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Abstract— We study the identification of a linear time-
invariant dynamical system affected by large-and-sparse dis-
turbances modeling adversarial attacks or faults. Under the
assumption that the states are measurable, we develop sufficient
conditions for the recovery of the system matrices by solving
a constrained lasso-type optimization problem. In the settings
without control input or when the input is sub-Gaussian with a
known matrix B, we characterize the type of disturbance that
does not affect the estimation of the matrix A. We furthermore
analyze the case when A and B are estimated simultaneously,
and study how to design the input of the system to properly
excite the system and make the identification possible in the
presence of adversarial attacks. We introduced the key notion of
∆-spaced disturbance and element-wise identifiability to study
the success of the constrained lasso estimator. The performance
of our estimator is demonstrated in numerical experiments.

I. INTRODUCTION

The control of large-scale unknown dynamical systems,
such as the power distribution networks, calls for an accurate
model of the system. Recent interests in data-driven control
and non-asymptotic analysis of statistical estimators provide
a wealth of frameworks and tools applicable to the control
of unknown dynamical systems [1], [2]. Although learning
an accurate dynamical model is not necessary to achieve the
control objectives, a state-space model has the advantage
of being applicable to many control tasks and objectives.
The issue is particularly salient in the operation of safety-
critical systems, where a robust design of control laws is
necessary [3].

This paper focuses on the identification of a linear dynami-
cal system where the states can be perfectly measured but are
subject to unknown disturbance, accounting for adversarial
attacks or faults. We prove that a type of identification scheme
based on constrained lasso can perfectly recover the system
matrices when the state disturbance is sparse. The issue
of robustness in identification has a long history. Dating
back to Tukey [4] which made the observation that a small
deviation from the model assumption could have dramatic
effects on estimation and prediction, there have since been
many attempts to robustify the M-estimators and to use
regularization to achieve robustness. The work [5] showed the
equivalence of robust optimization and l1-regularization for
support vector machines and further attributed generalization
ability to robustness against local disturbance. The more
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recent study [6] significantly extended the connection between
robustification and regularization in regression problems.

In the system identification literature, there have been
studies for the case of dense noise and the general non-smooth
robust estimators [7], [8]. Those works proposed necessary
and sufficient conditions of recovery that apply to any attack
structure and system matrix. The estimator of our paper is
a special instance of the general non-smooth sum-of-norms
estimator studied in the above two papers, but we specialize
the analysis to the case of spaced disturbances, which leads to
insights on input design for a particular system matrix. Other
related papers [9] and [10] studied the system identification
problem subject to a sparsity assumption on the A and B
matrices and derived improved sample complexity bounds.
However, their models were based on Gaussian disturbance
that is not applicable to adversarial analysis. The recent
work [11] studied the identification problem using a conic
relaxation, which linearizes the problem at the expense of
increasing the problem dimension. More recently, [12] proved
finite-time identification bounds for linear dynamical systems
without control input. The identification method is based on
ordinary least-squares, which succeeds under the important
assumption of regular matrices. Concurrently, [13] proved
non-asymptotic bounds for system identification with Markov
parameters, which are estimated using least-squares and the
Kalman-Ho algorithm. It is challenging to generalize those
algorithms to the case when the samples are missing or
when they are corrupted. The set-membership estimator can
deal with missing samples and is consistent [14], but the
disturbance is assumed to be bounded.

Other related lines of work in the control literature involve
the identification of switched systems with noisy measure-
ments [15], [16] and system identification in the presence
of output attacks [17]. In contrast, we study the case with
contaminated states, whose effect propagates over time. Other
fruitful ideas include attack resilient state estimation [18],
[19] (where the goal is to recover the system state) and
Byzantine fault tolerance [20], [21] (where a collection of
redundant agents can prevent an attack by faulty agents in
the computation of an optimization problem).

To situate the paper in the broader context, we discuss
related works on robust regression. The paper [22] studied
the related problem of outlier detection in linear regression. It
proved the equivalence of adding a penalty to the least-squares
loss function and using an alternative loss function to the
least-squares loss. In particular, it noted that l1 regularization
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is equivalent to using the Huber loss and that Huber loss
may not be the best choice for guaranteeing robustness in
many cases — a non-convex loss function may be more
appropriate. However, unless in very specialized settings, the
theoretical justifications of non-convex estimators are rare,
and the computation of non-convex estimators is not well-
understood [23], [24]. The work [25] solved the problem
of regression with sparse disturbance via iterative hard
thresholding. There has been a flurry of recent papers on
robust training [26]–[28]. Nevertheless, the independence
assumption between samples renders them inapplicable to
system identification — the state measurements are dependent
and cannot be re-ordered. Transforming the data samples to
deal with missing data in linear regression does not directly
translate to the system identification case due to the need to
measure several trajectories or solve nonlinear optimization
problems. It is undesirable to reset the system in practical
applications. Furthermore, it is unclear how identification can
be achieved robustly in an online fashion.

A. Contribution

The paper provides consistency guarantees (perfect re-
covery of the unknown system matrix in finite time) for
a constrained lasso estimator when the system is subject
to sparse state disturbances. After formulating the problem
in Section II, we introduce the key notion of ∆-spaced
disturbance. Section III is devoted to the study of the system
identification problem without control input. Section IV
studies the case with control inputs. Both sections make
extensive use of our notion of element-wise identifiability.
The problem of designing the input to assist with the system
identification problem is discussed in Section V. Section VI
illustrates the results with numerical simulations. Section VII
makes concluding remarks.

II. PROBLEM FORMULATION

Consider the linear time-invariant dynamical system over
the time horizon [0, T ]:

xt+1 = Āxt + B̄ut + b̄t. t = 0, 1, . . . , T − 1,

where Ā ∈ Rn×n, B̄ ∈ Rn×m are unknown matrices in the
state space model to be estimated and b̄t’s are unknown
disturbances. The goal is to find the matrices Ā and B̄
from the state measurements x0, ..., xT ∈ Rn and input
data u0, ..., uT−1 ∈ Rm. The disturbances b̄0, ..., t̄T1

model
anomalies in the system, such as attacks on the input data or
actuator’s faults. Without any assumptions on the disturbance,
the identification problem is not well-defined due to the
impossibility of separating Āxt + B̄ut from the disturbance
b̄t. We will make the assumption that the disturbance signal
is sparse, meaning that only a small subset of the vectors
b̄0, ..., b̄T−1 are possibly non-zero. This is a common model
for stealth attacks. The locations of non-zero disturbance
vectors are not known and need to be inferred from the states
x0, . . . , xT and control inputs u0, . . . , uT−1. We introduce
the notion of disturbance sparsity below.

Definition 1: Given a nonnegative integer ∆, the distur-
bance sequence {b̄i}T−1

i=0 is said to be ∆-spaced if for every
integer i ∈ {0, . . . , T −∆ − 1} such that b̄i 6= 0, we have
b̄j = 0, for all j ∈ {i+ 1, . . . , i+ ∆}.

III. THE CASE WITHOUT CONTROL INPUT

We first study the case without control input for three
reasons. First, we do not need to distinguish the input B̄ut
from the disturbance b̄t, making it possible to analyze only
the effect of sparse disturbance. Second, any estimation
techniques for the no-input case can be adapted to solve
the case with sparse input. More precisely, one can define b̃t
as B̄ut+ b̄t, and then find (Ā, B̄) in three steps: (i) identify Ā
from the measurement equations xt+1 = Āxt + b̃t, (ii) obtain
the new disturbances from the equation b̃t = xt+1 − Āxt,
(iii) solve a regression problem for the model b̃t = B̄ut + b̄t
to find B̄. Finally, the study of the no-input case provides
insights into how the lasso estimator, which is widely used
for rejecting outliers in machine learning with uncorrelated
data, would perform on dynamical systems for which there
is correlation over time.

Consider the following lasso-type estimator

min
A,b

T−1∑
i=0

‖bi‖2 (1)

s.t xi+1 = Axi + bi, i = 0, . . . , T − 1,

where the measurements x0, . . . , xT are generated according
to the ground truth

xi+1 = Āxi + b̄i.

We use

K = {i | b̄i 6= 0, i ∈ {0, 1, ..., T − 1}}

to denote the time instances of non-zero disturbance vectors.
For clarity, when summing over the indices, we use the
shorthand notation

∑
i/∈K instead of

∑
0≤i≤T−1,i/∈K . In what

follows, we develop conditions for the perfect identification of
the system matrices. We will first study the one-dimensional
case, where we derive sufficient conditions for the uniqueness
of the Lasso solution. We will then generalize the results to
systems of arbitrary dimensions. Throughout the paper, we
use sgn(x) to denote the sub-differential of the 2-norm ‖x‖2
and use 〈·, ·〉 to denote the inner product of two vectors. The
notation (x)j extracts the j-th entry of a vector x. For a real
number z, we use |z| to denote its absolute value.

A. One-dimensional Case

We study the Lasso-typo estimator (1) below.
Theorem 1: Consider the convex optimization problem (1)

and assume that n = 1. It holds that

• If
∑

i/∈K |xi| ≥
∣∣∑

i∈K〈xi, sgn(b̄i)〉
∣∣, then Ā is a

solution to (1).
• If

∑
i/∈K |xi| >

∑
i∈K |xi|, then Ā is the unique solution.
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Proof: The first-order necessary condition states that

λi ∈ sgn(bi), i = 0, 1, . . . , T − 1,
T−1∑
i=0

xiλ
T
i = 0,

xi+1 −Axi − bi = 0, i = 0, . . . , T − 1.

Since n = 1, the conditions are simplified to

0 ∈
∑
i

xisgn(xi+1 −Axi).

Note that the right-hand side of the above relation is a set.
On the other hand,

xi = Āix0 +
∑
k∈K

Ā(i−1−k)+ b̄k, i = 0, . . . , T, (2)

where

A(i)+ =


0, if i < 0,

1, if i = 0,

Ai, if i > 0.

The first-order condition can be simplified to

0 ∈
T−1∑
i=0

〈
Āix0 +

∑
k∈K

Ā(i−1−k)+ b̄k, sgn((Ā−A)Āix0+

∑
k∈K

(Ā(i−k)+ −AĀ(i−1−k)+)b̄k)

〉
,

which is equivalent to

0 ∈
T−1∑
i=0

〈
Āix0 +

∑
k∈K

Ā(i−1−k)+ b̄k, sgn((Ā−A)(Āix0+

∑
k∈K

Ā(i−1−k)+ b̄k) +
∑
k∈K

(Ā(i−k)+ − ĀĀ(i−1−k)+)b̄k)

〉
.

By substituting back the expression of xi together with the ob-
servations xi sgn(axi) = |xi| sgn(a) and

∑
k∈K(Ā(i−k)+ −

ĀĀ(i−1−k)+)b̄k = b̄i for all i ∈ K, the first-order necessary
condition can be reduced to

0 ∈
∑

0≤i≤T−1
i/∈K

|xi| sgn(Ā−A) +
∑
i∈K
〈xi, sgn((Ā−A)xi + b̄i)〉.

The proof of the theorem is completed by noting that
• If a matrix A∗ 6= Ā is a solution, then∑

i/∈K

|xi| =

∣∣∣∣∣∑
i∈K
〈xi, sgn((Ā−A∗)xi + b̄i)

∣∣∣∣∣
≤
∑
i∈K
|xi|.

• Ā is a solution if and only if∑
i/∈K

|xi| ≥

∣∣∣∣∣∑
i∈K
〈xi, sgn(b̄i)〉

∣∣∣∣∣.

Remark 1: The conditions in Theorem 1 show that the
absolute magnitude of individual disturbances does not
directly affect perfect recovery, as long as the relative
magnitude of states is well-controlled. Furthermore, if there
is a non-zero disturbance at the end of the horizon, namely
b̄T−1 6= 0, it may cause the first condition of Theorem 1 to
be violated, and the system identification will fail.

It is desirable to understand what types of systems satisfy
the conditions of Theorem 1. We will show that these
conditions are satisfied in at least two scenarios. Define

s(a, k) =
k−1∑
i=0

ai =

{
1−ak

1−a , if a 6= 1

ka, if a = 1.

Proposition 1: For n = 1, if the disturbance sequence
satisfies∑

i/∈K

ri|x0| −
∑
i∈K

ri|x0| >
∑
k∈K

s(r, T − k − 1)
∣∣b̄k∣∣, (3)

then Ā is the unique solution to the optimization problem (1).
Proof: It suffices to show that the condition in Theorem 1

is satisfied. The proof is relegated to the online version [29].

Proposition 1 implies that if the disturbances are small,
then the system identification via a Lasso-typo estimator
is successful. Consider now the opposite case where the
disturbances are ∆-spaced and large enough to drive the
system.

Proposition 2: Assume that the disturbance sequence is
∆-spaced. If ∑

i∈K

∣∣b̄i∣∣ > s(r,∆ + 1)

s(r,∆)

∑
i∈K
|xi|,

where r =
∣∣Ā∣∣, then Ā is the unique solution to the

optimization problem (1).
Proof: ∆-spaced disturbances allow us to lowerbound∑

j /∈K |xj | with the norm of the most recent disturbed state
|xi| for i ∈ K. The detail of the proof is relegated to the
online version [29].

B. High-dimensional Case

In this part, we generalize the results of the previous section
to systems of arbitrary dimensions. We use the notation
a⊗ b = abT .

Theorem 2: The following statements hold:
• If there exist vectors ei, for all i /∈ K, of length at most

1 such that ∑
i/∈K

xi ⊗ ei =
∑
i∈K

xi ⊗ bi/‖bi‖, (4)

then Ā is a solution to the optimization problem (1).
• If Ā is not the unique solution to (1), then there exits a

non-zero matrix E such that∑
i/∈K

xi ⊗ sgn(Exi) +
∑
i∈K

xi ⊗ sgn(Exi + b̄i) 3 0.
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Proof: Similar to the one-dimensional case, the first-
order necessary condition becomes

0∈
∑
i/∈K

xi ⊗ sgn((Ā−A)xi)+
∑
i∈K

xi ⊗ sgn((Ā−A)xi+b̄i).

Let A∗ be a solution of (1). If A∗ 6= Ā, then we set E =
Ā− A∗. The rest of the proof closely follows the proof of
Theorem 1.

To understand what types of systems satisfy the conditions
of Theorem 2. We introduce the notion of element-wise
identifiability below.

Definition 2: Given A ∈ Rn×n, y ∈ Rn, and z ∈ Rn,
the triplet (A, y, z) is said to be ∆-spaced element-wise
identifiable if either z = 0 or

y∈

{
∆∑
i=1

gi(A
iy+Ai−1z)

∣∣∣∣∣−1≤gi≤1 for 1≤ i≤∆

}
. (5)

Theorem 3: Assume that {b̄k}T−1
k=0 is ∆-spaced and that

the triplet (Ā, xk, b̄k) is ∆-spaced element-wise identifiable
for k ∈ {0, 1, . . . , T − 1}. Then, Ā is a solution to the
optimization problem (1).

Proof: Consider an index k ∈ K and, without loss
of generality, suppose that

∥∥b̄k∥∥ = 1 in equation (4) of
Theorem 2. The assumption of ∆-spaced element-wise
identifiability implies the following relation:

xk∈

{
∆∑
i=1

gi(A
ixk+i+A

i−1b̄k)

∣∣∣∣∣−1≤gi≤1 for 1≤ i≤∆

}
.

For any j ∈ {1, . . . , n}, the relation implies that the vector
b̄kjxk can be expressed as a linear combination e(k+1)jxk+1+
· · ·+ e(k+∆)jxk+∆, where the real number b̄kj denotes the
j-th entry of b̄k and the real numbers eij satisfy |eij | ≤

∣∣b̄kj∣∣
for all i ∈ [k + 1, k + ∆]. As a result,

∑∆
i=1 xk+i ⊗ ek+i =

xk ⊗ b̄k, where ‖ei‖2 ≤
∑∆

j=1 e
2
ij ≤

∑∆
j=1 b̄

2
kj =

∥∥b̄k∥∥2 ≤
1. Applying the argument to all k ∈ K proves that the
condition (4) of Theorem 2 is satisfied.

The proof of Theorem 3 shows that element-wise identifi-
ability is stronger than the condition (4) of Theorem 2. The
merit of this concept lies in the fact that the satisfaction of
∆-space element-wise identifiability can be captured by the
spectrum of Ā, as described below.

Theorem 4: Let Ā = P−1ΛP be an eigen-decomposition
of Ā, where Λ = diag(λ1, . . . , λn) is a diagonal real matrix.
Given k ∈ K, the triplet (Ā, xk, bk) is ∆-spaced element-
wise identifiable if

|λj |s(|λj |,∆) ≥
∣∣∣∣ (Pxk)j
(P (λjxk + bk))j

∣∣∣∣ ∀j ∈ {1, 2, . . . , n}.
Proof: Using the eigen-decomposition, we can rewrite

condition (5) as

Pxk∈

{
∆∑
i=1

giΛ
i−1(ΛPxk+Pbk)

∣∣∣∣∣−1 ≤ gi ≤ 1, i∈ [1,∆]

}
.

The diagonalizability assumption allows us to rewrite the

condition (5) as

(Pxk)j
(P (λjxk + bk))j

∈

{
∆∑
i=1

giλ
i
j : −1 ≤ gi ≤ 1

}
, ∀j ∈ [1, n].

(6)

The set on the right-hand side of (6) is a convex set, and
its boundary points are obtained by setting gi = sgn(λij) or
− sgn(λij), for i ∈ {1, . . . ,∆}. The proof is completed by
noting that (6) is equivalent to

−|λj |s(|λj |,∆) ≤ (Pxk)j
(P (λjxk + bk))j

≤ |λj |s(|λj |,∆).

Remark 2: Theorem 4 states that if the disturbance does
not nullify the state at the time of disturbance, then identifia-
bility is met.

IV. THE CASE WITH CONTROL INPUT

In this section, we broaden the analysis to include the
control input in the identification problem. In particular, we
aim to understand how to design the input of the system (in
case that is an option) so that the identification of the excited
system in the presence of adversarial disturbances is possible.
Consider the constrained optimization problem:

min
A,B,b

T−1∑
i=0

‖bi‖2 (7)

s.t xi+1 = Axi +Bui + bi, i = 0, . . . , T − 1,

where the data are generated according to

xi+1 = Āxi + B̄ui + b̄i, i = 0, . . . , T − 1. (8)

We first address the case where B̄ is known, for which the
generalization of element-wise identifiability is straightfor-
ward.

A. Known Matrix B̄

We first derive the first-order optimality conditions.
Theorem 5: Consider the convex optimization problem (7)

after fixing the parameter B at the known matrix B̄. The
following statements hold:
• If there exist vectors ei, for all i /∈ K, of length at most

1 such that ∑
i/∈K

xi ⊗ ei =
∑
i∈K

xi ⊗ b̄i/
∥∥b̄i∥∥, (9)

then Ā is a solution to the optimization problem (7).
• If Ā is not the unique solution, then there exits a non-

zero matrix E such that∑
i/∈K

xi ⊗ sgn(Exi) +
∑
i∈K

xi ⊗ sgn(Exi + b̄i) 3 0.

Proof: The first-order necessary condition states that

sgn(bi) 3 λi, i = 0, 1, . . . , T − 1,
T−1∑
i=0

xiλ
T
i = 0,

xi+1 −Axi − B̄ui − bi = 0, i = 0, . . . , T − 1,
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which is simplified to∑
i

xi ⊗ sgn(xi+1 −Axi − B̄ui) 3 0.

Using xi+1 = Āxi + B̄ui + b̄i, the first-order condition can
be written as∑
i/∈K

xi⊗sgn((Ā−A)xi)+
∑
i∈K

xi⊗sgn((Ā−A)xi + b̄i) 3 0

The two conditions of the theorem follow from the examina-
tion of the above equation.

Now, we study the satisfaction of the first condition of
Theorem 5 via the notion of ∆-spaced disturbance.

Definition 3: Given Ā ∈ Rn×n, B̄ ∈ Rn×m, y ∈ Rn, and
z ∈ Rn, the quadruplet (Ā, B̄, y, z) is said to be ∆-spaced
element-wise identifiable if either z = 0 or there exist vectors
w0, . . . , w∆−1 ∈ Rm such that

y∈


∆∑
i=1

gi

Āiy+Āi−1z+
∑

0≤j<i

Āi−jB̄wj

 : gi ∈ [−1, 1]

 .

(10)
The sequence inputs w1, . . . , w∆ that makes (10) hold is said
to be adaptive to (Ā, B̄, y, z)

Theorem 6: Consider the convex optimization problem (7)
after fixing the parameter B at the known matrix B̄. Assume
that {b̄k}T−1

k=0 is ∆-spaced. If for all k ∈ {0, . . . , T −∆− 1},
the quadruplet (Ā, B̄, xk, b̄k) is ∆-spaced element-wise
identifiable and the sequence of inputs (uk, . . . , uk+∆−1) is
adaptive to (Ā, B̄, xk, b̄k) in the sense of (10), then Ā is a
solution to (7).

Proof: The assumption implies that the sequence of
inputs causes the system states to satisfy

xk∈

{
∆∑
i=1

gixk+i : −1 ≤ gi ≤ 1, ∀i ∈ {1, . . . ,∆}

}
, ∀k ∈ K.

In particular, for any k ∈ K, we can select the vectors
ek+1, . . . , ek+∆ from the same procedure of Theorem 3 to
achieve the equality

∆∑
i=1

xk+i ⊗ ek+i = xk ⊗ bk/‖bk‖2, ∀k ∈ K.

Because the disturbance sequence is ∆-spaced, we can
piece together the vectors ei, for all i /∈ K, from the above
construction so that (9) is satisfied.

As before, the merit of element-wise identifiability lies in
the fact that it is easily verifiable and guides the design of
the input to enable the identification of the system.

Theorem 7: Suppose that Ā = P−1ΛP is the eigen-
decomposition of Ā, where Λ = diag(λ1, . . . , λn) is a
real diagonal matrix. For any k ∈ K, let all entries
of the input vectors uk, . . . , uk+∆−1 be independent and
identically distributed (i.i.d.) sub-Gaussian random variables
with parameter σ2. Then, the inputs (uk, . . . , uk+∆−1) are

adaptive to (A,B, xk, bk) with probability at least

1−
n∑

l=1

exp

−
(
|(Pxk)l|+

∑∆
i=1

∣∣λi−1
l (P (λlxk+bk))l

∣∣)2

2σ2
∑m

q=1(PB̄)2
lq

∑∆−1
j=0 |λl|

2
s(|λl|,∆− j)2

 .
Proof: The proof applies the tail bounds for sub-

Gaussian random variables and is relegated to the online
version [29].

Remark 3: In the case when B̄ is known, the bound in
Theorem 7 shows that, as long as the disturbance-state pair
is such that the numerator is non-zero and that the system
matrix Ā has no zero mode, then a sub-Gaussian random
input with small variance σ can achieve perfect identification
of Ā with high probability.

B. Unknown Matrix B̄

We now study the challenging case where Ā and B̄ are
both unknown.

Theorem 8: Consider the optimization problem (7). The
following statements hold:
• If there exist vectors ei, for all i /∈ K, of length at most

1 such that ∑
i/∈K

xi ⊗ ei =
∑
i∈K

xi ⊗ bi/‖bi‖,∑
i/∈K

ui ⊗ ei =
∑
i∈K

ui ⊗ bi/‖bi‖,

then (Ā, B̄) is a solution to (7).
• If the optimization problem (7) has a solution pair

(A∗, B∗) that is not equal to (Ā, B̄), then there exist
matrices E and F that are not both zero such that∑

i/∈K

xi ⊗ sgn(Exi + Fui) +
∑
i∈K

xi⊗

sgn(Exi + Fui + b̄i) 3 0∑
i/∈K

ui ⊗ sgn(Exi + Fui) +
∑
i∈K

ui⊗

sgn(Exi + Fui + b̄i) 3 0.
Proof: The proof follows from the first-order condi-

tions similar to Theorem 5 and is relegated to the online
version [29].

Definition 4: The quadruplet (Ā, B̄, y, z) is said to be ∆-
spaced element-wise identifiable if either z = 0 or there
exists input wj , j ∈ {0, 1, . . . ,∆− 1}, such that[

y
z

]
∈

{
∆∑
i=1

gi

[
Āiy + Āi−1z +

∑
0≤j<i Ā

i−jB̄wj

wi

]
,

where gi ∈ [−1, 1], ∀i ∈ {1, . . . ,∆}} .
(11)

The sequence inputs w1, . . . , w∆ that make (11) hold is said
to be adaptive to (Ā, B̄, y, z)

Theorem 9: Assume that {b̄k}T−1
k=0 is ∆-spaced. If for all

k ∈ {0, ..., T −∆− 1}, the quadruplet (Ā, B̄, xk, b̄k) is ∆-
spaced element-wise identifiable and the sequence of inputs
(uk, . . . , uk+∆−1) is adaptive to (Ā, B̄, xk, b̄k) in the sense
of (11), then the pair (Ā, B̄) is a solution to (7).
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Proof: The proof follows the same line of argument
in Theorem 6 with xk replaced by [xTk , u

T
k ]T . The detail is

relegated to the online version [29].

V. THE PROBLEM OF INPUT DESIGN

In the case of simultaneous identification of Ā and B̄,
we require that the input, state and disturbance satisfy the
sophisticated ∆-spaced element-wise identifiability condition.
In what follows, we provide some insight into how to design
the input to assist with the satisfaction of this condition.
Let the input of the system be generated according to the
dynamics

ui+1 = Fxi+1 +Kxi +Dui, for i∈{0, . . . , T − 1}, (12)

where u0 is arbitrary and the matrices F , K and D are to
be designed. We can write the augmented dynamics as[

xi+1

ui+1

]
=

[
Ā+ B̄F B̄

K D

] [
xi
ui

]
+

[
b̄i
0

]
.

We write the above expression as x̃i+1 = Ãx̃i + b̃i, where

Ã =

[
Ā+ B̄F B̄

K D

]
, b̃i =

[
b̄i
0

]
, x̃i =

[
xi
ui

]
. (13)

Note that whenever {b̄i}T−1
i=0 is ∆-spaced, so is {b̃i}T−1

i=0 .
Therefore, we can use the identification formulation without
input (1), replacing (A, b) with (Ã, b̃) in the problem, and
recover the pair (Ã, b̃) exactly, even though we treat the
known lower blocks of Ã and b̃ as unknowns. Once Ã and
b̃ are recovered, the matrices Ā, B̄ can be found with the
knowledge of F,K, and D. In summary, the general system
identification problem with disturbance can be solved by using
a perfect recovery theorem for the case without input and a
suitable design of F,K, and D that satisfies the condition
of perfect recovery. We illustrate one such design in the
following theorem.

Theorem 10: Consider the problem of system identification
for the dynamics (8) with the input design (12). Assume that
the disturbance sequence is ∆-spaced. Then, we can perfectly
recover the pair (Ā, B̄) from (13), where Ã and b̃i are the
solution to the optimization problem

min
Ã,b̃

T−1∑
i=0

∥∥∥b̃i∥∥∥
2

s.t

[
xi+1

ui+1

]
= Ã

[
xi
ui

]
+ b̃i, i = 0, . . . , T − 1

if the following conditions hold:

• The matrix Ã =

[
Ā+ B̄F B̄

K D

]
is diagonalizable with

real eigenvalues;
• Ã = P̃−1Λ̃P̃ is an eigen-decomposition of Ã, where

Λ̃ = diag(λ̃1, . . . , λ̃m+n) is a diagonal real matrix;
• The inequality

s(
∣∣∣λ̃j∣∣∣,∆) ≥

∣∣∣∣∣∣∣∣∣

(
P̃

[
xk
uk

])
j(

P̃

(
λ̃j

[
xk
uk

]
+

[
b̄k
0

]))
j

∣∣∣∣∣∣∣∣∣

holds for all k such that b̄k 6= 0 and for all j ∈
{1, 2, . . . ,m+ n}.
Proof: After applying Theorem 4 to the augmented

system x̃i+1 = Ãx̃i + b̃i, the condition of the theorem
states that the extended system is ∆-spaced element-wise
identifiable for all time k. Theorem 3 states that Ã can
be perfectly recovered. We can further recover Ā and B̄
from (13).

Remark 4: The theorem provides a sufficient condition
on the type of disturbance that the recovery procedure is
robust. Specifically, assume that three properties are satisfied:
(1) we can design the input so that the extended system has
proper spectral properties, (2) no non-zero the disturbance
bk perfectly aligns with the corresponding state xk, (3) all
stable modes λ̃j of Ã satisfy

1

1−
∣∣∣λ̃j∣∣∣ >

∣∣∣∣∣∣∣∣∣

(
P̃

[
xk
uk

])
j(

P̃

(
λ̃j

[
xk
uk

]
+

[
b̄k
0

]))
j

∣∣∣∣∣∣∣∣∣, (14)

for all k ∈ K. Then, as long as the disturbance sequence is
∆-spaced with a long enough spacing ∆, we can perfectly
identify the system. Even though the three conditions depend
on the unknown matrices Ā and B̄, diagonalizability is
possible generically and the last condition can be satisfied by
leveraging any prior knowledge about Ā and B̄ that leads to
spectrum estimates of Ã.

Remark 5: Theorem 10 can be extended to the case with
complex eigenvalues at the expense of a more complicated
characterization of element-wise identifiability.

VI. NUMERICAL EXPERIMENTS

This section provides numerical simulations to illustrate the
efficiency of the identification approach. First, consider the
autonomous case where B̄ = 0. Our baseline for comparison
is the least-squares estimator

min
A

T−1∑
t=0

‖xi+1 −Axi‖22. (15)

To obtain the system matrices, we consider the case n = 5.
We use N(0,Σ) to denote the multivariate Gaussian random
variable with mean 0 and covariance Σ. We set the spectrum
of A to be Γ = diag(0.9, 0.8, 0.7, 1.1, 0.1), and let A =
PΓP−1, where P is a random matrix whose entries are
normally distributed with mean 0 and variance 1. Let x0 be
normally distributed with mean 0 and variance 1. Let the
disturbance bt be non-zero 30% of the time. Moreover, for
t ∈ K, let bt follow the distribution N(0, 10I5), where I5 is
the 5-by-5 identity matrix. As the horizon T increases from
1 to 50, we compare the constrained Lasso estimator (1)
and the least-squares estimator (15) in Figure 1. Due to the
frequency and large magnitude of the disturbance, the least-
squares estimator never converges to the true system matrix
Ā. In contrast, the lasso estimator quickly converges to the
true system matrix, and after it converges, future disturbance
has little effect on the estimation accuracy.
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Fig. 1. Comparing the constrained lasso estimator (1) and the least-squares
(ls) estimator (15). The circles plot the magnitude of the disturbance bt when
it is non-zero. The difference is measured in the Frobenius norm ‖ · ‖F .

Even though this paper does not analyze the case with
additional noise, Figure 2 shows that the presence of noise
makes perfect recovery impossible in finite time, but the
sudden improvement of the performance of the estimator in
this paper is still valid.
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Fig. 2. Comparing the constrained lasso estimator (1) and the least-squares
(ls) estimator (15) with additional N(0,1) noise injected to the states. The
circles plot the magnitude of the disturbance bt.

For the second example, we consider the Tennessee
Eastman challenge problem. We obtain the A and B matrices
from a discretization of the continuous-time LTI model in [30].
The discretization uses zero-order hold with the sampling
period being 0.25h. Since the continuous-time model has a
large separation between fast and slow modes, the discretized
A matrix has four modes close to 0. The values of A and B
are provided in (17) and (18). Our baseline for comparison

is the least-squares estimator

min
A,B

T−1∑
t=0

‖xi+1 −Axi −Bui‖22. (16)

Inspired by Theorem 7, the control inputs come from
the distribution N(0, I4), and the initial state comes from
N(0, I8). The disturbance is generated in the same fashion.
Figure 3 shows that the constrained lasso estimator (7) vastly
outperforms the least-squares estimator (16). Despite the fact
that 30% of the states are disturbed, the identification of both
A and B matrices is almost perfect.
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Fig. 3. Comparing the constrained lasso estimator (7) and the least-squares
(ls) estimator (16) for the Tennessee Eastman challenge problem. The circles
plot the magnitude of the disturbance bt when it is non-zero. The difference
is measured in the Frobenius norm ‖ · ‖F .

VII. CONCLUSION

This paper studies the identification of linear systems under
possible attacks appearing as disturbances to the dynamics.
We develop the notion of ∆-spaced disturbance and element-
wise identifiability. This leads to sufficient conditions for
recovering the exact system dynamics in various scenarios. In
particular, we show that if the disturbance occurs infrequently
with an arbitrary magnitude, then a perfect identification of
the parameters of the system is possible in the autonomous
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A =



5.4893×10−1 4.8137×10−3 −1.7226×10−1−2.4752×10−2 1.6520×10−3 3.4343×10−4 −9.6398×10−5 1.4510×10−4

5.9242×10−4 9.8284×10−1 9.9585×10−4 −1.6428×10−4 5.2225×10−5 3.6788×10−7 −7.0184×10−5 9.5650×10−7

−4.3298×10−1 4.0718×10−3 8.0876×10−1 −2.4586×10−2 1.8725×10−3 −2.6758×10−4−5.5680×10−5 1.4413×10−4

3.1393×10−1 −1.1807×10−1 5.6784×10−2 7.5675×10−1 1.6457×10−3 1.9424×10−4 −7.5567×10−5−4.4716×10−3

0 0 0 0 6.3656×10−40 0 0 0
0 0 0 0 0 6.3656×10−40 0 0
0 0 0 0 0 0 6.3656×10−40 0

1.7555×10−1 −6.5758×10−2 3.1911×10−2 4.2687×10−1 9.2087×10−4 1.0861×10−4 −4.2300×10−5−2.5223×10−3


(17)

B =



0.2530 0.0412 −0.0138 −0.0111
0.0044 0.0000 −0.0063 −0.0001
0.2730 −0.0138 −0.0101 −0.0111
0.0903 0.0104 −0.0042 0.6455
1.0000 0 0 0

0 1.0000 0 0
0 0 1.0000 0

0.0499 0.0057 −0.0023 −1.0406


(18)

case. For the non-autonomous case, we study how to design
the input to properly excite the system in order to perfectly
recover the model of the system under adversarial attack.
The efficacy of the proposed framework is demonstrated in
numerical experiments.
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