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Abstract. Let L be a number field and let E ⊂ O∗
L be any subgroup of the

units of L. If rankZ(E) = 1, Lehmer’s conjecture predicts that the height of
any non-torsion element of E is bounded below by an absolute positive constant.
If rankZ(E) = rankZ(O∗

L), Zimmert proved a lower bound on the regulator of
E which grows exponentially with [L : Q]. By sharpening a 1997 conjecture of
Daniel Bertrand’s, Fernando Rodriguez Villegas “interpolated” between these two
extremes of rank with a new higher-dimensional version of Lehmer’s conjecture.
Here we prove a high-rank case of the Bertrand-Rodriguez Villegas conjecture.
Namely, it holds if L contains a subfield K for which [L : K] � [K : Q] and E
contains the kernel of the norm map from O∗

L to O∗
K .

1. Introduction5

If P ∈ Z[x] is a polynomial of degree n with leading coefficient a0 6= 0 and roots
α1, . . . , αn ∈ C, its Mahler measure is defined as

M(P ) := |a0|
∏

|αν |>1

|αν |.

In 1933 D.H. Lehmer [15] published an innocent-sounding question:6

Is there a P ∈ Z[x] with Mahler measure satisfying 1 < M(P ) < M(PL) = 1.176 · · · ,7

where PL(x) := x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1?8

Lehmer’s question still stands unanswered. The reader is referred to [23] and [26,9

§3.6] for surveys of many interesting partial solutions to this problem.10

Using Jensen’s formula, Mahler gave the alternate expression11

m(P ) := logM(P ) =

∫ 1

0

log |P (e2πit)| dt. (1)

As M(P1P2) = M(P1)M(P2) and M(P ) ≥ |a0| ≥ 1, in studying P ∈ Z[x] with12

M(P ) < 2 we may assume that P is irreducible and a0 = ±1. Moreover, since13

it follows from (1) that the reciprocal polynomial P ∗(x) := xnP (1/x) satisfies14
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M(P ∗) = M(P ), we find that M(P ) < 2 implies that P is the minimal polyno-1

mial of an algebraic unit ε. Thus, Lehmer’s problem is really about the size of a2

unit.3

This point of view lead Bertrand in 1997 to propose a higher-dimensional version4

of Lehmer’s question involving several units [5]. Suppose ε1, . . . , εk are independent5

units in some number field L, let AL denote the set of Archimedean places of L and6

define the logarithmic embedding of the units LOG: O∗
L → RAL into a Euclidean7

space as usual by8

(

LOG(ε)
)

v
:= ev log |ε|v, ev :=

{

1 if v is real,

2 if v is complex
, (2)

where | |v is the absolute value associated to v ∈ AL extending the usual absolute9

value on Q. Bertrand asked if for each integer j ≥ 2 there is a universal con-10

stant cj > 0 such that the j-dimensional co-volume Vj of the lattice generated by11

LOG(ε1), . . . ,LOG(εj) satisfies Vj ≥ cj. He only posed this question for j ≥ 2,12

since for j = 1 it was known that the right measure of size is m(P ) = 1
2
‖LOG(ε)‖1,13

i.e., one should use an L1-norm instead of length if j = 1 (see §7.3). Bertrand’s14

conjecture was soon solved in the affirmative by Amoroso and David for j ≥ 3 [2].15

A few years ago Rodriguez Villegas proposed a version of Bertrand’s conjecture16

which has a much sharper dependence on the rank j. For j = 1 Rodriguez Villegas’17

conjecture is equivalent to Lehmer’s, while for j maximal, i.e., j = rankZ(O∗
L), it is18

equivalent to Zimmert’s 1981 theorem stating that the regulator of a number field19

grows at least exponentially with the degree of the number field [28]. More precisely,20

Rodriguez Villegas conjectured a strong lower bound on the natural L1-norm of any21

non-trivial element ω of the j-th exterior power of the units of a number field.122

To define this L1-norm, start with the orthonormal basis {δv}v∈AL
on RAL ,23

δvw :=

{

1 if w = v,

0 if w 6= v.
(3)

This gives rise to the orthonormal basis {δI}
I∈A[j]

L
of

∧j
RAL , where A[j]

L denotes the24

set of subsets I = {vi1 , ..., vij} of AL having cardinality j and δI := δvi1 ∧ · · · ∧ δvij .25

1 We are grateful to F. Rodriguez Villegas for allowing his conjecture to appear in print for
the first time as an appendix to this paper. In fact, in 2002 Rodriguez Villegas wrote up a
weaker (unpublished) version of his conjecture without knowing that it followed from Bertrand’s.
Around 2015 we began work on the B-RV conjecture, still embarrassingly ignorant of Bertrand’s
and Amoroso-David’s work on the subject. After posting an earlier arXiv version of this paper,
containing the 2002 write-up by Rodriguez Villegas, our attention was fortunately called to earlier
work.

For the reader who compares our version here with the appendix, we note that although Rodrigez
Villegas phrases the L1-norm in terms of Archimedean embeddings rather than places, his L1-norm
coincides with ours in (4) below because of the factor of 2 at complex places in (2). However, using
places gives a larger L2-norm if the field is not totally real, and so is better for our purposes.
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The L1-norm on
∧j

RAL is defined with respect to this basis. Namely,1

‖ω‖1 :=
∑

I∈A[j]
L

|cI |
(

ω =
∑

I∈A[j]
L
cIδ

I
)

. (4)

Let
∧jLOG(O∗

L) denote the jth exterior power of the lattice LOG(O∗
L) ⊂ RAL .2

B-RV Conjecture. (Bertrand-Rodriguez Villegas) There exist two absolute con-3

stants c0 > 0 and c1 > 1 such that for any number field L and any j ∈ N,4

‖ω‖1 ≥ c0c
j
1 for all nonzero ω ∈

∧j
LOG(O∗

L) ⊂
∧j

RAL . (5)

Aside from Zimmert’s theorem on the regulator [28] and the known cases of5

Lehmer’s conjecture [23], the cleanest result in favor of the B-RV conjecture is6

‖LOG(ε1) ∧ · · · ∧ LOG(εj)‖1 > 0.001 · 1.4j, (6)

proved for all j, but only for totally real fields L. This follows from work of Schinzel
[18] and Pohst [17] dating back to the 1970’s. Indeed, Schinzel showed in 1973 (and
Pohst independently in 1978) for L totally real that for any unit ε ∈ O∗

L, ε 6= ±1,

‖LOG(ε)‖2 :=
(

∑

v∈AL

(

ev log |ε|v
)2
)

1
2 ≥

√

[L : Q] log
(

(1 +
√
5)/2

)

.

Using estimates of Hermite’s constant, Pohst deduced good lower bounds for the7

regulator of a totally real field. The same calculations show that the j-dimensional8

co-volume µ of the lattice spanned by LOG(ε1), ...,LOG(εj) satisfies [12, p. 293]9

µ >
([L : Q]/j)j/21.406j

(j + 2)
√
j

(1 ≤ j < [L : Q]). (7)

Since

‖LOG(ε1) ∧ · · · ∧ LOG(εj)‖1 ≥ ‖LOG(ε1) ∧ · · · ∧ LOG(εj)‖2 = µ,

a short numerical computation with (7) yields (6).10

As far as we know, the only proved cases of the B-RV conjecture involve “pure11

wedges” of the form ω = LOG(ε1) ∧ · · · ∧ LOG(εj), where the εi are independent12

elements of O∗
L. If j = rL := rankZ(O∗

L) or j = 1, every element of
∧j is (trivially)13

a pure wedge, but this also holds if j = rL− 1 (see Lemma 28 below). In particular,14

if L is a totally real field of degree n over Q, then ‖ω‖1 > 0.001 · 1.4n−2 for all15

ω ∈ ∧n−2LOG(O∗
L). In general, however, the B-RV conjecture makes a stronger16

prediction than simply a lower bound on the L1-norm of pure wedges.17

Another known case of the B-RV conjecture occurs when18

E = E(L/K) :=
{

ε ∈ O∗
L

∣

∣NormL/K(ε) is a root of unity
}

(8)

is the group of relative units associated to an extension L/K. Skoruppa and Fried-19

man [13] proved in 1999 that inequality (5) in the B-RV conjecture holds for pure20

wedges if [L : K] ≥ n0 for some absolute constant n0.
2

21

2 The inequality proved in [13] is for the relative regulator Reg(L/K) rather than for the co-
volume µ of the relative units. This suffices since µ = Reg(L/K)

∏

w∈AK

√
rw ≥ Reg(L/K), where
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To prove their result, Skoruppa and Friedman defined a Θ-type series ΘE associ-1

ated to any subgroup E ⊂ O∗
L of arbitrary rank and used it to produce a complicated2

inequality for the co-volume µ(E) associated to the lattice LOG(E). In the case of3

E = E(L/K) they obtained the desired inequality using the saddle-point method4

to estimate the terms in the series ΘE as [L : K] → ∞. Although the saddle-point5

method in one variable is a standard tool, the difficulty in the asymptotic estimates6

in [13, §5] was that the estimates needed to depend only on [L : K].7

The results cited so far all pre-date the B-RV conjecture and essentially dealt with
regulators or Lehmer’s conjecture. Motivated by the B-RV conjecture, Sundstrom
[24] [25] dealt in his 2016 thesis with a new kind of subgroup of the units. Namely,
suppose L contains two distinct real quadratic subfields K1, K2, and let

E := E(L/K1) ∩ E(L/K2).

Here E(L/K) ( E, whereK := K1K2 is the compositum of theKi. The series ΘE is8

still defined and yields an inequality for the co-volume µ(E) associated to the lattice9

LOG(E), but to estimate the terms in the inequality Sundstrom had to apply the10

saddle-point method to a triple integral. Keeping all estimates uniform in this case11

proved considerably harder than in the one-variable case treated in [13]. In the end,12

Sundstrom was able to verify the B-RV conjecture in this case for pure wedges. More13

precisely, he proved the existence of absolute constants N0, c0 > 0 and c1 > 1 such14

that µ(EK1,K2) ≥ c0c
j
1, where [L : Q] ≥ N0 and j := rankZ(EK1,K2) = rankZ(O∗

L)−2.15

We prove the following generalization of Sundstrom’s result.16

Theorem 1. Suppose E ⊂ O∗
L is such that E(L/K) ⊂ E for some subfield K ⊂ L,

where E(L/K) are the relative units defined in (8). Let ε1, ..., εj be independent
elements of E, where j := rankZ(E), and let k := 1 + rankZ(O∗

L/E). Then

‖ε1 ∧ · · · ∧ εj‖1 ≥ ‖ε1 ∧ · · · ∧ εj‖2 ≥ 1.1j,

provided that

[L : K] ≥ N0 := max
(

100k6(#AK)
3/2, 20000k2

(

#AK

k

)

, 1000(#AK)
2
)

.

Thus the B-RV conjecture (5) holds for ω := ε1 ∧ · · · ∧ εj when [L : K] � [K : Q].17

Here # denotes cardinality and
(

a
b

)

:= a!
b!(a−b)!

. The hypothesis E(L/K) ⊂ E implies18

that k ≤ #AK , so that N0 above could be replaced by a coarser bound involving19

only #AK or [K : Q].20

rw is the number of places of L above w. The proof of this relation between the co-volume and
the relative regulator mimics the determinant manipulations in the case K = Q [8, p. 115]. We
note that J. Sundstrom, in the appendix to his doctoral thesis [24], corrected an error in Skoruppa
and Friedman’s proof. Namely, in the bound on what is called J1 in the proof of Lemma 5.5 of
[13], the real part of the error term ρ in the exponential was neglected. This did not affect the
proof of their Main Theorem, but it did affect the numerical constants claimed in Theorem 4.1
and its corollaries. However, if we are willing to settle for n0 = 400, the proof in [13] will easily do
after correcting the constants. By improving the asymptotic estimates in [13] and using extensive
computer calculations, Sundstrom was able to prove the estimate in Theorem 4.1 of [13], with the
constants as given in [13]. In particular, n0 = 40 is allowed.
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Motivated by a first version of this paper posted on arxiv.org, Amoroso and David1

[3] made a comprehensive study of the B-RV conjecture and suggested even stronger2

forms [3, Conjs. 1.3 and 1.9]. They also gave a different proof of an improved version3

of Theorem 1 and proved interesting new cases of the B-RV conjecture [3, Thms.4

1.4–1.7].5

Aside from proving Theorem 1, our aim here is to lay the ground work for an6

approach to proving the B-RV conjecture for any high-rank subgroup E ⊂ O∗
L , as7

we now explain. Our starting point is Skoruppa and Friedman’s inequality, valid for8

any t > 0 and any subgroup E ⊂ O∗
L,9

µER
(ER/E)

|Etor|
≥

∑

a∈OL/E
a 6=0

∫

x∈ER

(2t‖ax‖2
[L : Q]

− 1
)

e−t ‖ax‖2 dµ(x), (9)

where OL denotes the algebraic integers of L, ER
∼= E ⊗Z R, which acts on RAL

10

since E does, ‖ax‖2 :=
∑

v∈AL
ev|a|2vx2v, and µ is a suitable Haar measure on ER.11

To make use of (9) one tries to prove that for a well chosen t the term a = 1 ∈ OL12

produces a contribution growing exponentially with [L : Q], while the terms for other13

a are at least non-negative. The integral in (9) is not very useful, for this purpose,14

because it seems to depend on #AL variables, namely on each of the absolute values15

|a|v. In fact, it depends only on k = #AL − rankZ(E) variables, as integrating over16

ER removes rankZ(E) of them. Hence our first task is to write the integral in (9)17

as a k-dimensional inverse Mellin transform. This we do in §3, as summarized in18

Corollary 6.19

As in [13] and [25], the next step is to apply the saddle-point method to the k-20

dimensional complex contour integral obtained in §2. To do this we need a saddle21

point. In the case of [13] one could easily write down a formula for the saddle point in22

terms of the logarithmic derivative of the classical Γ-function. In [25] the equations23

for the critical point were explicit enough that monotonicity arguments proved the24

existence of the saddle point. In our case the equations are too complicated to25

analyse directly. Instead, in §4 we obtain the existence and uniqueness of the saddle26

point by re-interpreting it as the value of the Legendre transform of a convex function27

on Rk, closely related to log Γ. Since the saddle point σ ∈ Rk is far from explicit, in28

§5 we prove useful inequalities which depend only on its first coordinate σ1, which29

we can control by choosing t in (9) appropriately.30

In §6 we show that the contribution from the saddle point actually dominates the31

integral when #AL is large enough compared with the dimension k of the contour32

integral. It is only here that we need the hypothesis that that the relative units33

E(L/K) ⊂ E.34

Acknowledgments: The authors would like to thank the anonymous referee for35

useful suggestions.36

2. Overview of the proof37

To clarify the proof of Theorem 1 we decribe its main steps in some detail here.38

We begin by recalling in §3.1 how theta functions lead to the basic inequality (9).39
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The terms on the right of (9) are indexed by a ∈ (OL − {0})/E. We show in1

Corollary 6 of §3.2 how the term associated to a can be written as an inverse Mellin2

transform of a function of s = (s1, . . . , sk) ∈ Ck of the form exp
(

α(s)−n∑k
j=1 yjsj

)

,3

in which α(s) is a sum of logarithms of the values of the Γ-function at linear forms4

in s and y = (y1, . . . , yk) ∈ Rk depends on a.5

The saddle point method for estimating this k-dimensional integral consists of
first determining a critical point σ of the integrand, moving the integration contour
so that it passes through σ, and then attempting to show that the dominant term
arises from a neighborhood of σ. We show in Lemma 8 of §4 that for each a there
is a unique critical point σ = σ(y) ∈ Rk associated to the value of y arising from a.
The inverse Mellin transform associated to a then takes the form

∫

T∈Rk

eα(σ+iT )−ny·(σ+iT ) dT =:

∫

Rk

G(T ) dT.

To control this integral, in §5 we prove some inequalities concerning σ and α(σ).6

In §6 we define the Gaussian H(T ) approximating G(T ) in a suitable bounded7

neighborhood ∆ of T = 0. The saddle point method then leads to estimating the8

integrals I1, I2,−I3 and I4 on the right side of9

∫

Rk

G(T )dT =

∫

Rk

H(T )dT+

∫

Rk−∆

G(T )dT−
∫

Rk−∆

H(T )dT+

∫

∆

(

G(T )−H(T )
)

dT

(10)
The first integral I1 =

∫

Rk H(T )dT is readily computed; see Corollary 16 of §6.1.10

To show it is the main term by our method requires the assumption that E is11

(M,Ω)-dispersed in the sense of Definition 13 for suitable values of M and Ω. This12

assumption is implied by the hypotheses of Theorem 1. It amounts to requiring13

that there be a partition M of the archimedean places AL of L into large subsets of14

approximately the same size m such that the orthogonal complement of the image15

of E under the log map is spanned by vectors whose components are constant over16

the places in each subset. This assumption leads to the equality17

α(s) :=
∑

w∈M
mwακw

(

Sw(s)
)

(11)

in equation (60) in which Sw is a linear form depending on E, ακw is a linear18

combination of log(Γ(z)) and log(Γ(z + 1
2
), and the number mw of elements in the19

subset w of the partition M is approximately m := minw{mw}.20

The goal of Lemmas 17 through 25 of §6.2 is to show that (11) leads to upper21

bounds on the error terms I2, −I3 and I4 on the right side of (10) that are sufficient22

to bound them in terms of |I1|. Namely, |I2| + |I3| + |I4| ≤ 0.01I1, as we show in23

Lemma 26 for large enough m. The positivity of I1 shown in Lemma 26 then leads24

to the term associated to every a ∈ OK/E being positive. Specializing Lemma 2625

to the case a = 1 gives a contribution that establishes the more precise version of26

Theorem 1 given by Theorem 27.27

Lemmas 17 through 25 also show that there does exist a set of constants for which28

the estimates involved in the proof of Theorem 27 lead to exponential growth rather29
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than exponential decay in the apppropriate relative regulators. As in the work of1

Friedman and Skoruppa, such estimates are tedious to check.2

We end this section with an elementary geometric result arising in the proof that3

may have other applications (see Lemma 22 and Remark 23).4

Lemma 2. Define the sign-symmetrized parallelotope P (η) associated to a set η of k5

vectors in Rk to be the set of all real linear combinations
∑

t∈η rtt with −1 ≤ rt ≤ 1,6

and suppose we are given a subset S ⊂ Rk containing a basis of Rk. Let η0 be any7

k-element subset of S for which P (η0) has maximal volume. Then S ⊂ P (η0).8

3. The Θ-function9

In this section we recall the series ΘE(t; a) associated to a subgroup E ⊂ O∗
L10

of the units and to a fractional ideal a of the number field L. We also recall the11

inequality for the co-volume of LOG(E) resulting from the functional equation of12

ΘE. This is all quoted from [13, §2]. Our main new task here is to express the terms13

in the inequality as an inverse Mellin transform.14

3.1. The basic inequality. Given a subgroup E ⊂ O∗
L, we define ER ⊂ RAL

+ as
the group generated by all elements of the form

x = (xv)v∈AL
=

(

|ε|ξv
)

v∈AL

(

ε ∈ E, ξ ∈ R
)

.

Here R+ := (0,∞) is the multiplicative group of the positive real numbers, AL15

denotes the set of Archimedean places of L, and | |v is the (un-normalized) absolute16

value associated to the Archimedean place v ∈ AL. Thus, for a ∈ L we have17

|NormL/Q(a)| =
∏

v∈AL

|a|evv , (ev := 1 if v is real, ev := 2 if v is complex). (12)

Note that18
∑

v∈AL

ev = [L : Q] =: n, (13)

19
∏

v∈AL

xevv = 1
(

x = (xv)v∈AL
∈ ER

)

, (14)

and that ε ∈ E acts on x = (xv)v ∈ ER, via (ε · x)v := |ε|v xv.20

We fix a Haar measure on ER ⊂ RAL
+ as follows. The standard Euclidean structure21

on RAL , in which the δv in (3) form an orthonormal basis of RAL , induces a Euclidean22

structure (and therefore a unique Haar measure) on any R-subspace of RAL . We23

give ER the Haar measure µER
that results from pulling back the Haar measure on24

the R-subspace LOG(ER) via the isomorphism LOG in (2), and let µER
(ER/E) be25

the measure of a fundamental domain for the action of E on ER.26

Following [13, p. 120], for a fractional ideal a ⊂ L and t > 0, we let27

ΘE(t; a) :=
µER

(ER/E)

|Etor|
+

∑

a∈a/E
a 6=0

∫

x∈ER

e−cat ‖ax‖2 dµER
(x), ‖ax‖2 :=

∑

v∈AL

ev|a|2vx2v,

(15)
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where |Etor| is the number of roots of unity in E,

ca := π
(
√

|DL|NormL/Q(a)
)−2/n

, DL := discriminant of L, n := [L : Q].

Note that the integral in (15) depends only on the E-orbit of a, and hence is inde-1

pendent of the representative a ∈ a/E taken for the E-orbit of a.2

Our starting point for proving lower bounds on co-volumes is the inequality [13,3

Corol. p. 121], valid for any t > 0 and any fractional ideal a of L.4

ΘE(t; a) +
2tΘ′

E(t; a)

n
≥ 0

(

t > 0, Θ′
E :=

dΘE

dt

)

. (16)

Writing out the individual terms of (16), we have [13, p. 121, eq. (2.6)] the5

Basic Inequality.

µER
(ER/E)

|Etor|
≥

∑

a∈a/E
a 6=0

∫

x∈ER

(2t‖ax‖2
n

− 1
)

e−t ‖ax‖2 dµER
(x) (t > 0). (17)

Note that in [13] we find tca instead of t in (17), but t > 0 is arbitrary there too.6

3.2. Mellin transforms. Our main task in this section is to re-write the r-dimen-7

sional integral in (15) as an inverse Mellin transform. For this it will prove convenient8

to characterize ER ⊂ G := RAL
+ not through generators, but rather through genera-9

tors of the orthogonal complement in RAL of Log(ER). Here Log : G → RAL is the10

group isomorphism defined by11

(

Log(g)
)

v
:= log(gv)

(

v ∈ AL, g = (gv)v ∈ G := RAL
+

)

. (18)

Note that Log is not the traditional logarithmic embedding LOG in (2), as we do12

not insert a factor of ev in (18). Instead we endow RAL with a new inner product13

〈β, γ〉 :=
∑

v∈AL

evβvγv
(

β = (βv)v, γ = (γv)v ∈ RAL
)

, (19)

where ev = 1 or 2 as in (12). Let
{

qj
}k

j=1
=

{

(qjv)v
}k

j=1
be an R-basis of the14

orthogonal complement of Log(ER) in RAL such that15

q1v := 1 (∀v ∈ AL),
∑

v∈AL

evqivqjv = 0
(

1 ≤ i 6= j ≤ k := 1+ rankZ(O∗
L/E)

)

. (20)

Thus, for g = (gv)v ∈ G := RAL
+ ,16

g ∈ ER ⇐⇒
∑

v∈AL

evqjv log(gv) = 0 (1 ≤ j ≤ k). (21)

Let H := Rk
+. Define a homomorphism δ : G→ H by17

(

δ(g)
)

j
:=

∏

v∈AL

gevqjvv

(

1 ≤ j ≤ k, g = (gv)v ∈ G := RAL
+ ), (22)

so that by (21) we have an exact sequence18

1 −−−→ ER −−−→ G
δ−−−→ H −−−→ 1. (23)
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Let σ : H → G be a homomorphism splitting the exact sequence (23), i.e., δ ◦ σ is1

the identity map on H. Such a splitting exists because G and H are real vector2

spaces. Let3

dµG :=
∏

v∈AL

dgv
gv
, dµH :=

k
∏

j=1

dhj
hj

(24)

be the usual Haar measures on G := RAL
+ and H := Rk

+.4

Recall that in order to define ΘE in (15) we fixed a Haar measure µER
on ER.5

In order to calculate Mellin transforms below, we will need to compare the Haar6

measure µH × µER
on H × ER with a Haar measure coming from µG. Namely, if7

γ : ER ×H → G is the isomorphism defined by the splitting σ, i.e.,8

γ(x, h) := xσ(h), (25)

then the measure µG ◦ γ is a Haar measure on ER ×H. Hence9

c µG ◦ γ = µER
× µH , (26)

where the positive constant c is evaluated in the next lemma.10

Lemma 3. Let Q be the #AL × k matrix whose rows are indexed by v ∈ AL and11

whose columns are indexed by j = 1, . . . , k, with entry Qv,j := qjv in the vth row and12

the jth column, with qjv as in (20). Then c in (26) is independent of the splitting σ13

in (25) and is given by c = 2r2
√

det(QᵀQ), where Qᵀ is the transpose of Q and r214

is the number of complex places of L.15

Proof. For x = (xv) and y = (yv) ∈ RAL , let x · y be the standard dot product16

x · y :=
∑

v∈AL
xvyv. Recall that we defined in (19) another inner product on RAL ,17

namely 〈x, y〉 := ∑

v evxvyv. To relate these products, let T : RAL → RAL be given18

by
(

T (x)
)

v
:= evxv. Then19

〈x, y〉 = x · T (y) = T (x) · y. (27)

Note that det(T ) = 2r2 .20

Let u1, ..., ur be an orthonormal basis of LOG(ER) (with respect to the dot prod-21

uct), let C1 :=
{
∑

` x`u`
∣

∣ 0 ≤ x` ≤ 1
}

⊂ LOG(ER) be the unit r-cube spanned by22

the u`, and let B1 := LOG−1(C1). By the definition of the measure µER
given in the23

paragraph preceding (15), µER
(B1) = 1.24

We define next an analogous subset B2 ⊂ H := Rk
+ with µH(B2) = 1. Let25

F1, . . . , Fk be the “standard” orthonormal basis of Rk
+ as an R-vector space; that is,26

(Fj)i = e if i = j, and (Fj)i = 1 otherwise. Let B2 ⊂ Rk
+ be the k-cube spanned by27

F1, . . . , Fk, so that µH(B2) = 1.28

Set B := B1 ×B2 ⊂ ER ×H, so that (µER
× µH)(B) = 1. Thus c in (26) satisfies29

c−1 = µG

(

γ(B)
)

. Now, γ(x, h) := xσ(h) and µG is the measure on G that maps30

by Log to the standard Haar measure on RAL
(

see (18), (24) and (25)
)

. Hence,31

c−1 = |det(M)|, where M is the (#AL×#AL)-matrix whose first r columns are the32

vectors w` := Log
(

LOG−1(u`)
)

∈ RAL (1 ≤ ` ≤ r). The remaining k columns of M33

are the vectors Log
(

σ(Fj)
)

(1 ≤ j ≤ k).34
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Suppose σ̃ is another splitting of (23). Then σ(Fj)σ̃(Fj)
−1 ∈ ER, and therefore

Log
(

σ(Fj)
)

− Log
(

σ̃(Fj)
)

lies in the span of the columns w1, ..., wr. Hence c is
independent of the splitting σ, as claimed in the lemma. We are therefore free to
use the splitting σ determined by
(

σ(Fj)
)

v
:= exp(qjv/dj)

(

v ∈ AL, 1 ≤ j ≤ k, dj := 〈qj, qj〉 :=
∑

ρ∈AL

eρq
2
jρ

)

.

Using (22) and the orthogonality relations (20), one checks that this is indeed a
splitting of δ. With this σ, the last k columns of M are just Log

(

σ(Fj)
)

= d−1
j qj ∈

RAL . As T ◦ Log = LOG and det(T ) = 2r2
(

see (27)
)

, we have

c−1 = |det(M)| = 2−r2 |det(N)|,
where N is the (#AL ×#AL)-matrix whose columns are T applied to the columns1

of M , i.e., the columns of N are u1, ..., ur, followed by d−1
1 T (q1), ..., d

−1
k T (qk).2

To prove the lemma we must show that |det(N)|−1 =
√

det(QᵀQ). We calculate

|det(N)| as |det(N)| = |det(RᵀN)|/
√

det(RᵀR), where R is the (#AL × #AL)-
matrix whose columns are u1, ..., ur, followed by q1, ..., qk (i.e., Q). Using the or-
thonormality of the u`’s (with respect to the dot product), we see that RᵀR can
be divided into four blocks, the upper left one being the r × r identity matrix Ir×r.
Below it, RᵀR has a k × r block with entries

qj · u` = qj · T
(

Log(LOG−1(u`))
)

=
〈

qj,Log
(

LOG−1(u`)
)〉

= 0,

where we used (27) and the definition of the qj’s as a basis of the orthogonal com-3

plement of Log(ER) ⊂ RAL
(

with respect to 〈 〉, see (21)
)

. Since the bottom4

right k × k block of RᵀR is QᵀQ, we find that RᵀR =

(

Ir×r 0r×k

0k×r QᵀQ

)

. Thus,5

det
(

RᵀR
)

=
√

det(QᵀQ). A similar calculation shows RᵀN =

(

Ir×r ∗r×k

0k×r Ik×k

)

,6

whence det(RᵀN) = 1. �7

In order to study the Θ-series (15), we need to consider integrals of the form8

∫

x∈ER

e−‖gx‖2 dµER
(x)

(

‖gx‖2 :=
∑

v∈AL

evg
2
vx

2
v

)

, (28)

for g = (gv)v ∈ G := RAL
+ . For h = (h1, . . . , hk) ∈ H := Rk

+, define ψ by substituting9

g = σ(h) above:10

ψ(h) :=

∫

x∈ER

e−‖σ(h)x‖2 dµER
(x). (29)

Note that the integral (28) depends only on g modulo ER, so the function ψ is11

independent of the choice of σ splitting the exact sequence (23). The fact that (28)12

depends only on g modulo ER also shows that13

∫

x∈ER

e−‖gx‖2 dµER
(x) =

∫

x∈ER

e−‖σ(δ(g))x‖2 dµER
(x) = ψ

(

δ(g)
)

, (30)

so we will concentrate on ψ, a function of only k variables.14
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Define a linear map S : Ck → CAL by S(s) = Qs, where s ∈ Ck and Q is the1

matrix whose jth column is qj ∈ RAL ⊂ CAL , as in Lemma 3. Also define maps2

Sv : C
k → C for each v ∈ AL by Sv(s) =

(

S(s)
)

v
. That is,3

S(s) =
k

∑

j=1

sjqj, Sv(s) =
k

∑

j=1

qjvsj
(

s = (s1, ..., sk)
)

. (31)

Note that S is injective since the qj ∈ RAL are linearly independent.4

Our first aim is to calculate the (k-dimensional) Mellin transform5

(Mψ)(s) :=

∫

H

ψ(h)hs dµH(h) :=

∫ ∞

h1=0

· · ·
∫ ∞

hk=0

ψ(h)hs11 · · ·hskk
dh1
h1

· · · dhk
hk

, (32)

where Re(s) :=
(

Re(s1), . . . ,Re(sk)
)

∈ D, with6

D :=
{

σ = (σ1, . . . , σk) ∈ Rk
∣

∣ Sv(σ) > 0 ∀v ∈ AL

}

. (33)

As q1v := 1 for all v ∈ AL

(

see (20)
)

, for t > 0 we have (t, 0, 0, . . . , 0) ∈ D. Hence D7

is a non-empty, open, convex subset of Rk. We will presently prove that the Mellin8

transform (Mψ)(s) in (32) converges if Re(s) ∈ D.9

In the following calculation of (Mψ)(s) the reader should initially consider only
real sj, so that the integrand is positive. At the end of the calculation it will become
clear that the integral converges for s in the open subset of Ck where Re(s) ∈ D.

(Mψ)(s) =

∫

h∈H

∫

x∈ER

hs exp(−‖xσ(h)‖2) dµER
(x) dµH(h)

=

∫

(x,h)∈ER×H

hs exp(−‖xσ(h)‖2) d(µER
× µH)(x, h)

= 2r2
√

det(QᵀQ)

∫

(x,h)∈ER×H

(

δ(γ(x, h))
)s
exp(−‖γ(x, h)‖2) d(µG ◦ γ)(x, h),
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where in the last step we used Lemma 3 and δ
(

γ(x, h)
)

= δ
(

σ(h)x
)

= h, with δ as
in (22) and γ as in (25). Next we substitute g = γ(x, h) to get

(Mψ)(s) = 2r2
√

det(QᵀQ)

∫

g∈G
δ(g)se−‖g‖2 dµG(g)

= 2r2
√

det(QᵀQ)

∫

g∈G
e−‖g‖2

k
∏

j=1

δ(g)
sj
j dµG(g)

= 2r2
√

det(QᵀQ)

∫

g∈G
e−‖g‖2

k
∏

j=1

(

∏

v∈AL

gevqjvv

)sj
dµG(g)

= 2r2
√

det(QᵀQ)

∫

g∈G
exp

(

−
∑

v∈AL

evg
2
v

)

∏

v∈AL

g
ev

∑k
j=1 qjvsj

v

∏

v∈AL

dgv
gv

= 2r2
√

det(QᵀQ)
∏

v∈AL

∫ ∞

0

gevSv(s)
v e−evg2v

dgv
gv

=

√

det(QᵀQ)

2r1

∏

v∈AL

Γ(evSv(s)/2)

e
evSv(s)/2
v

,

(34)

where r1 is the number of real places of L.1

Lemma 4. For any σ ∈ D
(

see (33)
)

, the Mellin inversion formula holds:2

ψ(h) =
1

(2πi)k

∫

Iσ

(Mψ)(s)h−s ds (h ∈ Rk
+), (35)

where s = (s1, ..., sk) and Iσ ⊂ Ck is the product of the k vertical lines Re(sj) = σj,3

taken from σj − i∞ to σj + i∞.4

Proof. The calculation (34) shows that the Mellin transform (Mψ)(s) is defined for
s ∈ Iσ. Thus Mellin inversion will work provided that

∫

Iσ

∣

∣(Mψ)(s)h−s ds
∣

∣ < ∞.

Since
∣

∣h−s
∣

∣ and
∣

∣e
evSv(s)/2
v

∣

∣ are constant on Iσ, we turn to the factors |Γ(evSv(s)/2)|
in (34). Write s = σ + iT , T ∈ Rk. In a strip 0 < C1 ≤ Re(z) ≤ C2, we have
|Γ(z)| < C3 exp

(

− |Im(z)|
)

.3 Since Re
(

evSv(s)
)

= evSv(σ) > 0 for s ∈ Iσ,
∏

v∈AL

|Γ(evSv(s)/2)| < C4 exp
(

−
∑

v∈AL

ev
∣

∣Sv(T )
∣

∣/2
)

≤ C4 exp
(

− ‖S(T )‖1/2
)

,

where ‖(mv)‖1 :=
∑

v∈AL
|mv| is the L1-norm on RAL , and S is the linear function5

from (31). Since S is injective, there exists C5 > 0 such that ‖S(T )‖1 ≥ C5‖T‖1 :=6

C5

∑k
j=1 |Tj|. Thus (Mψ)(s)h−s is integrable over Iσ and Mellin inversion (35) holds.7

�8

Let9

Γv(z) :=

{

Γ(z) if v is real,

Γ(z)Γ(z + 1
2
) if v is complex,

(36)

3 In fact, |Γ(z)| < Cε exp(−(π − ε)|Im(z)|/2) holds for any ε > 0 [1, Cor. 1.4.4].
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and1

α(s) :=
∑

v∈AL

log Γv

(

Sv(s)
)

=
∑

v∈AL

log Γv

(
∑k

j=1 qjvsj
)

. (37)

We take the branch of log Γv(z) which is real when z is real and positive.2

Lemma 5. Let y = (y1, . . . , yk) ∈ Rk and χ := (ey1/2, . . . , eyk/2) ∈ H := Rk
+. Then3

ψ(χ) =

√

det(QᵀQ)

2r1(2
√
π)r2(πi)k

∫

s∈Iσ
exp

(

α(s)−∑k
j=1 yjsj

)

ds (for any σ ∈ D), (38)

with ψ as in (29), α as in (37), Q as in Lemma 3, Iσ as in Lemma 4, and r1 (resp.4

r2) being the number of real (resp. complex) places of L.5

Proof. If v is complex, so ev = 2, the duplication formula gives

Γ
(

evSv(s)
)

e
evSv(s)
v

=
Γ
(

2Sv(s)
)

22Sv(s)
=

Γ
(

Sv(s)
)

Γ
(

1
2
+ Sv(s)

)

2
√
π

=
Γv

(

Sv(s)
)

2
√
π

.

If v is real, so ev = 1, then

Γ
(

evSv(s)
)

e
evSv(s)
v

= Γ
(

Sv(s)
)

= Γv

(

Sv(s)
)

.

From (34) and Mellin inversion (35) we get

ψ(χ) =
1

(2πi)k

∫

s∈Iσ/2

χ−s · (Mψ)(s) ds

=

√

det(QᵀQ)

2r1(2πi)k

∫

s∈Iσ/2

k
∏

j=1

χ
−sj
j ·

∏

v∈AL

Γ
(

evSv(s)
2

)

e
evSv(s)/2
v

ds

=

√

det(QᵀQ)

2r1(πi)k

∫

s∈Iσ

k
∏

j=1

χ
−2sj
j ·

∏

v∈AL

Γ
(

evSv(s)
)

e
evSv(s)
v

ds

=

√

det(QᵀQ)

2r1(2
√
π)r2(πi)k

∫

s∈Iσ
exp

(

−∑k
j=1 yjsj

)

∏

v∈AL

Γv

(

Sv(s)
)

ds

=

√

det(QᵀQ)

2r1(2
√
π)r2(πi)k

∫

s∈Iσ
exp

(

α(s)−∑k
j=1 yjsj

)

ds. �

Now we apply the lemma to the Basic Inequality (17).6

Corollary 6. For t > 0 and a ∈ L∗, define y = ya,t ∈ Rk by7

yj = (ya,t)j :=

{

log(t) + 2
n
log |NormL/Q(a)| if j = 1,

2
n

∑

v∈AL
evqjv log|a|v if 2 ≤ j ≤ k.

(39)

Then, with L :=
√

det(QᵀQ)/
(

2r1(2
√
π)r2πk

)

, for any σ ∈ D we have
∫

x∈ER

e−t ‖ax‖2 dµER
(x) =

L
ik

∫

s∈Iσ
exp

(

α(s)− n
∑k

j=1 yjsj
)

ds, (40)
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and
2t

n

∫

x∈ER

‖ax‖2e−t ‖ax‖2 dµER
(x) =

2L
ik

∫

s∈Iσ
s1 exp

(

α(s)− n
∑k

j=1 yjsj
)

ds. (41)

Proof. Define r = ra,t ∈ G := RAL
+ by rv := t1/2|a|v. In view of (30) and Lemma 5,

(40) will follow from
(

δ(r)
)

j
= enyj/2. Indeed, by (22),

(

δ(r)
)

j
:=

∏

v∈AL

(

t1/2|a|v
)evqjv = t

1
2

∑
v evqjv

∏

v∈AL

|a|evqjvv .

If j = 1, then by (20) we have qjv = 1 for all v ∈ M. Using (12) and (13) we find
(

δ(r)
)

1
= tn/2|NormL/Q(a)| = eny1/2.

If j > 1, then
∑

v evqjv = 0
(

see (20)
)

, so
(

δ(r)
)

j
=

∏

v∈AL

|a|evqjvv = enyj/2,

as claimed. To prove (41), apply −2t
n

d
dt

to (40), noting that
dyj
dt

= 0 for j ≥ 2. �1

4. Existence and uniqueness of the critical point2

We shall show that for every y ∈ Rk there is a unique σ = σ(y) ∈ D
(

see (33)
)

3

which is a critical point of Fy : D → R, defined as4

Fy(σ) := α(σ)−
k

∑

j=1

yjσj = α(σ)− y · σ, (42)

with α as in (37). The map taking y ∈ Rk to the critical point σ(y) ∈ D is closely5

related to the Legendre transform of α : D → R, but we will develop the theory from6

scratch as ours is an easy case of the general theory of the Legendre transform [14,7

§E] [20, §1 and §5].8

Lemma 7. Let α : D → R be as in (37). Then α is steep [20, p. 30], i.e.,

lim
‖σ‖→∞

α(σ)

‖σ‖ = +∞,

where the limit is taken over σ ∈ D as its Euclidean norm ‖σ‖ tends to infinity.9

Proof. Recall that the linear map S in (31) is injective. Hence there exists C > 0
such that, for all σ ∈ D,

max
v∈AL

{

Sv(σ)
}

= max
v∈AL

{
∣

∣Sv(σ)
∣

∣

}

=: ‖S(σ)‖∞ ≥ C‖σ‖.

For any σ ∈ D, there is a v0 = v0(σ) ∈ AL such that Sv0(σ) = maxv∈AL

{

Sv(σ)
}

.10

The previous inequality says that11

Sv0(σ) ≥ C‖σ‖. (43)

The known behavior of Γ(z) for z > 0 shows that there is a κ < 0 such that12

log Γv(z) > κ
(

Γv as in (36)
)

, (44)
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for all z > 0 and all v ∈ AL (κ = −1/5 will do). Also, Stirling’s formula shows that1

log Γv(z) >
z log z

2
(45)

for z � 0. It follows from (44), (43), and (45) that when ‖σ‖ is large,

α(σ) :=
∑

v∈AL

log Γv(Sv(σ)) > nκ+ log Γv0

(

Sv0(σ)
)

> nκ+ 1
2
C‖σ‖ log(C‖σ‖),

and the lemma follows. �2

The next lemma amounts to the fact that the gradient ∇f of a steep and differ-3

entiable strictly convex function f is a bijection. However, in our case the domain4

D 6= Rk, which means that we would need to check the boundary behavior of α5

before citing results from convex analysis. We prefer not to quote and instead adapt6

the usual proof [20, §1] [14, §E] to our nicely behaved function α.7

Lemma 8. For any y ∈ Rk there is a unique σ = σ(y) ∈ D such that y = ∇α(σ).8

Proof. For any y ∈ Rk, let Fy : D → R be defined by Fy(τ) := α(τ)− y · τ , and let9

α†(y) := inf
τ∈D

{

Fy(τ)
}

, (46)

which we will now prove to be finite, i.e., α†(y) 6= −∞. Let τ (i) be a sequence in D
such that Fy(τ

(i)) converges to α†(y). By (44), α(τ (i)) is bounded below, so it suffices
to check that the sequence τ (i) is bounded. By Lemma 7, α(τ) > (‖y‖ + 1)‖τ‖ for
τ ∈ D with ‖τ‖ sufficiently large. For such τ ,

Fy(τ) > (‖y‖+ 1)‖τ‖ − ‖y‖ ‖τ‖ = ‖τ‖,

which shows that τ (i) is bounded.10

We now prove that the infimum defining α†(y) is assumed at a point in the open11

set D ⊂ Rk. Passing to a subsequence of the bounded sequence τ (i), we may assume12

that the τ (i) ∈ D converge to a point σ in the closure of D in Rk. Recall from (33)13

that D is the (non-empty) open set consisting of τ ∈ Rk such that Sv(τ) > 0 for all14

v ∈ AL. If σ /∈ D, then Sv(σ) = 0 for some v ∈ AL. Since log Γv

(

Sv(τ
(i))

)

→ +∞ as15

Sv(τ
(i)) → 0+, and the remaining summands in the definition of α remain bounded16

from below (as does y ·τ (i)), we conclude that σ ∈ D. Since σ is an interior minimum17

of the smooth function Fy, we have ∇Fy(σ) = 0. By (42), y = ∇α(σ), as claimed.18

To prove the uniqueness of σ, it suffices to prove that Fy is a strictly convex
function on D.4 The strict convexity of Fy follows from the strict convexity of

4 That is, Fy(tτ + (1 − t)τ̃) < tFy(τ) + (1 − t)Fy(τ̃) for all t ∈ (0, 1) and all τ 6= τ̃ ∈ D. Such
a function cannot have more than one critical point. To prove this, let g(t) := Fy

(

tτ + (1 − t)τ̃
)

.
Assuming that Fy is strictly convex, g is a strictly convex function of a single real variable t ∈ [0, 1].
Thus, g′′ ≥ 0, so g has an increasing derivative g′(t) = ∇Fy(tτ + (1− t)τ̃) · (τ − τ̃). But ∇Fy(τ) =
0 = ∇Fy(τ̃) would imply g′(0) = 0 = g′(1), whence g is constant and therefore not strictly convex.
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log Γ(z) for z > 0. Indeed,

Fy(tτ+(1− t)τ̃) = −(tτ + (1− t)τ̃) · y + α(tτ + (1− t)τ̃)

= −(tτ + (1− t)τ̃) · y +
∑

v∈AL

log Γv

(

Sv(tτ + (1− t)τ̃)
)

≤ −(tτ + (1− t)τ̃) · y +
∑

v∈AL

t log Γv

(

Sv(τ)
)

+ (1− t) log Γv

(

Sv(τ̃)
)

= tFy(τ) + (1− t)Fy(τ̃),

with strict inequality holding for t ∈ (0, 1) unless Sv(τ) = Sv(τ̃) for all v ∈ AL. But1

this is impossible because S in (31) is injective. �2

The function α† in (46) is a concave function of y ∈ Rk, being the infimum over3

τ ∈ D of the set of concave (in fact, affine) functions y 7→ −y · τ +α(τ). The convex4

function −α† is known as the Legendre transform of α.5

5. Inequalities at the critical point6

To take advantage of the inequality (17), we will later need to drop all terms in7

(17) corresponding to algebraic integers a 6= 1. For this we will need some control8

of the first coordinate σ1(y) of the function σ in Lemma 8. In this section we take9

advantage of the concavity of Ψ := Γ′/Γ to find a lower bound for σ1(y). Then we10

use the convexity of log Γ to find a lower bound for α
(

σ(y)
)

. Let11

ΨC(z) := Ψ(z) + Ψ(z + 1
2
), (47)

12

Ψv(z) :=

{

Ψ(z) if v is real,

ΨC(z) if v is complex,
(v ∈ AL). (48)

These definitions ensure that Ψv(z) =
d
dz
log Γv(z) = Γ′

v(z)/Γv(z)
(

see (36)
)

. Note13

that Ψv(z) is a concave function of z for z > 0. We also note that Ψv : (0,∞) → R14

has an inverse function Ψ−1
v : R → (0,∞) since Ψ(z) is strictly increasing when15

z > 0, tends to −∞ as z → 0+, and tends to +∞ as z → +∞.16

Writing out the `-th coordinate of the equation y = ∇α(σ) in Lemma 8, we get17

y` =
∑

v∈AL

Ψv

(

Sv(σ)
)

q`v
(

Sv(σ) =
∑k

j=1 qjvσj, σ := σ(y)
)

, (49)

which for ` = 1 simplifies to18

y1 =
∑

v∈AL

Ψv

(

Sv(σ)
)

. (50)

Lemma 9. Let L be a number field of degree n, with r2 complex places. For y =19

(y1, y2, . . . , yk) ∈ Rk, let σ1(y) be the first coordinate of the function σ(y) defined in20

Lemma 8. Then21

σ1(y1, y2, . . . , yk) ≥ Ψ−1
(y1
n

)

− r2
2n
. (51)
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Proof. We prove (51) using the concavity of Ψ. Namely, from (50),

y1 =
∑

v∈AL

Ψv

(

Sv(σ)
)

=
∑

v∈AL

Ψ
(

Sv(σ)
)

+
∑

v complex

Ψ
(

1
2
+ Sv(σ)

)

≤ nΨ

(

1
n

(

∑

v∈AL
Sv(σ) +

∑

v complex

(

1
2
+ Sv(σ)

)

)

)

= nΨ
(

1
n

∑

v∈AL
evSv(σ) +

r2
2n

)

= nΨ
(

σ1 +
r2
2n

)

,

where the last step uses1

1

n

∑

v∈AL

evSv(σ) = σ1
(

σ = (σ1, σ2, . . . , σk) ∈ Ck
)

, (52)

which follows from (20) since

∑

v∈AL

evSv(σ) =
∑

v∈AL

k
∑

j=1

evqjvσj =
k

∑

j=1

σj
∑

v∈AL

evqjv = σ1
∑

v∈AL

ev = σ1n.

Inequality (51) now follows, since Ψ−1 is an increasing function. �2

Our next result is a similar inequality for α(σ).3

Lemma 10. With notation as in Lemma 9, we have4

α(σ) ≥ n log Γ
(

σ1 +
r2
2n

)

(σ = (σ1, . . . , σk) ∈ D). (53)

Proof. We compute directly from the definition (37) of α, using the convexity of
z 7→ log Γ(z) for z > 0 and (52):

α(σ) =
∑

v∈AL

log Γ
(

Sv(σ)
)

+
∑

v complex

log Γ
(

Sv(σ) +
1
2

)

≥ n log Γ

(

1
n

(

∑

v∈AL
Sv(σ) +

∑

v complex

(

1
2
+ Sv(σ)

)

)

)

= n log Γ
(

1
n

∑

v∈AL
evSv(σ) +

r2
2n

)

= n log Γ
(

σ1 +
r2
2n

)

. �

We now prove a lower bound for Sv(σ) in terms of σ1 and y1.5

Lemma 11. Let u ∈ AL, y ∈ Rk, and let σ := σ(ny) ∈ D be as in Lemma 8.
Assume that y1 ≥ t0 for some t0 ∈ R, and n := [L : Q] ≥ 2. Then Su(σ) ≥ 2/5 or

Su(σ) ≥
1

(n− 1)Ψ
(

nσ1

n−1
+ 1

2

)

− nt0
≥ 1

(n− 1) log(2σ1 +
1
2
)− nt0

> 0. (54)

Proof. We shall show below that both denominators in (54) are positive if Su(σ) <
2/5, as we may assume. Replacing y with ny in (50), we have

ny1 =
∑

v∈AL

Ψ
(

Sv(σ)
)

+
∑

v∈AL
v complex

Ψ
(

1
2
+ Sv(σ)

)

.
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Since −Ψ is a monotone decreasing convex function on (0,∞), we find

Ψ
(

Su(σ)
)

= ny1 −
∑

v∈AL
v 6=u

Ψ
(

Sv(σ)
)

−
∑

v∈AL
v complex

Ψ
(

1
2
+ Sv(σ)

)

≥ ny1 − (n− 1)Ψ

(

1

n− 1

(

∑

v∈AL
v 6=u

Sv(σ) +
∑

v∈AL
v complex

1
2
+ Sv(σ)

)

)

= ny1 − (n− 1)Ψ

(

1

n− 1

(

− Su(σ) +
∑

v∈AL

evSv(σ) +
∑

v∈AL
v complex

1
2

)

)

= ny1 − (n− 1)Ψ
(

− Su(σ)

n− 1
+

nσ1
n− 1

+
r2

2(n− 1)

)

(

see (52)
)

≥ ny1 − (n− 1)Ψ
( nσ1
n− 1

+
r2

2(n− 1)

)

≥ ny1 − (n− 1)Ψ
( nσ1
n− 1

+
1

2

)

.

From xΓ(x) = Γ(x+ 1) and the fact that Ψ(x) < 0 for x < 1.461,

Ψ(x) = −1

x
+Ψ(1 + x) < −1

x
(x < 0.461).

Hence, as we are assuming Su(σ) < 2/5,

−1

Su(σ)
> Ψ

(

Su(σ)
)

≥ ny1 − (n− 1)Ψ
( nσ1
n− 1

+
1

2

)

≥ nt0 − (n− 1)Ψ
( nσ1
n− 1

+
1

2

)

.

Since Su(σ) > 0, the right-hand side above is negative. Hence the left-most inequal-1

ity in (54) is proved.2

Next recall [16, §71, eq. (11)],

log(x)−Ψ(x) =
1

2x
+ 2

∫ ∞

0

t

(t2 + x2)(e2πt − 1)
dt > 0 (x > 0).

Whence Ψ(x) < log(x) for x > 0, and so

Ψ
( nσ1
n− 1

+
1

2

)

< log
( nσ1
n− 1

+
1

2

)

≤ log
(

2σ1 +
1
2

)

.

Now the second inequality in (54) follows as before. �3

6. Asymptotics4

In this section we prove the estimates needed to prove Theorem 1. We will work in5

a somewhat more abstract setting since the assumption in Theorem 1 that E ⊂ O∗
L6

contain the relative units E(L/K) will be useful only through the following property.7

Lemma 12. Suppose K ⊂ L is a subfield, E(L/K) ⊂ E ⊂ O∗
L, let Log be as in8

(18), and suppose q = (qv)v∈AL
∈ Log(E)⊥ lies in the orthogonal complement of9

Log(E) inside RAL with respect to the inner product (19). Then qv = qv′ whenever10

v and v′ lie above the same Archimedean place of K.11
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Proof. It suffices to show that Log(E)⊥ is contained in the R-span of Log(K∗) in
RAL . But, span Log(K∗) = Log(E(L/K))⊥ since

Log(E)⊥ ⊂ Log(E(L/K))⊥, Log(K∗) ⊂ Log(E(L/K))⊥,

dim(spanLog(K∗)) = #AK = dim(Log(E(L/K))⊥). �

We formalize the above property as follows.1

Definition 13. For M,Ω ≥ 1, a subgroup E ⊂ O∗
L is (M,Ω)-dispersed if there is a2

surjective map of sets π : AL → M, where M has cardinality #M = M , with the3

following properties.4

(i) For w ∈ M, let r1,w and r2,w be respectively the number of real and complex5

places of L with image w under π, let6

mw := r1,w + 2r2,w, m := min
w∈M

{mw}. (55)

Then mw/m ≤ Ω for all w ∈ M.7

(ii) If q = (qv)v∈AL
∈ Log(ER)

⊥, the orthogonal complement of Log(ER) in RAL
8

with respect to 〈 , 〉 in (19), then qv = qv′ whenever π(v) = π(v′).9

This rather ad hoc definition is meant mainly to clarify the proof of the estimates10

below. Being (M,Ω)-dispersed will prove useful if m�MΩ, with m as in (55).11

Remark 14. It is easy to see that a subgroup E containing relative units E(L/K),12

as in Theorem 1, fits in the (M,Ω) framework. Indeed, if K is a subfield of L,13

let M := AK and let π : AL → M be the restriction map. Then condition (i) of14

Definition 13 holds with Ω = 2 since mw = ew · [L : K] ≤ 2[L : K]. Lemma 1215

shows that condition (ii) holds if the relative units E(L/K) ⊂ E ⊂ O∗
L. Thus E in16

Theorem 1 is (#AK , 2)-dispersed. Determining if there are interesting examples of17

(M,Ω)-dispersion beyond that of Theorem 1 seems to be a difficult question.18

As outlined in §2, the Basic Inequality (17) and Corollary 6 lead us to estimate19

integrals of the type20

1

ik

∫

s∈Iσ
eα(s)−ny·s ds =

∫

T∈Rk

eα(σ+iT )−ny·(σ+iT ) dT =:

∫

Rk

G(T ) dT, (56)

where n := [L : Q], y = (y1, . . . , yk) ∈ Rk, σ := σ(ny) ∈ D ⊂ Rk as in Lemma 8,

and y · s :=
∑k

j=1 yjsj. Let H(T ) be the Gaussian approximating G(T ) (see (65)

below) in a bounded neighborhood ∆ ⊂ Rk of T = 0
(

see (87)
)

. As usual with the
saddle point method, we decompose the integral (56) into four pieces

∫

Rk

G(T ) dT =

∫

Rk

H(T ) dT +

∫

Rk−∆

G(T ) dT −
∫

Rk−∆

H(T ) dT

+

∫

∆

(

G(T )−H(T )
)

dT =: I1 + I2 − I3 + I4. (57)

The term I1 in (57) (i.e.,
∫

Rk H) is readily computed and gives the main term in21

(57). We shall prove that the terms I2, I3 and I4 are o(I1) as m→ ∞, uniformly in22
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y ∈ Rk, provided E is (M,Ω)-dispersed, as we shall henceforth assume. We will use1

π,M,m,w,mw, r1,w and r2,w as in Definition 13.2

Let (cf. [13, p. 134])3

ακ(z) := κ log Γ(z) + (1− κ) log Γ(z + 1
2
), κw :=

r1,w + r2,w
mw

. (58)

Note that 1
2
≤ κw ≤ 1. Recall that in (20) we defined a basis {q1, . . . , qk} of Log(E)⊥.4

For w ∈ M, define Sw : Ck → C as5

Sw(s) := Sv(s) :=
k

∑

j=1

qjvsj =:
k

∑

j=1

qjwsj
(

s ∈ Ck, v ∈ AL, π(v) = w
)

, (59)

where qjw := qjv for any v ∈ π−1(w) (this being well defined by (ii) in Definition6

13). We can therefore rewrite α in (37) using (58) as7

α(s) :=
∑

v∈AL

log Γv

(

Sv(s)
)

=
∑

w∈M

∑

v∈π−1(w)

log Γv

(

Sw(s)
)

=
∑

w∈M
mwακw

(

Sw(s)
)

. (60)

For each w ∈ M and σ ∈ D
(

see (33)
)

, define ρw : R
k → C by8

ρw(T ) := ακw

(

Sw(σ+iT )
)

−ακw

(

Sw(σ)
)

−iα′
κw

(

Sw(σ)
)

Sw(T )+
1

2
α′′
κw

(

Sw(σ)
)(

Sw(T )
)2
,

(61)
i.e., ρw is the error in the degree-2 Taylor approximation of T 7→ ακw

(

Sw(σ+ iT )
)

at9

T = 0. We shall henceforth take any y ∈ Rk and let σ := σ(ny) be the corresponding10

saddle point in Lemma 8. Thus ∇α(σ) = ny. Using this and (60), we find11

k
∑

j=1

nyjTj =
k

∑

j=1

Tj
∑

w∈M
mwα

′
κw

(

Sw(σ)
)

qjw =
∑

w∈M
mwα

′
κw

(

Sw(σ)
)

Sw(T ). (62)

It follows from (60)–(62) that

α(σ + iT )− ny · (σ + iT ) = α(σ)− ny · σ − 1

2

∑

w∈M
mwα

′′
κw

(

Sw(σ)
)

Sw(T )
2 + ρ(T ),

ρ(T ) :=
∑

w∈M
mwρw(T ). (63)

The linear terms in T have disappeared precisely because σ is a critical point of12

s 7→ α(s)− ny · s.13

For fixed y ∈ Rk and σ := σ(ny) ∈ D, define the following functions of T ∈ Rk:

H(T ) :=
∑

w∈M
mwα

′′
κw

(

Sw(σ)
)

Sw(T )
2, (64)

H(T ) := eα(σ)−ny·σ− 1
2
H(T ), (65)

G(T ) := eα(σ+iT )−ny·(σ+iT ) = eρ(T )H(T ). (66)

Although H, H,G and ρ depend on y ∈ Rk, we do not include y in our notation.14
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6.1. The main term. In Lemma 3 we defined the #AL × k matrix Q of rank k1

whose coefficients are Qv,j := qjv. Recall that we write qjw := qjv for any v ∈ AL2

with π(v) = w. We will write Q for the M × k matrix with entries Qwj := qjw and3

rank k. In the computation of ψ(χ) in Lemma 5 the term det(QᵀQ) appears. Using4

the smaller matrix Q we have5

det(QᵀQ) = det(QᵀQ)
∏

w∈M
(r1,w + r2,w)

(

r1,w, r2,w as in (58)
)

, (67)

as follows from

(QᵀQ)i,j =
∑

v∈AL

qivqjv =
∑

w∈M
qiwqjw

∑

v∈π−1(w)

1 =
∑

w∈M
qiwqjw(r1,w + r2,w).

For future reference we note that6

k ≤M, (68)

as the M × k matrix Q has the same rank as Q, namely k.7

Let M[k] be the set of subsets of M of cardinality k. For η ∈ M[k], let Qη be8

the k × k submatrix of Q whose rows are indexed by the elements of η. Next we9

calculate some integrals such as I1 in (57), and its derivatives.10

Lemma 15. Let E ⊂ O∗
L be (M,Ω)-dispersed (see Definition 13), for η ∈ M[k] let11

Qη be as above, let (bw)w∈M ∈ RM
+ , and define12

Dη := det2(Qη)
∏

w∈η
bw, D :=

∑

η∈M[k]

Dη. (69)

Then, with Sw as in (59),13

∫

T∈Rk

exp
(

− 1

2

∑

w∈M
bwSw(T )

2
)

dT = (2π)k/2D−1/2. (70)

Furthermore, for any w0 ∈ M we have
∫

Rk

Sw0(T )
4 exp

(

− 1

2

∑

w∈M
bwSw(T )

2
)

dT = 3(2π)k/2D−5/2b−2
w0

(

∑

η3w0

Dη

)2

≤ 3(2π)k/2D−1/2b−2
w0

and
∫

Rk

Sw0(T )
6 exp

(

− 1

2

∑

w∈M
bwSw(T )

2
)

dT = 15(2π)k/2D−7/2b−3
w0

(

∑

η3w0

Dη

)3

≤ 15(2π)k/2D−1/2b−3
w0
.

Proof. Let P = (Pw,j) be the M × k matrix with entries Pw,j :=
√
bwqjw (w ∈

M, 1 ≤ j ≤ k). Then for T = (T1, ..., Tk) ∈ Rk, considered as a k × 1 matrix,
PT ∈ RM satisfies (PT )w =

√
bwSw(T ). Hence

∑

w∈M
bwSw(T )

2 = (PT )ᵀPT = T ᵀ(P ᵀP )T = T ᵀHT (H := P ᵀP ).
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The k×k matrix H is clearly positive semi-definite. The Cauchy-Binet formula gives1

det(H) = D, with D as in (69).5 But D > 0 as Dη > 0 for at least one η ∈ M[k],2

since Q has rank k. Hence H is positive definite, and so the integral in (70) is the3

well-known Gaussian integral attached to a positive definite quadratic form H in k4

variables, as claimed in (70).5

The other equalities in Lemma 15 are obtained by differentiating (70) with respect
to bw0 repeatedly. Indeed, noting that the partial derivative ∂D

∂bw0
= b−1

w0

∑

η3w0
Dη is

independent of bw0 , i.e.,
∂2D

∂b2w0

= 0, we have

−1

2

∫

Rk

Sw0(T )
2 exp

(

− 1

2

∑

w∈M
bwSw(T )

2
)

dT = −1

2
(2π)k/2D−3/2

(

b−1
w0

∑

η3w0

Dη

)

,

1

4

∫

Rk

Sw0(T )
4 exp

(

− 1

2

∑

w∈M
bwSw(T )

2
)

dT =
3

4
(2π)k/2D−5/2

(

b−1
w0

∑

η3w0

Dη

)2

,

−1

8

∫

Rk

Sw0(T )
6 exp

(

− 1

2

∑

w∈M
bwSw(T )

2
)

dT = −15

8
(2π)k/2D−7/2

(

b−1
w0

∑

η3w0

Dη

)3

,

proving the equalities. The inequalities follow from
∑

η3w0
Dη ≤ D, as Dη ≥ 0. �6

As α′′
κ(t) > 0 for t > 0, we can now evaluate I1.7

Corollary 16. With H(T ) := eα(σ)−ny·σ− 1
2
H(T ) as in (65), for y ∈ Rk we have

I1 = I1(ny) :=

∫

Rk

H(T ) dT =
(2π)k/2eα(σ)−ny·σ
√

det
(

H(σ)
)

,

where σ := σ(ny) ∈ D as in Lemma 8 and8

det(H(σ)) =
∑

η∈M[k]

det2(Qη)
∏

w∈η
mwα

′′
κw

(

Sw(σ)
)

. (71)

6.2. The small terms. We begin with some one-variable estimates.9

Lemma 17. Let p ≥ 1000, κ ∈ [1
2
, 1], and r > 0, then

∫ ∞

−∞
|epακ(r+it)| dt <

√
2πepακ(r)

√

pα′′
κ(r)

(

1 +
2.31

p

)

, (72)

∫ ∞

−∞
|tepακ(r+it)| dt < 0.83

√
2πepακ(r)

pα′′
κ(r)

. (73)

Proof. Under the assumptions in the lemma, Sundstrom proved6

∫∞
−∞|epακ(r+it)| dt

√
2πepακ(r)√
pα′′

κ(r)

< 1 +
1

p

(

10−76 + (2/π)1/2p5/6e−p1/3 +
3

2

ep
1/3 − 1

8/p1/3

)

.

5 The Cauchy-Binet formula computes det(AB), where A is a k × ` and B is `× k, in terms of
the k × k minors of A and B.

6 Set D = 2 in the inequality displayed immediately before Lemma 4.5 in [25, p. 142].
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As the quantity in parenthesis is decreasing for p > (5/2)3, we can bound it by1

2.3093 · · · , its value for p = 1000. Thus, (72) is proved.2

We now prove (73). From [25, Lemma 4.11] we have3

∫ r
3
√

2

− r
3
√

2

|tepακ(r+it)| dt < 72epακ(r)

35pα′′
κ(r)

, (74)

while from [13, Lemma 5.3] we have4

∫

|t|> r
3
√
2

|tepακ(r+it)| dt < 2r2epακ(r)

p(κ− 2
p
)(1 + 1

72
)pκbrc/2(1 + 1

18
)(pκ−2)/2

, (75)

where brc is the floor of r. Since 0 < r2α′′
κ(r) < 1 + r [13, p. 141], we have

r2

(1 + 1
72
)pκbrc/2

≤ 1

α′′
κ(r)

1 + r

(1 + 1
72
)pκbrc/2

≤ 2

α′′
κ(r)

.

Indeed, for 0 < r < 1 the last inequality is obvious, while for r ≥ 1 a much better
inequality follows from pκ ≥ 500. Hence

∫

|t|> r
3
√

2

|tepακ(r+it)| dt < 1

pα′′
κ(r)

4epακ(r)

(1
2
− 2

1000
)(1 + 1

18
)(500−2)/2

<
0.00002epακ(r)

pα′′
κ(r)

.

Combining this with (74) we obtain (73). �5

We will need the following inequality, proved by elementary calculus.6

x5/2e−x ≤
( 5

2e

)5/2

< 0.8112
(

x ≥ 0
)

. (76)

Lemma 18. Suppose p ≥ 1000, 1
2
≤ κ ≤ 1, 0 < D ≤ p1/3

√
κ, and let7

δ :=
D

p1/3
√

α′′
κ(r)

. (77)

Then, for any r > 0,8

∫

|t|>δ

|epακ(r+it)| dt <
(

10−76 + 41.43
D6

p

)
√
2πepακ(r)

√

pα′′
κ(r)

, (78)

and9
∫

|t|>δ

e−
1
2
pα′′

κ(r)t
2

dt <
3.67

pD6

√
2π

√

pα′′
κ(r)

. (79)

Proof. Inequality (79) follows from
∫

|t|>δ

e−
1
2
pα′′

κ(r)t
2

dt ≤ 2e−p1/3D2/2

p2/3D
√

α′′
κ(r)

=

√
2π

√

pα′′
κ(r)

8(p1/3D2/2)5/2e−p1/3D2/2

p
√
πD6

<

√
2π

√

pα′′
κ(r)

3.67

pD6
,
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where the first inequality is from [13, p. 139] and the last one uses (76) with x :=1

p1/3D2/2. To prove (78) we use [25, Lemma 4.5],2

∫

|t|>δ
|epακ(r+it)| dt

1
p

√
2πepακ(r)√
pα′′

κ(r)

< 10−76 +
23/2p5/6 exp(−p1/3D2/4)√

πD
< 10−76 +

41.43

D6
,

where the second inequality again follows from (76). �3

Next we deal with the second order remainder term in the Taylor expansion about4

a of log Γ(a+ ib), taking a = Sw(σ) and b = Sw(T ).5

Lemma 19. Let E ⊂ O∗
L be (M,Ω)-dispersed. Then for w ∈ M, σ ∈ D

(

see (33)
)

,

T ∈ Rk and ρw as in (61), we have

∣

∣Im
(

ρw(T )
)∣

∣ ≤ −α
(3)
κw

(

Sw(σ)
)

3!
|Sw(T )|3 ≤

√
2

3
α′′
κw

(

Sw(σ)
)3/2|Sw(T )|3, (80)

∣

∣Re
(

ρw(T )
)
∣

∣ ≤ α
(4)
κw

(

Sw(σ)
)

4!
Sw(T )

4 ≤ 1

2
α′′
κw

(

Sw(σ)
)2
Sw(T )

4, (81)

Im
(

ρw(−T )
)

= −Im
(

ρw(T )
)

, Re
(

ρw(−T )
)

= Re
(

ρw(T )
)

, (82)

if |Sw(T )| ≤ Sw(σ), then 0 ≤ Re
(

ρw(T )
)

≤ α′′
κw

(

Sw(σ)
)

4
Sw(T )

2. (83)

Proof. The first inequalities in (80) and (81) are proved in [25, Lemma 4.7], as is6

also (83). The second inequalities in (80) and (81) follow from [13, Lemma 5.2] and7

κw ≥ 1
2
. The identities in (82) follow from (61) and log Γ(z) = log Γ(z). �8

Lemma 20.
(

[13, (5.11)]
)

If u, v ∈ R with 0 ≤ u ≤ R, then9

|Re(eu+iv − 1)| ≤ v2

2
+ u

eR − 1

R
.

We first estimate the easier “outer” terms, I2 and I3 in (57), i.e., where the region10

of integration is Rk−∆. For y ∈ Rk, let η0 = η0(y) ∈ M[k] correspond to a maximal11

summand in (71), so12

det2(Qη)
∏

w∈η
mwα

′′
κw

(

Sw(σ)
)

≤ det2(Qη0)
∏

w∈η0
mwα

′′
κw

(

Sw(σ)
)

(∀η ∈ M[k]). (84)

Thus,

det
(

H(σ)
)

≤
(

M

k

)

det2(Qη0)
∏

w∈η0
mwα

′′
κw

(

Sw(σ)
)

,

and so13

1

|det(Qη0)|
∏

w∈η0

√

mwα′′
κw

(

Sw(σ)
)

≤

√

(

M
k

)

√

det
(

H(σ)
)

. (85)
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For y ∈ Rk, w ∈ η0(y) and D > 0, let
(

cf. (77)
)

1

δw :=
D

m
1/3
w

√

α′′
κw
(Sw(σ))

. (86)

Define the neighborhood ∆ ⊂ Rk of T = 0 ∈ Rk as2

∆ = ∆(y) :=
{

T ∈ Rk
∣

∣ |Sw(T )| < δw (∀w ∈ η0)
}

. (87)

The next lemma shows that I2 and I3 are small compared to I1 in Corollary 16.3

Lemma 21. Suppose E ⊂ O∗
L is (M,Ω)-dispersed, m := minw∈M{mw} ≥ 1000, 0 <

D < m1/3/
√
2, and y ∈ Rk. Then

|I2| =
∣

∣

∣

∫

Rk−∆

G(T ) dT
∣

∣

∣
≤

(1 + 2.31
m

)k−1
(

10−76 + 41.43
D6

)

k
√

(

M
k

)

m
I1, (88)

|I3| =
∣

∣

∣

∫

Rk−∆

H(T ) dT
∣

∣

∣
≤

3.67k
√

(

M
k

)

mD6
I1, (89)

with ∆ as in (87), σ := σ(ny) ∈ D as in Lemma 8, H and G as in (65) and (66),4

Proof. We first prove (88). Note that Γ(z) =
∫∞
0
xze−x dx

x
implies5

|Γ(z)| ≤ Γ
(

Re(z)
)

(Re(z) > 0). (90)

Using this, (66) and (60) we have,6

∫

Rk−∆

|G(T )| dT ≤ e−ny·σ
∏

w∈M[k]

w 6∈η0

emwακw (Sw(σ))

∫

Rk−∆

∣

∣

∣

∏

w∈η0
emwακw (Sw(σ+iT ))

∣

∣

∣
dT.

Let B ⊂ Rη0 denote the k-dimensional box7

B = B(y) :=
{

T̃ ∈ Rη0
∣

∣ |T̃w| ≤ δw (∀w ∈ η0)
}

, (91)

and let Bc := Rη0 − B denote its complement. Making the change of variables8

T̃w := Sw(T ) for w ∈ η0, we have9

∫

Rk−∆

∣

∣

∣

∏

w∈η0
emwακw (Sw(σ+iT ))

∣

∣

∣
dT =

1

|det(Qη0)|

∫

T̃∈Bc

∣

∣

∣

∏

w∈η0
emwακw (Sw(σ)+iT̃w)

∣

∣

∣
dT̃ .

The latter integral is easy to bound using Lemmas 17 and 18. We integrate over k10

(overlapping) regions, each of which has k− 1 of the T̃w range over all of R, and the11

remaining T̃w0 over |T̃w0 | > δw0 . Since mw ≥ m, we conclude that12

∫

Rk−∆

|G(T )| dT ≤ k(2π)k/2(1 + 2.31
m

)k−1
(

10−76 + 41.43
D6

)

eα(σ)−ny·σ

m|det(Qη0)|
∏

w∈η0

√

mwα′′
κw

(

Sw(σ)
)

.

Now inequality (85) and Corollary 16 prove (88).13
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Next we prove (89). Changing variables as before, we have

|I3| = eα(σ)−ny·σ
∫

Rk−∆

exp
(

− 1

2

∑

w∈M
mwα

′′
κw

(

Sw(σ)
)

Sw(T )
2
)

dT

≤ eα(σ)−ny·σ
∫

Rk−∆

exp
(

− 1

2

∑

w∈η0
mwα

′′
κw

(

Sw(σ)
)

Sw(T )
2
)

dT

=
eα(σ)−ny·σ

|det(Qη0)|

∫

Bc

exp
(

− 1

2

∑

w∈η0
mwα

′′
κw

(

Sw(σ)
)

T̃ 2
w

)

dT̃ .

Once again, we bound
∫

Bc using k overlapping regions, one for each w0 ∈ η0. The1

integral over the region given by all T̃ ∈ Rη0 such that |T̃w0 | > δw0 is bounded by2

∫

|T̃w0 |>δw0

e
− 1

2
mw0α

′′
κw0

(Sw0 (σ))T̃
2
w0 dT̃w0

∏

w∈η0
w 6=w0

∫ ∞

−∞
e−

1
2
mwα′′

κw (Sw(σ))T̃ 2
w dT̃w.

We can use (79) to bound the first integral, and the remaining integrals are explicitly3

known. Hence, summing over the k regions,4

|I3| ≤
(2π)k/2 eα(σ)−ny·σ

|det(Qη0)|
3.67 k

mD6

∏

w∈η0

1
√

mwα′′
κw

(

Sw(σ)
)

.

We again conclude using (85). �5

For the “inner” integral I4 =
∫

∆
(G −H) in (57), we can only expect estimates of6

the kind O(I1/m), whereas I2 and I3 are essentially O
(

I1 exp(−m1/3)
)

. This allowed7

us to use simple estimates for the contribution of w /∈ η0. However, to estimate I48

we shall need the following geometric result.9

Lemma 22. Let R = (rij) be an N×k real matrix of rank k, and let ai > 0 (1 ≤ i ≤10

N). Define linear maps Pi : R
k → R by Pi(T ) :=

∑k
j=1 rijTj, where T = (T1, ..., Tk).11

For any k-element subset η = {i1, . . . , ik} ⊂ {1, 2, . . . , N}, let Rη denote the k × k12

submatrix of R given by
(

Rη

)

`,j
= ri`j. Define Eη := |det(Rη)|

∏

i∈η ai, and let η013

maximize Eη. Then14

ai|Pi(T )| ≤
∑

j∈η0
aj|Pj(T )| (1 ≤ i ≤ N, T ∈ Rk).

Proof. Replacing rij by airij, we may assume ai = 1. Hence η0 simply maximizes15

|det(Rη)|. Fix i ∈ {1, 2, . . . , N}, and define λj ∈ R for j ∈ η0 by Pi =
∑

j∈η0 λjPj.16

For j ∈ η0, let Rj denote Rη with the jth row of R replaced by the ith row. Then,17

by Cramer’s rule, |λj det(Rη)| = |det(Rj)| ≤ |det(Rη)|, so |λj| ≤ 1. Hence18

|Pi(T )| =
∣

∣

∣

∑

j∈η0

λjPj(T )
∣

∣

∣
≤

∑

j∈η0

|Pj(T )|. �

Remark 23. The argument of the proof shows Lemma 2 of §2. Namely, let S be19

the set of rows of R and set ai = 1 for all i. The volume of the sign-symmetrized20
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parallelotope P (η) spanned by the elements of a k-element subset η of S is just 2kEη.1

If this volume is maximized by η0 over all choices of η, the proof shows every element2

of S is in P (η0).3

Lemma 24. Suppose E ⊂ O∗
L is (M,Ω)-dispersed. Then, for y ∈ Rk and D > 0 we

have, with notation as in (55) and (57),

|I4| =
∣

∣

∣

∫

∆

(

G(T )−H(T )
)

dT
∣

∣

∣
≤ M

(

5
3
M + 3

2
Z
)

m
I1, (92)

where m := minw∈M{mw} and Z :=
(

eMk4D4m−1/3 − 1
)

/
(

Mk4D4m−1/3
)

.4

Proof. Lemma 22, applied to the matrix Q and aw :=
√

mwα′′
κw

(

Sw(σ)
)

, shows5

√

mwα′′
κw

(

Sw(σ)
)

|Sw(T )| ≤
∑

w0∈η0

√

mw0α
′′
κw0

(

Sw0(σ)
)

|Sw0(T )| (93)

for w ∈ M, T ∈ Rk and η0 as in (84). Since x 7→ x4 is convex, we have,

m2
wα

′′
κw

(

Sw(σ)
)2
Sw(T )

4 ≤
(

∑

w0∈η0

√

mw0α
′′
κw0

(

Sw0(σ)
)

|Sw0(T )|
)4

≤ k3
∑

w0∈η0
m2

w0
α′′
κw0

(

Sw0(σ)
)2
Sw0(T )

4.

For T ∈ ∆ and w0 ∈ η0, by (86) and (87) we have6

mw0α
′′
κw0

(

Sw0(σ)
)2
Sw0(T )

4 ≤ mw0α
′′
κw0

(

Sw0(σ)
)2
δ4w0

= D4m−1/3
w0

.

Hence,

mwα
′′
κw

(

Sw(σ)
)2
Sw(T )

4 ≤ k3
∑

w0∈η0

mw0

mw

D4

m1/3
≤ k3

∑

w0∈η0

2D4

m1/3
=

2k4D4

m1/3
.

Combining this with Lemma 19 and #M =M , we conclude that for T ∈ ∆,
∣

∣Re
(

ρ(T )
)∣

∣ =
∣

∣

∣

∑

w∈M
mwRe

(

ρw(T )
)

∣

∣

∣
≤

∑

w∈M
k4D4m−1/3 =Mk4D4m−1/3.

Lemmas 19 and 20 now show that for T ∈ ∆,

∣

∣Re
(

eρ(T ) − 1
)
∣

∣ ≤ Im
(

ρ(T )
)2

2
+ Re

(

ρ(T )
)

Z

≤ 1

2

(

√
2

3

∑

w∈M
mwα

′′
κw

(

Sw(σ)
)3/2|Sw(T )|3

)2

+
Z

2

∑

w∈M
mwα

′′
κw

(

Sw(σ)
)2
Sw(T )

4

≤ M

9

∑

w∈M
m2

wα
′′
κw

(

Sw(σ)
)3
Sw(T )

6 +
Z

2

∑

w∈M
mwα

′′
κw

(

Sw(σ)
)2
Sw(T )

4, (94)

where in the last step we used the convexity of x 7→ x2.7
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By Lemma 19, Im
(

eρ(T )
)

is odd, while Re
(

eρ(T )
)

is even in T . Furthermore, H(T )
is a real and even function of T , and ∆ is mapped to itself by T 7→ −T . Hence,
using (66) and (94),

∣

∣

∣

∫

∆

(

G(T )−H(T )
)

dT
∣

∣

∣
=

∣

∣

∣

∫

∆

(eρ(T ) − 1)H(T ) dT
∣

∣

∣
=

∣

∣

∣

∫

∆

Re(eρ(T ) − 1)H(T ) dT
∣

∣

∣

≤
∑

w∈M

∫

Rk

(M

9
m2

wα
′′
κw

(

Sw(σ)
)3
Sw(T )

6 +
Z

2
mwα

′′
κw

(

Sw(σ)
)2
Sw(T )

4
)

H(T ) dT.

Using Lemma 15 and Corollary 16, we find

∣

∣

∣

∫

∆

(

G(T )−H(T )
)

dT
∣

∣

∣
≤

(

∑

w∈M

5
3
M + 3

2
Z

mw

)(2π)k/2eα(σ)−ny·σ
√

det(H(σ))

≤ M
(

5
3
M + 3

2
Z
)

m
I1. �

Our next estimate will let us deal with the term
∫

ER

‖ax‖2e−t ‖ax‖2 dµ(x) in the1

Basic Inequality (17) and (41).2

Lemma 25. If y ∈ Rk, E is (M,Ω)-dispersed and m ≥ 1000, then3

∫

T∈Rk

∣

∣T1e
α(σ+iT )−ny·(σ+iT )

∣

∣dT ≤
1.18

√
Ω(1 + 2.31

m
)k−1k

√

(

M
k

)

√
m

σ1I1, (95)

with I1 as in (57), α as in (60) and σ = (σ1, . . . , σk) := σ(ny) as in Lemma 8.4

Proof. By (52), for T ∈ Rk we have5

nT1 =
∑

v∈AL

evSv(T ) =
∑

w∈M

∑

v∈π−1(w)

evSw(T ) =
∑

w∈M
mwSw(T ). (96)

Hence we will need to bound integrals of the kind
∫

Rk |Sw(T )e
α(σ+iT )| dT .6

Let η0 be as in (84) and let w0 ∈ η0. Then, using (90) and changing variables as
in the proof of Lemma 21,

∫

Rk

∣

∣Sw0(T )e
α(σ+iT )−α(σ)

∣

∣ dT ≤
∫

Rk

∣

∣

∣
Sw0(T )

∏

w∈η0
emwακw (Sw(σ+iT ))−mwακw (Sw(σ))

∣

∣

∣
dT

=
1

|det(Qη0)|

∫ ∞

−∞
|T̃w0e

mw0ακw0
(Sw0 (σ)+iT̃w0 )−mw0ακw0

(Sw0 (σ))| dT̃w0

·
∏

w∈η0
w 6=w0

∫ ∞

−∞
|emwακw (Sw(σ)+iT̃w)−mwακw (Sw(σ))| dT̃w.
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Using Lemma 17 we obtain,
∫

Rk

∣

∣Sw0(T )e
α(σ+iT )−α(σ)

∣

∣ dT ≤ 1

| det(Qη0)|
0.83

√
2π

mw0α
′′
κw0

(

Sw0(σ)
)

∏

w∈η0
w 6=w0

(1 + 2.31
m

)
√
2π

√

mwα′′
κw

(

Sw(σ)
)

=
0.83 · (1 + 2.31

m
)k−1

√

mw0α
′′
κw0

(

Sw0(σ)
)

(2π)k/2

∣

∣ det(Qη0)
∣

∣

∏

w∈η0

√

mwα′′
κw

(

Sw(σ)
)

≤
0.83 · (1 + 2.31

m
)k−1

√

(

M
k

)

√

mα′′
κw0

(

Sw0(σ)
)

(2π)k/2
√

det
(

H(σ)
)

(

see (85)
)

. (97)

By inequality (93),
∑

w∈M
mw|Sw(T )| =

∑

w∈M

√

mw

α′′
κw

(

Sw(σ)
)

√

mwα′′
κw

(

Sw(σ)
)

|Sw(T )|

≤
∑

w∈M

√

mw

α′′
κw

(

Sw(σ)
)

∑

w0∈η0

√

mw0α
′′
κw0

(

Sw0(σ)
)

|Sw0(T )|

≤
√
2Ω

∑

w∈M
mwSw(σ)

∑

w0∈η0

√

α′′
κw0

(

Sw0(σ)
)

|Sw0(T )|,

where the last inequality uses mw0 ≤ Ωm ≤ Ωmw (valid for any w,w0 ∈ M by1

Definition 13) and x2α′′
κw
(x) > κw ≥ 1/2 for x > 0 [13, (5.7)]. Hence, by (96),2

∑

w∈M
mw|Sw(T )| ≤

√
2Ωnσ1

∑

w0∈η0

√

α′′
κw0

(

Sw0(σ)
)

|Sw0(T )|.

It follows that
∫

T∈Rk

∣

∣T1e
α(σ+iT )−ny·(σ+iT )

∣

∣ dT =
e−ny·σ

n

∫

Rk

∣

∣

∣

(

∑

w∈M
mwSw(T )

)

eα(σ+iT )
∣

∣

∣
dT

≤ eα(σ)−ny·σ

n
·
√
2Ωnσ1

∑

w0∈η0

√

α′′
κw0

(Sw0(σ))

∫

Rk

∣

∣Sw0(T )e
α(σ+iT )−α(σ)

∣

∣ dT

≤
√
2Ωσ1

∑

w0∈η0

0.83 · (1 + 2.31
m

)k−1
(

M
k

)
1
2

√
m

(2π)k/2eα(σ)−ny·σ
√

det
(

H(σ)
)

=
(1.1737 · · · )

√
Ω(1 + 2.31

m
)k−1k

(

M
k

)
1
2

√
m

σ1I1,

where the last equality uses Corollary 16. �3

The next lemma will allow us to ensure that each integral in the Basic Inequality4

(17) is positive.5

Lemma 26. Let E ⊂ OL be (M,Ω)-dispersed,6

m ≥ N0 = N0(M,Ω, k) := max
(

102k6M3/2, 104k2Ω
(

M
k

)

, 103M2
)

, (98)
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and let a ∈ OL, a 6= 0. Let t := exp
(

Ψ(0.51 + r2
2n
)
)

and Ψ(x) := Γ′(x)/Γ(x). For
ya,t given by Corollary 6 let

L =

√

det(QᵀQ)
∏

w∈M(r1,w + r2,w)

2r1(2
√
π)r2πk

, I1(ny) =
(2π)k/2eα(σ)−ny·σ
√

det
(

H(σ)
)

, σ := σ(nya,t).

Then the following inequalities hold.

σ1(nya,t) ≥ 0.51,

∫

x∈ER

(2t‖ax‖2
n

− 1
)

e−t ‖ax‖2 dµER
(x) > 0.007LI1(nya,t), (99)

|I2|+ |I3|+ |I4| ≤ 0.01I1. (100)

Proof. By Corollary 6, for a ∈ OL, a 6= 0,1

y1 := (ya,t)1 = log(t) + 2
n
log |NormL/Q(a)| ≥ log(t) = Ψ(0.51 + r2

2n
). (101)

Applying Lemma 9 to ny, since Ψ−1 is increasing we have,

σ1 = σ1(nya,t) ≥ Ψ−1(y1)−
r2
2n

≥ Ψ−1
(

Ψ(0.51 + r2
2n
)
)

− r2
2n

= 0.51, (102)

as claimed.2

We now prove inequality (99). Note that L is as in Corollary 6, except that we
used (67) to express L in terms of Q rather than Q. Letting y := ya,t, from Corollary
6 we have

∫

ER

(2t‖ax‖2
n

− 1
)

e−t ‖ax‖2 dµER

∫

ER

e−t ‖ax‖2 dµER

=

∫

T∈Rk(2(σ1 + iT1)− 1) eα(σ+iT )−ny·(σ+iT ) dT
∫

T∈Rk eα(σ+iT )−ny·(σ+iT ) dT

= 2σ1 − 1 +
2i
∫

Rk T1 e
α(σ+iT )−ny·(σ+iT ) dT

∫

Rk eα(σ+iT )−ny·(σ+iT ) dT
. (103)

The numerator in this last quotient is bounded by Lemma 25. As k ≤ k2 ≤Mk2 ≤3

10−4m by (98), we have4

(

1 +
2.31

m

)k−1

<
((

1 +
2.31

m

)m)k/m

< e2.31/10
4

< 1.0003. (104)

Now Lemma 25 and (98) yield

2

∫

T∈Rk

∣

∣T1e
α(σ+iT )−ny·(σ+iT )

∣

∣dT ≤ 2.361 σ1I1(ny)

100
. (105)

Next we estimate the denominator in (103). By (57) and (56) we have5

1

L

∫

ER

e−t ‖ax‖2 dµER
=

∫

Rk

eα(σ+iT )−ny·(σ+iT ) dT = I1 + I2 − I3 + I4, (106)

where Ij := Ij(ny) and ∆ in (86) and (87) is defined using6

D :=
m1/12

kM1/4
. (107)
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The above value of D is chosen so that D4k4Mm−1/3 = 1 in Lemma 24. Thus,1

|I4| ≤
M

(

5
3
M + 3

2
(e− 1)

)

m
I1 ≤

M2(5
3
+ 3

2
(e− 1))

m
I1 <

4.3

1000
I1, (108)

where the last step used (98).2

One easily checks that m > 4, M ≥ 1 and k ≥ 1 imply D < m1/3/
√
2, as required3

in Lemma 21. Thus,4

|I3| ≤
3.67k

√

(

M
k

)

√
m

1√
mD6

I1 =
3.67k

√

(

M
k

)

√
m

k6M3/2

m
I1 ≤

3.67

104
I1, (109)

where the last step used (98) and Ω ≥ 1. Similarly, using (88) and (104),5

|I2| ≤
( 1.0003

1078
√
m

+
41.43

104

)

I1 <
4.2

1000
I1. (110)

Combining the last three bounds we obtain the inequality (100). From (106),6

1

L

∫

ER

e−t ‖ax‖2 dµER
=

∫

Rk

eα(σ+iT )−ny·(σ+iT ) dT ≥ 0.99I1. (111)

Since σ1 ≥ 0.51 by (102),

2σ1−1+
2i
∫

Rk T1 e
α(σ+iT )−ny·(σ+iT ) dT

∫

Rk eα(σ+iT )−ny·(σ+iT ) dT
≥ 2σ1−1− 0.02361σ1

0.99
> 1.976σ1−1 > 0.0078.

Now (103) and (111) conclude the proof of (99). �7

We are now ready to prove our main result.8

Theorem 27. Suppose E ⊂ O∗
L is a subgroup of the units of the number field L

which is (M,Ω)-dispersed in the sense of Definition 13. Let k := 1 + rankZ(O∗
L/E),

(

M
k

)

:= M !
k!(M−k)!

, let ε1, ..., εj be independent elements of E, where j := rankZ(E),

and suppose m in Definition 13 satisfies

m ≥ N0 = N0(M,Ω, k) := max
(

102k6M3/2, 104k2Ω
(

M
k

)

, 103M2
)

.

Then9

‖ε1 ∧ · · · ∧ εj‖1 ≥ ‖ε1 ∧ · · · ∧ εj‖2 ≥ 1.1[L:Q], (112)

where the L1-norm was defined in (4).10

Theorem 1 in §1 follows immediately from j < [L : Q] and Remark 14.11

Proof. Note that N0 is as in Lemma 26 and that12

‖ε1 ∧ · · · ∧ εj‖2 = µER
(ER/E) ≥

µER
(ER/E)

|Etor|
. (113)

Take t := exp
(

Ψ(0.51+ r2
2n
)
)

as in Lemma 26. In the Basic Inequality (17) take a :=
OL, so that the sum there includes only nonzero a ∈ OL (modulo E). By Lemma
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26, each integral in the sum is positive. Retaining only the term corresponding to
a = 1 ∈ OL we have, again by Lemma 26,

µER
(ER/E)

|Etor|
> 0.007

2k/2
√

det(QᵀQ)
∏

w∈M(r1,w + r2,w)
√

det
(

H(σ)
)

πk/2

(2/
√
π)r2eα(σ)−ny·σ

2n
(114)

where y := y1,t and σ := σ(ny). Corollary 6 applied to a = 1 gives1

y = (log(t), 0, 0, . . . , 0) = (Ψ(0.51 + r2
2n
), 0, . . . , 0). (115)

We need an upper bound for det
(

H(σ)
)

in (114). In view of (71), we look for an

upper bound for α′′
κw

(

Sw(σ)
)

. Note that for 0 ≤ κ ≤ 1 and x > 0,

α′′
κ(x) := κΨ′(x) + (1− κ)Ψ′(x+ 1

2
) < κΨ′(x) + (1− κ)Ψ′(x) = Ψ′(x),

since Ψ′(x) is decreasing for x > 0. Also, σ1 ≥ 0.51 by (102), so2

−2 < Ψ(0.51) ≤ y1 = Ψ(0.51 + r2
2n
) ≤ Ψ(0.76) < −1. (116)

From Lemma 11 we have

Sw(σ) ≥
1

(n− 1) log(2σ1 +
1
2
)− ny1

≥ 1

n(log(3σ1) + 2)
>

1

n log(23σ1)
.

Estimating the series by an integral, Ψ′(x) =
∑∞

k=0
1

(k+x)2
< 1

x
+ 1

x2 , yields

α′′
κw

(

Sw(σ)
)

< Ψ′(Sw(σ)
)

<
1

Sw(σ)
+

1
(

Sw(σ)
)2 < 2n2 log2(23σ1).

From det(QᵀQ) =
∑

η∈M[k] det
2(Qη), r1,w + r2,w ≥ mw/2, (68) and from (71),

2k/2
√

det(QᵀQ)
∏

w∈M(r1,w + r2,w)
√

det
(

H(σ)
)

πk/2

≥
( 1√

2π n log(23σ1)

)k

≥
( 1√

2π n log(23σ1)

)(n/100)2/15

, (117)

where the last inequality used (98) in the form n ≥ m ≥ 100k6M3/2 ≥ 100k6k3/2.3

We now bound the term eα(σ)−ny·σ in (114) from below. Using the lower bound4

for α(σ) in Lemma 10, we have5

α(σ)− ny · σ ≥ n log Γ
(

σ1 +
r2
2n

)

− nσ1y1. (118)

The critical points of g(r) := log Γ
(

r + r2
2n

)

− ry1 occur where Ψ
(

r + r2
2n

)

= y1 :=
Ψ(0.51+ r2

2n
). But Ψ: (0,∞) → R is injective, so r = 0.51 is the only critical point of

g on (− r2
2n
,∞), and it is a local minimum. On checking the behavior has r → − r2

2n
+

and as r → ∞, one finds that the minimum of g for r ∈ (− r2
2n
,∞) occurs at r = 0.51.

Using (118) we obtain

α(σ)−ny · σ ≥ n
(

log Γ
(

σ1+
r2
2n

)

− σ1y1
)

≥ n
(

log Γ
(

0.51+ r2
2n

)

− 0.51Ψ(0.51+ r2
2n
)
)

.

Note that 0 ≤ r2
2n

≤ 1
4
, Ψ(r) < −1 for 0 < r < 0.76, and Ψ′(r) > 0 for r > 0. Hence

x 7→ log Γ(0.51 + x)− 0.51Ψ(0.51 + x) + x log(4/π)
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is decreasing for 0 ≤ x ≤ 1
4
. We conclude that

α(σ)− ny · σ + r2 log(2/
√
π)− n log(2)

≥ n
(

log Γ(0.76)− 0.51Ψ(0.76) + 0.25 log(4/π)− log(2)
)

> n/10. (119)

Recall that by Lemma 26, we have σ1 ≥ 0.51. We now distinguish two cases
according to how large σ1 is. If 0.51 ≤ σ1 < 5, then log(23σ1

√
2π) < 6. Combining

this with (114), (117), and (119), and using 0.1− log(1.1) > 0.004 we obtain

µER
(ER/E) ≥ 1.1n exp

(

0.004n+ log(0.007)− (n/100)2/15(log(n) + 6)
)

> 1.1n,

since n ≥ #AL ≥ m ≥ 104.1

We now turn to the remaining case, i.e., σ1 ≥ 5. Here we can be much coarser
and use log(23σ1) ≤ σ1 in (117) and Γ(σ1 +

r2
2n
) ≥ 24 in (118). Since −nσ1y1 > nσ1

by (116), we obtain from (114)

µER
(ER/E) ≥ 12n exp(nσ1 + log(0.007)− (n/100)2/15(log(nσ1) + log

√
2π)) > 12n.

�2

We note that the proof shows that the 1.1n appearing in Theorem 27 can be
replaced by exp

(

nf(r2/(2n))
)

, where r2 is the number of complex places of L and

f(x) := log Γ(0.51 + x)− 0.51Ψ(0.51 + x) + x log(4/π)− log(2).

In particular, if L is totally real, we can replace 1.1n by 2.3n. After adjusting N0,3

we can also replace 0.51 above by ε+ 1/2 for any ε > 0.4

Finally, we prove that every element of
∧rL−1 LOG(O∗

L) is represented by a pure5

wedge, as claimed in the Introduction.6

Lemma 28. Suppose M is a Z-lattice in Rn of rank n ≥ 1. Then every element of7

w ∈
∧n−1M has the form ω = dε1 ∧ ε2 ∧ · · · ∧ εn−1 for some integer d and some8

basis {ε1, . . . , εn} of M as a Z-module.9

Proof. We may clearly assume ω 6= 0. Define the homomorphism ∧ω : M →
∧nM10

by ∧ω(m) := ω ∧ m. As
∧nM ∼= Z, M/ ker(∧ω) is torsion-free and so ker(∧ω) is11

a direct summand of M of rank n − 1. Let ε1, ..., εn be a Z-basis of M such that12

ε1, ..., εn−1 is a Z-basis of ker(∧ω), let η := ε1∧· · ·∧εn−1 ∈
∧n−1M , and define d ∈ Z13

by ω ∧ εn = dη ∧ εn. Notice that η ∧ εi = 0 = ω ∧ εi for 1 ≤ i ≤ n− 1.14

For m ∈M , write m =
∑n

i=1 aiεi with ai ∈ Z. Then

ω ∧m = ω ∧
n

∑

i=1

aiεi = anω ∧ εn = andη ∧ εn = dη ∧
n

∑

i=1

aiεi = dη ∧m.

As the ∧-pairing of
∧n−1M withM is non-degenerate, ω = dη = dε1∧· · ·∧εn−1. �15
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7. Appendix by Fernando Rodriguez Villegas1

Some remarks on Lehmer’s conjecture2

7.1. The logarithmic Mahler measure of a non-zero Laurent polynomial P ∈3

C[x±1
1 , . . . , x±1

n ] is defined as4

m(P ) =

∫ 1

0

· · ·
∫ 1

0

log
∣

∣P (e2πiθ1 , . . . , e2πiθn)
∣

∣ dθ1 · · · dθn (120)

and its Mahler measure as M(P ) = em(P ), the geometric mean of |P | on the torus

T n =
{

(z1, . . . , zn) ∈ Cn
∣

∣ |z1| = . . . = |zn| = 1
}

.

When n = 1 Jensen’s formula gives the identity5

M(P ) = |a0|
∏

|αν |>1

|αν | , (121)

where P (x) = a0
∏d

ν=1(x − αν), from which we clearly obtain that M(P ) ≥ 16

if P ∈ Z[x]. By a theorem of Kronecker if M(P ) = 1 for P ∈ Z[x] then P is7

cyclotomic, i.e., P is monic and its roots are either 0 or roots of unity.8

In the early 1930’s Lehmer famously asked whether there is an absolute lower9

bound for M(P ) when P ∈ Z[x] and M(P ) > 1 [15] [23]. As we recall below,10

Lehmer’s conjecture can be reformulated as a universal lower bound for the L1-11

norm of the logarithmic embedding of any (non-torsion) algebraic unit [26, p. 87].12

In 1997 Bertrand [5] proposed as a higher-rank version of Lehmer’s conjecture that13

the co-volume under the logarithmic embedding of any rank-` subgroup E ⊂ O∗
F of14

the units of a number field F might be bounded below by some c` > 0, independent15

of E and F (` ≥ 2). This was proved in 1999 by Amoroso and David [2] for ` ≥ 3.16

Here we refine Bertrand’s conjecture by proposing lower bounds that increase17

exponentially with the rank `. We also consider m(P ) for polynomials P in several18

variables and consider possible generalizations to K-groups.19

7.2. We start with some general observations about m(P ). First of all, the fact20

that the integral in (120) is finite for all non-zero P does need a proof. Here is a21

sketch. Using Jensen’s formula we find, as in (121) that22

m(P ) = m(a0) +
1

(2πi)n

d
∑

ν=1

∫

Tn−1

log+ |αν(y)|
dy

y
, (122)

where y = (y1, · · · , yn−1), dy/y = dy1/y1 · · · dyn−1/yn−1, log
+(x) = max{log |x|, 0},23

and a0(y), αv(y), d are the leading coefficient, roots and degree, respectively, of P24

viewed as a polynomial in xn. The αν ’s are algebraic functions of y ∈ Cn−1, contin-25

uous and piecewise smooth, except at those y’s where a0(y) vanishes (where some26

will go off to infinity).27

We can apply the above procedure to any variable xn on the torus T n. It is not28

hard to see that we may change coordinates in such a way that a0(y) is actually29

constant, completing the proof by induction on n.30

This last remark can be expanded. Let ∆ be the Newton polytope of P ; i.e.,31

the convex hull of the exponents m ∈ Zn of monomials xm = xm1
1 · · · xmn

n such that32
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if P =
∑

m∈Zn cmx
m , then cm 6= 0. We define a face τ of ∆ as the non-empty1

intersection of ∆ with a half-space in Rn. Chose a parameterization φ : Rk −→ Rn
2

of the affine subspace of smallest dimension containing τ ; k is the dimension of the3

face τ . Define Pτ =
∑

m∈Zk cφ(m)x
m , a polynomial whose own Newton polytope4

is φ−1(τ). We call Pτ the face polynomial associated to the face τ . It depends on5

a choice of φ but note that by changing variables in the integral m(Pτ ) is actually6

independent of that choice.7

It is not hard to see that for any facet (co-dimension 1 face) τ ⊂ ∆ we can choose8

φ and system of coordinates in T n so that, in the notation of (122), a0(y) = Pτ . By9

(122) and induction on n we conclude [22] that10

m(Pτ ) ≤ m(P ), for all faces τ ⊂ ∆ . (123)

In particular, m(P ) ≥ 0 for 0 6= P ∈ Z[x1, x
−1
1 , . . . , xn, x

−1
n ]. Also, since clearly11

m(PQ) = m(P ) +m(Q), we have that12

m(Q) ≤ m(P ), if Q | P, 0 6= P,Q ∈ Z[x1, x
−1
1 , . . . , xn, x

−1
n ] . (124)

Though Lehmer’s conjecture is about polynomials in one variable, polynomials in13

more variables are also relevant due to the following result [6]. For any 0 6= P ∈14

Z[x1, x
−1
1 , . . . , xn, x

−1
n ] and 0 6= (a1, . . . , an) ∈ Zn we have15

lim
k→∞

m(Qk) = m(P ) where Qk(t) = P (ta1k, . . . , tank) (125)

That is, there are one variable polynomials Q withm(Q) as close tom(P ) as desired.16

(We should note that (125) is not an immediate consequence of general results about17

integration but requires a somewhat delicate analysis.)18

7.3. Let us go back to polynomials in one variable. If we want to find polynomials19

P ∈ Z[x] with positive but small m(P ) (namely m(P ) < log(2) [26, p. 87]), we20

may as well restrict ourselves to minimal polynomials of algebraic units. Let F be21

a number field of degree n. Let I be the set of embeddings σ : F −→ C and V the22

real vector space of formal linear combinations
∑

σ∈I ασ[σ], where ασ ∈ R. We have23

the decomposition V = V + ⊕ V − , where V ± is the subspace of V where complex24

conjugation acts like ±1. We let n± = dimR V
± (in terms of the standard notation25

n+ = r1 + r2 and n− = r2).26

By Dirichlet’s theorem the image of the unit group O∗
F by the log map27

l1 : O∗
F −→ V, ε 7→

∑

σ∈I
log |εσ| [σ] (126)

is a discrete subgroup L1 ⊂ V of rank r = n+ − 1.28

On V we define the L1-norm
∥

∥

∑

σ∈I ασ[σ]
∥

∥

1
=

∑

σ∈I |ασ| and we let

µ1,1(F ) = min
l∈L1\{0}

||l||1

(the reason for this indexing will become clear shortly). For any unit ε ∈ O∗
F we have

|NF/Q(ε)| = 1, hence
∑

σ∈I log |εσ| = 0. Thus, if P ∈ Z[x] is the (monic) minimal
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polynomial of ε, we have

‖l1(ε)‖1 =
2[F : Q]

[Q(ε) : Q]
m(P ) .

This simple observation allows us to reformulate Lehmer’s conjecture as follows.1

Conjecture. (Lehmer) There exists an absolute constant δ1 > 0 such that2

µ1,1(F ) ≥ δ1, for all number fields F with r ≥ 1. (127)

The use of the L1-norm is important in Lehmer’s conjecture, as Siegel [19] showed3

that there is no positive universal lower bound for the L2-norm of l1(ε). Indeed,4

if p > 2 is a prime and ε is a root of the (irreducible, non cyclotomic) polynomial5

xp − x+ 1, Siegel proved that
(
∑

σ∈I log
2 |σ(ε)|

)1/2 ≤
√
2 log(p)/

√
p for F = Q(ε).6

7.4. Bertrand suggested a generalization of Lehmer’s conjecture by considering a7

lower bound on the k-dimensional co-volume Vk(E) of the lattice LOG(E), where8

E ⊂ O∗
F is any subgroup of Z-rank k and LOG is the traditional logarithmic em-9

bedding (2). He suggested the existence of a ck > 0 depending only on k such that10

Vk(E) ≥ ck. Since Siegel’s examples show this inequality cannot hold for k = 1 (Eu-11

clidean length is not the right norm), it is somewhat surprising that this measure of12

size might work for k ≥ 2. Nonetheless, Amorososo and David [2] proved Bertrand’s13

conjecture for k ≥ 3 in 1999. A simpler proof was given by Amoroso and Viada in14

2012 [4].15

7.5. If Bertrand’s inequality needs a switch to the L1-norm when the rank k = 1,16

at the other extreme (i.e., when k = rank(O∗
F )) it needs to be strengthened as17

Zimmert’s [28] lower bounds for regulators grow exponentially with the rank of18

O∗
F . Thus, it makes sense to include Lehmer’s conjecture by using an L1-norm and19

including exponential growth with the rank of E.20

Let V be a vector space over R of dimension n and L ⊂ V a discrete subgroup21

of rank r ≥ 1. A choice of basis v1, . . . , vn for V determines L1-norms on ΛkV for22

k = 1, . . . , n by23

∥

∥

∥

∑

1≤j1<···<jk≤n

aj1,...,jkvj1 ∧ · · · ∧ vjk
∥

∥

∥

1
=

∑

1≤j1<···<jk≤n

|aj1,...,jk | . (128)

If `i ∈ V and ω = `1 ∧ · · · ∧ `k is a pure wedge, let A be the n × k integral matrix24

whose i-th column consists of the coordinates of `i in the basis v1, . . . , vn. Then it is25

easily seen that
∥

∥`1 ∧ · · · ∧ `k
∥

∥

1
=

∑

A′ |detA′| , where A′ runs over all k× k minors26

of A. For each 1 ≤ k ≤ r we define (with respect to the chosen basis)27

µk(L) = min
ω∈ΛkL
ω 6=0

{

‖ω‖1
}

. (129)

Returning to the number field situation of the previous section we define the
invariants

µ1,k(F ) = µk(L1) ,
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where, as before, L1 = l1(O∗
F ) is the image of the units of F under the log map1

in (126). A version of Bertrand’s conjecture that includes Lehmer’s conjecture and2

Zimmert’s theorem runs as follows.3

Conjecture. There exist absolute constants c0 > 0 and c1 > 1 such that for all4

number fields F we have µ1,k(F ) ≥ c0c
k
1 for 1 ≤ k ≤ Z−rank(O∗

F ).5

Admittedly, the evidence in favor of this conjecture (see §1) is for the case where6

only pure wedges ω = l1(ε1)∧ · · · ∧ l1(εk) of logarithms of units are allowed in (129),7

but allowing any non-zero ω ∈ ΛkL1 seems more natural.8

Since the L2-norm of v1 ∧ · · · ∧ vk coincides with the co-volume of the lattice9

generated by the vi, the weaker inequality (without exponential growth in the rank)10

‖ω‖1 ≥ ck for pure k-wedges is a consequence of Bertrand’s conjecture and of the11

general inequality ‖x‖1 ≥ ‖x‖2 relating L1- and L2-norms.12

7.6. We may carry these ideas a little further still. Borel proved (see [7, 10]),13

generalizing Dirichlet’s result for units, that for each j > 1 there is a regulator map14

regj15

lj : K2j−1(F ) −→ V, ξ 7→
∑

σ∈I
regj(ξ

σ) [σ] (130)

whose image is a discrete subgroup Lj of V ±, with ± = (−1)j−1, of rank n± and16

covolume related to the value of the zeta function ζF of F at s = j. Here K2j−1(F )17

are the K groups defined by Quillen.18

We now define for 1 ≤ k ≤ n±,

µj,k(F ) = µk(Lj)

and we may ask: what is the nature of these invariants, how do they depend on the19

field F? Does the analogue of Lehmer’s conjecture hold? Apart from their formal20

analogy with Lehmer’s question, answers to such questions can be quite useful in21

practice as we now illustrate.22

7.7. For general j, not much is known about the groups K2j−1(F ) or the map regj.23

For j = 2, however, things can be made quite explicit [27] (and of course j = 124

corresponds to the case of units). Indeed, up to torsion, K3(F ) is isomorphic to the25

Bloch group B(F ), defined by generators and relations as follows.26

For any field F define

A(F ) =
{

∑

i

ni[zi] ∈ Z[F ] |
∑

i

ni(zi ∧ (1− zi)) = 0
}

,

where the corresponding term in the sum is omitted if zi = 0, 1 and

C(F ) =
{

[x] + [y] +
[ 1− x

1− xy

]

+ [1− xy] +
[ 1− y

1− xy

]

∣

∣ x, y ∈ F, xy 6= 1

}

.

It is not hard to check that C(F ) ⊂ A(F ). Finally, let B(F ) = A(F )/C(F ).27

We recall the definition of the Bloch–Wigner dilogarithm. Starting with the usual
dilogarithm Li2(z) =

∑∞
n=1

zn

n2 , one defines for |z| < 1,

D(z) = Im(Li2(z)) + arg(1− z) log |z|
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and checks that it extends to a real analytic function on C \ {0, 1}, continuous on1

C. See [27] for an account of its many wonderful properties. It is obvious that2

D(z̄) = −D(z) . (131)

The 5-term relation satisfied by D guarantees that, extended by linearity to A(F ),3

it induces a well defined function on B(C) (still denoted by D).4

For j = 2, (130) can be formulated as follows

l2 : B(F ) −→ V, ξ 7→
∑

σ∈I
D(ξσ) [σ]

(as (131) makes it clear that the image L2 lies in V −) whose image L2 is a discrete5

subgroup of rank n−.6

An a priori lower bound for ||l2(ξ)||1 even for the simplest case where L2 is of7

rank 1 (namely, for a field with only one complex embedding) would be quite useful.8

For example, in [9] we find that an identity between the Mahler measure of certain9

two-variable polynomials is equivalent to the following10

D(7[α] + [α2]− 3[α3] + [−α4]) = 0, α = (−3 +
√
−7)/4 . (132)

This was proved by Zagier by showing that it is a consequence of series of 5-term11

relations. Such calculations, however, can be quite hard and at present there is no12

known algorithm that is guaranteed to exhibit a given element of A(F ) as lying in13

C(F ). Clearly if we knew a reasonable lower bound for the possible non-zero values14

of |D(ξ)| for ξ ∈ B(Q(
√
−7)) a simple numerical verification would be enough to15

prove (132).16

Similarly, many identities between the Mahler measure of certain two-variable
polynomials and ζF (2) for a corresponding number field F , which by Borel’s theorem
are known up to an unspecified rational number, could be proved by a numerical
check. For example, as outlined in [9],

m(x2 − 2xy − 2x+ 1− y + y2) = s
17283/2

26π7
ζF (2) ,

with s ∈ Q∗, where F is the splitting field x4− 2x3− 2x+1, of discriminant −1728.17

However, though numerically s appears to be equal to 1 we cannot prove this at18

the moment. Again, a reasonable lower bound on |D(ξ)| for non-torsion elements19

ξ ∈ B(F ′) for number fields F ′ would allow us to conclude that s = 1 by checking20

it numerically to high enough precision as both sides of the equality are of the form21

|D(ξ)| for appropriate ξ’s (see below for the right hand side).22

There is also some evidence that µ2,1(F ) might be universally bounded below,23

at least for fields with one complex embedding. Indeed, for a such a field [27] one24

can construct a hyperbolic three dimensional manifold M by taking the quotient25

of hyperbolic space by a torsion-free subgroup of the group of units of norm 1 in a26

quaternion algebra over F ramified at all its real places. Its associated Bloch group27

element ξ(M), obtained from a triangulation of M into ideal tetrahedra, satisfies28

D(ξ(M)) = vol(M). On the other hand, the volume of hyperbolic 3-manifolds29

is known to be universally bounded below. The question becomes then, that of30

obtaining an upper bound for the index in B(F ) of the subgroup generated by all31
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such ξ(M). This index is likely to be rather small; in fact, if we accept a precise1

form of Lichtembaum’s conjecture, it should be essentially the order of K2(OF ),2

an analogue of a class group. Unfortunately, there is no known upper bound for3

|K2(OF )| in terms of, say, the degree and discriminant of F .4

Finally, to a hyperbolic 3-manifold M with one cusp one may associate [11] a two5

variable polynomial A(x, y) ∈ Z[x, y], called the A-polynomial of M . Its zero locus6

parameterizes deformations of the complete hyperbolic structure of M .7

It is known that

m(Aτ ) = 0

for every face polynomial of A and that A is reciprocal, i.e. A(1/x, 1/y) = xaybA(x, y)8

for some a, b ∈ Z. It is interesting that these two properties, which have a topo-9

logical and K-theoretic origin, are, for A irreducible, precisely the known necessary10

conditions for a polynomial in Z[x, y] to have small Mahler measure (the first, an11

analogue of being the minimal polynomial of an algebraic unit, because of (123); the12

second becausem(P ) is known to be universally bounded below for P non-reciprocal13

[21]).14

Though the whole picture is still not completely clear yet one can prove for many
M ’s identities of the form

2πm(A) = ‖D(ξ(M))‖1 ,
where ξ(M) is the Bloch group element associated toM . This suggests a direct link15

between Lehmer’s conjecture and the size of the invariants µ2,1.16
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[14] J. - B. Hiriart-Urruty and C. Lemaréchal, “Fundamentals of Convex Analysis”, Springer,3

Berlin, 2001.4

[15] D.H. Lehmer, Factorization of certain cyclotomic functions, Ann. Math. (2) 34 (1933), 461–5

479.6

[16] N. Nielsen, “Die Gammafunktion”, Chelsea, New York, 1965 (reprint of 1906 edition).7

[17] M. Pohst, Eine Regulatorabschätzung, Abh. Math. Sem. Univ. Hamburg 47 (1978), 95–106.8

[18] A. Schinzel, On the product of the conjugates outside the unit circle of an algebraic number,9

Acta Arith. 24 (1973), 385–399.10

[19] C. L. Siegel, Abschätzung von Einheiten, Nachr. Akad. Wiss. Göttingen (1969), 71–86.11

[20] B. Simon,“Convexity: an Analytic Viewpoint”, Cambridge U. Press, Cambridge, 2011.12

[21] C.J. Smyth, On the product of the conjugates outside the unit circle of an algebraic integer,13

Bull. London Math. Soc. 3 (1971), 169–175.14

[22] C.J. Smyth, On measures of polynomials in several variables, Bull. Austral. Math. Soc. 2315

(1981), 49–63.16

[23] C. J. Smyth, Mahler measure of one-variable polynomials: a survey, In: “Conference Proceed-17

ings, University of Bristol, 3-7 April 2006”, J. McKee and C. Smyth (eds.), LMS Lecture Note18

Series 352, Cambridge U. Press, Cambridge, 2008, 322-349.19

[24] J. Sundstrom, “Lower Bounds for Generalized Regulators”, Thesis (Ph.D.)–University of20

Pennsylvania (2016), 84 pp. ISBN: 978-1339-82732-2. Available at ProQuest LLC.21

[25] J. Sundstrom, Lower bounds for generalized unit regulators, J. Théor. Nombres Bordeaux 3022
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