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Abstract

Motivated by recent applications requiring differential privacy over adaptive
streams, we investigate optimal instantiations of the matrix mechanism [1] in
this setting. We prove fundamental theoretical results on the applicability of ma-
trix factorizations to adaptive streams, and provide a parameter-free fixed-point
algorithm for computing optimal factorizations. We instantiate this framework
with respect to concrete matrices which arise naturally in machine learning, and
train user-level differentially private models with the resulting optimal mechanisms,
yielding significant improvements in a notable problem in federated learning with
user-level differential privacy.

1 Introduction and background

An important setting for private data analysis is that of streaming inputs and outputs—often dubbed
continual release. Hiding individual information is especially challenging in such settings since the
arrival of one person’s data may affect all future outputs of the system. A significant line of work
formalizes differential privacy (DP, [2]) under continual release and builds algorithms that meet the
resulting definition (e.g. [3–8]). One prominent application of private, continual-release algorithms is
to adapt iterative optimization algorithms such as SGD so that their outputs satisfy DP [7, 6, 9].

The problem of privately computing cumulative sums plays a key role in both theory and applications.
Given a set of input vectors (e.g., gradients) g1, . . . ,gn with gi 2 Rd, the task is to approximate
the sequence of prefix sums (g1,g1 + g2, . . . ,g1 + · · · + gn) while satisfying DP. Solutions to
this task form the core building block in DP algorithms for online PCA [10], online marginal
estimation [4, 3, 11], online top-k selection [12], and training ML models [13, 6, 14], among others.
For example, a common approach to private optimization is to add noise to the gradient estimates in
SGD [15–17]. Kairouz et al. [6] make the observation that the key DP primitive in such contexts is not
the independent estimation of individual gradients, but rather the accurate estimation of cumulative
sums of gradients. Lowering the error of the DP algorithm’s approximation to the cumulative sum
translates directly to improved optimization.1

1SGD with constant learning rate ⌘ serves as an intuitive illustration: performing SGD on parameters ✓
starting from 0, the t-th iterate is simply ✓t = �⌘

Pt
i=1 gi, where gi is the gradient computed on step i. That

is, the learned model parameters ✓t are exactly a scaled version of the cumulative sum of gradients so far. It is
the total error in these cumulative sums that matters most, not the error in the private estimates of each individual
gi. See Theorem 5.1 of [6] for a formal statement.
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The structure of continual-release algorithms imposes two major constraints: first, the algorithm must
be computable online—that is, we must produce the output at a given time using only prior inputs—
and second, privacy analysis must account for adaptively defined inputs—that is, the guarantee should
hold even against an adversary that selects inputs based on all previous outputs of the system. In
learning applications, the privacy analysis must be adaptive even when the stream or raw training
examples is fixed in advance, because the points at which we compute gradients depend adaptively
on the output of the mechanism so far [14].

In this paper, we revisit the design of continual-release algorithms for cumulative sums and related
problems. We give new tools for analyzing privacy in the adaptive setting, new methods to design
optimal (within a class) algorithms for summation-style problems, and applications to central prob-
lems in private machine learning. Although we focus on learning as the primary application of
our algorithmic and analytic tools, our techniques apply to a wide range of private computations
over streaming data such as online monitoring [18, 19], tracking distributional changes over data
streams [20], and detection of emerging trends [21].

Prior Approaches Prior approaches to DP approximation of cumulative sums fall broadly into two
categories. First, in streaming settings, existing work is generally based on the binary-tree estimator
[4, 3]. This estimator embeds the values to be summed as leaf nodes in a complete binary tree T , with
internal nodes representing the sum of all leaves below them. The mechanism views the entire tree
as the object to be privately released (ensuring privacy by adding independent noise to each node).
An important refinement of Honaker [22] leverages the multiple independent noisy observations
of correlated values to produce lower-variance estimates of the prefix sums. Kairouz et al. [6]
apply Honaker’s online variant, dubbed Honaker Online, to the follow-the-regularized-leader
approach to optimization [23–25]. The tree structure of these mechanisms allows for privacy analysis
in the adaptive setting, as observed by [14] and formalized by [8].

The second, more general approach to cumulative sums has previously only been applied in offline
settings, in which the input is received and outputs are produced as a single batch. The idea is to
view cumulative sums as a special case of linear query release (since each output is a pre-specified
linear combination of the inputs). In the offline setting, the tree-based approaches can be viewed as
instantiations of this widely-studied factorization framework (as in, for example, [26, 1, 27–29]). To
introduce the general matrix factorization approach, consider the task of computing a private estimate
of a linear mapping G 7! AG defined by matrix A 2 Rn⇥n (assumed to be full-rank throughout this
work). Given any factorization A = BC, a DP estimate of AG can be computed as

dAG = B (CG+ Z) (1)

where Z represents a sample from a noise distribution D. Choosing D in a way that appropriately
depends on the sensitivity of the map G 7! CG, one can prove privacy of the noised vector CG+Z,
and hence of the mapping G 7! dAG. For example, in the case of cumulative sums, the matrix A
is the lower-triangular matrix S with 1’s on and below the diagonal; the binary tree mechanisms
correspond to a matrix CT with one row per tree node (see Appendix A and Appendix C respectively).
A typical choice for the noise Z is to select it from a spherical Gaussian distribution.

A focus of existing work (e.g. [1, 27–29]) is to choose the factorization BC to optimize some measure
of overall accuracy (such as total mean squared error) subject to a privacy constraint. However (with
the exception of the independent, parallel work of Fichtenberger et al. [30]2), streaming constraints
and adaptive privacy were not explicitly considered. In the streaming setting, one naturally requires
the i

th element (row) of AG to be computable using only the first i elements (rows) of G. This
corresponds to requiring that the linear operator of interest A has a lower-triangular structure when
represented as a matrix, a requirement that is met by all the matrices under consideration in this
work. Distributing the B in Eq. (1), we see dAG = AG+BZ. As long as AG is lower triangular,
then, any matrix mechanism can be implemented by an online algorithm, via the distribution induced
by BZ. However, this observation does not address a key problem: under what conditions is the
resulting mechanism adaptively private?

2Fichtenberger et al. [30] strive to a get an analytical optimal leading multiplicative constant for the additive
error achievable for the problem of continual observation under DP. We on the other hand focus on computation-
ally estimating the optimal matrix factorization mechanism for the problem under DP. We leave the empirical
comparison to the explicit construction in Fichtenberger et al. for future work.
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Figure 1: Left: Per-iteration squared error of three mechanisms for DP online prefix sums for
n = 512. Honaker Online and Honaker Full correspond to DP binary tree aggregation with
the streaming and full Honaker estimators (respectively), while Opt Prefix Sum corresponds to
the optimal matrix factorization. The tree-based mechanisms suffer from variability in the error due
to the binary tree structure. Right: Squared error in the DP estimates of the iterates of momentum
SGD for four mechanisms. Momentum is treated as post-processing of cumulative sums for the first
3 mechanisms, while Optimal M = B C uses the optimal factorization of the momentum matrix
(see Section 4).

The applications to optimization raise their own set of critical questions: How can we efficiently
compute such factorizations? Which linear operators are the appropriate ones to factorize in the case
of SGD? Finally, can these factorizations actually produce improved privacy/accuracy tradeoffs for
real-world machine learning tasks?

Contributions We provide a deeper understanding of the matrix mechanism in the adaptive stream-
ing setting. We show that if Z in Eq. (1) is drawn from a Gaussian distribution of appropriately
computed variance, then the resulting mechanism is differentially private in the adaptive streaming
setting, independent of the structure of B and C. We make an explicit connection here with the
easier-to-see privacy under adaptive streams of lower-triangular factorizations. Furthermore, we
show that this property is specific to the Gaussian mechanism, and does not extend to arbitrary noise
distributions.

For natural notions of error and adjacency specified in Section 3, we present a fast and parameter-free
fixed-point algorithm for computing optimal factorizations and prove a local convergence guarantee
for this algorithm, leveraging representations of optimal factorizations which are to our knowledge
novel in the literature on the matrix mechanism. The optimal computed factorizations show a
significant improvement over existing state-of-the-art private streaming prefix sum methods [22],
additionally removing the artifacts of the binary tree data structure (see Fig. 1). Furthermore,
our fixed-point algorithm can be two orders of magnitude more computationally efficient than
existing optimization methods for the matrix mechanism [27] (though we did not explicitly compare
to McKenna et al. [28]), and provides a direct bound on the duality gap which allows precise stopping
criteria.

Going beyond prefix sums (which correspond to constant learning rate SGD as noted above), we
construct matrix mechanisms that directly encode more sophisticated optimization algorithms as
linear operators on gradients: in particular, arbitrary combinations of (data independent) learning rate
schedules and momentum.

We compute optimal factorizations of these general matrices via fixed-point iterations, and use
them to train user-level differentially private language models on a canonical federated learning
benchmark, showing that these factorizations significantly improve the privacy/utility curve (in
fact, closing 2/3rds of the gap to non-private training left by the previous state-of-the-art for single
pass algorithms). For prefix sums, we show computationally-efficient structured matrices provide
high-fidelity approximations to the optimal matrices, allowing implementations to scale essentially
independent of the number of iterations n.

Notation and conventions Matrices will be denoted by bolded capital letters (e.g. A, B), with
some symbols reserved for special matrices, notably S (prefix sums) and M (momentum, defined
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in Section 4 and illustrated in Appendix A). Vectors will be denoted by bolded lowercase letters
(e.g. x, y). For a real symmetric matrix A, the smallest and the largest eigenvalues are denoted
by �min(A) and �max(A). For a matrix A, A⇤ denotes the conjugate transpose and A† denotes
the Moore-Penrose pseudoinverse; a star as in X? indicates a matrix that is optimal in a way made
clear by context. diagpart represents the operation of taking the diagonal elements of a matrix;
diag represents embedding a vector argument on the diagonal of a matrix. Additional notation is
summarized in Appendix A.

2 Privacy for adaptive streams

In this section, we provide structural results that clarify the classes of mechanisms/algorithms for
cumulative sums and other linear computations in the continual release model [4, 3] that remain
private even when the inputs stream is defined adaptively. In the continual release model, a mechanism
receives a stream of inputs G = [g1, . . . ,gn] and produces a stream of outputs a1, ...,an, where
output ai is intended to approximate some function of the prefix g1, ...,gi and must be generated
before gi+1 is received. We specify which parts of the input can depend on a single person’s data
via a neighbor relation N on data streams. Two streams are neighbors if they differ in one person’s
data. For example, if one person’s data directly affects exactly one input in the stream (“event-level
privacy”), then we say two data streams are neighboring if they differ in exactly one element (that is,
they are at Hamming distance 1).

The original works on continual release analyzed privacy in a nonadaptive model: a mechanism M

is (", �)-differentially private [31, 32] for nonadaptive continual release if, for all pairs of adjacent
data streams G,H, the corresponding distributions on output streams M(G) and M(H) are (", �)-
indistinguishable, denoted M(G) ⇡",� M(H). That is, for all events E, we have Pr[M(G) 2
E]  e

" Pr(M(H) 2 E) + � and Pr(M(H) 2 E)  e
" Pr(M(G) 2 E) + �. (A variant of

this definition tailored to differentially private gradient descent, with a precise instantiation of the
neighborhood notion is presented in Definition J.1 in the appendix.)

In many use cases—including those arising in iterative gradient-based optimization algorithms—the
nonadaptive model is inadequate, since the inputs gi may be generated in real time as a function of
previous outputs a1, ...,ai�1. To summarize the more general, adaptive definition [14, 8], consider
an adversary that adaptively defines two input sequences G = (g1, . . . ,gn) and H = (h1, . . . ,hn).
The adversary must satisfy the promise that these sequences correspond to neighboring data sets. The
privacy game proceeds in rounds. At round t, the adversary generates gt and ht. The game accepts
these if the input streams defined so far are valid, meaning that there exist completions (g̃t+1, ..., g̃n)
and (h̃t+1, ..., h̃n) so that ((g1, ...,gt, g̃t+1, ..., g̃n), (h1, ...,ht, h̃t+1, ..., h̃n)) 2 N . For example,
in the case of event-level privacy, the game simply checks that the two streams differ in at most one
position so far.

The game is parameterized by a bit side 2 {0, 1} which is unknown to the adversary but constant
throughout the game. The game hands either gt or ht to the mechanism M, depending on side. The
mechanism’s output at is then sent to the adversary. The privacy requirement is that the adversary’s
views with side = 0 and side = 1 be (", �) indistinguishable. One can substitute other relevant
notions of indistinguishability like those from CDP [33, 34], Renyi DP [35], or Gaussian DP [36].
The mechanisms we consider generally satisfy Gaussian DP.

The nonadaptive version of the definition is weaker but easier to work with. It is therefore natural to
look for classes of mechanisms for which the two definitions are equivalent (and thus for which a
nonadaptive privacy proof implies the more general guarantee). We first observe that such a transfer
statement holds for “pure” "-DP (in which � = 0). We defer all the proofs to Appendix D.

Proposition 2.1. Every mechanism that is (", 0) nonadaptively DP in the continual release model
satisfies the adaptive version of the definition, with the same parameters.

Unfortunately, not all privacy proofs for the nonadaptive model transfer to the adaptive setting.
Indeed, we show that there are additive-noise mechanisms (which simply add noise from a pre-
defined distribution to some function of the data) that are nonadaptively (", �)-DP, but not private in
the adaptive setting (Appendix D.1).
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Adaptive privacy for Gaussian noise addition mechanisms In Theorem 2.1 we show that every
matrix mechanism with Gaussian noise addition that is (", �)-DP in the nonadaptive model is also
private in the adaptive setting:
Theorem 2.1. Let A 2 Rn⇥n be a lower-triangular full-rank query matrix, and let A = BC be any
factorization with the following property: for any two neighboring streams of vectors G ,H 2 Rn⇥d,
we have kC(G � H)kF  . Let Z ⇠ N (0,2

�
2)n⇥d with � large enough so that M(G) =

AG+BZ = B(CG+ Z) satisfies (", �)-DP (or ⇢-zCDP or µ-Gaussian DP) in the nonadaptive
continual release model. Then, M satisfies the same DP guarantee (with the same parameters) even
when the rows of the input are chosen adaptively.

To prove this we crucially use the rotational invariance of spherical Gaussian distribution, yielding
distributional equivalence of an orbit of mechanisms: those factorizations expressible as BUU⇤C
for U unitary. This observation can similarly be leveraged to show a subtly distinct fact:
Proposition 2.2. For any factorization A = BC where A is lower-triangular, there exists a
factorization A = bBbC which induces a distributionally equivalent matrix mechanism under Gaussian
noise with bB and bC lower triangular. This factorization can be explicitly computed from A = BC
via an appropriate LQ decomposition. Normalizing to all-nonnegative entries on the diagonal, this
factorization is unique.

3 Computing optimal factorizations

Once one writes down the matrix mechanism as in Eq. (1), it is natural to seek factorizations that
minimize the error dAG�AG in some metric of choice. In this section we consider the expected
squared reconstruction error of the estimate dAG, which has previously been noted as an appropriate
formulation of error for the setting of training private ML models [6, Theorem 5]. Further, for
simplicity we restrict our attention to the single-pass setting. That is, for the remainder of the paper
we will assume:
Definition 3.1. Two data matrices G and H in Rn⇥d will be considered to be neighboring if they
differ by a single row, with the `2-norm of the difference in this row at most ⇣.

Under this notion of sensitivity, one can make the estimation of any query AG (", �)-DP via
Theorem 3.1, which via Theorem 2.1 immediately extends to adaptive streams. It is worth mentioning
that while we state the analytic vairance for the Normal distribution to satisfy (", �)-DP, in practice
we arrive at the required (and tighter) variance via empirical privacy accounting methods like zero
concentrated DP (zCDP) accounting [33], or privacy loss distribution (PLD) accounting [37].
Theorem 3.1 (Adapted from [1]). Consider a query matrix A 2 Rn⇥n along with a fixed fac-
torization A = Bn⇥nCn⇥n with � = maxi2[n]

��C[:,i]

��
2
, the maximum column norm of C. Let

G 2 Rn⇥d be a fixed (non-adaptive) data matrix with each row of G having `2-norm at most ⇣ . The

algorithm that outputs B (CG+ Z) with Z ⇠ N

⇣
0, �2⇣2(2 log(1/�)+")

"2

⌘n⇥d
satisfies (", �)-DP.

In this setting, with Z ⇠ N
�
0, �2

�n⇥d following Theorem 3.1 (which ensures a fixed level of privacy
when ⇣ = 1 for an arbitrary factorization factorization A = BC) the expected reconstruction error
can be computed directly as L(B,C) [1, Proposition 9], [27, Equation 3],

�
2(C) = max

i2[1,...,n]

��C[:,i]

��2
2

and L(B,C) = �
2(C) kBk2F . (2)

As has been noted [1, 27], Eq. (2) can be manipulated to yield a convex program, for which hand-tuned
algorithms exist [27, Section 4]. Theorem 2.1 shows, for the first time, that arbitrary factorizations
found by minimizing this optimization problem can be applied in the adaptive streaming setting.

We present an alternative characterization of these optima, which reformulates the optimization
problem as a fixed-point problem. We show that simply iterating an explicit mapping converges
to this fixed point from an appropriate initialization, and observe numerically that the associated
algorithm achieves fast, global convergence.

Since the Moore-Penrose pseudoinverse yields the minimal `2-norm solution to a set of underdeter-
mined linear equations [38, Theorem 2.1.1], we note that for a fixed C term (of any dimensionality),
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the optimal B may be expressed as B?
C = AC†. Since A = BC implies A =

�
↵B
��

1
↵C
�
, for any

linear space of matrices V, we may express the optimization problem of interest as

min
C2V

L
�
AC†

,C
�
= min

C2V
�
2(C)

��AC†��2
F
= min

C2V,�2(C)=1

��AC†��2
F
. (3)

The properties of the problem Eq. (3) have been studied previously. In particular, [27, Section 3]
studied a symmetric version, transforming the problem as:

X? = argmin
X is PD,X[i,i]1,1in

tr(A⇤AX�1) (4)

which essentially reparameterizes Eq. (3) (with V = Rn) in terms of C⇤C. To recover a matrix-
mechanism factorization of A, then, one may utilize any C such that X? = C⇤C, e.g. C =

p
X?.

Proposition 2.2 can be used to construct a lower-triangular factorization if desired.

Yuan et al. [27] show: 1) Any solution X? of Eq. (4) must have diagonal entries exactly 1. 2) Any
solution X? may be taken to be strictly within the positive-definite cone, with minimal eigenvalue
bounded from below in terms of the eigenvalues of A. 3) For any full-rank A, X 7! tr(A⇤AX�1) is
strictly convex over symmetric, positive-definite matrices. Therefore the solution to Eq. (4) is unique.

By analyzing Eq. (4) directly, we derive a characterization of solutions in terms of an explicit
fixed-point problem, with a corresponding bound on the optimality gap.
Theorem 3.2. The minimizer X? of Eq. (4) is in one-to-one correspondence with the unique fixed
point of the function � : Rn

+ ! Rn
+ defined by

�(v) = diagpart

✓q
diag(v)1/2 A⇤A diag(v)1/2

◆
. (5)

Letting

X (v) = diag(v)�1/2
⇣
diag(v)1/2 A⇤A diag(v)1/2

⌘1/2
diag(v)�1/2

, (6)

for the fixed point v? of Eq. (5), that is �(v?) = v?, we have X? = X (v?), and this pair (X?
,v?)

satisfies
A⇤A = X? diag (v?)X?

. (7)

Further, for any v 2 Rn
+, the objective value of the primal problem Eq. (4) is lower-bounded by

tr
�
diag(v)(2X (v)� I)

�
, (8)

and this bound is tight for v = v?.

The sum of the elements of � represents a quantity of independent interest in quantum information,
the so-called Jozsa fidelity [39, 40], while X represents the matrix geometric mean of A⇤A and
diag(v)�1 [41, 42]. These connections give some hope that the fixed point of � can be understood in
a direct manner. We can show local, though not yet global, convergence of the iterates of � to this
fixed point.
Theorem 3.3. � defined in Eq. (5) is a local contraction around its fixed point in a suitable metric,
and hence there is a neighborhood of this fixed point in which iterates of � converge to this fixed
point. The precise norm of this contraction, and the size of the neighborhood in which convergence is
guaranteed, can both be estimated in terms of minimum and maximum eigenvalues of A.

This result can be shown by linearizing the mapping � around its fixed point and performing an
involved estimate of its Jacobian at the fixed point. As such, it is implied by Theorem E.1, which
states that the linearization of � around its fixed point is a contraction in a suitable metric, and
therefore the Banach fixed-point theorem applies.

Remark. Notably missing from quantification of the contraction is the dimension n. Indeed, the
argument is dimension-independent in a strong sense: it applies to the suitably generalized definition
of � where A is any bounded linear operator on a Hilbert space with bounded inverse.
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Algorithm 1 DP Matrix Factorization SGD
1: Inputs:
2: factorization M = BC
3: overall learning rate ⌘

4: noise level �, clipping norm ⇣

5: examples �i, i 2 {1, . . . , n}
6: ✓[0,:] := 0 2 Rd

7: Sample Z 2 Rn⇥d, Z[i,j]⇠N (0,�2) iid
8: for i in 1, . . . , n do
9: ĝ := r✓[i�1,:]

`(✓;�i)

10: G[i,:] := ĝ ·min
n

⇣
kĝk2

, 1
o

11: ✓[i,:] := �⌘
�
M[i,:]G[1:i,:] +B[i,:]Z

�

Algorithm 2 Heavy-ball momentum
1: ✓0 := 0, m0 := 0
2: for i in 1, . . . , n do
3: mi := � ·mi�1 + gi

4: ✓i := ✓i�1 � ⌘imi

Empirical performance of the fixed-point method Experimentally, iterating the mapping � is
sufficient to converge to the global optimum extremely quickly from any initial point (modulo potential
numerical issues in computing the matrix square root, discussed in Appendix E.4). Yuan et al. [27,
Algorithm 1] design an algorithm with globally linear and locally quadratic convergence rate, with
similar asymptotics to iterating � (each dominated by an n

3 term), though at the cost of introducing a
parameter T . Iterating �, on the other hand, is parameter-free. We implemented [27, Algorithm 1]
as well as a direct gradient-descent-based method to numerically compare convergence speed. As a
canonical benchmark, we computed optimal factorizations of the 512⇥ 512 and 2048⇥ 2048 prefix-
sum matrices S (Appendix G provides a visualization of this optimal factorization). Our fixed-point
algorithm was significantly faster than either of the alternatives to compute optima, computing a
lower-loss matrix for the larger problem in less than 3 minutes than either alternative found in over
80 minutes. See Appendix E.4 for details. Further, via Eq. (8), our approach provides an optimality
certificate that allows a precise specification of the stopping criteria in terms of any target optimality
gap. The speed and simplicity of our fixed-point algorithm was a significant enabler of the mechanism
exploration presented in the next section.

4 The matrix mechanism for SGD

To define our gradient descent algorithm, let G 2 Rn⇥d be the matrix of gradients, with row vector
gi 2 R1⇥d the gradient observed on iteration i after clipping to norm at most ⇣; we abuse notation
slightly by writing G[1:i,:] 2 Rn⇥d, formed by taking the first i rows of G, with zeros for the as-of-yet
unobserved gradient rows for iterations i+ 1, . . . , n (the lower triangular structure of the matrices
we consider will imply G[1:i,:] vs G does not in fact change the value computed). With this notation,
we define Algorithm 1, a general template for private SGD algorithms. The power of this general
formulation comes largely from the following privacy guarantee:

Theorem 4.1. Under the “replace with zero” notion of differential privacy (in Defininition J.1 in
the appendix) over examples (records) �i, taking ĝ = 0 when �i = ?, Algorithm 1 (that releases
the iterates ✓[i,:]) satisfies equivalent (", �)-DP to the Gaussian mechanism with noise variance �

2

applied to records with `2 sensitivity at most ⇣�, where � = maxi
��C[:,i]

��
2

is the maximum column
norm of C, and ⇣ is the clipping norm.

Theorem 4.1 shows that the contribution of C to the loss Eq. (19) is reflected in the privacy guarantee
of Algorithm 1, by determining the sensitivity of the matrix mechanism Eq. (1). The contribution of
B determines the expected squared reconstruction error of the matrix mechanism, by definition. This
quantification can in turn be converted by existing analytical methods to a regret bound for convex
losses:

Proposition 4.1 (Adaptation of Theorem C.1, Kairouz et al. [6]). In the setup of Algorithm 1, let M
be the prefix-sum matrix S, and assume ` is convex with `2-Lipschitz constant L. Let ✓t = ✓[t,:]. For
any ✓

?
2 Rd,
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Mechanism B C s.t. M = BC

Honaker Online MS�1Bhs CT Equivalent to DP-FTRL of Kairouz et al. [6]
Honaker Full MS�1Bhf CT

Opt Prefix Sum MS�1B⇤
S C?

S for optimal S = B?
SC

?
S

Optimal M = B C B?
M C?

M for optimal M = B?
MC?

M

Table 1: Instantiations of Algorithm 1 for various factorizations of the SGD matrix M = BC.

1

n

nX

t=1

E [`(✓t;�t)� `(✓?;�t)]  ⌘L
2 +

1

2⌘n

�
k✓

?
k
2
2 � k✓1k

2
2

�
+

L�⌘
p
n
kBkF

We now consider different instantiations of Algorithm 1. Let S be the prefix-sum matrix as defined
in Appendix A, and let CT be the matrix representation of the binary tree (Appendix C), so for
appropriate choices of the reconstruction matrices Bhs and Bhf, S = BhsCT gives the Honaker
Online mehcanism, and S = BhfCT gives the Honaker Full mechanism. In particular,
using the Honaker Online factorization in Algorithm 1 recovers the non-momentum DP-FTRL
algorithm of Kairouz et al. [6].

However, Kairouz et al. [6] observed that for non-convex objectives, DP-FTRL with momentum
provided superior privacy/accuracy tradeoffs. Given prefix sums, momentum can be implemented as
post processing by estimating individual gradients/updates as the difference of successive cumulative
sums (multiplication by S�1), and then passing these into a standard momentum SGD optimizer. We
show that performance can be improved by directly incorporating momentum and a-priori learning
rate schedules directly into the DP mechanism.

A basic but important observation is that momentum SGD can be expressed as a linear map of
gradients G!MG. We consider the classic momentum algorithm of Polyak [43], with per-iteration
learning rates3

⌘1, . . . , ⌘n and momentum � 2 [0, 1), as in Algorithm 2. Alternatively, we can
express momentum SGD as a linear operator on the gradients:
Proposition 4.2. For any � 2 [0, 1), n � 1, per iteration learning rates ⌘1, . . . , ⌘n, define the
lower-triangular matrix M 2 Rn⇥n as the product of lower-triangular matrices M(⌘) and M(�):

M(⌘)
[i,j] =

⇢
⌘j i � j

0 otherwise
, M(�)

[i,j] =

⇢
�
i�j

i � j

0 otherwise
, and M = M(⌘)M(�)

. (9)

Then, for any matrix of of per-iteration gradients G 2 Rn⇥d with rows [g1, . . . ,gn], the sequence
of iterates ✓ 2 Rn⇥d with rows [✓1, . . .✓n] produced by Algorithm 2 can equivalently be written
✓ = �MG.

We apply the fixed-point algorithm of Section 3 to M to obtain optimal matrix mechanisms M = BC,
which indeed leads to improved performance.4 We can also convert mechanisms that produce DP
prefix sums to produce momentum iterates via post processing: given any matrix mechanism for
the prefix sum problem given as a factorization S = BC, we can convert this to a mechanism for
momentum as M = B̂C where B̂ = MS�1B. Straightforward calculations show this representation
is equivalent to the “Momentum Variant” of DP-FTRL [6]. This allows us to consistently evaluate
the mechanisms in terms of the total variance (squared error) induced in the outputs by unit-variance
noise Z in the mechanism via Eq. (2). Table 1 summarizes the four instantiations of Algorithm 1 for
any choise of M; note in particular that for � = 0 and a fixed learning rate schedule ⌘i = 1, M = S.
Fig. 1 compares the per-step squared error of the DP momentum iterates for these methods for � = 0
(prefix sums, as a constant ⌘ = 1 is used) and � = 0.95.

Computational efficiency Some care is necessary for the efficient implementation of Algorithm 1,
particularly the computation of M[i,:]G[1:i,j] +B[i,:]Z on line 11. First, we observe that via Proposi-
tion 4.2 we can efficiently compute the MG term via Algorithm 2, rather than as a matrix operation.

3The schedule may be arbitrary, but must be chosen a priori in a data-independent way.
4The definition M = M(⌘)M(�) is for the convenience, and is unrelated to the optimal factorization.
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Figure 2: Test accuracy for the StackOverflow
next-word-prediction task. A grid search over
client and server learning rates and momentum
�, with the best hyperparameters selected based
on validation set accuracy. We then re-ran 11
repetitions with the best hyperparameters and
report the mean test set accuracy with confidence
intervals. All models trained with 100 clients per
round and a constant learning rate schedule.

Figure 3: Test accuracy for mechanisms incorpo-
rating learning rate decay in the manner of Sec-
tion 4 at " = 18.9. The red horizontal line repre-
sents test accuracy of previous state of the art at
" = 18.9; highest horizontal line, test accuracy
of non-private model. The final bar group shows
learning rate cooldown with 167 clients/round,
the maximum possible for a single training pass
of 2048 training rounds.

This leaves the computation of the noise B[i,:]Z. For applications to ML, d could be 106 � 109, and
with even n = 104 rounds (iterations) this might make the total calculation quite expensive if not
prohibitive. With an efficient TensorFlow implementation, in our experiments with d ⇡ 4⇥ 106 and
n = 2048, we found we could compute the noise directly. However, for larger applications we show
(in Appendix H) that one can compute structured matrices that well-approximate the optimal B? for
the prefix sum matrix while allowing for O(d) calculation of the per-round noise vectors (on par with
that of the binary tree mechanism, which can also provide computational efficiency with a careful
implementation, see Table 2). The key is to observe the diagonal dominance of the optimal B? (see
Appendix G), leading to an approximation B̂ that is the sum of a lower-triangular d-banded matrix
with the remaining entries in the lower triangle extracted from a low-rank approximation computed
via alternating-least-squares.

5 Experimental results

The results of Sections 2 and 4 significantly expand the space of mechanisms which can be used in
training ML models with differential privacy in the single-pass setting. In this section we demonstrate
that these techniques can in fact significantly advance the state-of-the-art in private ML.

User-level privacy for language models Private training is particularly important for generative
language models: training language models on data from the right distribution is critical for utility
(e.g., user input in a mobile keyboard [44, 45]), but this data is often privacy-sensitive. Further,
language models have been shown to be capable of memorizing training data [46–48]. In this setting
it is important to consider user-level DP, where the neighbor relation of the DP guarantee covers all
of the training examples (tokens) from any one user, as opposed to a single training example [49]. In
our setting, this corresponds to ensuring that each user’s examples contribute to a bounded `2-norm
update to a single row of X (Definition 3.1). This is accomplished by extending Algorithm 1 in the
natural way to Federated Averaging [50]: instead of a single gradient, we take gi to be the sum of the
individually-clipped-to-⇣ updates of all users (100 or 167 in our experiments) participating in the
current round, with each user contributing to a single round over the course of training.

For these reasons, we focused on the StackOverflow next-word prediction problem, introduced in
[51] and publicly hosted in TensorFlow-Federated (TFF) [52]. This task was explored extensively in
[6], and serves as a major benchmark in federated learning, used in [51, 6, 53–55], and others. The
StackOverflow dataset contains sufficiently many clients to support single-pass algorithms with 100
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clients per round, similar to the baseline setup of [6]. For this reason, we are able to provide true
(", �) privacy quantifications for the models we train.5

Results We compare the four mechanisms of Table 1 on this problem; full experimental method-
ology, as well as additional plots (e.g., for validation error vs. training rounds) are provided in
Appendix I. Fig. 2 shows that even with constant learning rates, our matrix factorization approaches
significantly outperform the previous state-of-the-art across a range of privacy "’s. Further, thanks
to the results of Section 2, we are able to apply the Honaker Full mechanism for comparison.
Fig. 3 shows that applying learning rate decay (dropping the learning rate by 0.15⇥ for the last 512
rounds) and learning rate cooldown (linearly dropping the learning rate from 1.0⇥ to 0.05⇥ over the
last 512 rounds) show added improvements. These experiments all used 100 clients/round as in [6],
but the rightmost bars shows increasing this to 167 (the maximum possible for a single pass of 2048
rounds) provides additional accuracy. In combination, these techniques close more than 2/3rds of the
gap between private and non-private training.

6 Conclusions

We have shown the general applicability of the Gaussian matrix mechanism to the adaptive streaming
setting, introduced a highly efficient mechanism of determining optimal (in the sense of total `22 error)
matrix mechanisms, used this approach to directly incorporate momentum and learning rate schedules
into the DP mechanism, and empirically demonstrated the resulting private SGD (or FedAvg in the
federated setting) substantially improves on the state of the art for private ML.

While our focus has been on the application of these techniques to gradient-based optimization
algorithms, we emphasize that the problem of producing private estimates for linear queries in the
adaptive streaming setting is a fundamental DP primitive of much broader applicability, as noted in
the introduction, and so our work immediately leads to improvements in those applications as well.

Finally, our work raises numerous natural follow-up questions which we hope will inspire subsequent
work; we sketch these in Appendix B.

Acknowledgements

We thank Zachary Charles, Thomas Steinke, Jonathan Ullman, Zheng Xu, and Anastasia Koloskova
for their valuable feedback and insights. In particular Thomas pointed us to the Speyer’s argument of
the lower bound; Zach discussed several of the technical arguments with the authors; Jon provided
helpful insights into alternate proofs of Theorem 2.1; Zheng provided valuable pointers to code which
we were able to leverage; and Anastasia caught a significantly dropped term in Proposition 4.1.

Adam Smith was supported in part by NSF award CNS-2120667 and gifts from Apple and Google.

Sergey Denisov was supported by NSF award DMS-2054465 and Van Vleck Professorship research
award.

References
[1] Chao Li, Gerome Miklau, Michael Hay, Andrew Mcgregor, and Vibhor Rastogi. The matrix

mechanism: optimizing linear counting queries under differential privacy. The VLDB Journal,
24:757–781, 2015.

[2] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitiv-
ity in private data analysis. In Shai Halevi and Tal Rabin, editors, Theory of Cryptography, pages
265–284, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. ISBN 978-3-540-32732-5.

[3] T.-H. Hubert Chan, Elaine Shi, and Dawn Song. Private and continual release of statistics. ACM
Trans. on Information Systems Security, 14(3):26:1–26:24, November 2011.

5With 342,477 users this dataset is still small compared to many real-world applications (e.g., Gboard has 5
billion downloads). The extrapolations verified by [49, 6] suggest the accuracy results of Fig. 3 would hold with
(" = 1.36, � = 10�7)-DP if the population and cohort size (clients per round) were both scaled by 10⇥.

10



[4] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N. Rothblum. Differential privacy under
continual observation. In Proc. of the Forty-Second ACM Symp. on Theory of Computing
(STOC’10), pages 715–724, 2010.

[5] Prateek Jain, Pravesh Kothari, and Abhradeep Thakurta. Differentially private online learning.
In Proc. of the 25th Annual Conf. on Learning Theory (COLT), volume 23, pages 24.1–24.34,
June 2012.

[6] Peter Kairouz, Brendan McMahan, Shuang Song, Om Thakkar, Abhradeep Thakurta, and Zheng
Xu. Practical and private (deep) learning without sampling or shuffling. In ICML, 2021.

[7] Adam Smith and Abhradeep Thakurta. (nearly) optimal algorithms for private online learning
in full-information and bandit settings. In Advances in Neural Information Processing Systems,
pages 2733–2741, 2013.

[8] Palak Jain, Sofya Raskhodnikova, Satchit Sivakumar, and Adam D. Smith. The price of
differential privacy under continual observation. ArXiv CoRR, abs/2112.00828, 2021. URL
https://arxiv.org/abs/2112.00828.

[9] Naman Agarwal and Karan Singh. The price of differential privacy for online learning. In
International Conference on Machine Learning, pages 32–40. PMLR, 2017.

[10] Cynthia Dwork, Kunal Talwar, Abhradeep Thakurta, and Li Zhang. Analyze gauss: optimal
bounds for privacy-preserving principal component analysis. In Proceedings of the forty-sixth
annual ACM symposium on Theory of computing, pages 11–20, 2014.

[11] Graham Cormode, Tejas Kulkarni, and Divesh Srivastava. Answering range queries under local
differential privacy. Proceedings of the VLDB Endowment, 12(10):1126–1138, 2019.

[12] Adrian Rivera Cardoso and Ryan Rogers. Differentially private histograms under continual
observation: Streaming selection into the unknown. CoRR, abs/2103.16787, 2021. URL
https://arxiv.org/abs/2103.16787.

[13] Adam Smith, Abhradeep Thakurta, and Jalaj Upadhyay. Is interaction necessary for distributed
private learning? In 2017 IEEE Symposium on Security and Privacy (SP), pages 58–77. IEEE,
2017.

[14] Abhradeep Guha Thakurta and Adam Smith. (nearly) optimal algorithms for private online learn-
ing in full-information and bandit settings. In C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems, volume 26.
Curran Associates, Inc., 2013. URL https://proceedings.neurips.cc/paper/
2013/file/c850371fda6892fbfd1c5a5b457e5777-Paper.pdf.

[15] Shuang Song, Kamalika Chaudhuri, and Anand D Sarwate. Stochastic gradient descent with
differentially private updates. In 2013 IEEE Global Conference on Signal and Information
Processing, pages 245–248. IEEE, 2013.

[16] Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk minimization:
Efficient algorithms and tight error bounds. In Proc. of the 2014 IEEE 55th Annual Symp. on
Foundations of Computer Science (FOCS), pages 464–473, 2014.

[17] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar,
and Li Zhang. Deep learning with differential privacy. Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Oct 2016. doi: 10.1145/2976749.
2978318. URL http://dx.doi.org/10.1145/2976749.2978318.

[18] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Zaharia, and Nickolai Zeldovich. Stadium:
A distributed metadata-private messaging system. In Proceedings of the 26th Symposium on
Operating Systems Principles, pages 423–440, 2017.

[19] Úlfar Erlingsson, Ilya Mironov, Ananth Raghunathan, and Shuang Song. That which we call
private, 2019.

11

https://arxiv.org/abs/2112.00828
https://arxiv.org/abs/2103.16787
https://proceedings.neurips.cc/paper/2013/file/c850371fda6892fbfd1c5a5b457e5777-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/c850371fda6892fbfd1c5a5b457e5777-Paper.pdf
http://dx.doi.org/10.1145/2976749.2978318


[20] Matthew Joseph, Aaron Roth, Jonathan Ullman, and Bo Waggoner. Local differential privacy
for evolving data. Advances in Neural Information Processing Systems, 31, 2018.

[21] Differential Privacy Team Apple. Learning with privacy at scale, 2017.

[22] James Honaker. Efficient use of differentially private binary trees. Theory and Practice of
Differential Privacy (TPDP 2015), London, UK, 2015.

[23] H Brendan McMahan and Matthew Streeter. Adaptive bound optimization for online convex
optimization. arXiv preprint arXiv:1002.4908, 2010.

[24] Brendan McMahan. Follow-the-regularized-leader and mirror descent: Equivalence theorems
and l1 regularization. In Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, pages 525–533, 2011.

[25] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of machine learning research, 12(7), 2011.

[26] Moritz Hardt and Kunal Talwar. On the geometry of differential privacy. In STOC, 2010.

[27] Ganzhao Yuan, Yin Yang, Zhenjie Zhang, and Zhifeng Hao. Optimal linear aggregate query
processing under approximate differential privacy. CoRR, abs/1602.04302, 2016. URL http:
//arxiv.org/abs/1602.04302.

[28] Ryan McKenna, Gerome Miklau, Michael Hay, and Ashwin Machanavajjhala. HDMM:
optimizing error of high-dimensional statistical queries under differential privacy. CoRR,
abs/2106.12118, 2021. URL https://arxiv.org/abs/2106.12118.

[29] Alexander Edmonds, Aleksandar Nikolov, and Jonathan Ullman. The Power of Factoriza-
tion Mechanisms in Local and Central Differential Privacy, page 425–438. Association
for Computing Machinery, New York, NY, USA, 2020. ISBN 9781450369794. URL
https://doi.org/10.1145/3357713.3384297.

[30] Hendrik Fichtenberger, Monika Henzinger, and Jalaj Upadhyay. Constant matters: Fine-grained
complexity of differentially private continual observation, 2022. URL https://arxiv.
org/abs/2202.11205.

[31] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In Proc. of the Third Conf. on Theory of Cryptography
(TCC), pages 265–284, 2006. URL http://dx.doi.org/10.1007/11681878_14.

[32] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor.
Our data, ourselves: Privacy via distributed noise generation. In Advances in Cryptology—
EUROCRYPT, pages 486–503, 2006.

[33] Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplifications, extensions,
and lower bounds. In Theory of Cryptography Conference, pages 635–658. Springer, 2016.

[34] Cynthia Dwork and Guy N. Rothblum. Concentrated differential privacy. CoRR, abs/1603.01887,
2016.

[35] Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th Computer Security Foundations
Symposium (CSF), pages 263–275. IEEE, 2017.

[36] Jinshuo Dong, Aaron Roth, and Weijie J. Su. Gaussian differential privacy. CoRR,
abs/1905.02383, 2019. URL http://arxiv.org/abs/1905.02383.

[37] Antti Koskela, Joonas Jälkö, Lukas Prediger, and Antti Honkela. Tight differential privacy
for discrete-valued mechanisms and for the subsampled gaussian mechanism using fft. In
International Conference on Artificial Intelligence and Statistics, pages 3358–3366. PMLR,
2021.

[38] S. L. Campbell and C. D. Meyer. Generalized inverses of linear transformations / S. L. Campbell,
C. D. Meyer. Pitman London ; San Francisco, 1979. ISBN 0273084224.

12

http://arxiv.org/abs/1602.04302
http://arxiv.org/abs/1602.04302
https://arxiv.org/abs/2106.12118
https://doi.org/10.1145/3357713.3384297
https://arxiv.org/abs/2202.11205
https://arxiv.org/abs/2202.11205
http://dx.doi.org/10.1007/11681878_14
http://arxiv.org/abs/1905.02383


[39] Richard Jozsa. Fidelity for mixed quantum states. Journal of Modern Optics, 41(12):2315–
2323, 1994. doi: 10.1080/09500349414552171. URL https://doi.org/10.1080/
09500349414552171.

[40] Yeong-Cherng Liang, Yu-Hao Yeh, Paulo E M F Mendonça, Run Yan Teh, Margaret D Reid,
and Peter D Drummond. Quantum fidelity measures for mixed states. Reports on Progress
in Physics, 82(7):076001, jun 2019. doi: 10.1088/1361-6633/ab1ca4. URL https://doi.
org/10.1088/1361-6633/ab1ca4.

[41] Jimmie D. Lawson and Yongdo Lim. The geometric mean, matrices, metrics, and more.
The American Mathematical Monthly, 108(9):797–812, 2001. doi: 10.1080/00029890.2001.
11919815. URL https://doi.org/10.1080/00029890.2001.11919815.

[42] Ando Tsuyoshi Kubo, Fumio. Means of positive linear operators. Mathematische Annalen, 246:
205–224, 1979. URL http://eudml.org/doc/163339.

[43] B.T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964. ISSN 0041-5553.

[44] Andrew Hard, Kanishka Rao, Rajiv Mathews, Françoise Beaufays, Sean Augenstein, Hubert
Eichner, Chloé Kiddon, and Daniel Ramage. Federated learning for mobile keyboard prediction.
CoRR, abs/1811.03604, 2018. URL http://arxiv.org/abs/1811.03604.

[45] Swaroop Ramaswamy, Om Thakkar, Rajiv Mathews, Galen Andrew, H. Brendan McMahan,
and Françoise Beaufays. Training production language models without memorizing user data,
2020.

[46] Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The secret sharer:
Evaluating and testing unintended memorization in neural networks. In Proceedings of the 28th
USENIX Conference on Security Symposium, SEC’19, page 267–284, USA, 2019. USENIX
Association. ISBN 9781939133069.

[47] Congzheng Song and Vitaly Shmatikov. Auditing data provenance in text-generation models.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 196–206, 2019.

[48] Nicholas Carlini, Florian Tramèr, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Kather-
ine Lee, Adam Roberts, Tom Brown, Dawn Song, Úlfar Erlingsson, Alina Oprea, and
Colin Raffel. Extracting training data from large language models. In 30th USENIX Se-
curity Symposium (USENIX Security 21), pages 2633–2650. USENIX Association, August
2021. ISBN 978-1-939133-24-3. URL https://www.usenix.org/conference/
usenixsecurity21/presentation/carlini-extracting.

[49] H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially
private recurrent language models. arXiv preprint arXiv:1710.06963, 2017.

[50] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera
y Arcas. Communication-efficient learning of deep networks from decentralized data. In
Proceedings of the 20th International Conference on Artificial Intelligence and Statistics,
AISTATS 2017, 20-22 April 2017, Fort Lauderdale, FL, USA, pages 1273–1282, 2017. URL
http://proceedings.mlr.press/v54/mcmahan17a.html.

[51] Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub
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A Summary of notation and important matrices

The prefix-sum linear operator S, and its inverse:

S :=

0

BBBB@

1 0 0 · · · 0
1 1 0 · · · 0
1 1 1 · · · 0
...

...
...

. . .
...

1 1 1 · · · 1

1

CCCCA
and S�1 :=

0

BBBB@

1 0 0 · · · 0
�1 1 0 · · · 0
0 �1 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

1

CCCCA
. (10)

Representation of momentum SGD as a linear operator M = M(⌘)M(�):

M(⌘) :=

0

BBBB@

⌘1 0 0 · · · 0
⌘1 ⌘2 0 · · · 0
⌘1 ⌘2 ⌘3 · · · 0
...

...
...

. . .
...

⌘1 ⌘2 ⌘3 · · · ⌘n

1

CCCCA
and M(�) :=

0

BBBBB@

1 0 0 · · · 0
� 1 0 · · · 0
�2 � 1 · · · 0
...

...
...

. . .
...

�n�1 �n�2 �n�3 · · · 1

1

CCCCCA
(11)

Summary of notation The following table briefly summarizes notation used throughout this work.

gi 2 Rd Input (e.g. gradient) on step i of the online process.
G 2 Rn⇥d Matrix of all inputs, gi = G[i,:].
A 2 Rn⇥n Lower-triangular linear query matrix to be factorized as A = BC.
�min(A), �max(A). Smallest and largest eigenvalues of real matrix A.
A⇤ Conjugate transpose of A.
X? A matrix X that is “optimal” in a context-dependent sense.
A† Moore-Penrose pseudoinverse of matrix A.
A[i,j] The (i, j)th entry of matrix A.
A[i,:] and A[:,j] The i

th row and j
th column.

B Future work.

Each of the sections above poses a unique set of problems for future investigation, many interrelated.
We will highlight only some of the major questions left open by this work.

Scalable mechanism implementations Theorem 2.1 shows that we need not restrict ourselves to
any particular matrix structure in order to guarantee privacy over adaptive streams. Appendix H
shows we can find efficient approximations for the case of prefix sums, but this leaves open the
question of whether better or more general approximations are possible, or whether one can optimize
over structures that allow efficient implementations directly.

Analysis and numerics of � Theorem 3.3 represents a usable convergence result for iterates of
the mapping �; on the other hand, it represents only partial progress on the conjecture of global
convergence of these iterates. Though we factorized many distinct matrices in the course of writing
this paper, we generated no reason to doubt this conjecture. Indeed, the speed of convergence of
these iterates of � (see Appendix E.4) only makes this method more intriguing from a theoretical
perspective. Further, though the fixed-point method utilized to compute these factorizations has
enabled significant exploration (as detailed in Section 4), it still does not quite represent the optimal
algorithm for computing these optima: an explicit formula for the fixed point of � would clearly be
desirable, and might yield interesting insights into the structure of these optimal matrices.

We finally note that for production use, additional care will be needed to ensure that claimed privacy
guarantees fully account for floating point imprecision.

15



Adaptive choice of the query While the sequence of gradients during optimization is adaptive
(subsequent gradients depend on previous gradients), as we have seen SGD with momentum can be
expressed as a fixed linear operator M. Data-independent learning rate schedules can be incorporated
into an optimization matrix in a similar fashion, again allowing for optimal DP matrix mechanisms.
However, adaptive learning rate schedules such as AdaGrad amount to a non-linear (and adaptive, not
fixed) map on the gradient sequence; hence a very interesting open question is to see if the approach
used here can be extended to adaptive optimization algorithms.

C Tree aggregation and decoding as matrix factorization

As mention in Section 1, the tree data structure T is linear in the data matrix G (all of its internal
nodes are linear combinations of the rows G). Therefore the mapping G! T can be represented as
multiplication by a matrix. We present a simple recursive construction of this matrix. The base case
is the 1⇥ 1 matrix [1], which we will denote by C(1)

T ; we will define C(k)
T 2 R(2k�1)⇥(2k�1) to be

the matrix constructed by duplicating C(k�1)
T on the diagonal, and adding one more row of constant

1s. That is,

C(1)
T := (1) ,C(2)

T :=

 
1 0
0 1
1 1

!
,C(3)

T :=

0

BBBBBB@

1 0 0 0
0 1 0 0
1 1 0 0
0 0 1 0
0 0 0 1
0 0 1 1
1 1 1 1

1

CCCCCCA
, (12)

and so on. Each row of C(k)
T G can be seen readily to correspond to a node of the binary tree T

constructed from G, assuming n = 2k�1 (possibly padding with zeros if needed).

With this construction, it is straightforward to represent both vanilla differentially-private binary tree
aggregation and the Honaker variant as instantiations of the matrix factorization framework. For a
vector x with n = 2k�1 entries, vanilla binary-tree aggregation can be represented as C = C(k)

T , B
an appropriate {0, 1}-valued matrix satisfying BC = S for prefix-sum S. The Honaker estimators
can both be computed as (real-valued) matrices also satisfying BC = S, and are in fact optimal:
Proposition C.1. For the prefix-sum matrix S with n = 2k�1 rows, the (non-streaming) Honaker fully
efficient estimator represents the minimal-loss factorization for prefix sum S = BC for C = C(k)

T .
This estimator is precisely SC†. The streaming Honaker estimator-from-below represents the minimal
loss factorization satisfying the property that the j

th row of B zeros out rows in the matrix CG
which place nonzero weight on the i

th row of G for i > j. The Honaker estimator-from-below can
be expressed similarly row-by-row with a constrained pseudoinverse of C.

Proof. We begin by recalling a geometric property of the Moore-Penrose pseudoinverse. Theorem
2.1.1 of [38] states that for any matrix C 2 Cm⇥n, vector s 2 Cm, the vector C†s is the minimal
least-squares solution to the linear system Cx = s. Notice that this statement is implicitly a statement
of uniqueness; C†s is the unique minimal-norm solution to Cx = s, assuming feasability of this
equation. Since the square of the Frobenius norm of the matrix B is the sum of the squared norms of
its rows, we may apply this Theorem row-by-row to B to demonstrate that the minimal Frobenius
norm solution B to S = BC for fixed C is SC†.

This minimal Frobenius norm property may be translated to a statistical perspective. That is, for a
fixed matrix C and data matrix G, SC† represents the minimal-variance unbiased linear estimator for
SG given the noisy estimates CG+ Z. This is precisely the definition of Honaker’s fully efficient
estimator in Section 3.4 of [22], and we have the first statement of this proposition.

The second follows similarly, but leveraging instead the geometric properties of the constrained
pseudoinverse. These properties are collected in Theorem 3.6.3 of [38], and allow us to compute
directly the optimal B under constraints that certain entries in each row must be 0, corresponding to
the constraints stated in the proposition. By construction of the matrices C(k)

T , the property described
in the statement of Proposition C.1 corresponds to restricting the linear estimator computed from a
binary tree to depend only on the information below the nodes corresponding to the 1s in a binary
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expansion of the index of the partial sum under consideration. This is precisely the definition of the
estimator from below in Section 3.2 of [22].

D Proofs and missing details for Section 2

Proof of Proposition 2.1. The key idea is that the nonadaptive version of the definition implies a
bound on the log-odds ratio that always holds (even after the fact).

For simplicity, we focus on the case where the universe of possible outputs a is discrete (to avoid
measurability issues).

Fix an adversary A and mechanism M. Recall side is fixed an unknown to the adversary. When
side = 0, the probability of a particular view (G,H,a) is the following. We write (G,H,a)  
hM,Ai0 for the event with sequence of mechanism outputs a, when the mechanism and the adversary
are operating with the variable side = 0, and the neighboring data streams are G and H (and
analogously for side = 1).

Pr((G,H,a) hM,Ai0) =

Pr (A() = (g1,h1)) ⇥ Pr (M(g1) = a1)⇥

Pr
�
A(a1) = (g2,h2)

��g1,h1

�
⇥ Pr

�
M(g2) = a2

��g1,a1
�
⇥

· · ·

Pr
�
A(an�1) = (gn,hn)

��g1, ...,gn�1,h1, ...,hn�1

�
| {z }

these do not depend on side

⇥ Pr
�
M(gn) = an

��g1, ...,gn�1,a1, ...,an�1

�
| {z }

these terms depend on side

.

The probability of (G,H,a) when side = 1 is similar, except that the inputs to M are now ht’s
instead of gt’s. Either way, we get a product of 2n terms, half of which are about the probability of
A’s outputs, and half of which are about M’s outputs. They key fact here is that the terms describing
A’s output are the same in both expressions. When we take the ratio, therefore, those terms cancel
out and we obtain:

Pr((G,H,a) hM,Ai0)

Pr((G,H,a) hM,Ai1)

=
Pr (M(g1) = a1)⇥ Pr

�
M(g2) = a2

��g1,a1
�
⇥ · · ·⇥ Pr

�
M(gn) = an

��g1, ...,gn�1,a1, ...,an�1

�

Pr (M(h1) = a1)⇥ Pr
�
M(h2) = a2

��h1,a1
�
⇥ · · ·⇥ Pr

�
M(hn) = an

��h1, ...,hn�1,a1, ...,an�1

�

=
Pr(M(g1, ...,gn) = (a1, ...,an))

Pr(M(h1, ...,hn) = (a1, ...,an))
.

This last expression involves no adversary—it is simply the ratio of the probabilities that the mecha-
nism would have produced a given output sequence if the sequences G and H had been specified
nonadaptively. Since G,H are always valid neighboring sequences, and since the nonadaptive
mechanism’s guarantee holds for all output sequences, the ratio above is bounded between e

�" and
e
", as desired.

Proof of Theorem 2.1. The idea is to show that, when A is lower triangular, the mechanism M can
be rewritten in such a way that the adaptive privacy of M can be deduced from the privacy guarantees
of the usual Gaussian mechanism with adaptively selected queries.

Let (L,Q) form a lower-triangular LQ-factorization of B, meaning that L is lower triangular, Q is
orthonormal, and B = LQ. By assumption, A is square and invertible, so L and Q are also square
and invertible. Now consider the modified mechanism

M̃(G) = L(QCG+ Z) where Z ⇠ N (0,2
�
2)n⇥d

where � is the same noise standard deviation as in the original mechanism. Since L and A are lower
triangular, it also means that L�1A = QC is also lower triangular. This means that QCG+ Z can
operate in the continuous release model, as row i of QCG depends only on the first i rows of G.
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Next, we further show the mechanism QCG+Z (that is, M̃ without the post-processing operation of
multiplying with L) is an instance of the standard Gaussian mechanism for computing an adaptively
defined function in the continuous release model with a guaranteed bound on the global `2 sensitivity.6
Let G,H 2 N be any two fixed neighboring data streams with kC(G � H)kF  . Then
because Q is orthonormal we have kQC(G � H)kF  . Letting g = flatten(QCG) 2 Rnd

and h = flatten(QCH) 2 Rnd, we have kg � hk2  . Hence, QCG + Z is equivalent to an
application of the standard Guassian mechanism on inputs QCG, and the result for adaptive streams
follows from Claim D.1 below. This claim holds as the privacy loss random variable is stochastically
dominated by an appropriate normally-distributed random variable (e.g., [56]).

Claim D.1 (Folklore). Consider a streaming data vector g = [g1, . . . , gn] 2 Rn s.t. for any
neighboring stream h we have the `2-sensitivity kg � hk2  . If g+N (0,2

�
2)n satisfy (", �)-DP

(or ⇢-zCDP or µ-Gaussian DP) in the nonadaptive continual release model, then the same mechanism
satisfies the same privacy guarantee in the adaptive continuous release model.

As L is lower-triangular, the adaptive streaming DP guarantee of QCG+Z extends to the mechanism
M̃ by the post-processing property of DP.

Finally, we have
M(G) = B(CG+ Z) = L(QCG+QZ),

and so the only difference from M̃ is the use of noise QZ vs Z. Since Q is orthonormal and the
Gaussian distribution is rotationally invariant, QZ and Z are identically distributed, and hence M

and M̃ produce identical output distributions on any fixed data set G. Thus an adversary can simulate
M given access to M̃. This in turn means that the privacy guarantee of the mechanism M̃ transfers
to the mechanism M. This completes the proof.

Proof of Proposition 2.2. The existence of such a lower-triangular factorization with identical in-
duced matrix mechanism distribution follows directly from the proof of Theorem 2.1. The body of
the proof leverages the distributional equivalence of all mechanisms expressible as

(BU) (U⇤C) .

Since A is lower-triangular, letting U = R⇤ recovers a lower-triangular mechanism (IE, both terms
in the factorization are lower-triangular) which is distributionally equivalent to the factorization
A = BC.

The claimed uniqueness follows from uniquness of the QR factorization with all-nonnegative diagonal
entries; see, e.g., [57, Theorem 2.1.14].

D.1 Not all additive noise mechanisms are adaptively private

Consider the following two step sampling process7:

1. A ⇠ N (0, Id).

2. B ⇠ N (0,⌃) where ⌃ = I� (1� ⌘) AAt

kAk2 and ⌘ = 5
p

log(d)

d . Observe that, conditioned on
A = a, we can write B as the sum of independent random variables B = B1 +B2 where
B1 ⇠ N (0, I� aat

kak2 )—a component orthogonal to a with variance 1 in all other directions—
and B2 ⇠ ⌘

a
kak · N (0, 1)—a component parallel to a with much smaller variance ⌘ in that

direction.

3. Return (A,B)

6Observe the same claim cannot be made for M, e.g., as CG+ Z cannot be used in the continuous release
setting as in general C induces a dependence on not-yet-seen data.

7For the clarity of noation, in this section we will refer to random variables with uppercase, and their
corresponding instantiations with lower case. Additionally, all norms are k·k2.
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Now consider a mechanism M that takes a parameter � and two inputs of the form (x1, x2) 2 (Rd)2

where x1 = 0 (always) and x2 has Euclidean norm at most 1, and returns (x1 + �A, x2 + �B). The
mechanism can be run interactively, in which case x2 could be selected based on A, which can be
deduced from x1 + �A. The notion of neighboring here is trivial: every pair (0, x2) is a neighbor of
every other pair (0, y2) so long as kx2k and ky2k are at most 1.

For simplicity, we formulate the mechanism for the special case when n = 2 and the first input is
forced to be 0, but similar constructions and reasoning apply for larger n and other types of inputs.

Proposition D.1. M is nonadaptively (", �)-DP with parameters " = ⇥(
p

ln(1/�)/�) when d is
sufficiently large and � � exp(�cd) for an absolute constant c > 0.

Proof. Let (0, x2) and (0, y2) be the inputs submitted by the adversary. Let W = hx2 � y2,
A

kAk i.

Observe that hx2 � y2, Ai distributed as N(0, kx2 � y2k
2) (with variance at most 2) and that kAk

is between 1
2

p
d and 2

p
d with probability 1� exp(�⌦(d)) by standard concentration arguments.

Thus, W is at most ⌘ =
5
p

log(d)

d with probability 1� exp(�⌦(d)).

Given A = a, we can write the output b = b1 + b2 as a sum of a component b1 parallel to a and a
component b2 orthogonal to a. Recalling the notation B = B1 +B2 from the definition of (A,B),
we get the following distributions when side = 0:

b2 =
⇣
h

a
kak , x2i+ ⌘�Z

⌘
a

kak where Z ⇠ N(0, 1) and

b1 =⇧(x2) +B2 where ⇧ is the projector onto the subspace orthogonal to a.

We get the same distribution with side = 1, except that x2 is replaced by y2. Conditioned on a,
we have additive noise with a well-understood distribution in both cases. The likelihood ratio thus
depends only on W and ⇧(x2 � y2).

The first component consists of adding noise with standard deviation ⌘� to an input with sensitivity

|W | 
5
p

log(d)

d ; the second consists of adding noise in with standard deviation � (in all d � 1
relevant dimensions) to an input with sensitivity at most 2. Each of these satisfy (", �)-differential
privacy for " = ⇥(

p
ln(1/�)/�), as desired.

Proposition D.2. When �⌘ < 1/3, the mechanism M is not adaptively (", 1
4 )-DP unless " � 1

3(�⌘)2 .

Proof. An adaptive adversary first submits vectors x1, y1 (both 0), receives a first output a which is
either x1 +A or y1 +A, and then submits x2 and y2 and receives a second output b which is either
x2 +B or y2 +B. Consider the specific adversary submits x2 = a

kak and y2 = �x2 (based on the
first output a) and then receives output b.

The idea is that the variance of B in the direction of x2 = a is only ⌘� (instead of �) and so—
informally—the effective " of the mechanism is roughly 1/(⌘�) instead of 1/�. When d is large, ⌘ is
much smaller than 1 and so the mechanism provides much weaker privacy guarantees in the adaptive
setting.

More formally, consider the random variable ha, bi. The component of B in the direction of a can be
written B2 = ⌘

a
kak · Z for Z ⇠ N(0, 1). When side = 0, we thus have

ha, bi = ha, x2 + �Bi = ha, x2 + �B2i = ha,
a

kak + �⌘
a

kakZi = kak (1 + �⌘Z) .

Similarly, when side = 1, the inner product ha, bi is distributed as kak (�1+ �⌘Z). The probability
that ha, bi > 0 is at least 1

2 when side = 1 and, for �⌘ < 1, the same probability is at most

exp
⇣
�

1
2(�⌘)2

⌘
when side = 0. In particular, the mechanism is not (", �)-DP in the adaptive model

unless 1
2  e

" Pr(ha, bi > 0|side = 0)� �; that is, it requires " � 1
2(�⌘)2 � ln( 2

1�2� ). The bound is
at least 1

3(�⌘)2 for �  1/4 and �⌘ < 1/3.
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E Proofs and observations for Section 3

E.1 Proof of Theorem 3.1

Proof. The proof essentially follows from standard arguments about the DP guarantee for the
Gaussian mechanism [32, 35]. In the following, we provide some of the details for completeness.

First, notice that it is sufficient to state that the computation CG+ Z satisfies (", �)-DP, due to the
post processing property of DP. Now consider two data sets G and H differing in one data record (as
per the neighborhood definition in J.1). We have C(G�H) is equal to the outer product cg, where
g is the row of G that was changed, and c is the corresponding column of C. By assumption in the
theorem statement, we have

kcgkF  kck2 · kgk2  �⇣.

With the bound on the sensitivity above, if each entry of Z is drawn i.i.d. from N (0,�2), then
CG+ Z satisfies ⇢ = �2⇣2

�2 -zCDP (Definiton J.2) [33]. We set the noise standard deviation � by the
use of Remark 15 in Steinke [58]. Correspondingly, we have (", �)-DP [59].

E.2 Proof of Theorem 3.2

Proof. For simplicity we consider the equality-constrained version of Eq. (4) (permissible by [27]):

X? = argmin
X is PD,X[i,i]=1,i2[n]

tr(A⇤AX�1). (13)

We begin by noting that Slater’s condition (see [60, Section 5.2.3]) holds in our setting, since the
minimum eigenvalue of a matrix is a concave function (expressible as a minimum of linear functions),
and we know from [27] that that the optimum is strictly positive definite. Therefore strong duality
holds, and complementary slackness implies we may drop the positive-definiteness constraint when
we move to the Lagrange formulation. Thus, we introduce a Lagrange multiplier v for Eq. (13),
defining,

L(X,v) = tr(A⇤AX�1) +
nX

i=1

vi(Xi,i � 1)

= tr(A⇤AX�1) + tr
�
diag(v)(X� I)

�
. (14)

Differentiating Eq. (14) with respect to X, we find

@L

@X
= �(X�1A⇤AX�1) + diag (v) . (15)

Let X? be the optimizer of the primal problem Eq. (13); then, by the Lagrange multiplier theorem
(see, e.g., Proposition 4.1.1 of [61]), there exists a unique v? satisfying

diag (v?) = X?�1A⇤AX?�1
, (16)

which is an equivalent form of Eq. (7). Since A is full-rank, and X? is known from [27] to be
positive-definite, Eq. (16) implies that diag (v) is invertible (indeed, positive definite).

Solving Eq. (16) for X corresponds to solving for a generalized matrix square root. The equation
Eq. (16) may be uniquely solved, yielding

X (v) = diag(v)�1/2
⇣
diag(v)1/2A⇤A diag(v)1/2

⌘1/2
diag(v)�1/2

. (6)

Clearly the X (v?) defined by Eq. (6) represents a solution for Eq. (16); that X (v?) = X? can be
seen by substituting Eq. (16) for diag(v?) in Eq. (6), and evaluating the result to the form X?.

Since X? has constant 1s on the diagonal (by the formulation Eq. (13)), the expression Eq. (6) implies
that

diagpart

✓q
diag(v?)1/2A⇤A diag(v?)1/2

◆
= v?

,
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and that therefore v? is a fixed point of the mapping � defined by Eq. (5).

We have shown that an optimizer X? corresponds to a fixed point v? of �. If we begin with a fixed
point v? of �, and define X (v?) via Eq. (6), the preceding calculations show that X (v?) is both
feasible and a stationary point of the Lagrangian. The strict convexity of the problem, along with its
smoothness, imply that the Hessian of the Lagrangian is positive definite at this stationary point, and
therefore (e.g. by Proposition 4.2.1 of [61]), this X (v?) is a local minimizer. Strict convexity implies
that this local minimizer is in fact the global minimizer.

The final claim of Eq. (8) follows immediately from weak duality and the fact that

inf
X

L(X,v) = L(X (v),v))

since the problem on the left is convex in X, and hence Eq. (6) gives an optimality condition. Eq. (8)
follows by using A⇤AX�1 = X diag (v?) in the first trace in Eq. (14), and then simplifying using
properties of the matrix trace.

E.3 Proof of local-contractive property of �.

Recall that we study the map, defined in Eq. (5),

�(v) := diagpart

✓q
diag(v)1/2 B⇤B diag(v)1/2

◆
,

from the positive cone in Rn to itself. By Theorem 3.2, we know that it has a unique fixed point,
which we denote by v?. We will need some notation:

• Q =
p
B⇤B.

• In Rn, we consider two inner products

hx,yi =
X

j

xjyj , hx,yi1 =
X

j

xjyjwj , w
�1
j = v

⇤
j .

The fist one is Euclidean, the second one is weighted with the weight given by v? itself. The
corresponding norms are kxk and kxk1.

• The operator norms of linear map A acting in Rn will be denoted

kAk, kAk1

depending on the considered inner products, e.g.,

kAk1 = sup
x:kxk1=1

kAxk1 .

We start by giving a simple estimate on v?.
Proposition E.1. Suppose Q satisfies

0 < 1  Q  2 (17)

with some constants 1 and 2. Then,


2
1  diagv?

 
2
2 .

Proof. Given any two non-negative matrices A and B that satisfy A  B, we clearly have

diagpartA  diagpartB,

p

A 
p

B . (18)

Then,


2
1  Q2

 
2
2 ) 

2
1(diagv

?)  (diagv?)1/2Q2(diagv?)1/2  
2
2(diagv

?) .

Thus, we apply (18) by first taking the square roots and then the diagonal parts of both sides to get

1

p
diagv?  diagv?

 2

p
diagv?

after we recall that v? is the fixed point of �(v). The required statement is now immediate.
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Remark. The argument in the proof shows that � maps the convex set {v : ↵  diagv  �} into
itself provided that 0 < ↵  C1 and C2  �. Since � is continuous, the Brouwer fixed point theorem
gives yet another proof that a fixed point of � exists.

The map v 7! �(v) is smooth on Rn. Its derivative at point v? is therefore a linear map in Rn. We
will denote

L := D�(v?). (19)

Our central result is precisely the statement that the (weighted) norm of L is smaller than 1, and
hence � is a local contraction around v?:
Theorem E.1. The map L is a contraction in weighted norm, i.e.,

kLk1  C(1,2) < 1 .

Remark. This immediately implies that the sequence {vn} given by vn+1 = �(vn) converges
exponentially fast to v? when v0 is chosen sufficiently close to v?. The exact parameters here depend
only on 1 and 2. The size of the neighborhood in which the first-order approximation implies that
� itself is a contraction similarly depends on 1, as this controls the smoothness of �.

We will recall some facts before giving the proof of this theorem.
Proposition E.2. If A is n⇥ n matrix and d 2 Rn, then
✓
A+

1

2
(diagd)A+

1

2
A(diagd)

◆2

=

A2(diagd) + (diagd)A2 +A(diagd)A+O(kdk2) (20)

where the constants in O depend on kAk only.

Proof. That is an immediate calculation.

Proposition E.3. If A is n⇥ n positive matrix, then
p

A =
A

⇡

Z 1

0
(A+ t)�1 dt

p
t
. (21)

Proof. That follows from the Spectral Theorem for symmetric matrices and the trigonometric integral
formula

p

� =
�

⇡

Z 1

0
(�+ t)�1 dt

p
t
, � > 0 ,

which follows by substituting t = tan2 ✓.

Proposition E.4. If A,V are n⇥ n matrices and both A and A+V are non-degenerate, then

(A+V)�1 = A�1
� (A+V)�1VA�1

and
(A+V)�1 = A�1

�A�1VA�1 +O(kVk2). (22)

Proof. To check the first identity, it is enough to multiply it from the left by A +V and from the
right by A. The second identity will follows by iterating the first identity once.

The formula for L is given in the following lemma.

Lemma E.1. If T :=
p
(diagv?)1/2Q2(diagv?)1/2, then

Lw = w � ⇡
�1 diagpart

✓Z 1

0
(T2 + t)�1T(diagw)(diagv?)�1T(T2 + t)�1

p
tdt

◆
.

22



Proof. This result is based on a long but straightforward calculation. First, introduce d 2 Rn by

diagv = (diagv?) exp(diagd) .

Hence, denoting � := diagd for shorthand, one has

�(v) = diagpart
⇣p

T2 + 0.5�T2 + 0.5T2�
⌘
+O(k�k2)

since T > 0 and the matrix square-root is Lipschitz-continuous at every point which represents a
positive matrix. If one denotes X :=

p
T2 + 0.5�T2 + 0.5T2�, then Propositions E.2 and E.3

yield
X� (T+ 0.5�T+ 0.5�T) =

X2

⇡

Z 1

0
(X2 + t)�1 dt

p
t
�

X2 +T�T

⇡

Z 1

0
(X2 +T�T+ t)�1 dt

p
t
=

(22)
=

T2

⇡

Z 1

0
(T2 + t)�1T�T(T2 + t)�1 dt

p
t
�T�+O(k�k2).

If we recall that v? = �(v?) = diagpartT, then

diagpartX = diagpart(T+ 0.5�T� 0.5T�)+

diagpart
T2

⇡

Z 1

0
(T2 + t)�1T�T(T2 + t)�1 dt

p
t
+O(k�k2) =

diagpartT+ diagpart
1

⇡

Z 1

0
(T2 + t� t)(T2 + t)�1T�T(T2 + t)�1 dt

p
t
+O(k�k2) =

�(v?)+diagpart(T�)�⇡
�1 diagpart

✓Z 1

0
(T2 + t)�1T�T(T2 + t)�1

p
tdt

◆
+O(k�k2) =

�(v?)+diagpart((diagv?)�)�⇡�1 diagpart

✓Z 1

0
(T2 + t)�1T�T(T2 + t)�1

p
tdt

◆
+O(k�k2)

(23)

Now, notice that
diagv = diagv? + diagv?�+O(k�k2)

and
� = (diagw)(diagv?)�1 +O(k�k2)

where w := v � v?. Finally, we have

�(v) = �(v?) +w�

1

⇡
diagpart

✓Z 1

0
(T2 + t)�1T(diagw)(diagv?)�1T(T2 + t)�1

p
tdt

◆
+O(kwk2) (24)

and that proves the required statement.

Our next step is to obtain the matrix representation of L in the standard basis of Rn.
Lemma E.2. If (T2 + t)�1T =: C(t) = C[i,j](t), then

L = I�
n 1

⇡

Z 1

0
(C[i,j](t))

2

p
t

v⇤j
dt

o
, i, j 2 {1, . . . , n} .

Proof. That calculation is straightforward after we use symmetry of matrices T and C.

The Theorem E.1 will be proved if Lemma E.3 is shown. In its proof, the following property of the
Schur (elementwise, also known as Hadamard) product of two matrices is used.
Proposition E.5. Suppose A and B are non-negative matrices of size n⇥ n. Then,

�min(A �B) � �min(A)�min(B) .
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Proof. Indeed, the matrix A � B represents the principal submatrix of the Kronecker (or tensor)
product A⌦B. Since �min(A⌦B) = �min(A)�min(B), we get our result.

Lemma E.3. The operator L is selfadjoint with respect to the weighted inner product and kLk1 
C(1,2) < 1.

Proof. First, we can write a bilinear form

hLv,wi1 = hv,wi1 �
1

⇡

Z 1

0

nX

i,j=1

G[i,j](t)
vjwi

v⇤j v
⇤
i

p
tdt

where G := C �C, the Schur product, is a symmetric matrix. Hence, hLv,wi1 = hLw,vi1 and
therefore L is appropriately selfadjoint. Next, we will prove a bound

C(1,2)kvk
2
1 

1

⇡

Z 1

0

nX

i,j=1

G[i,j](t)
vjvi

v⇤j v
⇤
i

p
tdt  C5kvk

2
1 (25)

with some positive C and C5 2 (0, 1). That estimate for quadratic form is sufficient to prove
that kLk1 < 1 due to the variational characterization of the norm of a self-adjoint operator, i.e.,
kLk1 = supv:kvk1=1 |hLv,vi1|.

We claim that Z 1

0
G(t)

p
tdt � C3(1,2) > 0 (26)

in a sense of positive matrices. Indeed,

�min(G(t)) � (�min(C(t)))2

as follows from the properties of the Schur product. Since C(t) = T/(T2 + t), we get
Z 1

0
(�min(C(t)))2

p
tdt � C3(1,2) > 0

where C3 depends on parameters 1 and 2 from (17) only. So, our claim (26) is proved. Given (26),
we can write

Z 1

0

nX

i,j=1

G[i,j](t)
vjvi

v⇤j v
⇤
i

p
tdt � C3(1,2)

nX

j=1

�����
vj

v⇤j

�����

2

�

C4(1,2)
nX

j=1

|vj |
2

|v⇤j |
= C4(1,2)kvk

2
1

thanks to Proposition E.1. This shows the left bound in Eq. (25).

The inequality
1

⇡

nX

i,j=1

G[i,j](t)
vjvi

v⇤j v
⇤
i

p
tdt  C5kvk

2
1

is equivalent to
1

⇡

nX

i,j=1

G[i,j](t)
xjxip
v⇤j v

⇤
i

p
tdt  C5kxk

2 (27)

if we make the change of variables xj := vj/
p

v⇤j , j 2 {1, . . . , n}. It will be convenient to introduce
a symmetric matrix D with coefficients given by

D[i,j] =
1

⇡

Z 1

0
G[i,j](t)

1p
v⇤j v

⇤
i

p
tdt =

1

⇡

Z 1

0
(C[i,j](t))

2 1p
v⇤j v

⇤
i

p
tdt .

To bound the norm of this matrix, we will start with the following observation. The application of
Spectral Theorem to matrix T yields

1

⇡

Z 1

0
(T2 + t)�2T2

p
tdt = C5T
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where

C5 =
1

⇡

Z 1

0
(1 + ⇠)�2

p
⇠d⇠ =

2

⇡

Z 1

0
(1 + u

2)�2
u
2
du <

2

⇡

Z 1

0
(1 + u

2)�1
du = 1 .

Recall also that v? = diagpartT and therefore

1

⇡

Z 1

0
diagpart((T2 + t)�2T2)

p
tdt = C5v

?

Since the matrix elements of C(t) = (T2 + t)�1T are given by C[i,j](t), the diagonal elements of
(T2 + t)�2T2 can be obtained by the formula

nX

j=1

C[i,j](t)C[j,i](t) =
nX

j=1

(C[i,j](t))
2

for i 2 {1, . . . , n}. Therefore, we get an identity

1

⇡

Z 1

0

nX

j=1

(C[i,j](t))
2
p
tdt = C5v

⇤
i , i 2 {1, . . . , n}

which can be rewritten as
nX

j=1

D[i,j]

q
v⇤i v

⇤
j = C5v

⇤
i , i 2 {1, . . . , n} .

The elements D[i,j] are non-negative and D[i,j] = D[j,i]. Taking the vector {
p
v⇤i } with positive

entries, we rewrite the previous identity as
nX

j=1

D[i,j]

q
v⇤j = C5

p
v⇤i , i 2 {1, . . . , n} .

The application of Schur’s test for the norm of matrix gives kDk  C5 < 1. Since D is symmetric,
this bound implies (27).

E.4 Numerical observations of the map �.

Some care must be taken with floating point issues in the implementation of the map �. In particular,
numerical evaluation of � depends critically on the computation of a matrix square root, and precision
in this computation is crucial for the usability of these fixed-point methods.

Several numerical approaches can improve the stability of these algorithms. In particular, some of
the expressions above (e.g., the definition of X ) imply a priori lower bounds on the eigenvalues of
matrices for which we need square roots. The results of [62] yield straightforward lower bounds
that can stabilize our iterative algorithms. These bounds can be applied to ensure the iterates never
encounter pathological numerical artifacts. As the size of matrices scales up (in particular, our
factorizations usually focused on 2048 ⇥ 2048 matrices, and larger matrices are of interest), we
observed that performing all computations in float64 precision was crucial to minimizing these
numerical artifacts.

We observed experimentally that while factorizing some matrices, though the fixed-point method
itself converged independently of the matrix factorized, some oscillation in the values of the loss
Eq. (2) occurred. Further investigation is needed to determine whether this oscillation represents
a true feature of the iterated dynamics, or simply another numerical artifact, due e.g. to lack of
precision in the matrix square root. If the former, certain approaches to prove global convergence of
these iterates are ruled out: in particular, those which rely on this loss as a potential function, which
iterating � always decreases.

To evaluate empirical usefulness of this fixed-point method, we implemented three different algorithms
for computing optimal factorizations:
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Figure 4: Value of loss Eq. (2) against elapsed time for a gradient-descent based, Newton-direction
based, and fixed-point implementation of computing optimal factorizations of 2048-dimensional
prefix sum matrix S. The gradient descent and Newton direction-based methods used an Armijo step
size search, and checked for existence of Cholesky factorization to verify positive-definiteness of the
iterates, as suggested by [27]. The methods were initialized identically, leveraging the expression
Eq. (6), a significantly better initialization for the gradient-based methods than might be obvious in
the absence of this expression (e.g., initialization to I).

1. A gradient-descent-based procedure to compute the optima of Eq. (4), guaranteed to be
convergent by the convexity of the problem.

2. [27, Algorithm 1], a Newton-direction-based algorithm with global convergence guarantees,
hand-optimized with the structure of the problem—in particular, avoiding the need to
materialize a Hessian with n

4 elements. This implementation used the default settings from
[27].

3. Simply iterating the mapping �.

In all situations we tested, the fixed-point method was significantly faster than either of the other two,
up to two orders of magnitude in some cases. In Fig. 4, we plot loss against time for an example
of 2048⇥ 2048 matrix factorization using CPUs. The methods are all similarly amenable to GPU
acceleration.
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F Proofs for Section 4

F.1 Proof of Proposition 4.1

Proof. Following the analysis of Theorem C.1, Kairouz et al. [6], we introduce a hypothetical
‘unnoised’ model trajectory e✓t. Define bt := ✓t �

e✓t, and note that bt = �⌘B[t,:]Z.

We note the well-known equivalence of FTRL and gradient descent, with requilarization parameter �
equivalent to 1

⌘ (as can be seen by solving for the FTRL update). Following the standard linearization
method of online convex optimization, we see:

1

n

nX

t=1

`(✓t;�t)� `(✓?;�t) 
1

n

nX

t=1

hrt, ✓t � ✓
?
i =

1

n

nX

t=1

hrt,
e✓t � ✓

?
i

| {z }
A

+
1

n

nX

t=1

hrt, ✓t �
e✓ti

| {z }
B

Similarly to Kairouz et al. [6], the term A may be handled with standard online convex optimization
techniques, yielding

A ⌘L
2 +

1

2⌘n

�
k✓

?
k
2
2 � k✓1k

2
2

�
,

so we are left to evaluate the expectation of B over the noise injected by Algorithm 1. We compute:

E
"
1

n

nX

t=1

hrt, ✓t �
e✓ti
#


1

n
E
"

nX

t=1

krtk2k✓t �
e✓tk2

#
Cauchy-Schwartz


L

n
E
"

nX

t=1

kbtk2

#

 LE

2

4
 
1

n

nX

t=1

kbtk
2
2

!1/2
3

5 Jensen’s inequality


L
p
n

 
E
"

nX

t=1

kbtk
2
2

#!1/2

Jensen again

=
L⌘
p
n

�
E
⇥
kBZk2F

⇤�1/2 definition of bt

=
L�⌘
p
n
kBkF evaluating the expectation.

Putting together the estimates of A and B yields the result.
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G Visualization of Optimal Factorizations

Figure 5: Visualizations of the optimal streaming matrix factorization S = WH (B = W,C = H)
for cumulative sums with n = 512. The matrix visualizations use a color palette that maps scalars in
[0, 1] to colors from white to dark red. The first row normalizes entries to [0, 1] by simply dividing all
entries by 2.36 (the largest value in either matrix). This clearly shows the heavy diagonal in B. The
second row normalizes the values in each matrix by ranking them by magnitude, and then mapping
the ranks to [0, 1] so 0 entries (the smallest) are mapped to 0.0, the median value is mapped to 0.5
(mid-red), and the largest value is mapped to 1.0 (darkest red). This visualization more clearly shows
the off-diagonal structure. The final row gives a histogram of the magnitudes of the non-zero entries
in each matrix.

H Computational efficiency for the matrix mechanism

Our primary goal has been to develop mechanisms with best-possible privacy vs utility tradeoffs in
the streaming setting. However, the (B,C) we compute are in general dense, and do not obviously
admit a computationally-efficient implementation of the associated DP mechanism. In contrast, tree
aggregation (including, with a careful implementation, the streaming Honaker estimator) allows
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n Honaker (B?
,C?) Efficient (h, r)

28 = 256 74.4 40.4 40.4 (4, 4)
29 = 512 116.5 62.0 62.2 (5,4)
210 = 1024 180.8 94.6 95.5 (5, 5)
211 = 2048 278.3 143.6 145.8 (6, 5)
212 = 4096 425.6 217.3 224.0 (6, 6)

Table 2: Values of
p
L for the expected squared reconstruction error L defined in Eq. (2) (which

implies equivalent levels of privacy). The “Efficient” column gives
p
L for the structured approxi-

mation B̂ of B? with parameters (h, r) described below. When n = 2i we choose h + r = i, so
that the mechanism based on B̂ has memory and computation efficiency comparable to the Honaker
approach.

implementations with only log(n) overhead; that is, each DP estimate of the i
th partial sum can be

computed in time and space O(d log(n)).

In this section, we demonstrate empirically that the optimal B? from the factorization of the prefix
sum matrix S can be approximated by structured matrices in such a way as to be competitive with
the tree-aggregation approach in terms of computation and memory, but retain the advantage of
substantially improved utility. Recalling Algorithm 1, the key is to compute B[i,:]Z efficently. If B is
arbitrary, this takes O(nd) operations, which is likely prohibitive.

However, having a structured matrix B̂ that allows efficient multiplication with Z mitigates this
problem. We propose the following construction, which empirically provides a good approximation
while also allowing computational efficiency. Let D(h) denote the lower-triangular banded matrix
formed by taking the first h diagonals of B, so D(0) is the all-zero matrix, D(1) is the main diagonal
of B, and D(2) contains the main diagonal and one below it, etc. Let U(h)

2 {0, 1}n⇥n contain a 1
in the place of each non-zero element of B not captured in D(h) and zero elsewhere, so in particular
B = B�U(h) +D(h) where � is elementwise multiplication. Then, we propose the representation

B̂ =
�
LR>�

�U(h) +D(h)
,

where L,R 2 Rn⇥r. Finding a low-rank factorization LR> which minimizes kB̂ �Bk2F can be
cast as a matrix completion problem, as we only care about approximating with LR> the entries
of B selected by U(h). For these experiments we used an alternating least squares solver with a
regularization penalty of 10�6 on kLk2F + kRk2F [63–65]. Given such a representation, the cost of
computing B̂[i,:]Z is O((h+ r)d): we maintain accumulators � such that

(L�)[i,:] =
�
(LR>

�U(h))Z
�
[i,:]

,

and � can be updated in time rd on each step. Then, Finally, (D(h)Z)[i,:] can be computed in time
hd. Algorithm 3 makes this algorithm explicit.

Columns 3 and 4 in Table 2 shows empirically that this approximation recovers almost all of the
accuracy improvement of (B?

,C?) at comparable computational efficiency to tree aggregation with
the Honaker estimator (that is, we choose h+ r = log2(n)). While a paired C is not used directly in
computing the private estimates, it is necessary in order to compute the loss L defined in Eq. (2), as
well as to appropriately calibrate the noise to achieve a DP guarantee (see Theorem 3.1). For these
purposes an optimal CB̂ can be found analogous to Eq. (3) as CB̂ = B̂�1S.
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Algorithm 3 An efficient implementation (executed by the trusted curator)
1: # Iterations and matrices/vectors are zero indexed (unlike elsewhere)
2: Parameters:
3: Matrix D(h) containing h 2 {0, . . . , n} diagonals from B
4: Matrices L,R 2 Rn⇥r

5: Noise matrix Z 2 Rn⇥d

6: Observations G 2 Rn⇥d

7: � := 0 2 Rr⇥d # Buffer for relevant part of R>Z.
8: s := 0 2 Rd # Accumulator for prefix sum
9: for i in 1, . . . , n do

10: s += G[i,:] # Maintain the un-noised cumulative sum
11: y := 0 2 Rd # Accumulator for total noise in ith prefix sum
12: for k in 0, . . . ,min(i, h� 1) do # Handle h diagonals directly; No-op if h = 0

13: y += D(h)
[i,i�k]Z[i�k,:] # hd multiplies

14: if i � h then # Compute the low-rank portion
15: i

0
 i� h

16: � += R>
[i0,:]Z[i0,:] # rd multiplies

17: y += L[i,:]� # rd multiplies
18: Release s+ y # A DP estimate of

Pi
t=1 G[t,:]

I Experiment Details

Mechanism implementation Though Appendix H shows that time- and space-bounded approxima-
tions to our optimal factorizations are possible, for our experimental results we followed Algorithm 1
and implemented the straightforward version of our mechanism. That is, we leverage the expression

B (CG+ Z) = AG+BZ,

for A = BC, where A represents the linear operator we are interested in estimating. By introducing
a seed to the generation of the noise vector Z, the appropriate noise vector (BZ)[i,:] can simply be
computed afresh for each iteration of training (or round in the federated setting). The linear operators
A in which we are interested admit efficient implementations; e.g., gradient descent with momentum
can be implemented with a single buffer, representing the current state of the model. The computation
of BZ is therefore the dominant component in the above.

We normalized all of our factorizations to have sensitivity exactly 1 in the single-pass setting.

Integration with federated learning We implemented these mechanisms via the DPQuery in-
terface in TensorFlow-Privacy [66], which integrates naturally with tff.aggregators, the
aggregators library of TensorFlow-Federated. We were therefore able to reuse precisely the same
code for training as [67], simply swapping in our matrix-factorization-based aggregators as an ar-
gument to TFF’s tff.learning.build_federated_averaging_process function. In
conjunction with this paper, we are in the process of open-sourcing the code to reproduce our experi-
ments. TFF’s distributed C++ runtime, equipped with one machine for every 10 clients per round
and low-priority CPU resources, enabled our experiment grids (including evaluation) to finish in
approximately 1 day.

Stackoverflow settings The preprocessing of our data, in addition to model architecture as well
as the settings of various task-specific hyperparameters like the maximum number of examples
processed per-client, we share with [6].

Test accuracy details Test accuracies (excluding predictions on out-of-vocabulary and end-of-
sentence tokens) plotted against " values associated to � = 10�6 for various instantiations of the
mechanisms we tested can be found in Fig. 2. This figure was generated with a sweep over client and
server learning rates, with grids chosen via in the heatmap for FedAvgM in Figure 2 of [51], as well
as a sweep over server momentum values. The noise multiplier settings were chosen with a simple
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calculation, based on the reported noise multipliers for StackOverflow NWP in [6]. In particular, by
explicitly calculating the sensitivity of the binary tree (as in Theorem 4.1 of [6]), one can normalize
the noise multipliers to be equivalent between the two settings. In the process of testing our code, we
verified that we observed similar results to those claimed there under this normalization. The smallest
noise multiplier in our setting corresponds to the largest " in figure 2(a) of [6], though our plots are
not exactly comparable to theirs due to the different number of rounds in the two experimental setups.
We calculate our " values by simply measuring the privacy cost of the appropriate high-dimensional
Gaussian query, by Theorem 4.1. The grid we swept over can be found in Table 3.

The error bars in Figs. 2 and 3 were generated by first filtering down to runs which did not diverge
from repeated runs with 10 seeds (at least 7 converged for each setting in Fig. 2, at least 8 for each
setting in Fig. 3), then computing the empirical standard deviation. A similar process was used for
Fig. 6.

Evaluation accuracy details During training, we monitored performance on an evaluation set
consisting of 10,000 sentences from outside of the training and test sets. We plot this evaluation
accuracy for the final portion of training our learning-rate schedule and momentum matrices in Fig. 6.

Figure 6: Smoothed validation accuracy over the final 748 rounds at " = 18.9, � = 10�6, comparing
momentum and learning rate decay implemented as postprocessing operations to the prefix-sum
mechanism versus capturing these operations in the mechanism itself (see Section 4). Vertical line
represents the start of the decay schedule.

Additional figures We note that Fig. 6 demonstrates a consistent artifact we witnessed in training
these models: the momentum matrix factorization performs worse than the prefix-sum matrix during
the body of training, but catches up and overtakes towards the end of the training procedure. We
hypothesize this to be an artifact of the way these mechanisms distribute variance on the operator
residuals, and consider it an interesting pointer for future mechanism design, while noting that it
implies the matrix factorizations are significantly tuned to the number of iterations for which they are
designed.

Hyperparameter settings The parameter settings for the various figures in the main body and
appendix can be found below.

Table 3: Grids used in initial search for Fig. 2.

Parameter Grid values
Client learning rate [0.5, 1.0]
Server learning rate [0.25, 0.5, 1.0, 2.0]
Server momentum [0.0, 0.9, 0.95]
Noise multiplier [0.341, 0.682, 1.364, 2.728, 5.456]
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Table 4: Hyperparameter settings for Fig. 2.

Mechanism " (Server LR, Client LR, Server momentum)

Honaker Full

18.9 (0.5, 1., 0.95)
8.2 (0.25, 1., 0.95)
3.7 (0.25, 1., 0.9)
1.7 (0.25, 0.5, 0.9)
0.8 (0.25, 0.5, 0.0)

Honaker
Online

18.9 (0.25, 1., 0.95)
8.2 (0.25, 1., 0.9)
3.7 (0.25, 0.5, 0.9)
1.7 (0.25, 1., 0.0)
0.8 (0.25, 0.5, 0.0)

Opt
Prefix
Sum

18.9 (0.5, 1., 0.95)
8.2 (0.25, 0.5, 0.95)
3.7 (0.25, 1., 0.9)
1.7 (0.25, 0.5, 0.9)
0.8 (0.5, 0.5, 0.0)

Optimal
M = B C

18.9 (1., 1., 0.9)
8.2 (0.25, 1., 0.95)
3.7 (0.25, 0.5, 0.9)
1.7 (0.25, 0.5, 0.9)
0.8 (0.5, 0.5, 0.0)

For Fig. 3, the parameter settings differed based on the mechanisms explored. Constant LR schedules
used the same settings as " = 18.9 in Table 4. For the exploration of learning rate decay schedules,
a server learning rate of 0.5, client learning rate of 1.0, and server momentum of 0.95 were shared.
The plot Fig. 6 was generated from the same set of experiments.

J Background on Differential Privacy

In this paper we operate with the “replace with zero” variant of differential privacy [6, Defn. 2.1],
sated below for completeness purposes.

Definition J.1 (Differential privacy). Let D be the domain of data records, ? 62 D be a special
element, and let bD = D [ {?} be the extended domain. A randomized algorithm A : bDn

! S is
(", �)-differentially private if for any data set D 2 bDn and any neighbor D0

2 bDn (formed from D

by replacing one record with ?), and for any event S 2 S , we have

Pr[A(D) 2 S]  e
"
· Pr[A(D0) 2 S] + �, and

Pr[A(D0) 2 S]  e
"
· Pr[A(D) 2 S] + �,

where the probability is over the randomness of A.

In our algorithms, we would treat ? specially, and assume it corresponds to the all-zeros vector of
appropriate dimensions. This definition extends naturally to other variants like Renyi differential
privacy (RDP) [35], and zero Concentrated Differential Privacy (zCDP). For completeness purposes
we provide the definition of zCDP we primarily use in the paper.

Definition J.2 (zero concentrated differential privacy). Analogous to the definitiion of (", �)-
differential privacy in Definition J.1, a randomized algorithm A is ⇢-zCDP if the condition on
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A(D) and A(D0) in Definition J.1 are replaced with the following:

1

↵� 1
logEs⇠A(D)

✓
Pr [A(D) = s]

Pr [A(D0) = s]

◆↵

 ⇢↵, and

1

↵� 1
logEs⇠A(D0)

✓
Pr [A(D0) = s]

Pr [A(D) = s]

◆↵

 ⇢↵.
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