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Abstract 

Retrieval practice of information through testing has been 
shown to improve learning. So has studying examples. In this 
paper, we address inconsistencies in the literature concerning 
which of these two approaches is best. We test the hypothesis 
that learning depends on what is being learned; whereas 
practice emphasizes memorization, studying examples allows 
for selectivity of encoding, resulting in different information 
being learned. Accordingly, we predicted that practice will 
improve learning in situations that emphasize memorization 
(such as learning facts or simple associations), whereas 
studying examples will improve learning in situations where 
there are multiple pieces of information available and 
selectivity is necessary (such as when learning skills or 
procedures). We report evidence from a laboratory study using 
naturalistic materials showing results consistent with these 
predictions. 
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Introduction 

When repeated studying of the same materials is replaced 

by testing or retrieval practice, memory and learning are 

enhanced (Roediger & Karpicke, 2006; Roediger, Agarwal, 

McDaniel, & McDermott, 2011). For example, when 

learning Swahili-English translations, instead of repeatedly 
studying word pairs like “kazi - work”, learning would be 

improved by replacing some of the trials with testing: “kazi - 

???”.  This general finding of a retrieval practice effect has 

been consistently described in the literature using different 

materials such as word lists, text passages, novel facts, and 

language word pairs. 

Although there is currently no agreed-upon mechanism for 

this effect, it is thought to result from changes to the memory 

trace associated with practice not present when re-reading. 

Possible mechanisms include the elaboration of the original 

memory with additional information (e.g., Carpenter, 2009), 
increased retrieval cues (e.g., Lehman, Smith, & Karpicke, 

2014), increased retrieval strength (e.g., Bjork & Bjork, 

1992), or transfer-appropriate processing (e.g., Thomas & 

McDaniel, 2007). Importantly, prior theories of retrieval 

practice assume that the underlying learning mechanism 

applies to all content in the same way. What to do, then, with 

evidence that although retrieval practice improves learning in 

some situations, in others, further example study using 

worked examples is more beneficial (”Worked Example 

Effect;” Sweller & Cooper, 1985)?  

The literature on the worked-example effect has 

demonstrated that learning benefits from studying examples 

of how to solve problems instead of practice activities (van 

Gog, Paas, & van Merriënboer, 2006), or along with practice 

activities (Renkl, 2005). For example, students learning to 

calculate the area for the trapezoid would benefit from 

studying problems where the answer and the steps to solve 

the problem are worked out, compared to solving the same 

problem. 
Theoretical explanations of the worked-example effect 

center around two main ideas, potentially complementary: (1) 

that problem-solving practice puts a greater load on learners’ 

limited processing capabilities in a manner that is 

“extraneous” to the learning process (e.g., van Merrienboer 

& Sweller, 2005) rendering it less effective, and (2) that 

practice activities are less beneficial because they lack the 

necessary support to fill-in potential knowledge gaps (e.g., 

McNamara & Kintsch, 1996). Consistent with these ideas, 

learning from reading materials can be improved by 

including pre-questions about relevant parts of the text (e.g., 
Rickards, Anderson, & McCormick, 1976), or by eliminating 

unnecessary content and reducing text to its main topics (e.g., 

Reder, 1980; Reder & Anderson, 1982). 

Thus, current evidence suggests that more practice or 

retrieval can both improve or delay learning and that more 

study can both improve or delay learning. This apparent 

contradiction poses both theoretical and practical issues. 

Theoretically, to which degree do we have a complete 

understanding of the learning process if opposite mechanisms 

can yield similar results? Practically, when making 

suggestions for the application of cognitive science findings 

to educational contexts, practitioners are left wondering 
which approach to use and when. 

To be clear, ours is not the first attempt at addressing this 

inconsistency. van Gog & Kester (2012, see also van Gog & 

Sweller, 2015), proposed that problem complexity was the 

critical dimension that defined whether retrieval practice or 
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worked examples would improve learning. They proposed 

that worked examples improve learning of complex problems 

by reducing cognitive load, whereas practice would improve 

learning of simpler materials that do not pose the same level 

of cognitive load. However, as Karpick and Aue (2015, see 
also Rawson, 2015) pointed out, this explanation does not 

capture all the evidence. For example, there is ample 

evidence that retrieval practice improves learning of complex 

texts (Rawson & Dunlosky, 2011). Ultimately, problem 

complexity is hard to operationalize, and a lot of the 

discussion has centered around what constitutes complexity 

(Karpick & Aue, 2015; Rawson, 2015). 

Here we take a different approach. We address this 

apparent contradiction by empirically testing a possible 

flexible mechanism that can yield best learning outcomes 

from retrieval practice in some situations, and from studying 

examples in others. Our proposal is that retrieval practice 
improves memory processes and strengths associations, 

whereas studying examples improves inference processes 

and information selection for encoding. Thus, when problems 

include information that must be inferred, combined, or 

selected from among a complex set of possible pieces of 

information, studying examples will improve learning. In 

other situations, retrieval practice will improve learning. This 

proposal is consistent with previous work showing that 

retrieval practice improves learning of associations, such as 

paired associates or text that learners should try to retrieve 

either verbatim or by putting together several pieces of 
information (e.g., Karpicke & Blunt, 2011). Conversely, 

studying examples improves learning of knowledge that 

requires learners to infer or provide answers to multi-step 

problems or applying procedures (e.g., learning to calculate 

the area of a geometric solid, Salden, Koedinger, Renkl, 

Aleven, & McLaren, 2010). 

Importantly, this proposal requires careful identification of 

which type of knowledge is being used. Associations can be 

complex and inference-based problems can be simple. 

Instead, we use the knowledge nomenclature and 

classification proposed by the Knowledge Learning 

Instruction framework (KLI; Koedinger, Corbett, & Perfetti, 
2012). The KLI framework proposes that learning depends 

on knowledge and includes a precise classification system for 

knowledge. Based on analyses from over 360 in vivo studies 

using different knowledge content, KLI relates knowledge, 

learning, and instructional events and presents a framework 

to organize empirical results and make predictions for future 

research. According to KLI, Instructional Events are 

activities designed to create learning. Textbooks, lectures and 

tests/quizzes are examples of commonly used Instructional 

Events in educational practice.  These Instructional Events in 

turn give rise to Learning Events -- changes in cognitive and 
brain states associated with Instructional Events. KLI 

identifies three types of Learning Events: Memory and 

fluency-building processes, induction and refinement 

processes, and understanding and sense-making processes. 

These changes in cognitive and brain states influence and are 

influenced by the Knowledge Components (KCs) being 

learned. A KC is a stable unit of cognitive function that is 

acquired and modifiable. In short, KCs are the pieces of 

cognition or knowledge and are domain-agnostic. Although 

Learning Events and Knowledge Components cannot be 

directly observed, they can be inferred from Assessment 
Events, or outcome measures, such as exams and discussions. 

KLI also offers a taxonomy for KCs based on how they 

function across Learning Events and relates differences in 

KCs with differences in Learning Events. In this way, KCs 

can be classified based on their application and response 

conditions. Some KCs are applied under unvarying, constant 

conditions (e.g., paired-associates), while others are applied 

under variable conditions (e.g., rules). Similarly, the response 

of the KC can be a single value or constant such as a category 

label, or it can vary as a function of the variable information 

extracted in the condition, such as calculating the area of a 

geometric solid. Thus, according to KLI, facts such as “the 
capital of France is Paris” are constant application and 

constant response KCs because there is only one single 

application of the KC and there is only one response. 

Moreover, facts require verbatim retrieval and application of 

studied information (e.g., write the word “Paris” when 

prompted for the capital of France). Conversely, skills such 

as equation solving are variable application and variable 

response KCs because there are multiple different problems 

that can elicit the same equation solving KC and there are 

multiple ways to apply this KC across different problems. In 

this sense, skills require creating generalizations beyond the 
studied information (e.g., solving an equation that one never 

saw, using a generalization extracted from studying many 

examples). 

By connecting the type of Learning Event and the 

associated learning processes with the type of KC being 

learned, the KLI framework further suggests causal links 

between instructional principles (e.g., “retrieval practice”, 

“worked-example study”), and changes in learner 

knowledge. For simple constant KCs such as facts, memory 

and fluency processes are more relevant. Conversely, for 

variable KCs such as skills, induction and refinement 

processes are more relevant. Different learning processes will 
be optimized by different types of instructional principles, 

e.g., retrieval practice for facts and studying examples for 

skills. Thus, different types of KCs will interact with different 

types of Instructional Principles to create different learning. 

Following KLI’s framework and nomenclature 

convention, our proposal is that retrieval practice will be 

particularly beneficial when learning facts (”Paris is the 

capital of France”), whereas studying worked examples will 

be particularly beneficial when learning skills such as 

equation solving. 

In the context of facts (“What is the capital of France?”), 
learners need to successfully encode all of the information 

presented and be able to retrieve it later. Learning facts only 

requires learning the specific pieces of single practice items 

but does not require any synthesis across practice items. 

Conversely, in the context of skills (“Calculate the area of a 

rectangle with the following measurements”), learners need 
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total of 24 problems (6 per geometrical shape) for each 

condition. During training, participants were asked to input 

their answers and no feedback was provided. 

To fill the time between training and test, participants 

completed a series of trivia questions retrieved from the 
updated and expanded Nelson and Narens (Nelson & Narens, 

1980) norms developed by Tauber et al. (2013). Questions of 

all difficulties were randomly selected to be presented. 

 

Design and Procedure Participants started by completing 

one of the multiple-choice tests as the pretest. Immediately 

following the pretest participants started the training phase. 

During the training phase participants were told that their task 

was to study the examples and complete the activities in order 

to learn about the area of these geometrical shapes. For all 

conditions, problems were presented blocked by geometrical 

shape, order randomized. The first trial for each geometrical 
shape was always a study trial in which participants studied 

an example of a question along with the correct response. In 

the practice-only conditions participants then completed 3 

practice trials for the same geometrical shape before moving 

to the next geometrical shape. In the study-practice 

conditions participants then completed a practice test, 

followed by another study trial, and a final practice test before 

moving on to the next geometrical shape. When learning facts 

participants were asked to type the correct formula, when 

learning skills participants were asked to type the area after 

calculations. No feedback was presented. Which problems 

were used was randomized for each participant. 

Following the 16 training trials (4 per geometrical shape), 

participants completed 30 trivia questions randomly selected 

from a sample of 299 questions. Because we kept the number 
of questions and not time constant, the duration of this 

retention interval varied across participants depending on 

how fast they answered the questions. Immediately following 

the trivia questions participants completed the other multiple-

choice test as the posttest. Which of the two tests was used as 

the pretest and which was used as the posttest was 

counterbalanced across participants. 

Results and Discussion 

Pretest Overall, participants’ pretest performance was 

moderate (M = 0.59 and 0.60, for facts and skills, 

respectively) and did not differ for facts vs. skills t (188) = 
1.26, p = .208. 

Pre-Post Change We analyzed posttest performance 

controlling for pretest performance for each type of trained 

concept (skills vs. facts), training type (Practice-only vs. 

Study-Practice), and type of test questions (skills vs. facts). 

Data were analyzed by fitting a linear mixed-effects model 

predicting posttest score, using pretest score and duration of 

retention interval as continuous predictors and type of 

concept, type of question, and study condition as categorical 

predictors, as well as their interaction terms. We included 

Figure 2: Pre-post change results for different types of concepts and training tasks. Error bars represent the standard error 

of the mean. 
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retention interval as a predictor because we did not control its 

duration and previous research has suggested that the benefit 

of practice study is moderated by duration of the retention 

interval (Pan, Gopal, & Rickard, 2016). Although we did not 

find any difference in pretest scores, including the pretest as 
a covariate controls for potential differences in previous 

knowledge between the groups, despite random assignment. 

For simplicity, we plot pre-post change instead of posttest 

and pretest values. 

As it can be seen in Figure 2, we saw a significant 

interaction between the type of concept studied and the type 

of training, β = 0.41, t(124.53) = 2.09, p = .038, d = 0.38. 

Thus, whether more practice or study led to better learning 

depended on the type of concept being learned (skills vs. 

facts). 

However, we found no 3-way interaction with type of test 

question β = 0.03, t(68.73) = 0.133, p = .894, d =  0.03, 
suggesting that this effect is not specific to the type of 

question being asked and there is some transfer from best 

learning of skills to fact questions and vice-versa. 

Interestingly, although fact questions were slightly easier 

than skill questions β = 0.20, t (70.33) = 2.05, p = .044, d = 

0.49, overall performance after learning facts was not 

different from overall performance after learning skills, β = 

0.24, t (124.86) = 1.88, p = .063, d = 0.34. 

Finally, contrary to some theoretical predictions, we found 

no interaction between type of training and retention interval, 

β = 0.01, t(124.52) = 0.834, p = .410, d = 0.15, and 
participants’ accuracy responding to fact vs. skill test 

questions did not vary with retention interval duration, β = 

0.02, t(70.79) = 1.38, p = .173, d = 0.33. Overall, performance 

following learning facts was slightly worse after longer 

delays than short delays with no effect of delay for learning 

skills, β = 0.03, t (124.74) = 2.20, p = .030, d = 0.35. There 

were no other effects of retention interval or interactions. 

Discussion 

In this paper we demonstrate that learning is flexible and 

depending on what is being learned, performance in the same 

task can vary substantially. 
We proposed that, contrary to some theoretical and 

empirical investigations (Roediger & Karpicke, 2006), 

learning from practice does not always yield the best 

outcomes. In fact, learning by alternating study and practice 

yields better outcomes in some situations. However, our 

investigation goes beyond this demonstration. We proposed 

a mechanism through which this flexibility takes place. 

We build on the empirical and theoretical understanding 

proposed by KLI (Koedinger et al., 2012) to identify the 

specific ways in which the knowledge content changes how 

the learning processes involved in the effect of testing 
practice operate. The general proposal is that increased 

information presented during encoding requires increased 

selectivity (identifying relevant elements for encoding) for 

successful induction and refinement. Increased selectivity in 

turn requires encoding processes that successfully direct the 

learner (either intrinsically or extrinsically) towards the 

relevant information. Studying examples -- as opposed to 

further retrieval practice -- can play a key role in this aspect. 

Mechanistically, our proposal is that studying examples 

guides attention and selectivity towards a subset of the 

presented information. Subsequent retrieval practice will 
improve memory and consolidation of this selected 

information. In this context, when learning facts, no 

selectivity is required and thus studying examples will not 

contribute to better learning outcomes, and might even delay 

it. Conversely, when learning skills, retrieval practice without 

substantial time dedicated to studying examples could lead to 

strengthening encoding and consolidation of irrelevant 

information that does not allow for successful induction and 

generalization, thus resulting in worse learning outcomes.  

In sum, the hypothesis put forward here is that studying 

examples changes the learning process by introducing 

selectivity about what is relevant and should be encoded. This 
change, however, is only going to be beneficial if the learning 

context requires it. That is, increased selectivity of encoding 

introduced with further study of worked examples will not 

positively influence learning when the information presented 

is reduced or no generalization is required. Finally, this 

proposal is also consistent with procedural differences 

between research on retrieval practice and example study; 

whereas research on retrieval practice has used mostly 

repeated information across trials and tested learners' 

memory for that information, the research on worked 

examples has used mostly different examples of the same 
concept in each trial. 

Conclusion 

A distinctive characteristic of human learning is our 

capability to flexibly acquire a wide range of rich and 

complex forms of knowledge (e.g., first and second 

languages, chess and golf, math and science, collaboration 

and learning strategies, etc.) and get better at acquiring new 

knowledge as we accumulate knowledge (e.g., learning 

physics is much easier after having learned how to read and 

do algebra). What flexible learning mechanism makes human 

learning this smartly nuanced? Here we started to approach 
this question by investigating how the same mechanism can 

improve learning outcomes in one situation but not in others. 

Finally, by highlighting the adaptive nature of learning, we 

hope to not only address outstanding apparent inconsistencies 

in the literature, but also provide a mechanistic view of 

learning across multiple situations beyond describing what 

works (Dunlosky, Rawson, Marsh, Nathan, & Willingham, 

2013). Only by moving beyond demonstrations of what 

works, towards demonstrations of what works when along 

with the precise mechanisms of learning yielding such 

interactions will we be able to understand human learning and 

improve it where needed. 
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