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Abstract

Retrieval practice of information through testing has been
shown to improve learning. So has studying examples. In this
paper, we address inconsistencies in the literature concerning
which of these two approaches is best. We test the hypothesis
that learning depends on what is being learned; whereas
practice emphasizes memorization, studying examples allows
for selectivity of encoding, resulting in different information
being learned. Accordingly, we predicted that practice will
improve learning in situations that emphasize memorization
(such as learning facts or simple associations), whereas
studying examples will improve learning in situations where
there are multiple pieces of information available and
selectivity is necessary (such as when learning skills or
procedures). We report evidence from a laboratory study using
naturalistic materials showing results consistent with these
predictions.
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Introduction

When repeated studying of the same materials is replaced
by testing or retrieval practice, memory and learning are
enhanced (Roediger & Karpicke, 2006; Roediger, Agarwal,
McDaniel, & McDermott, 2011). For example, when
learning Swabhili-English translations, instead of repeatedly
studying word pairs like “kazi - work”, learning would be
improved by replacing some of the trials with testing: “kazi -
???7”. This general finding of a retrieval practice effect has
been consistently described in the literature using different
materials such as word lists, text passages, novel facts, and
language word pairs.

Although there is currently no agreed-upon mechanism for
this effect, it is thought to result from changes to the memory
trace associated with practice not present when re-reading.
Possible mechanisms include the elaboration of the original
memory with additional information (e.g., Carpenter, 2009),
increased retrieval cues (e.g., Lehman, Smith, & Karpicke,
2014), increased retrieval strength (e.g., Bjork & Bjork,
1992), or transfer-appropriate processing (e.g., Thomas &
McDaniel, 2007). Importantly, prior theories of retrieval
practice assume that the underlying learning mechanism
applies to all content in the same way. What to do, then, with
evidence that although retrieval practice improves learning in
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some situations, in others, further example study using
worked examples is more beneficial ("Worked Example
Effect;” Sweller & Cooper, 1985)?

The literature on the worked-example effect has
demonstrated that learning benefits from studying examples
of how to solve problems instead of practice activities (van
Gog, Paas, & van Merriénboer, 2006), or along with practice
activities (Renkl, 2005). For example, students learning to
calculate the area for the trapezoid would benefit from
studying problems where the answer and the steps to solve
the problem are worked out, compared to solving the same
problem.

Theoretical explanations of the worked-example effect
center around two main ideas, potentially complementary: (1)
that problem-solving practice puts a greater load on learners’
limited processing capabilities in a manner that is
“extraneous” to the learning process (e.g., van Merrienboer
& Sweller, 2005) rendering it less effective, and (2) that
practice activities are less beneficial because they lack the
necessary support to fill-in potential knowledge gaps (e.g.,
McNamara & Kintsch, 1996). Consistent with these ideas,
learning from reading materials can be improved by
including pre-questions about relevant parts of the text (e.g.,
Rickards, Anderson, & McCormick, 1976), or by eliminating
unnecessary content and reducing text to its main topics (e.g.,
Reder, 1980; Reder & Anderson, 1982).

Thus, current evidence suggests that more practice or
retrieval can both improve or delay learning and that more
study can both improve or delay learning. This apparent
contradiction poses both theoretical and practical issues.
Theoretically, to which degree do we have a complete
understanding of the learning process if opposite mechanisms
can yield similar results? Practically, when making
suggestions for the application of cognitive science findings
to educational contexts, practitioners are left wondering
which approach to use and when.

To be clear, ours is not the first attempt at addressing this
inconsistency. van Gog & Kester (2012, see also van Gog &
Sweller, 2015), proposed that problem complexity was the
critical dimension that defined whether retrieval practice or
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worked examples would improve learning. They proposed
that worked examples improve learning of complex problems
by reducing cognitive load, whereas practice would improve
learning of simpler materials that do not pose the same level
of cognitive load. However, as Karpick and Aue (2015, see
also Rawson, 2015) pointed out, this explanation does not
capture all the evidence. For example, there is ample
evidence that retrieval practice improves learning of complex
texts (Rawson & Dunlosky, 2011). Ultimately, problem
complexity is hard to operationalize, and a lot of the
discussion has centered around what constitutes complexity
(Karpick & Aue, 2015; Rawson, 2015).

Here we take a different approach. We address this
apparent contradiction by empirically testing a possible
flexible mechanism that can yield best learning outcomes
from retrieval practice in some situations, and from studying
examples in others. Our proposal is that retrieval practice
improves memory processes and strengths associations,
whereas studying examples improves inference processes
and information selection for encoding. Thus, when problems
include information that must be inferred, combined, or
selected from among a complex set of possible pieces of
information, studying examples will improve learning. In
other situations, retrieval practice will improve learning. This
proposal is consistent with previous work showing that
retrieval practice improves learning of associations, such as
paired associates or text that learners should try to retrieve
either verbatim or by putting together several pieces of
information (e.g., Karpicke & Blunt, 2011). Conversely,
studying examples improves learning of knowledge that
requires learners to infer or provide answers to multi-step
problems or applying procedures (e.g., learning to calculate
the area of a geometric solid, Salden, Koedinger, Renkl,
Aleven, & McLaren, 2010).

Importantly, this proposal requires careful identification of
which type of knowledge is being used. Associations can be
complex and inference-based problems can be simple.
Instead, we wuse the knowledge nomenclature and
classification proposed by the Knowledge Learning
Instruction framework (KLI; Koedinger, Corbett, & Perfetti,
2012). The KLI framework proposes that learning depends
on knowledge and includes a precise classification system for
knowledge. Based on analyses from over 360 in vivo studies
using different knowledge content, KLI relates knowledge,
learning, and instructional events and presents a framework
to organize empirical results and make predictions for future
research. According to KLI, Instructional Events are
activities designed to create learning. Textbooks, lectures and
tests/quizzes are examples of commonly used Instructional
Events in educational practice. These Instructional Events in
turn give rise to Learning Events -- changes in cognitive and
brain states associated with Instructional Events. KLI
identifies three types of Learning Events: Memory and
fluency-building processes, induction and refinement
processes, and understanding and sense-making processes.
These changes in cognitive and brain states influence and are
influenced by the Knowledge Components (KCs) being
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learned. A KC is a stable unit of cognitive function that is
acquired and modifiable. In short, KCs are the pieces of
cognition or knowledge and are domain-agnostic. Although
Learning Events and Knowledge Components cannot be
directly observed, they can be inferred from Assessment
Events, or outcome measures, such as exams and discussions.

KLI also offers a taxonomy for KCs based on how they
function across Learning Events and relates differences in
KCs with differences in Learning Events. In this way, KCs
can be classified based on their application and response
conditions. Some KCs are applied under unvarying, constant
conditions (e.g., paired-associates), while others are applied
under variable conditions (e.g., rules). Similarly, the response
of the KC can be a single value or constant such as a category
label, or it can vary as a function of the variable information
extracted in the condition, such as calculating the area of a
geometric solid. Thus, according to KLI, facts such as “the
capital of France is Paris” are constant application and
constant response KCs because there is only one single
application of the KC and there is only one response.
Moreover, facts require verbatim retrieval and application of
studied information (e.g., write the word “Paris” when
prompted for the capital of France). Conversely, skills such
as equation solving are variable application and variable
response KCs because there are multiple different problems
that can elicit the same equation solving KC and there are
multiple ways to apply this KC across different problems. In
this sense, skills require creating generalizations beyond the
studied information (e.g., solving an equation that one never
saw, using a generalization extracted from studying many
examples).

By connecting the type of Learning Event and the
associated learning processes with the type of KC being
learned, the KLI framework further suggests causal links
between instructional principles (e.g., “retrieval practice”,
“worked-example study”), and changes in learner
knowledge. For simple constant KCs such as facts, memory
and fluency processes are more relevant. Conversely, for
variable KCs such as skills, induction and refinement
processes are more relevant. Different learning processes will
be optimized by different types of instructional principles,
e.g., retrieval practice for facts and studying examples for
skills. Thus, different types of KCs will interact with different
types of Instructional Principles to create different learning.

Following KLI’s framework and nomenclature
convention, our proposal is that retrieval practice will be
particularly beneficial when learning facts ("Paris is the
capital of France”), whereas studying worked examples will
be particularly beneficial when learning skills such as
equation solving.

In the context of facts (“What is the capital of France?”),
learners need to successfully encode all of the information
presented and be able to retrieve it later. Learning facts only
requires learning the specific pieces of single practice items
but does not require any synthesis across practice items.
Conversely, in the context of skills (“Calculate the area of a
rectangle with the following measurements”), learners need



to generalize their knowledge across a series of studied
instances. In this sense, learning skills requires identifying
which pieces of the information are relevant for encoding and
which are not. Put another way, when learning facts all
presented information is critical and should be encoded,
whereas when learning skills, only a subset of the presented
information is relevant to forming an effective generalized
skill. Finally, this theoretical proposal is also consistent with
procedural differences between research on retrieval practice
and example study. Research on retrieval practice generally
tests learners’ memory on the information presented in
repeated trials, whereas research on worked examples

(A)

What is the formula for the area of a trapezoid?

(C)

What is the area of a trapezoid with a top base of 5ft,
a bottom base of 10 ft and a height of 2ft?

Participants were randomly assigned to one of four
conditions: Practice-Only Training of Facts (N 32),
Study+Practice Training of Facts (N = 23), Practice-Only
Training of Skills (N = 20), and Study-+Practice of Skills (N
=28).

Data from 8 participants were excluded due to failure to
complete the entire experiment (5 from the Practice-only
Training of Facts condition, 1 from the Study+Practice
Training of Facts condition, and 2 from the Practice-Only
Training of Skills condition). The final sample included 95
participants.

Apparatus and stimuli Participants learned how to

(B)

What is the formula for the area of a trapezoid?
A=%(a+b)*h

( ) What is the area of a trapezoid with a top base of 5ft,
a bottom base of 10 ft and a height of 2ft?

A= % * (10ft + 5ft) * 2ft
A=Y * (15ft) * 2ft
A= 15ft2

Figure 1: Examples of training trials for trapezoid area. (A) Fact practice trial, (B) Fact-based study trials, (C) Skill practice

trial, and (D) Skill study trial.

generally uses different examples of the same concept in each
trial.

To test this hypothesis, in this paper we compare learning
outcomes following training of facts and skills, using
retrieval practice (Practice-Only) or examples (Study-
Practice). For this purpose, we use an equivalent domain and
topic (geometry learning), but vary whether learning focuses
on fact acquisition (e.g,, “what is the formula to calculate the
area of a triangle?”), or skill acquisition (e.g. “what is the area
of the triangle below?”).

The Experiment

Method

Participants A total of 103 participants volunteered to
participate in this study through Mechanical Turk. The whole
study took approximately 20 minutes and participants were
paid $3.00. No demographic information was collected.
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calculate the area of geometrical shapes (rectangle, triangle,
circle, and trapezoid).

We created two multiple-choice tests to be used as
pre/posttest. In each test, there were 4 questions about each
geometrical shape for a total of 16 questions. For each shape,
two questions focused on fact-based knowledge (e.g., ”What
is the formula to calculate the area of the rectangle?”), and
two focused on skill-based knowledge (e.g., ”What is the arca
of a rectangle that is 9 ft wide and 15 ft long?”). Some
problems included images and others only text. The problems
in the two tests were created to be equivalent.

The training phase involved study of examples and practice
memorizing the formulas (Fig 1A) or calculating the area (Fig
1C), depending on the condition (see below for details). In
each trial, participants were presented with either a problem
to complete or an example to study. For facts the examples
were simply the response to the question (see Fig 1A),
whereas for skills the examples included the worked out steps
to complete answer the problem (see Fig 1D). We created a



total of 24 problems (6 per geometrical shape) for each
condition. During training, participants were asked to input
their answers and no feedback was provided.

To fill the time between training and test, participants
completed a series of trivia questions retrieved from the
updated and expanded Nelson and Narens (Nelson & Narens,
1980) norms developed by Tauber et al. (2013). Questions of
all difficulties were randomly selected to be presented.

Design and Procedure Participants started by completing
one of the multiple-choice tests as the pretest. Immediately
following the pretest participants started the training phase.
During the training phase participants were told that their task
was to study the examples and complete the activities in order
to learn about the area of these geometrical shapes. For all
conditions, problems were presented blocked by geometrical
shape, order randomized. The first trial for each geometrical
shape was always a study trial in which participants studied
an example of a question along with the correct response. In
the practice-only conditions participants then completed 3
practice trials for the same geometrical shape before moving
to the next geometrical shape. In the study-practice
conditions participants then completed a practice test,
followed by another study trial, and a final practice test before
moving on to the next geometrical shape. When learning facts
participants were asked to type the correct formula, when
learning skills participants were asked to type the area after

calculations. No feedback was presented. Which problems
were used was randomized for each participant.

Following the 16 training trials (4 per geometrical shape),
participants completed 30 trivia questions randomly selected
from a sample of 299 questions. Because we kept the number
of questions and not time constant, the duration of this
retention interval varied across participants depending on
how fast they answered the questions. Immediately following
the trivia questions participants completed the other multiple-
choice test as the posttest. Which of the two tests was used as
the pretest and which was used as the posttest was
counterbalanced across participants.

Results and Discussion

Pretest Overall, participants’ pretest performance was
moderate (M = 0.59 and 0.60, for facts and skills,
respectively) and did not differ for facts vs. skills ¢ (188) =
1.26, p = .208.

Pre-Post Change We analyzed posttest performance
controlling for pretest performance for each type of trained
concept (skills vs. facts), training type (Practice-only vs.
Study-Practice), and type of test questions (skills vs. facts).
Data were analyzed by fitting a linear mixed-effects model
predicting posttest score, using pretest score and duration of
retention interval as continuous predictors and type of
concept, type of question, and study condition as categorical
predictors, as well as their interaction terms. We included

Effect of Training condition and type of concept on learning outcomes

U1a=

0.10-

0.05-

Pre-post change

.00 -

1
Facts

Practice Type

. Practice-0nly

. Study-Practice

Skills

Study Knowledge Type

Figure 2: Pre-post change results for different types of concepts and training tasks. Error bars represent the standard error

of the mean.



retention interval as a predictor because we did not control its
duration and previous research has suggested that the benefit
of practice study is moderated by duration of the retention
interval (Pan, Gopal, & Rickard, 2016). Although we did not
find any difference in pretest scores, including the pretest as
a covariate controls for potential differences in previous
knowledge between the groups, despite random assignment.
For simplicity, we plot pre-post change instead of posttest
and pretest values.

As it can be seen in Figure 2, we saw a significant
interaction between the type of concept studied and the type
of training, f = 0.41, #(124.53) = 2.09, p = .038, d = 0.38.
Thus, whether more practice or study led to better learning
depended on the type of concept being learned (skills vs.
facts).

However, we found no 3-way interaction with type of test
question f = 0.03, #(68.73) = 0.133, p = .894, d = 0.03,
suggesting that this effect is not specific to the type of
question being asked and there is some transfer from best
learning of skills to fact questions and vice-versa.
Interestingly, although fact questions were slightly easier
than skill questions = 0.20, ¢ (70.33) = 2.05, p = .044, d =
0.49, overall performance after learning facts was not
different from overall performance after learning skills, f =
0.24, ¢ (124.86) = 1.88, p=.063, d = 0.34.

Finally, contrary to some theoretical predictions, we found
no interaction between type of training and retention interval,
p = 0.01, #124.52) = 0.834, p = 410, d = 0.15, and
participants’ accuracy responding to fact vs. skill test
questions did not vary with retention interval duration, f =
0.02,#70.79)=1.38, p=.173,d=0.33. Overall, performance
following learning facts was slightly worse after longer
delays than short delays with no effect of delay for learning
skills, = 0.03, t (124.74) = 2.20, p = .030, d = 0.35. There
were no other effects of retention interval or interactions.

Discussion

In this paper we demonstrate that learning is flexible and
depending on what is being learned, performance in the same
task can vary substantially.

We proposed that, contrary to some theoretical and
empirical investigations (Roediger & Karpicke, 2006),
learning from practice does not always yield the best
outcomes. In fact, learning by alternating study and practice
yields better outcomes in some situations. However, our
investigation goes beyond this demonstration. We proposed
a mechanism through which this flexibility takes place.

We build on the empirical and theoretical understanding
proposed by KLI (Koedinger et al., 2012) to identify the
specific ways in which the knowledge content changes how
the learning processes involved in the effect of testing
practice operate. The general proposal is that increased
information presented during encoding requires increased
selectivity (identifying relevant elements for encoding) for
successful induction and refinement. Increased selectivity in
turn requires encoding processes that successfully direct the
learner (either intrinsically or extrinsically) towards the
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relevant information. Studying examples -- as opposed to
further retrieval practice -- can play a key role in this aspect.
Mechanistically, our proposal is that studying examples
guides attention and selectivity towards a subset of the
presented information. Subsequent retrieval practice will
improve memory and consolidation of this selected
information. In this context, when learning facts, no
selectivity is required and thus studying examples will not
contribute to better learning outcomes, and might even delay
it. Conversely, when learning skills, retrieval practice without
substantial time dedicated to studying examples could lead to
strengthening encoding and consolidation of irrelevant
information that does not allow for successful induction and
generalization, thus resulting in worse learning outcomes.

In sum, the hypothesis put forward here is that studying
examples changes the learning process by introducing
selectivity about what is relevant and should be encoded. This
change, however, is only going to be beneficial if the learning
context requires it. That is, increased selectivity of encoding
introduced with further study of worked examples will not
positively influence learning when the information presented
is reduced or no generalization is required. Finally, this
proposal is also consistent with procedural differences
between research on retrieval practice and example study;
whereas research on retrieval practice has used mostly
repeated information across trials and tested learners'
memory for that information, the research on worked
examples has used mostly different examples of the same
concept in each trial.

Conclusion

A distinctive characteristic of human learning is our
capability to flexibly acquire a wide range of rich and
complex forms of knowledge (e.g., first and second
languages, chess and golf, math and science, collaboration
and learning strategies, etc.) and get better at acquiring new
knowledge as we accumulate knowledge (e.g., learning
physics is much easier after having learned how to read and
do algebra). What flexible learning mechanism makes human
learning this smartly nuanced? Here we started to approach
this question by investigating how the same mechanism can
improve learning outcomes in one situation but not in others.

Finally, by highlighting the adaptive nature of learning, we
hope to not only address outstanding apparent inconsistencies
in the literature, but also provide a mechanistic view of
learning across multiple situations beyond describing what
works (Dunlosky, Rawson, Marsh, Nathan, & Willingham,
2013). Only by moving beyond demonstrations of what
works, towards demonstrations of what works when along
with the precise mechanisms of learning yielding such
interactions will we be able to understand human learning and
improve it where needed.
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