) and 2 > 1. Slmllarly, using (88) and (104),
L] < ( 1.0003 n 41.43>I1 - 4_2
107 m | 104 1000
Combining the last three bounds we obtain the inequality (100). From (106),

I. (110)

! / e thael® gy = / eclotil)=ny-(o+iD) g > 0.991, . (111)
E Eg Rk
Since oy > 0.51 by (102),
2 ka T, ea(a-i—iT)—ny-(a-i—iT) dT 0.023610,
201—1+ ka oo i) —ny-(o1iT) g > 20’1—1—W > 1.97601—1 > 0.0078.
Now (103) and (111) conclude the proof of (99). O

We are now ready to prove our main result.

Theorem 27. Suppose E C OF is a subgroup of the units of the number field L
which is (M Q) dispersed in the sense of Definition 13. Let k := 1+ rankz (O} /E),

(A:) = m, let €1,...,€; be independent elements of E, where j := ranky(E),

and suppose m in Definition 13 satisfies
m > Ny = No(M,Q, k) == max(10°k5M%/2, 10*k*Q (), 10°M1?).

Then
||€1 A A 6j“1 Z H81 A A 8j”2 Z 1.1[L:@], (112)

where the L'-norm was defined in (4).
Theorem 1 in §1 follows immediately from j < [L : Q] and Remark 14.
Proof. Note that Ny is as in Lemma 26 and that

HEg (ER/E)
|Etor|

Take ¢ := exp(¥(0.51 + £2)) as in Lemma 26. In the Basic Inequality (17) take a :=
Oy, so that the sum there includes only nonzero a € O (modulo E). By Lemma

lerx A= Agjlla = g (Br/E) > (113)
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26, each integral in the sum is positive. Retaining only the term corresponding to
a =1 € Op we have, again by Lemma 26,

) -0 0072k/2 \/det(QTQ) [Loent(Tiw + 12.0) (2/1/7)2e@) w0
‘Etor‘ det(H(U))Wk/z 2n

(114)

where y := y;; and 0 := o(ny). Corollary 6 applied to a = 1 gives
y = (log(t),0,0,...,0) = (F(0.51 + 2),0,...,0). (115)
We need an upper bound for det(H (o)) in (114). In view of (71), we look for an
upper bound for o/ (S,(c)). Note that for 0 < x <1 and z > 0,
an(z) = k¥ (2) + (1 — K)¥'(z + 1) < k¥ (z) + (1 — k) V' (z) = V'(z),
since W'(x) is decreasing for x > 0. Also, o1 > 0.51 by (102), so
—2 < W(0.51) <y = U(0.51 + 22) < U(0.76) < —1. (116)

From Lemma 11 we have

Sw(o) >

1 1 1
> > .
(n —1)log(201 + 3) —ny1 — n(log(301) +2) = nlog(2301)

Estimating the series by an integral, U'(z) = >~ 7 m < 14 %, yields
1 1

+
Sw(9)  (Su(0))
From det(QTQ) = >, v det*(Q,), 71w + T2 > My/2, (68) and from (71),

282/ det( QT [yept (rw + r2w) ( 1 )k
det (H (o))mk/? ~ \V2rnlog(23n)

an (Sw(o)) < ¥(Su(0)) <

Rw

5 < 2n”log®(230y).

1 (n/100)2/15
> (7 )
2w nlog(2301)

where the last inequality used (98) in the form n > m > 100k5M3/2 > 100k5k%/2.
We now bound the term e*(@)=" in (114) from below. Using the lower bound
for a(o) in Lemma 10, we have

, (117)

a(o) —ny-o > nlogl (o1 + £2) — noyy:. (118)

The critical points of g(r) := logF(r + 5_721) — ry; occur where \If(r + ;_721) =y =
W(0.51+32). But ¥: (0,00) — R is injective, so 7 = 0.51 is the only critical point of
g on (—32,00), and it is a local minimum. On checking the behavior has r — —;—fﬁ
and as 7 — 00, one finds that the minimum of g for r € (—32, 00) occurs at r = 0.51.

Using (118) we obtain

aloc)—ny-o > n(logf(al + %) — lel) > n(logf(0.51 + g—i) —0.510(0.51 + g—i))

Note that 0 < £2 < 1, U(r) < —1 for 0 < r < 0.76, and ¥'(r) > 0 for r > 0. Hence
x+— logI'(0.51 + x) — 0.51¥(0.51 4+ x) + z log(4/7)
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is decreasing for 0 < x < 1—11. We conclude that

a(o) —ny - o +rylog(2/y/7) — nlog(2)
> n(logI'(0.76) — 0.51¥(0.76) + 0.25log(4/m) — log(2)) > n/10. (119)
Recall that by Lemma 26, we have o > 0.51. We now distinguish two cases

according to how large oy is. If 0.51 < 07 < 5, then log(230,v27) < 6. Combining
this with (114), (117), and (119), and using 0.1 — log(1.1) > 0.004 we obtain

(g, (Er/E) > 1.1" exp(0.004n + 1og(0.007) — (n/100)***(log(n) + 6)) > 1.1",

since n > #A;, > m > 10%

We now turn to the remaining case, i.e., 0y > 5. Here we can be much coarser
and use log(2301) < oy in (117) and (o1 + 52) > 24 in (118). Since —no1y; > noy
by (116), we obtain from (114)

pig, (FBr/E) > 12" exp(noy 4 1og(0.007) — (n/100)**®(log(noy) + log v27)) > 12"
O

We note that the proof shows that the 1.1" appearing in Theorem 27 can be
replaced by exp(nf(r2/(2n))), where 5 is the number of complex places of L and

f(z) :=1ogI'(0.51 + ) — 0.51¥(0.51 + ) 4+ x log(4/m) — log(2).

In particular, if L is totally real, we can replace 1.1" by 2.3". After adjusting Ny,
we can also replace 0.51 above by € + 1/2 for any € > 0.

Finally, we prove that every element of A"~ LOG(O%) is represented by a pure
wedge, as claimed in the Introduction.

Lemma 28. Suppose M is a Z-lattice in R™ of rank n > 1. Then every element of
w E /\ni1 M has the form w = dey AN eg N\ --- N €,_1 for some integer d and some
basis {€1,...,€,} of M as a Z-module.

Proof. We may clearly assume w # 0. Define the homomorphism A, : M — A" M
by Au(m) :=w Am. As N\" M = Z, M/ker(A,) is torsion-free and so ker(A,) is
a direct summand of M of rank n — 1. Let €q,...,¢, be a Z-basis of M such that
€1, .., €n_1 18 & Z-basis of ker(A), let n := e A+ Aepq € /\"71 M, and define d € Z
by w A€, =dnAe,. Noticethat n ANe; =0=w A¢ for1 <i<n—1.

For m € M, write m = " | a;¢; with a; € Z. Then

n n
w/\m:w/\Zaiei:anw/\en:andn/\en:dn/\z%ei:dn/\m.
i=1 i=1

As the A-pairing of /\"_1 M with M is non-degenerate, w = dn = de; A+ - -Nep—q. U
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7. APPENDIX BY FERNANDO RODRIGUEZ VILLEGAS
SOME REMARKS ON LEHMER’S CONJECTURE

7.1. The logarithmic Mahler measure of a non-zero Laurent polynomial P €
Clzi, ..., 2] is defined as

/ / log |P(e*™ ..., &™")| db; - - db, (120)

and its Mahler measure as M(P) = ¢™¥), the geometric mean of |P| on the torus
_{Zl,..., ECH‘ |Zl‘— :’anzl}

When n = 1 Jensen’s formula gives the identity

= lao| ] lewl, (121)

lav|>1

where P(z) = ao[[’_,(z — a,), from which we clearly obtain that M(P) > 1
if P € Zlx]. By a theorem of Kronecker if M(P) = 1 for P € Z[z] then P is
cyclotomic, i.e., P is monic and its roots are either 0 or roots of unity.

In the early 1930’s Lehmer famously asked whether there is an absolute lower
bound for M(P) when P € Z[x] and M(P) > 1 [15] [23]. As we recall below,
Lehmer’s conjecture can be reformulated as a universal lower bound for the L!-
norm of the logarithmic embedding of any (non-torsion) algebraic unit [26, p. 87].
In 1997 Bertrand [5] proposed as a higher-rank version of Lehmer’s conjecture that
the co-volume under the logarithmic embedding of any rank-¢ subgroup £ C O3 of
the units of a number field F' might be bounded below by some ¢, > 0, independent
of E and F' (¢ > 2). This was proved in 1999 by Amoroso and David [2] for ¢ > 3.

Here we refine Bertrand’s conjecture by proposing lower bounds that increase
exponentially with the rank ¢. We also consider m(P) for polynomials P in several
variables and consider possible generalizations to K-groups.

7.2. We start with some general observations about m(P). First of all, the fact
that the integral in (120) is finite for all non-zero P does need a proof. Here is a
sketch. Using Jensen’s formula we find, as in (121) that

1 < N dy
() = miao) + S [ g ot (122)

where Y= (yl, e 7yn—1)7 dy/y = dyl/yl T dyn—l/yn—la 10g+(l‘) = maX{log |(L’|, 0}7
and ag(y), a,(y),d are the leading coefficient, roots and degree, respectively, of P
viewed as a polynomial in x,. The «,’s are algebraic functions of y € C*!, contin-
uous and piecewise smooth, except at those y’s where ag(y) vanishes (where some
will go off to infinity).

We can apply the above procedure to any variable x,, on the torus 7". It is not
hard to see that we may change coordinates in such a way that ag(y) is actually
constant, completing the proof by induction on n.

This last remark can be expanded. Let A be the Newton polytope of P; i.e.,

the convex hull of the exponents m € Z" of monomials ™ = x]"" - - -z} such that
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if P =73 cmmcmx™, then ¢,, # 0. We define a face 7 of A as the non-empty
intersection of A with a half-space in R". Chose a parameterization ¢ : R¥ —s R"
of the affine subspace of smallest dimension containing 7; k is the dimension of the
face 7. Define P, = )« Com)®™ , a polynomial whose own Newton polytope
is ¢71(7). We call P; the face polynomial associated to the face 7. It depends on
a choice of ¢ but note that by changing variables in the integral m(FP;) is actually
independent of that choice.

It is not hard to see that for any facet (co-dimension 1 face) 7 C A we can choose
¢ and system of coordinates in 7™ so that, in the notation of (122), ag(y) = P,. By
(122) and induction on n we conclude [22] that

m(P;) < m(P), for all faces 7 C A. (123)

In particular, m(P) > 0 for 0 # P € Z[xy, 27", ..., 1,,2,1]. Also, since clearly
m(PQ) = m(P) +m(Q), we have that

m(Q) < m(P), if Q|P, 0#PQEZw,ay",... 2, 1,". (124)

Though Lehmer’s conjecture is about polynomials in one variable, polynomials in
more variables are also relevant due to the following result [6]. For any 0 # P €
Zlwy,x7t, ... 2,27 and 0 # (ay, ..., a,) € Z" we have

klim m(Qr) = m(P) where  Qi(t) = P(t™F, ... t*F) (125)

That is, there are one variable polynomials @) with m(Q) as close to m(P) as desired.
(We should note that (125) is not an immediate consequence of general results about
integration but requires a somewhat delicate analysis.)

7.3. Let us go back to polynomials in one variable. If we want to find polynomials
P € Z[z] with positive but small m(P) (namely m(P) < log(2) [26, p. 87]), we
may as well restrict ourselves to minimal polynomials of algebraic units. Let F' be
a number field of degree n. Let I be the set of embeddings o : FF — C and V the
real vector space of formal linear combinations ) _; a,[o], where a, € R. We have
the decomposition V = V* @ V~, where V* is the subspace of V where complex
conjugation acts like &1. We let ny = dimg V* (in terms of the standard notation
ny =7y +ryand n_ =1y).
By Dirichlet’s theorem the image of the unit group O3 by the log map

L:0L—V, e > logle?|[o] (126)

ocel

is a discrete subgroup L; C V of rank r = nt — 1.

On V' we define the L'-norm || 3, .; a [a]Hl =Y las] and we let

oel

F)= min ||l
i (F) lerLril\IgO}HHl

(the reason for this indexing will become clear shortly). For any unit € € O}. we have
INgjg(e)] = 1, hence ) log|e?| = 0. Thus, if P € Z[z] is the (monic) minimal
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polynomial of €, we have

B 2[F : Q] -
Hll(e)Hl - [Q<€> . @] (P)

This simple observation allows us to reformulate Lehmer’s conjecture as follows.

Conjecture. (Lehmer) There ezists an absolute constant §; > 0 such that
pia(F) > 6y, for all number fields F with r > 1. (127)

The use of the L'-norm is important in Lehmer’s conjecture, as Siegel [19] showed
that there is no positive universal lower bound for the L?-norm of [;(¢). Indeed,
if p > 2 is a prime and € is a root of the (irreducible, non cyclotomic) polynomial

a? — x + 1, Siegel proved that (Y, _, log” \J(e)|)1/2 < V2log(p)/\/p for F = Q(e).

7.4. Bertrand suggested a generalization of Lehmer’s conjecture by considering a
lower bound on the k-dimensional co-volume Vi (F) of the lattice LOG(E), where
E C Of is any subgroup of Z-rank k& and LOG is the traditional logarithmic em-
bedding (2). He suggested the existence of a ¢, > 0 depending only on k such that
Vi(E) > ¢. Since Siegel’s examples show this inequality cannot hold for £ =1 (Eu-
clidean length is not the right norm), it is somewhat surprising that this measure of
size might work for k& > 2. Nonetheless, Amorososo and David [2] proved Bertrand’s
conjecture for £ > 3 in 1999. A simpler proof was given by Amoroso and Viada in
2012 [4].

7.5. If Bertrand’s inequality needs a switch to the L'-norm when the rank k = 1,
at the other extreme (i.e., when k& = rank(Oj)) it needs to be strengthened as
Zimmert’s [28] lower bounds for regulators grow exponentially with the rank of
O%. Thus, it makes sense to include Lehmer’s conjecture by using an L'-norm and
including exponential growth with the rank of F.

Let V' be a vector space over R of dimension n and L C V a discrete subgroup

of rank » > 1. A choice of basis vy,...,v, for V determines L'-norms on A*V for
k=1,...,n by
H Z Ajy,ju Ui N0 A UG, 1 = Z |aj11---,jk| : (128)
1<ji<<jk<n 1<ji<<jr<n
If ¢; € Vand w=/¢; A--- N/l is a pure wedge, let A be the n x k integral matrix

whose i-th column consists of the coordinates of ¢; in the basis vy,...,v,. Then it is
easily seen that |[¢1 A--- A &Hl =>4 |det A’|, where A’ runs over all k£ X k minors
of A. For each 1 < k < r we define (with respect to the chosen basis)

L) = mi . 129
pe(t) = i, €1l (129)

Returning to the number field situation of the previous section we define the
invariants

pa(F) = p(La),
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where, as before, L; = [1(O3) is the image of the units of F' under the log map
in (126). A version of Bertrand’s conjecture that includes Lehmer’s conjecture and
Zimmert’s theorem runs as follows.

Conjecture. There exist absolute constants co > 0 and c¢; > 1 such that for all
number fields F we have py (F) > coct for 1 < k < Z—rank(O%).

Admittedly, the evidence in favor of this conjecture (see §1) is for the case where
only pure wedges w = l1(€1) A+ - Ali(e) of logarithms of units are allowed in (129),
but allowing any non-zero w € A¥L; seems more natural.

Since the L?-norm of v; A --- A v, coincides with the co-volume of the lattice
generated by the v;, the weaker inequality (without exponential growth in the rank)
lwl|; > ¢ for pure k-wedges is a consequence of Bertrand’s conjecture and of the
general inequality ||z, > ||z||> relating L'- and L*-norms.

7.6. We may carry these ideas a little further still. Borel proved (see [7, 10]),
generalizing Dirichlet’s result for units, that for each j > 1 there is a regulator map
reg;

i Kaja(F) —V, § Y reg;(€7) [0] (130)

oel
whose image is a discrete subgroup L; of VE, with + = (—1)77!, of rank n* and
covolume related to the value of the zeta function (p of F' at s = j. Here Ky;_(F)
are the K groups defined by Quillen.
We now define for 1 < k < nq.,

1 (F) = p(Ly)
and we may ask: what is the nature of these invariants, how do they depend on the
field F'? Does the analogue of Lehmer’s conjecture hold? Apart from their formal
analogy with Lehmer’s question, answers to such questions can be quite useful in
practice as we now illustrate.

7.7. For general j, not much is known about the groups Ky; 1 (F) or the map reg;.
For j = 2, however, things can be made quite explicit [27] (and of course j = 1
corresponds to the case of units). Indeed, up to torsion, K3(F') is isomorphic to the
Bloch group B(F'), defined by generators and relations as follows.

For any field F' define

A(F) = { Sonlzl € ZIFN Y iz A (L - 2) = o},
where the corresponding term in the sum is omitted if z; = 0,1 and

C(F):{[x]+[y]+[ ]+[1—:By]+[ MLyEF,:)Jy;«él}.

It is not hard to check that C(F') C A(F). Finally, let B(F') = A(F)/C(F).
We recall the definition of the Bloch—Wigner dilogarithm. Starting with the usual
dilogarithm Liy(z) = >.°° | 25, one defines for |z| < 1,

n=1 n2>

D(z) = Im(Liy(2)) + arg(1 — 2) log | 2]

1—=x

Y
1 -2y 1 -2y



© 0 N o O

11
12
13
14
15
16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

38 TED CHINBURG, EDUARDO FRIEDMAN AND JAMES SUNDSTROM

and checks that it extends to a real analytic function on C\ {0,1}, continuous on
C. See [27] for an account of its many wonderful properties. It is obvious that

D(z) = —D(z). (131)

The 5-term relation satisfied by D guarantees that, extended by linearity to A(F),
it induces a well defined function on B(C) (still denoted by D).
For j = 2, (130) can be formulated as follows

ly: B(F) —V, £ D) [o]
oel
(as (131) makes it clear that the image Lo lies in V~) whose image L is a discrete
subgroup of rank n~.

An a priori lower bound for |[l3(§)||,; even for the simplest case where Lo is of
rank 1 (namely, for a field with only one complex embedding) would be quite useful.
For example, in [9] we find that an identity between the Mahler measure of certain
two-variable polynomials is equivalent to the following

D(7[a] + [0?] =3[ + [-a']) =0, a=(-3+V-T7)/4. (132)

This was proved by Zagier by showing that it is a consequence of series of 5-term
relations. Such calculations, however, can be quite hard and at present there is no
known algorithm that is guaranteed to exhibit a given element of A(F) as lying in
C(F). Clearly if we knew a reasonable lower bound for the possible non-zero values
of |D(&)] for € € B(Q(+v/—7)) a simple numerical verification would be enough to
prove (132).

Similarly, many identities between the Mahler measure of certain two-variable
polynomials and (r(2) for a corresponding number field F', which by Borel’s theorem
are known up to an unspecified rational number, could be proved by a numerical
check. For example, as outlined in [9],

3/2
m(z? — 20y — 22+ 1 —y +1°) = S%CF(Q) ,
with s € Q*, where F is the splitting field ¢ — 22% — 22 + 1, of discriminant —1728.
However, though numerically s appears to be equal to 1 we cannot prove this at
the moment. Again, a reasonable lower bound on |D(&)| for non-torsion elements
¢ € B(F’) for number fields F’ would allow us to conclude that s = 1 by checking
it numerically to high enough precision as both sides of the equality are of the form
|D(&)| for appropriate £’s (see below for the right hand side).

There is also some evidence that po(F) might be universally bounded below,
at least for fields with one complex embedding. Indeed, for a such a field [27] one
can construct a hyperbolic three dimensional manifold M by taking the quotient
of hyperbolic space by a torsion-free subgroup of the group of units of norm 1 in a
quaternion algebra over I’ ramified at all its real places. Its associated Bloch group
element £(M), obtained from a triangulation of M into ideal tetrahedra, satisfies
D(¢((M)) = vol(M). On the other hand, the volume of hyperbolic 3-manifolds
is known to be universally bounded below. The question becomes then, that of
obtaining an upper bound for the index in B(F') of the subgroup generated by all
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such £(M). This index is likely to be rather small; in fact, if we accept a precise
form of Lichtembaum’s conjecture, it should be essentially the order of Ky(Op),
an analogue of a class group. Unfortunately, there is no known upper bound for
| K5(OF)| in terms of, say, the degree and discriminant of F.

Finally, to a hyperbolic 3-manifold M with one cusp one may associate [11] a two
variable polynomial A(z,y) € Zlz,y], called the A-polynomial of M. Its zero locus
parameterizes deformations of the complete hyperbolic structure of M.

It is known that

m(A;) =0

for every face polynomial of A and that A is reciprocal, i.e. A(1/x,1/y) = x%y*A(x,y)
for some a,b € Z. It is interesting that these two properties, which have a topo-
logical and K-theoretic origin, are, for A irreducible, precisely the known necessary
conditions for a polynomial in Z[z,y] to have small Mahler measure (the first, an
analogue of being the minimal polynomial of an algebraic unit, because of (123); the
second because m(P) is known to be universally bounded below for P non-reciprocal

21]).
Though the whole picture is still not completely clear yet one can prove for many
M'’s identities of the form

2rm(A) = || D(E(M))]];

where (M) is the Bloch group element associated to M. This suggests a direct link
between Lehmer’s conjecture and the size of the invariants po .
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