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Abstract

Many fundamental low-rank optimization problems, such as
matrix completion, phase synchronization/retrieval, power sys-
tem state estimation, and robust PCA, can be formulated as
the matrix sensing problem. Two main approaches for solving
matrix sensing are based on semidefinite programming (SDP)
and Burer-Monteiro (B-M) factorization. The SDP method suf-
fers from high computational and space complexities, whereas
the B-M method may return a spurious solution due to the non-
convexity of the problem. The existing theoretical guarantees
for the success of these methods have led to similar conserva-
tive conditions, which may wrongly imply that these methods
have comparable performances. In this paper, we shed light on
some major differences between these two methods. First, we
present a class of structured matrix completion problems for
which the B-M methods fail with an overwhelming probability,
while the SDP method works correctly. Second, we identify a
class of highly sparse matrix completion problems for which
the B-M method works and the SDP method fails. Third, we
prove that although the B-M method exhibits the same per-
formance independent of the rank of the unknown solution,
the success of the SDP method is correlated to the rank of
the solution and improves as the rank increases. Unlike the
existing literature that has mainly focused on those instances
of matrix sensing for which both SDP and B-M work, this
paper offers the first result on the unique merit of each method
over the alternative approach.

1 Introduction
Low-rank matrix recovery problems have ubiquitous applica-
tions in machine learning and data analytics, including col-
laborative filtering (Koren, Bell, and Volinsky 2009), phase
retrieval (Candes et al. 2015; Singer 2011; Boumal 2016;
Shechtman et al. 2015), motion detection (Fattahi and So-
joudi 2020), and power system state estimation (Jin et al.
2020; Zhang, Madani, and Lavaei 2017; Jin et al. 2019). This
problem is formally defined as follows: Given a measurement
operator A(·) : Rm×n 7→ Rd returning a d-dimensional mea-
surement vector A(M∗) from a low-rank ground truth matrix
M∗ ∈ Rm×n with rank r, the goal is to obtain a matrix with
rank less than equal to r that conforms with the measure-
ments, preferably the ground truth matrix M∗. This problem
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can be stated as the feasibility problem

find M ∈ Rm×n (1)
s.t. A(M) = A(M∗)

rank(M) ≤ r.

While the measurement operator A can be nonlinear as in the
case of one-bit matrix sensing (Davenport et al. 2014) and
phase retrieval (Shechtman et al. 2015), matrix sensing and
matrix completion that are widely studied have linear mea-
surement operators (Candès and Recht 2009; Recht, Fazel,
and Parrilo 2010). We focus on the matrix sensing and ma-
trix completion problems throughout this paper. Despite the
linearity of A, there are two types of problems depending on
the structure of the ground truth matrix M∗. The first type,
symmetric problem, consists of a low-rank positive semidef-
inite ground truth matrix M∗ ∈ Rn×n, whereas the second
type, asymmetric problem, consists of a ground truth matrix
M∗ ∈ Rm×n that is possibly sign indefinite and non-square.
Since each asymmetric problem can be converted to an equiv-
alent symmetric problem (Zhang, Bi, and Lavaei 2021a), we
study only the symmetric problem in this paper.

The matrix sensing and completion problems have lin-
ear measurements; hence, the first constraint in problem (1)
is linear. Therefore, the only nonconvexity of the problem
arises from the nonconvex rank constraint. Earlier works on
these problems focused on their convex relaxations by pe-
nalizing high-rank solutions (Candès and Recht 2009; Recht,
Fazel, and Parrilo 2010; Candès and Tao 2010). They utilized
the nuclear norm of a matrix as the convex surrogate of the
rank function. This led to semidefinite programming (SDP)
relaxations, which solve the original non-convex problems
exactly with high probability based on some assumptions
on the linear measurement operator and the ground truth
matrix, such as the Restricted Isometry Property (RIP) and
incoherence conditions. High computational time and stor-
age requirements of the SDP algorithms incentivized the
implementation of the B-M factorization approach (Burer
and Monteiro 2003). This approach factorizes the symmetric
matrix variable M ∈ Rn×n as M = XXT for some matrix
X ∈ Rn×r, which obviates imposing the positive semidef-
initeness and rank constraints. Although the dimension of
the decision variable reduces dramatically when r is small,
the problem is still nonconvex since its objective function is
nonconvex in terms of the factorized X.



Problem Formulation
Formally, the SDP formulation of the matrix sensing problem
uses the nuclear norm of the variable, ∥M∥∗, to serve as a
surrogate of the rank, and replaces the rank constraint in (1)
with an objective to minimize ∥M∥∗. Due to the symmetricity
and positive semidefiniteness of the variable, the nuclear
norm is equivalent to the trace of the matrix variable M.
Hence, the SDP formulation can be written as

min
M∈Rn×n

tr(M) s.t. A(M) = b, M ⪰ 0, (2)

where b = A(M∗) = [⟨A1,M
∗⟩, . . . , ⟨Ad,M

∗⟩]T is given
and {Ai}di=1 ∈ Rn×n are called sensing matrices. Moreover,
the matrix completion problem is a special case of the matrix
sensing problem with each sensing matrix measuring only
one entry of M∗. We can represent the measurement operator
A as AΩ : Rn×n 7→ Rn×n for this special case, which is
defined as follows:

AΩ(M)ij :=

{
Mij if (i, j) ∈ Ω

0 otherwise,

where Ω is the set of indices of observed entries. We denote
the measurement operator as MΩ := AΩ(M) for simplicity.
Besides the SDP formulation, the B-M factorization formula-
tion of the matrix sensing (MS) and matrix completion (MC)
problems can be stated as

(MS) min
X∈Rn×r

g
[
A(XXT )− b

]
, (3a)

(MC) min
X∈Rn×r

g
[
(XXT −M∗)Ω

]
, (3b)

where g(·) : Rd 7→ R is some twice continuously differen-
tiable function such that 0n×n is its unique minimizer and the
Hessian of g(·) is positive definite at 0n×n. These assump-
tions are satisfied by the common loss functions considered in
the literature. The main objective of this paper is to compare
the SDP and B-M methods for the MC and MS problems.

Background and Related Work
It is widely known that the SDP formulation (2) can be used
to solve the matrix sensing problem if the sensing matrices
are sampled independently from a sub-Gaussian distribution
and the number of measurements d is large enough (Recht,
Fazel, and Parrilo 2010; Recht, Xu, and Hassibi 2008). This is
also a sufficient condition for the sensing matrices to satisfy
the RIP condition with high probability, which is defined
below:
Definition 1 (RIP). (Candès and Recht 2009) The linear
map A : Rn×n 7→ Rm is said to satisfy δp-RIP if there is a
constant δp ∈ [0, 1) such that

(1− δp)∥M∥2F ≤ ∥A(M)∥2 ≤ (1 + δp)∥M∥2F
holds for all matrices M ∈ Rn×n satisfying rank(M) ≤ p.

The RIP constant δp represents how similar the linear
operator A is to an isometry, and various upper bounds
on δp have been proposed to serve as sufficient conditions
for the exact recovery (meaning that one can recover the

ground truth M∗ by solving the SDP problem). A few no-
table ones include δ4r <

√
2− 1 in (Candes and Plan 2010),

δ5r < 0.607, δ3r < 0.472 in (Mohan and Fazel 2010), and
δ2r < 1/2, δ3r < 1/3 in (Cai and Zhang 2013). On the other
hand, when the sensing matrices are not sampled indepen-
dently from a sub-Gaussian distribution or when the RIP
condition is not met, the SDP formulation may still recover
the ground truth matrix with a high probability. This is the
case for MC problems for which RIP fails to hold while SDP
works as long as entries of observation follow an independent
Bernoulli model (Candès and Recht 2009; Candès and Tao
2010).

However, recent works have shown that if we use the B-M
method instead of the SDP approach, we can still recover
the ground truth matrix via first-order methods under similar
RIP or coherence assumptions in both the matrix sensing and
matrix completion cases (Ge, Jin, and Zheng 2017; Bhojana-
palli, Neyshabur, and Srebro 2016; Park et al. 2017; Zhang
et al. 2018; Zhu et al. 2018; Zhang, Sojoudi, and Lavaei 2019;
Zhang and Zhang 2020; Bi and Lavaei 2021; Ha, Liu, and
Barber 2020; Zhu et al. 2021; Zhang 2021; Zhang, Bi, and
Lavaei 2021b; Ma et al. 2022; Ma and Sojoudi 2022). Namely,
the state-of-the-art result states that as long as δr̃+r < 1/2 for
the matrix sensing problem, there exists no spurious1 local
minima for an over-parametrized B-M formulation and the
gradient descent algorithm can recover M∗ exactly (Zhang
2021). Here, r̃ ≥ r is the search rank that we choose manu-
ally in the B-M formulation. If we know the value of r, we
can set r̃ to r, making the B-M approach enjoy the same
RIP guarantee as the SDP approach. Since the B-M approach
enjoys far better scalability, it has become an increasingly
popular tool for solving the matrix sensing problem.

Nevertheless, the B-M approach cannot be routinely used
without careful consideration since it could fail on easy (from
an information-theoretic perspective) instances of the prob-
lem as demonstrated in (Yalçın et al. 2022), especially in
cases when the RIP condition is not satisfied.

Thus, it is important to compare and contrast both the SDP
and B-M approaches to discover which method is superior
to the other one. This comparison is timely since specialized
sparse SDP algorithms have become more efficient in recent
years, making the SDP method more practical than before
(Zhang and Lavaei 2021; Yurtsever et al. 2017, 2021). In this
paper, we show that the SDP approach is more powerful than
the B-M method as far as the RIP measure is concerned. We
also discover that the B-M method is able to solve certain
instances for which the SDP approach fails. This means that
none of these techniques is universally better than the other
one and the best technique should be chosen based on the na-
ture of the problem. This work provides the first step towards
understanding the trade-off between a well-known convex
relaxation and first-order descent algorithms applied to the
B-M factorization formulation.

1A local minimum is called spurious if it is not a global mini-
mum.



Our Contributions
We provide a comparative analysis between the SDP ap-
proach and the B-M method. We first present the advantages
of the SDP approach over the B-M method:
1. First, we focus on an important class of MC problems

recently studied in (Yalçın et al. 2022). That paper has
shown that even though this class has low information-
theoretic complexity, the B-M method would utterly fail
and the probability of success via first-order methods is
almost zero. We prove that the SDP method successfully
solves this class and, therefore, SDP may not suffer from
the unusual behavior of B-M with regard to easy instances
of MC. This also implies that the information-theoretic
and optimization complexities are expected to be more
aligned for SDP than B-M.

2. We then investigate a class of MS problems found in
the recent paper (Zhang et al. 2022). Each MS instance
belonging to this class satisfies δ2-RIP with r = 1 for
some δ > 1/2 such that the B-M formulation leads to
O((1− δ)−1) spurious solutions and this number goes to
infinity as δ approaches 1. We show that although each
instance is extremely non-convex based on the number of
spurious solutions, the SDP method successfully solves
all of the problems in this class. This implies that, unlike
the B-M method, the success of the SDP approach is
not directly correlated to the presence of many spurious
solutions.

3. The recent paper (Zhang, Bi, and Lavaei 2021a) has
shown that the sharpest RIP bound for the success of
the B-M method on the MS problem is 1/2 and this
is independent of the rank r. This is an undesirable re-
sult since high-rank problems have lower information-
theoretic complexity than low-rank problems. We derive
a sufficient RIP bound for the SDP method and show that
it can increase from 1/2 to 1 as the rank r becomes larger.
This implies that the SDP approach does not suffer from
a major shortcoming of the B-M method.

Despite the above advantages, we show that the SDP ap-
proach is not universally better than the B-M method. To
prove this, we identify a class of MC problems with O(n)
observations in the rank-1 case for which B-M works while
SDP fails. It is clear from these comparisons that although
the B-M approach is known to be more powerful due to its
scalability property, the SDP approach enjoys some unique
merits and deserves to be revisited, especially in light of the
advancements of fast SDP solvers (Zhang and Lavaei 2021;
Yurtsever et al. 2017, 2021)

2 Notations
The symbol [n] represents the set of integers from 1 to n. We
use lower-case bold letters, namely x, to represent vectors
and capital bold letters, namely X, to represent matrices. In
refers to the identity matrix of size n× n and 0n×n refers to
the n× n dimensional matrix with zero entries. ∥x∥ denotes
the Euclidean norm of the vector x, ∥X∥ and ∥X∥F are the
2-norm and the Frobenius norm of the matrix X, respectively.
For every vector x, [x]i denotes the i-th entry and [x]i:j de-
notes the subvector of entries from index i to index j for i < j.

Similarly, for every matrix X, [X]i:j,k:l denotes the submatrix
with rows between i and j and columns between k and l with
i < j and k < l. Let ⟨A,B⟩ = tr(ATB) be the inner prod-
uct between matrices. The Kronecker product between A and
B is denoted as A⊗B. For a matrix X, vec(X) is the usual
vectorization operation by stacking the columns of the matrix
X into a vector. For a vector x ∈ Rn2

, mat(x) converts x to
a square matrix and matS(x) converts x to a symmetric ma-
trix, i.e., mat(x) = X and matS(x) = (X+XT)/2, where
X ∈ Rn×n is the unique matrix satisfying x = vec(X).
The notations X ⪰ 0 and X ≻ 0 mean that the matrix X
is positive semidefinite (PSD) and positive definite, respec-
tively. The set of n× n PSD matrices is denoted as Sn+. For
a function f : Rm×n 7→ R, we denote the gradient and the
Hessian as ∇f(·) and ∇2f(·), respectively. The Hessian is a
four-dimensional tensor with [∇2f(X)]i,j,k,l =

∂2f(X)
∂Xi,j∂Xk,l

for all i, j ∈ [m] and k, l ∈ [n]. We use ⌈·⌉ and ⌊·⌋ to denote
the ceiling and floor operators, respectively. The cardinality
of a set S is shown as |S|.

3 Advantages of the SDP Approach
B-M Fails While SDP Succeeds
In this section, we focus on a class of MC instances that
was first proposed in (Yalçın et al. 2022) for which the B-M
factorization fails. We focus on the matrix completion prob-
lem since it is the most common special case of the matrix
sensing problem that does not satisfy the RIP condition. We
will prove that while the B-M approach fails to recover M∗,
the SDP approach can provably find M∗.

We will first give an introduction to this class of MC in-
stances. Consider a rank-r ground truth matrix M∗ ∈ Sn+
with r ≥ 1 and n ≥ 2r. Let m := n/r and assume without
the loss of generality that n is divisible by r. We decom-
pose the ground truth matrix into blocks of dimension r × r;
thus, M∗ is an m × m block matrix whose block element
at the position (i, j) is denoted as M∗

i,j for i, j ∈ [m]. We
require some graph-theoretic notions before introducing the
underlying class of MC instances.

Definition 2 (Induced Measurement Set). Let G =
(G1,G2) = (V, E1, E2) be a pair of undirected graphs with
the node set V = [m] and the disjoint edge sets E1, E2 ⊂
[m]× [m], respectively. The induced measurement set Ω(G)
is defined as follows: if (i, j) ∈ E1, then the entire block M∗

i,j

is observed; if (i, j) ∈ E2, then all nondiagonal entries of the
block M∗

i,j are observed; otherwise, none of the entries of
the block is observed. The graph G is referred to as the block
sparsity graph.

We represent the general problem (1) with the linear
measurement operator A and rank-r ground truth matrix
M∗ ∈ Rn×n as PM∗,A,n,r. If this is a matrix completion
problem with the measurement set Ω, then this special case
of the same problem is denoted as PM∗,Ω,n,r. Based on Def-
inition 2 and this notation, a low-complexity class of MC
instances will be introduced below. These instances have
a low complexity because graph-theoretical algorithms can
solve them in polynomial time in terms of n and r.



Definition 3 (Low-complexity class of MC instances). De-
fine L(G, n, r) to be the class of low-complexity MC instances
PM∗,Ω,n,r with the following properties:
i) The ground truth M∗ ∈ Sn+ is rank-r.

ii) The matrix M∗
i,j ∈ Rr×r is rank-r for all i, j ∈ [m].

iii) The measurement set Ω = Ω(G) is induced by G =
(G1,G2), where G1 is connected, non-bipartite, and its
vertices have self-loops.

The next theorem borrowed from (Yalçın et al. 2022) illus-
trates the failure of the B-M factorization method.
Theorem 1. Consider a maximal independent set S(G1) of
G1 such that the induced subgraph by vertices in S , G2[S], is
connected. There exists an instance in L(G, n, r) for which
the problem (3b) has at least 2r|S(G1)|−2r spurious local min-
ima. In addition, the randomly initialized gradient descent
algorithm converges to a global minimum with probability at
most O(2−r|S(G1)|), while there is a graph-theoretical algo-
rithm that can solve the problem in O(n2/r2 + nr2) time.

The proof of Theorem 1 utilizes the Implicit Function
Theorem (IFT). Specifically, the work (Yalçın et al. 2022)
has generated ground truth matrices M∗ for which the B-
M method has 2r|S(G1)| global solutions and only 2r of
them correspond to the correct completion of the M∗. A
generic small perturbation of the problem results in a new in-
stance of an MC problem that belongs to the low-complexity
class of MC instances. The conditions on G1 guarantee that
the perturbed problem belongs to the low-complexity class,
while the conditions on G2 guarantee that the Hessian of
the objective function of the unperturbed problem is pos-
itive definite at the global solutions. Since the instances
in the low-complexity class are well defined, the new per-
turbed problem has a unique completion with 2r possible
global solutions for the B-M method. On the other hand,
the other stationary points that correspond to global so-
lutions of the unperturbed problem must be spurious lo-
cal minima of the new instance. This is concluded by us-
ing the IFT. The perturbation that yields a new instance in
the low-complexity class of the MC problem is achieved
by perturbing the ground truth matrix M∗ = X∗(X∗)T

by a small and generic perturbation ϵ ∈ Rn×r. The new
ground truth matrix is M∗(ϵ) = X∗(ϵ)(X∗(ϵ))T , where
X∗(ϵ)i = X∗

i + ϵi if i ∈ S(G1) and X∗(ϵ)i = ϵi otherwise
and rank(X∗

i ) = rank(X∗
i + ϵi) = r, ∀i ∈ [m]. A generic

perturbation ϵ does not belong to a measure zero set in Rn×r.
It is desirable to study how the SDP method performs on

this low-complexity class of MC instances. We will present
the result for a larger class of problems that contains all
instances discussed in Theorem 1.
Theorem 2. Given G = (G1,G2) = (V, E1, E2), con-
sider any maximal independent set S(G1). Consider also
M∗(ϵ) = X∗(ϵ)(X∗(ϵ))T for any arbitrary ϵ ∈ Rn×r,
where X∗(ϵ)i = X∗

i + ϵi if i ∈ S(G1) and X∗(ϵ)i = ϵi
otherwise and rank(X∗

i ) = rank(X∗
i + ϵi) = r, ∀i ∈ [m].

The SDP formulation (2) with the observation set Ω induced
by G1 uniquely recovers the ground truth matrix M∗(ϵ).

Note that we do not require ϵ to be small or have access to
partial observations of blocks induced by edges in G2. Hence,

Theorem 2 shows that SDP solves all MC instances intro-
duced in Theorem 1 and beyond. As a result of Theorem 2,
the SDP approach is a viable choice for those MC instances
for which the preferable and faster B-M factorization method
fails to recover the ground truth matrix. Similar to perturbing
the ground truth matrix, one can perturb the linear measure-
ment operator of the matrix completion problem AΩ as

AΩ(ϵ)(M)ij :=

{
Mij , if (i, j) ∈ Ω

ϵMij , otherwise
, (4)

where ϵ > 0 is a sufficiently small real number (Zhang
et al. 2022). Note that AΩ(ϵ) satisfies the RIP condition with
δ = (1− ϵ)/(1 + ϵ).
Theorem 3. Suppose that g is the squared loss function, i.e
g(x) = ∥x∥2. Consider the measurement set Ω defined in
Theorem 1. For every sufficiently small ϵ > 0, there exists
a low-complexity instance of the MS problem PM∗,AΩ(ϵ),n,r

with O(2r|S(G1)|) spurious local minima.
The proof of the above theorem is similar to the proof of

Theorem 1 because the conditions for unperturbed problems
are the same and a different small perturbation to the prob-
lem yields a similar number of spurious solutions. Hence, the
proof is omitted. The above theorem states that there are not
only MC instances but also MS instances that suffer from this
undesirable behavior of the B-M factorization approach. The
ground truth matrix M∗ is generated as in Theorem 1 to have
2r|S(G1)| global solutions for the unperturbed problem. Fur-
thermore, the number of spurious solutions for this scheme
can be quantified as O((1− δ)−1) for δ ≥ 1/2 in the rank-1
case (Zhang et al. 2022). Nevertheless, the SDP formulation
approach trivially solves all these undesirable MS instances.
This is due to the fact the perturbed measurement operator
AΩ(ϵ) corresponds to observing all the entries. Hence, the
feasible set only contains the ground truth matrix M∗.
Proposition 1. Given a measurement set Ω, the SDP formula-
tion (2) uniquely recovers the rank-r ground truth matrix M∗

for the MS instance PM∗,AΩ(ϵ),n,r, where AΩ(ϵ) is defined
in (4) and ϵ is an arbitrary nonzero number.

Hence, the SDP approach successfully solves all the in-
stances in Theorem 3 for which the RIP constant exists (while
greater than 1/2), unlike the B-M method. Consequently,
SDP could be the preferred method when the sufficient condi-
tions on RIP for exact recovery by the B-M factorization are
not met. In the next part, we will provide sharper sufficiency
bounds for the SDP approach, which further corroborates its
strength.

Sharper RIP bound for SDP
Since the SDP method is more powerful than the B-M fac-
torization for certain classes of MC and MS problems as
shown in the previous section and since specialized SDP al-
gorithms can solve large-scale MC and MS problems, it is
useful to further study the SDP method through the lens of
the well-known RIP notion. We will derive a strong lower
bound δlb on the RIP constant δ to guarantee convergence to
the ground truth solution by using a proof technique called
the inexistence of incorrect solution (Zhang, Sojoudi, and



Lavaei 2019). We aim to find a linear measurement operator
A with the smallest RIP constant such that the SDP formu-
lation converges to a wrong solution. To do so, we need to
solve the optimization problem

min
δ,A

δ

s.t. A(M) = A(M∗)

tr(M) ≤ tr(M∗)

A satisfies the δ − 2r-RIP property,

(5)

where M ̸= M∗. The condition tr(M) ≤ tr(M∗) guaran-
tees that SDP cannot uniquely recover M∗. Checking the
RIP constant for a linear measurement operator is proven
to be NP-hard (Tillmann and Pfetsch 2013). Therefore, it is
difficult to solve the problem (5) analytically. To simplify the
problem, we will introduce some notations. We use a matrix
representation of the measurement operator A as follows:

A = [vec(A1), vec(A2), . . . , vec(Ad)]
T ∈ Rd×n2

.

Then, A vec(M) = A(M) for every matrix M ∈ Rn×n. We
define H = ATA, which is the matrix representation of the
kernel operator H = ATA to simplify the last constraint of
the problem (5).

To derive a RIP bound, we consider the following opti-
mization problem given M and M∗, where M is the global
solution of (2) and M∗ is the ground truth solution:

min
δ,H

δ

s.t. eTHe = 0

H is symmetric and satisfies the δ2r-RIP,

(6)

where
e = vec(M∗ −M).

For this fixed M and M∗, we assume that M ̸= M∗ and
that rank(M∗ −M) > 2r, since if rank(M∗ −M) ≤ 2r,
the relation M = M∗ holds automatically by definition of
δ2r-RIP for any δ since it implies strong convexity. Denote
the optimal value to (6) as δ(e), which is a function of e. It
is desirable to find

δ∗ := min
e:tr(M)≤tr(M∗)

δ(e).

By the logic of in-existence of counterexample, we know
that if a problem H = ATA has δ2r-RIP with δ < δ∗, then
the solution to (2) will be M∗, which is the ground truth
solution. However, since the last constraint of (6) is non-
convex, it is useful to replace it with a surrogate condition
that allows solving the problem analytically. The following
problem helps to achieve this goal:

min
δ,H

δ

s.t. eTHe ≤ 2∥ec∥2 + 2(l − 3)δ∥ec∥2

(1− δ)In2 ⪯ H ⪯ (1 + δ)In2 .

(7)

Here, l = ⌈n/r⌉ and we define {ei}li=1 and ec in the fol-
lowing fashion. First, consider the eigendecomposition of
M∗−M and assume that the eigenvalues are ordered in terms

of their absolute values, namely, |λ1| ≥ |λ2| ≥ · · · ≥ |λn|.
Let uk’s denote the corresponding orthonormal eigenvectors:

matS(e) = M∗ −M =
n∑

k=1

λkuku
T
k .

Then, we define:

ei = vec

 min{i∗r,n}∑
k=(i−1)∗r+1

λkuku
T
k

 ,

e2r = e1 + e2, and ec =
∑l

i=3 ei. The next proposition
allows us to replace (6) with (7) because the optimal value of
the (7), δlb(e), gives a lower bound on δ(e).
Proposition 2. The optimal objective value of the problem
(7), δlb(e), is always less than or equal to the optimal objec-
tive value of the problem (6), i.e., δlb(e) ≤ δ(e).

The proof of this proposition is central to the construction
of the sufficiency bound, which is based on using a convex
program to serve as an estimate of the non-convex problem.
After we extend the RIP2r constraint in (7) to be RIPn(thus
making it convex), it is necessary to somehow preserve the
information that the near isometric property of H should only
apply to low-rank matrices. This is achieved by changing the
first constraint so that e does not need to be completely in
the null space of H. (7) approximately requires that H only
maps a certain low-rank sub-manifold to 0. The full proof
can be found in the Appendix. As a result of Proposition 2, it
immediately follows that

δlb = min
e:tr(M)≤tr(M∗)

δlb(e) ≤ δ∗.

In fact, we can obtain a lower bound on the value δlb by
solving the problem (7) analytically. The following lemma
quantifies a lower bound on δlb.
Lemma 1. It holds that

δlb ≥ 2r

n+ (n− 2r)(2l − 5)
.

The best-known sufficiency bound presented in (Cai and
Zhang 2013) is independent of n and r. This sufficiency
lower bound on the RIP constant presented in Lemma 1 can
be tighter than 1/2 depending on the size of the problem n
and the rank of the ground truth matrix r. For instance, the
SDP formulation converges to ground truth solution when-
ever RIP constant δ is close to 1 as r −→ n/2. On the other
hand, whenever r/n is ratio is small, e.g. rank-1 matrix sens-
ing problem with large n, δ < 1/2 is a stronger guarantee
for recovery of the ground truth matrix. Combined with the
1/2 sufficiency bound that works for both the symmetric
and asymmetric cases (Cai and Zhang 2013), we obtain the
following result:
Theorem 4. The global solution of the SDP formulation
(2) will be the ground truth matrix M∗ if the sensing ma-
trix A satisfies the RIP condition with the RIP constant δ2r
satisfying the inequality:

δ2r < max

{
1/2,

2r

n+ (n− 2r)(2l − 5)

}
,

where l = ⌈n/r⌉.



Compared with the existing sufficiency RIP bounds, this
new result has a striking advantage. The bound δ2r < 1/2
has already been proven to be the sharpest for the B-M formu-
lation, which is independent of the search rank. In contrast,
Theorem 4 shows that the RIP bound for SDP exceeds this
bound and approaches 1 as the rank r increases.

In this section, we have shown that as opposed to the
popular belief that B-M enjoys very similar RIP guarantees
as the SDP approach, there are real benefits to switching to
the SDP formulation, making it a more competitive option
since specialized SDP solvers are becoming more efficient in
recent years. However, we will next provide some problem
instances for which the SDP method fails to solve the problem
while the B-M method contains no spurious solutions, which
balances the desirable properties of the SDP method.

4 Advantages of the B-M Method
In this section, we give two classes of rank-1 matrix com-
pletion problems for which the B-M factorization does not
contain any spurious solution while SDP fails to recover its
ground truth matrix. Throughout this section, the rank-1 pos-
itive semidefinite ground truth matrix M∗ = x∗(x∗)T is
assumed not to contain any zero entries, meaning that x∗

i ̸= 0
for all i ∈ [n]. Before proceeding with the results, we provide
two small examples to highlight the underlying ideas behind
the main results.
Example 1. Consider a block sparsity graph G =
(V, E) with |V| = 3 nodes and the edge set E =
{(1, 1), (1, 2), (2, 3)}. Namely, it is a chain graph with 3
nodes and a self-loop at the first node. First, we aim to show
that only second-order critical points are the global solutions
of the B-M factorization method. The B-M factorization for-
mulation (3b) with the squared loss function can be explicitly
written as minx∈R3 f(x), where

f(x) =
1

4

∑
(i,j)∈E
i=j

(x2
i − (x∗

i )
2)2 +

1

2

∑
(i,j)∈E
i̸=j

(xixj − x∗
i x

∗
j )

2.

The corresponding gradient and Hessian are:

∂f(x)

∂xi
=
∑
i,j∈E
i=j

(x2
i − (x∗

i )
2)xi +

∑
i,j∈E
i̸=j

(xixj − x∗
i x

∗
j )xj ,

∂2f(x)

∂x2
i

= 1[(i, i) ∈ E ](3x2
i − (x∗

i )
2) +

∑
i,j∈E

x2
j ,

∂2f(x)

∂xi∂xj
=

{
2xixj − x∗

i x
∗
j , if i ̸= j and (i, j) ∈ E

0, otherwise
.

Each second-order critical point x̂ must satisfy the con-
ditions ∇f(x̂) = 0 and ∇2f(x̂) ⪰ 0. The third entry of
the gradient implies either x̂2 = 0 or x̂2x̂3 = x∗

2x
∗
3. When-

ever x̂2 = 0, the Hessian is not positive semidefinite since
[∇2f(x̂)]2:3,2:3 ̸⪰ 0. Thus, x̂2x̂3 = x∗

2x
∗
3 must hold. Follow-

ing this, ∂f(x̂)/∂x2 implies either x̂1 = 0 or x̂1x̂2 = x∗
1x

∗
2.

However, if x̂1 = 0, then ∂f(x̂)/∂x1 gives −x∗
1x

∗
2x̂2 = 0,

which implies x̂2 = 0. This contradicts the earlier result.

Thus, each second-order critical point must have the follow-
ing properties:

x̂2
1 = (x∗

1)
2, x̂1x̂2 = x∗

1x
∗
2, x̂2x̂3 = x∗

2x
∗
3.

The solution to this system of equations proves the exact recov-
ery of the ground truth matrix M∗. Hence, the only second-
order critical points are the valid factors of the ground truth
solution, i.e ±x∗.

The next step is to demonstrate the failure of the SDP for-
mulation (2) for some instances of the MC problem with this
given block sparsity matrix G. The problem (2) is equivalent
to the optimization

min
M∈R3×3

M2,2 +M3,3

s.t

(x∗
1)

2 x∗
1x

∗
2 M1,3

x∗
1x

∗
2 M2,2 x∗

2x
∗
3

M3,1 x∗
2x

∗
3 M3,3

 ⪰ 0.

Consider a feasible solution M̂ with M̂2,2 = M̂3,3 = |x∗
2x

∗
3|

and M̂1,3 = M̂3,1 = |x∗
1x

∗
2|. Note that M̂ is feasible when-

ever |x∗
3| ≥ |x∗

2|. While the objective value of the ground
truth matrix M∗ is (x∗

2)
2 + (x∗

3)
2, the objective value of

the feasible solution M̂ is 2|x∗
2x

∗
3|. Under the assumption

|x∗
3| > |x∗

2|, the feasible solution M̂ is strictly better than the
ground truth solution. Thus, SDP fails to recover the ground
truth matrix.

This example clearly demonstrates the existence of MC
instances for which the B-M method successfully converges
to the ground truth solution while the SDP fails to find the
solution. One reason is that the number of measurements is
O(n) in this example, which is the minimum threshold for
exact completion. However, the statistical guarantees on SDP
often need more observations. We can generalize Example 1
to any chain graph with n nodes and a single self-loop at one
of the ends.
Theorem 5. Consider the MC problem with a rank-1 pos-
itive definite ground truth matrix M∗ ∈ Rn×n that can be
factorized as M∗ = x∗(x∗)T with x∗

i ̸= 0, ∀i ∈ [n]. Let
G = (V, E) be a block sparsity graph with |V| = n and
E = {(1, 1), (1, 2), (2, 3), · · · , (n − 1, n)}. Then, the B-M
method (3b) does not contain any spurious solutions.

The proof of Theorem 6 needs a careful treatment of the
second-order optimality conditions and is deferred to the
appendix. In addition to the success of the B-M factorization,
the next result establishes the failure of the SDP for the
instances described in the above theorem.
Theorem 6. Consider the ground truth matrix M∗ ∈ Rn×n

satisfying the conditions in Theorem 6. Suppose that there
exist two indices j, k such that x∗

k > x∗
j and j, k > 2. Then,

the SDP problem (2) fails to recover the ground truth matrix.
As mentioned before, SDP fails due to a lack of obser-

vations on the diagonal entries of the ground truth matrix.
Note that the RIP condition is not satisfied since these are
MC problems. As a result, whenever we do not have suffi-
cient guarantees on linear measurement operator, none of the
methods are superior to the other one in terms of exact re-
covery. The next example identifies another class of problem
instances that corroborates these findings.



Example 2. Consider a block sparsity graph G =
(V, E) with |V| = 3 nodes and the edge set E =
{(1, 2), (2, 3), (3, 1)}. Namely, it is a simple cycle with 3
nodes. The B-M factorization formulation (3b) with the
squared loss function can be written the same as in Exam-
ple 1. Firstly, we can show that each second-order criti-
cal point x̂ only has nonzero entries, i.e., x̂i ̸= 0 for all
i ∈ [n]. Without loss of generality, suppose by contradiction
that x̂1 = 0. In order for the stationarity condition to hold,
either x̂2x̂3 = x∗

2x
∗
3 or x̂2 = x̂3 = 0 should be satisfied. The

latter implies x̂ = 0 and ∇2f(x̂) ̸⪰ 0 in that case. Thus,
x̂2x̂3 = x∗

2x
∗
3 must hold. Following this, ∂f(x̂)/∂x1 yields

−x∗
1x

∗
2x̂2 − x∗

1x
∗
3x̂3 = 0. Combining these two equations

yields (x̂3)
2 = −(x∗

2)
2, which does not have any real so-

lution. As a result, each second-order critical point x̂ must
have only nonzero entries.

By the condition ∇f(x̂) = 0, whenever x̂ix̂j = x∗
i x

∗
j

for some (i, j) ∈ E , then x̂ix̂j = x∗
i x

∗
j holds for every

(i, j) ∈ E . This system of equations yields the ground truth
solution. Accordingly, a spurious solution x̂ must have the
following characteristics: x̂ix̂j ̸= x∗

i x
∗
j , ∀(i, j) ∈ E and

x̂i ̸= 0, ∀i ∈ {1, 2, 3}. Define ai,j = xixj −x∗
i x

∗
j . Then, the

stationarity condition becomes

∇f(x̂) =

[
â1,2x̂2 + â1,3x̂3

â1,2x̂1 + â2,3x̂3

â1,3x̂1 + â2,3x̂2

]
= 0.

Multiplying the first entry of the gradient by x̂1/x̂2 and sub-
stituting with the second entry gives â1,2x̂1 = −â2,3x̂3. Suc-
cessively, substituting this to the third entry of the gradient
results in

x̂3(â1,3x̂1 − â2,3x̂2) = 0.

Because we search for a solution with x̂i ̸= 0, we must have
â1,3x̂1 − â2,3x̂2 = 0. This condition combined with the last
entry of the gradient results in the condition â1,3x̂1 = 0,
which is a contradiction. As a result, all the second-order
critical points are global solutions that yield the ground truth
matrix completion.

Our next goal is to show that the SDP formulation (2) fails
for this class of instances of MC instances. Note that the SDP
formulation of the matrix completion problem considered in
this example is equivalent to the formulation:

min
M∈R3×3

M1,1 +M2,2 +M3,3

s.t

[
M1,1 x∗

1x
∗
2 x∗

1x
∗
3

x∗
1x

∗
2 M2,2 x∗

2x
∗
3

x∗
1x

∗
3 x∗

2x
∗
3 M3,3

]
⪰ 0.

Without loss of generality, assume that x∗
1 ≤ x∗

2 ≤ x∗
3 by the

symmetry of the problem. Consider a feasible rank-2 solution
M̂ given as M̂1,1 = x∗

1(x
∗
3 − x∗

2), M̂2,2 = x∗
2(x

∗
3 − x∗

1)

and M3,3 = x∗
3(x

∗
1 + x∗

2). Note that M̂ is feasible whenever
x∗
3 ≥ x∗

1 + x∗
2. The objective value of the feasible solution

M̂ is −2x∗
1x

∗
2 + 2x∗

2x
∗
3 + 2x∗

1x
∗
3, whereas the objective of

the ground truth solution M∗ is (x∗
1)

2 + (x∗
2)

2 + (x∗
3)

2. The
feasible solution M̂ is strictly better than the ground truth
solution if x∗

3 > x∗
1 + x∗

2. Hence, the SDP cannot recover the
ground truth solution for all the instances with a simple cycle
block sparsity graph.

Similar to Example 1, SDP fails in this example due to a
lack of diagonal observations. Next, we can generalize this
instance to any simple cycle block sparsity graph with an odd
number of vertices.
Theorem 7. Consider the matrix completion problem with a
rank-1 positive definite ground truth matrix M∗ ∈ Rn×n that
can be factorized as M∗ = x∗(x∗)T with x∗

i ̸= 0, ∀i ∈ [n].
Let G = (V, E) be a block sparsity graph with |V| = |E| =
n = 2k+1 and E = {(0, 1), (1, 2), . . . (2k−1, 2k), (2k, 0)}.
Then, the B-M factorization problem (3b) does not contain
any spurious solutions.
Theorem 8. Consider the ground truth matrix M∗ ∈ Rn×n

satisfying the conditions in Theorem 5. Suppose that the con-
dition

∑k
t=1(x

∗
2t−1)

2 >
∑k

t=0(x
∗
2t)

2 holds for some chosen
node 0. Then, the SDP problem (2) fails to recover the ground
truth matrix.

Note that we can choose any node as node 0 due to the
symmetry of the problem. Therefore, the condition stated in
Theorem 8 is not restrictive because this condition suffices
to hold for a chosen node 0 among 2k + 1 ones. As a result
of the above theorems, the B-M factorization can outperform
the convex relaxation approach. One important extension of
the work presented in this section would be finding subgraphs
for which the B-M method is successful while the SDP is
unsuccessful, and then attaching these subgraphs to generate
larger block sparsity graphs. It is known that SDP will fail for
these instances and it is intriguing to investigate the behavior
of the B-M method for those instances.

5 Conclusions
In this paper, we conducted a comparison between two main
approaches to the matrix completion and matrix sensing prob-
lems: a convex relaxation that gives an SDP formulation and
the B-M factorization method. It is well-known that both of
these methods enjoy mathematical guarantees for the recov-
ery of the ground truth matrix whenever the RIP assumption
is satisfied with a sufficiently small δ. We offered the first
result in the literature that compares these two methods when-
ever the RIP condition is not satisfied or only satisfied with a
large constant. We discovered classes of problems for which
B-M factorization fails while the SDP recovers the ground
truth matrix. The fact that specialized SDP algorithms are
improved in recent years and can compete with simple first-
order descent algorithms inspired us to investigate sharper
bounds on sufficient conditions for the SDP formulation. We
provided RIP bounds for the SDP formulation that depend
on the rank of the solution and are automatically satisfied for
high-rank problems, unlike the B-M method. On the other
hand, when the number of measurements from the ground
truth matrix is not high, we showed that SDP fails drastically
while the B-M method does not contain any spurious solu-
tions on its optimization landscape. As a result, we conclude
that none of the methods outperforms the other one whenever
the sufficiency guarantees are not met. The parameters of the
problem, such as dimension, rank, and linear measurement
operator, determine which solution method performs better.
Consequently, it is prudent to apply both solution methods in
case the RIP and incoherence are not satisfied.



References
Bhojanapalli, S.; Neyshabur, B.; and Srebro, N. 2016. Global
Optimality of Local Search for Low Rank Matrix Recov-
ery. In Advances in Neural Information Processing Systems,
volume 29.
Bi, Y.; and Lavaei, J. 2021. On the absence of spurious
local minima in nonlinear low-rank matrix recovery problems.
In International Conference on Artificial Intelligence and
Statistics, 379–387. PMLR.
Boumal, N. 2016. Nonconvex phase synchronization. SIAM
Journal on Optimization, 26(4): 2355–2377.
Burer, S.; and Monteiro, R. D. 2003. A nonlinear program-
ming algorithm for solving semidefinite programs via low-
rank factorization. Mathematical Programming, 95(2): 329–
357.
Cai, T. T.; and Zhang, A. 2013. Sharp RIP bound for sparse
signal and low-rank matrix recovery. Applied and Computa-
tional Harmonic Analysis, 35(1): 74–93.
Candes, E. J.; Eldar, Y. C.; Strohmer, T.; and Voroninski, V.
2015. Phase retrieval via matrix completion. SIAM review,
57(2): 225–251.
Candes, E. J.; and Plan, Y. 2010. Tight oracle bounds for
low-rank matrix recovery from a minimal number of random
measurements. arXiv preprint arXiv:1001.0339.
Candès, E. J.; and Recht, B. 2009. Exact matrix comple-
tion via convex optimization. Foundations of Computational
mathematics, 9(6): 717–772.
Candès, E. J.; and Tao, T. 2010. The power of convex relax-
ation: Near-optimal matrix completion. IEEE Transactions
on Information Theory, 56(5): 2053–2080.
Davenport, M. A.; Plan, Y.; Van Den Berg, E.; and Wootters,
M. 2014. 1-bit matrix completion. Information and Inference:
A Journal of the IMA, 3(3): 189–223.
Fattahi, S.; and Sojoudi, S. 2020. Exact guarantees on the
absence of spurious local minima for non-negative rank-1
robust principal component analysis. Journal of machine
learning research.
Ge, R.; Jin, C.; and Zheng, Y. 2017. No spurious local min-
ima in nonconvex low rank problems: A unified geometric
analysis. In International Conference on Machine Learning,
1233–1242. PMLR.
Ha, W.; Liu, H.; and Barber, R. F. 2020. An Equivalence
Between Critical Points for Rank Constraints Versus Low-
Rank Factorizations. SIAM Journal on Optimization, 30(4):
2927–2955.
Jin, M.; Lavaei, J.; Sojoudi, S.; and Baldick, R. 2020. Bound-
ary defense against cyber threat for power system state es-
timation. IEEE Transactions on Information Forensics and
Security, 16: 1752–1767.
Jin, M.; Molybog, I.; Mohammadi-Ghazi, R.; and Lavaei,
J. 2019. Towards robust and scalable power system state
estimation. In 2019 IEEE 58th Conference on Decision and
Control (CDC), 3245–3252. IEEE.
Koren, Y.; Bell, R.; and Volinsky, C. 2009. Matrix factoriza-
tion techniques for recommender systems. Computer, 42(8):
30–37.

Ma, Z.; Bi, Y.; Lavaei, J.; and Sojoudi, S. 2022. Sharp Re-
stricted Isometry Property Bounds for Low-rank Matrix Re-
covery Problems with Corrupted Measurements. AAAI-22.
Ma, Z.; and Sojoudi, S. 2022. Noisy Low-rank Matrix Opti-
mization: Geometry of Local Minima and Convergence Rate.
arXiv preprint arXiv:2203.03899.
Mohan, K.; and Fazel, M. 2010. New restricted isometry re-
sults for noisy low-rank recovery. In 2010 IEEE International
Symposium on Information Theory, 1573–1577. IEEE.
Park, D.; Kyrillidis, A.; Carmanis, C.; and Sanghavi, S. 2017.
Non-square Matrix Sensing Without Spurious Local Minima
via the Burer–Monteiro Approach. In Proceedings of the
20th International Conference on Artificial Intelligence and
Statistics, volume 54 of Proceedings of Machine Learning
Research, 65–74.
Recht, B.; Fazel, M.; and Parrilo, P. A. 2010. Guaranteed
minimum-rank solutions of linear matrix equations via nu-
clear norm minimization. SIAM review, 52(3): 471–501.
Recht, B.; Xu, W.; and Hassibi, B. 2008. Necessary and
sufficient conditions for success of the nuclear norm heuristic
for rank minimization. In 2008 47th IEEE Conference on
Decision and Control, 3065–3070. IEEE.
Shechtman, Y.; Eldar, Y. C.; Cohen, O.; Chapman, H. N.;
Miao, J.; and Segev, M. 2015. Phase retrieval with application
to optical imaging: a contemporary overview. IEEE signal
processing magazine, 32(3): 87–109.
Singer, A. 2011. Angular synchronization by eigenvectors
and semidefinite programming. Applied and Computational
Harmonic Analysis, 30(1): 20–36.
Tillmann, A. M.; and Pfetsch, M. E. 2013. The computational
complexity of the restricted isometry property, the nullspace
property, and related concepts in compressed sensing. IEEE
Transactions on Information Theory, 60(2): 1248–1259.
Yalçın, B.; Zhang, H.; Lavaei, J.; and Sojoudi, S. 2022. Fac-
torization approach for low-complexity matrix completion
problems: Exponential number of spurious solutions and fail-
ure of gradient methods. In International Conference on
Artificial Intelligence and Statistics, 319–341. PMLR.
Yurtsever, A.; Tropp, J. A.; Fercoq, O.; Udell, M.; and Cevher,
V. 2021. Scalable Semidefinite Programming. SIAM Journal
on Mathematics of Data Science, 3(1): 171–200.
Yurtsever, A.; Udell, M.; Tropp, J.; and Cevher, V. 2017.
Sketchy Decisions: Convex Low-Rank Matrix Optimization
with Optimal Storage. In Singh, A.; and Zhu, J., eds., Pro-
ceedings of the 20th International Conference on Artificial
Intelligence and Statistics, volume 54 of Proceedings of Ma-
chine Learning Research, 1188–1196. PMLR.
Zhang, G.; and Zhang, R. Y. 2020. How Many Samples
Is a Good Initial Point Worth in Low-Rank Matrix Recov-
ery? In Advances in Neural Information Processing Systems,
volume 33, 12583–12592.
Zhang, H.; Bi, Y.; and Lavaei, J. 2021a. General low-rank
matrix optimization: Geometric analysis and sharper bounds.
arXiv preprint arXiv:2104.10356.
Zhang, H.; Bi, Y.; and Lavaei, J. 2021b. General Low-
Rank Matrix Optimization: Geometric Analysis and Sharper



Bounds. In Advances in Neural Information Processing Sys-
tems.
Zhang, H.; Yalcin, B.; Lavaei, J.; and Sojoudi, S. 2022. A
Unified Complexity Metric for Nonconvex Matrix Comple-
tion and Matrix Sensing in the Rank-one Case. arXiv preprint
arXiv:2204.02364.
Zhang, R. Y. 2021. Sharp Global Guarantees for Noncon-
vex Low-Rank Matrix Recovery in the Overparameterized
Regime. ArXiv:2104.10790.
Zhang, R. Y.; and Lavaei, J. 2021. Sparse semidefinite pro-
grams with guaranteed near-linear time complexity via du-
alized clique tree conversion. Mathematical programming,
188(1): 351–393.
Zhang, R. Y.; Sojoudi, S.; and Lavaei, J. 2019. Sharp Re-
stricted Isometry Bounds for the Inexistence of Spurious
Local Minima in Nonconvex Matrix Recovery. Journal of
Machine Learning Research, 20(114): 1–34.
Zhang, X.; Wang, L.; Yu, Y.; and Gu, Q. 2018. A Primal-
Dual Analysis of Global Optimality in Nonconvex Low-Rank
Matrix Recovery. In Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, 5862–5871.
Zhang, Y.; Madani, R.; and Lavaei, J. 2017. Conic relaxations
for power system state estimation with line measurements.
IEEE Transactions on Control of Network Systems, 5(3):
1193–1205.
Zhu, Z.; Li, Q.; Tang, G.; and Wakin, M. B. 2018. Global
Optimality in Low-Rank Matrix Optimization. IEEE Trans-
actions on Signal Processing, 66(13): 3614–3628.
Zhu, Z.; Li, Q.; Tang, G.; and Wakin, M. B. 2021. The
global optimization geometry of low-rank matrix optimiza-
tion. IEEE Transactions on Information Theory, 67(2): 1308–
1331.



A Appendices
Proof of Theorem 2
Proof. Let M∗ ∈ Rn×n be the rank-r unperturbed ground truth m×m block matrix with each block having dimension r × r.
Hence, the ground truth matrix can be factorized as M∗ = X∗(X∗)T ,X∗ ∈ Rn×r. Each square factor X∗

i ∈ Rr×r is rank-r if
i ∈ S1 and is 0r×r otherwise. We perturb the ground truth matrix by ϵ ∈ Rn×r, where M∗(ϵ) = (X∗ + ϵ)(X∗ + ϵ)T such that
X∗(ϵ)i = X∗

i + ϵi if i ∈ S1 and X∗(ϵ)i = ϵi otherwise. Here, we assume that rank(X∗
i + ϵi) = r, ∀i ∈ [m].

If all diagonal blocks are observed, then it will reduce to a feasibility problem and we can skip the following procedure. Since
S1 is maximal independent set, there exists two indices i ∈ S1 and j ̸∈ S1 with (j, j) ̸∈ E such that (i, j) ∈ E1. Consider the
2× 2 block sub-matrix with i-th and j-th block columns and rows:[

Mi,i Mi,j

Mj,i Mj,j

]
=

[
(X∗

i + ϵi)(X
∗
i + ϵi)

T (X∗
i + ϵi)ϵ

T
j

ϵj(X
∗
i + ϵi)

T Mj,j

]
⪰ 0.

The equality holds because the blocks (i, i) and (i, j) are in E1. By the Schur complement argument and since X∗
i + ϵi is

full-rank, the above constraint is equivalent to

Mj,j ⪰ ϵjϵ
T
j .

The unique trace minimizer for the diagonal blocks is Mj,j = ϵjϵ
T
j . By the same argument, this must hold for every j that is not

in the independent set without a self-loop. Thus, the objective value cannot be less than
∑n

i=1 tr(X
∗(ϵ)i(X

∗(ϵ)i)
T ). Therefore,

the minimum value is achieved whenever M∗
i,i = X∗(ϵ)i(X

∗(ϵ))T . This makes M(ϵ)∗ an optimal solution.
We now prove the uniqueness of the solution. Since the graph is connected, there exists a node k adjacent to the node j such

that the edges (i, j) and (j, k) exist in the graph. Consider the 3× 3 block submatrix[
Mi,i Mi,j Mi,k

Mj,i Mj,j Mj,k

Mk,i Mk,j Mk,k

]
=

X∗(ϵ)iX
∗(ϵ)Ti X∗(ϵ)iX

∗(ϵ)Tj Mi,k

X∗(ϵ)jX
∗(ϵ)Ti X∗(ϵ)jX

∗(ϵ)Tj X∗(ϵ)jX
∗(ϵ)Tk

Mk,i X∗(ϵ)kX
∗(ϵ)Tj X∗(ϵ)kX

∗(ϵ)Tk

 ⪰ 0.

This is equivalent to following constraints by Schur complement[
X∗(ϵ)iX

∗(ϵ)Ti X∗(ϵ)iX
∗(ϵ)Tj

X∗(ϵ)jX
∗(ϵ)Ti X∗(ϵ)jX

∗(ϵ)Tj

]
−
[
Mi,kX

∗(ϵ)−T
k X∗(ϵ)−1

k Mk,i Mi,kX
∗(ϵ)−T

k X∗(ϵ)Tj
X∗(ϵ)jX

∗(ϵ)−1
k Mk,i X∗(ϵ)jX

∗(ϵ)Tj

]
⪰ 0,[

X∗(ϵ)iX
∗(ϵ)Ti −Mi,kX

∗(ϵ)−T
k X∗(ϵ)−1

k Mk,i (X∗(ϵ)i −Mi,kX
∗(ϵ)−T

k )X∗(ϵ)Tj
X∗(ϵ)j(X

∗(ϵ)i −Mi,kX
∗(ϵ)−T

k )T 0

]
⪰ 0.

Another Schur complement argument gives

(X∗(ϵ)i −Mi,kX
∗(ϵ)−T

k )X∗(ϵ)Tj = 0.

Since X∗(ϵ)Tj is full rank, we have X∗(ϵ)i −Mi,kX
∗(ϵ)−T

k = 0. Thus, we obtain Mi,k = X∗(ϵ)iX
∗(ϵ)Tk . Note that filling out

the unobserved non-diagonal blocks is equivalent to adding the edge (i, k) to the graph G1. Hence, we can always find such triple
(i, j, k) defined as above until filling out all missing entries. As a result, we obtain the unique solution M∗(ϵ) by continuing
iteratively.

Proof of Proposition 2
Proof. To prove Proposition 2, we study intermediary problem.

min
δ,Ĥ

δ

s.t. êT Ĥê ≤ (1 + δ)∥ec∥2 + 2(l − 3)δ∥ec∥2

(1− δ)I4r2 ⪯ Ĥ ⪯ (1 + δ)I4r2 ,

(8)

where
ê = PT e, P ∈ Rn2×4r2 = P ⊗ P,

and P ∈ Rn×2r is defined to be
P = [u1 u2 . . . u2r,]

where ui’s are orthonormal eigenvectors of M∗ −M so that PTP = I. Denote the optimal solution to (8) as δP (e). Then, the
following two lemmas will suffice to prove Proposition 2.



Lemma 2. Given a fixed vector e ∈ Rn2

, we have
δP (e) ≤ δ(e). (9)

Lemma 3. Given a fixed vector e ∈ Rn2

, we have

δlb(e) ≤ δP (e). (10)

Proof of Lemma 2. It suffices to show that for any feasible pair (δ, H̄) of (6), we can construct a feasible solution (δ, Ĥ) to (8)
characterized as below

δ = δ, Ĥ = PT H̄P,

which directly proves the lemma. We can verify the feasibility of (δ, Ĥ) as follows. The feasibility of the first constraint is
certified by the following argument:

êT Ĥê = eTPPT H̄PPT e,

By the definition of P, one can write

PPT e = (PPT ⊗ PPT )e = vec(PPT (M∗ −M)PPT ) = e1 + e2 = e2r,

Since eT H̄e = 0 and H̄ is symmetric, H̄ admits a factorization H̄ = ĀT Ā, making Āe = 0. Also, we know that e = e2r + ec,
meaning that

Āe2r = −Āec.

Therefore,

êT Ĥê = eT2rH̄e2r = eTc H̄ec = (
l∑

i=3

ei)
T H̄(

l∑
i=3

ei).

Since H̄ satisfies δ2r-RIP, for every (i, j) such that i ̸= j, we have:

(ei + ej)
T H̄(ei + ej) ≤ (1 + δ)∥ei + ej∥2 = (1 + δ)(∥ei∥2 + ∥ej∥2), (11)

where the last equality follows from the facts that eTi ej = 0 and

(ei + ej)
T H̄(ei + ej) = eTi H̄ei + 2eTi H̄ej + eTj H̄ej ≥ 2eTi H̄ej + (1− δ)(∥ei∥2 + ∥ej∥2). (12)

Combining (11) and (12) yields that
eTi H̄ej ≤ δ(∥ei∥2 + ∥ej∥2) ∀i ̸= j.

Therefore,

êT Ĥê = (
l∑

i=3

ei)
T H̄(

l∑
i=3

ei) ≤ (1 + δ)(
l∑

i=3

∥ei∥2) + 2δ(l − 3)(
l∑

i=3

∥ei∥2)

= (1 + δ)∥ec∥2 + 2δ(l − 3)∥ec∥2.
The above inequality directly verifies the satisfaction of the first constraint. For the second constraint, consider an arbitrary vector
ẽ ∈ R4r2 . Then,

ẽT Ĥẽ = ẽTPT H̄Pẽ = ẽT (PT ⊗ PT )H̄(P ⊗ P )ẽ

= vec(P mat(ẽ)PT )T H̄ vec(P mat(ẽ)PT ).

By orthogonal projection, we know that P mat(ẽ)PT ∈ Rn×n has rank 2r. Therefore, the following holds by the δ2r-RIP
property of H̄:

(1− δ)∥P mat(ẽ)PT ∥2F ≤ vec(P mat(ẽ)PT )T H̄ vec(P mat(ẽ)PT ) ≤ (1 + δ)∥P mat(ẽ)PT ∥2F (13)

and since

∥P mat(ẽ)PT ∥2F = tr(P mat(ẽ)TPTP mat(ẽ)PT )

= tr(P mat(ẽ)T mat(ẽ)PT )

= tr(PTP mat(ẽ)T mat(ẽ))

= tr(mat(ẽ)T mat(ẽ))

= ∥ẽ∥22,
(13) automatically implies the satisfaction of the second constraint.



Proof of Lemma 3. It suffices to show that for any feasible pair (δ, Ĥ) of (8), we can construct a feasible solution (δ,H) to (7)
characterized as

δ = δ, H = PĤPT + (1− δ)(In2 −PPT ).

To prove the lemma, it is enough to verify that the above pair (δ,H) is feasible to (7). We first verify the second constraint. Given
an arbitrary vector e ∈ Rn2

, we have that

eTHe = eTPĤPT e+ (1− δ)
[
eT e− eTPPT e

]
and defining ẽ := PT e ∈ R4r2 , we obtain:

eTPĤPT e+ (1− δ)
[
eT e− eTPPT e

]
≥ (1− δ)∥ẽ∥22 + (1− δ)[∥e∥22 − ∥ẽ∥22] = (1− δ)∥e∥22.

Also, since ∥ẽ∥22 ≤ ∥e∥22 and P is a projection matrix, one can write:

(1 + δ)[∥e∥22 − ∥ẽ∥22] ≥ (1− δ)[∥e∥22 − ∥ẽ∥22],
which further implies that

eTPĤPT e+ (1− δ)
[
eT e− eTPPT e

]
≤ (1 + δ)∥ẽ∥22 + (1 + δ)[∥e∥22 − ∥ẽ∥22] = (1 + δ)∥e∥22.

Combining the above equations, we recover the second constraint of (7):

(1− δ)∥e∥22 ≤ eTHe ≤ (1 + δ)∥e∥22.
To study the first constraint, we have that

eTHe = êT Ĥê+ (1− δ)
[
∥e∥22 − ∥ê∥22

]
≤ (1 + δ)∥ec∥22 + 2(l − 3)δ∥ec∥22 + (1− δ)∥ec∥22
= 2∥ec∥22 + 2(l − 3)δ∥ec∥22.

Note that ∥e∥22 − ∥ê∥22 = ∥ec∥22 due to

∥e∥22 =
n∑

i=1

λ2
i , ∥ê∥22 =

2r∑
i=1

λ2
i .

The proof of Proposition 2 follows directly from combining Lemma 2 and 3.

Proof of Lemma 1
Proof. We aim to solve (7) analytically to obtain a sufficient RIP bound for problem (2). This amounts to deriving a closed-form
expression for δlb(e). We consider a simpler problem to solve (7):

max
η,H̃

η

s. t. eT H̃e ≤ 1− η

2
c2 +

1 + η

2
d2

ηIn2 ⪯ H̃ ⪯ In2

(14)

with c2 = 2(l − 3)∥ec∥22 and d2 = 2∥ec∥22. Given any feasible solution (δ,H) to (7), the tuple(
1− δ

1 + δ
,

1

1 + δ
H

)
is a feasible solution to problem (14). Therefore, if we denote the optimal value of (14) as η(e), then it holds that

η(e) ≥ 1− δlb(e)

1 + δlb(e)
=⇒ δlb(e) ≥

1− η(e)

1 + η(e)
. (15)

We use the dual problem to solve for η(e):

min
U1,U2,γ

tr(U2) +
γ

2
(c2 + d2)

s. t. tr(U1) +
γ

2
(c2 − d2) = 1

γeeT = U1 −U2, U1,U2 ⪰ 0, γ ≥ 0.

(16)



Since Slater’s condition holds for the convex program (14), the optimal solution to (16) is equivalent to that of (14), which is
η(e). Using a Lagrangian argument, η(e) can be solved as follows:

η(e) = max
β∈R

min
γ≥0

β(1− γ

2
(c2 − d2)) + γ

c2 + d2

2
+ min

U1⪰0

U1−γeeT⪰0

[
tr(U1 − γeeT )− β tr(U1)

]
= max

β≤1
min
γ≥0

β(1− γ

2
(c2 − d2)) + γ

c2 + d2

2
+ min

U1⪰0

U1−γeeT⪰0

[
(1− β) tr(U1)− γ∥e∥22

]
= max

β≤1
min
γ≥0

{
β(1− γ

2
(c2 − d2)) + γ

c2 + d2

2
+ γ(1− β)∥e∥22 − γ∥e∥22

}
= max

β≤1

{
β +min

γ≥0

[
γ(

c2 + d2

2
− β(

c2 − d2

2
+ ∥e∥22))

]}
= max

β≤1

{
β :

c2 + d2

2
− β(

c2 − d2

2
+ ∥e∥22) ≥ 0

}
= min

{
1,

c2 + d2

2∥e∥22 + c2 − d2

}
,

where the first equality uses the Lagrangian argument by introducing the Lagrange multiplier β, and the second equality
constraints β ≤ 1 since (1 − β) tr(U1) will be unbounded otherwise. The third equality results from the obvious choice of
U1 = γeeT given that (1− β) is nonnegative. The fifth equality results from the choice of γ = 0 constrained to the requirement
that its coefficient must be nonnegative.

Substituting η(e) = 1 into (15) results in the trivial lower bound δlb(e) of 0, which means that the lower bound indeed will
not be negative. Hence, we will focus on c2+d2

2∥e∥2
2+c2−d2 from now on. We know from (15) that in order to obtain a lower bound on

δlb, we need to derive an upper bound on η(e). Note that

c2 + d2

2∥e∥22 + c2 − d2
=

2(l − 2)∥ec∥22
2∥e∥22 + 2(l − 4)∥ec∥22

=
(l − 2)∥ec∥22

∥e2r∥22 + (l − 3)∥ec∥22
. (17)

The last equality follows from the relations

∥e∥22 = ∥ec + e2r∥22 = ∥e2r∥22 + ∥ec∥22.
If we fix ∥e2r∥22, then we can maximize (17) with respect to ∥ec∥22 first. In this case, taking the derivative of (17) yields that

∂

∂∥ec∥2

(
(l − 2)∥ec∥22

∥e2r∥22 + (l − 3)∥ec∥22

)
= 2

(l − 2)∥ec∥2∥e2r∥22
(∥e2r∥22 + (l − 3)∥ec∥22)2

≥ 0.

Therefore, (17) is maximized when ∥ec∥22 is set to be as large as possible. Before we derive the maximum value of ∥ec∥22 in
terms of ∥e1∥22 and ∥e2∥22, we introduce one key lemma.

Lemma 4. Consider two PSD matrices M and M∗ such that tr(M) ≤ tr(M∗) and rank(M∗) = r. Then,

σ(1)(M
∗ −M) + · · ·+ σ(r)(M

∗ −M) ≥ σ(r+1)(M
∗ −M) + · · ·σ(n)(M

∗ −M), (18)

where σi denote the i-th largest singular value of the matrix M∗ −M.

Proof. For each matrix A, we denote the ith eigenvalue as λ(i)(·), meaning that

λ(1)(A) ≥ λ(2)(A) ≥ · · · ≥ λ(n)(A).

By Weyl’s inequality, we know that

λ(i+j−1)(M
∗ −M) ≤ λ(i)(M

∗) + λ(j)(−M).

Hence,
λ(r+1)(M

∗ −M) ≤ λ(r+1)(M
∗) + λ(1)(−M) ≤ 0

since M∗ is of rank-r and M ⪰ 0. Therefore, we know that M∗ − M has at most r positive eigenvalues. Also, since
tr(M∗ −M) ≥ 0, it holds that

λ(1)(M
∗ −M) + · · ·+ λ(r)(M

∗ −M) ≥ −λ(r+1)(M
∗ −M)− · · · − λ(n)(M

∗ −M),



which implies that

|λ(1)(M
∗ −M)|+ · · ·+ |λ(r)(M

∗ −M)| ≥ |λ(r+1)(M
∗ −M)|+ · · ·+ |λ(n)(M

∗ −M)| (19)

since λ(k)(M
∗ −M) ≤ 0 for all k > r. According to the definition, we have

|λ1(M
∗ −M)|+ · · ·+ |λr(M

∗ −M)| ≥ |λ(1)(M
∗ −M)|+ · · ·+ |λ(r)(M

∗ −M)|,
|λ(r+1)(M

∗ −M)|+ · · ·+ |λ(n)(M
∗ −M)| ≥ |λr+1(M

∗ −M)|+ . . . |λn(M
∗ −M)|

(20)

since λ1(M
∗ −M), . . . , λn(M

∗ −M) are ordered with respect to their absolute values. As per the main text, we abbreviate
λi(M

∗ −M) as λi for the sake of brevity for any i ∈ [n]. Combining (19) with (20) proves the original lemma.

Denote S1 :=
∑r

i=1 |λi| and S2 :=
∑n

i=r+1 |λi|. Given S2, since |λi| ≤ |λr| as long as i > r, we know that
∑n

i=r+1 λ
2
i is

maximized when every absolute value is chosen to be as large as possible, namely

|λr+1|, . . . , |λr+⌊S2/|λr|⌋| = |λr|, |λr+⌈S2/|λr|⌉| = S2 − ⌊S2/|λr|⌋|λr| := λ̃ ≤ |λr|.

Therefore,
n∑

i=r+1

λ2
i ≤ ⌊S2/|λr|⌋λ2

r + λ̃2 ≤ ⌊S2/|λr|⌋λ2
r +

λ̃

|λr|
λ2
r =

S2

|λr|
λ2
r.

As a result,

S2

|λr|
λ2
r = S2|λr| ≤ S1|λr| ≤ S1

S1

r
≤ S2

1

r
≤ r∥e1∥22

r
= ∥e1∥22,

where the last inequality follows from Cauchy-Schwartz. Combining the above 2 inequalities, we obtain
n∑

i=r+1

λ2
i ≤ ∥e1∥22. (21)

Furthermore, since |λr+1| ≥ · · · ≥ |λn|, one can write:

∥ec∥22 =

n∑
i=2r+1

λ2
i ≤ n− 2r

n− r

n∑
i=r+1

λ2
i

with equality holding if and only if |λr+1| = · · · = |λn|. Combined with (21), we obtain

∥ec∥22 ≤ n− 2r

n− r
∥e1∥22. (22)

Consequently,

∥ec∥22 ≤ n− 2r

n− r
(∥e2∥22 + ∥ec∥22) =⇒ ∥e2∥22 ≥ r

n− 2r
∥ec∥22. (23)

It results from (22) and (23) that

max
e:tr(M)≤tr(M∗)

η(e) = max
e:tr(M)≤tr(M∗)

(l − 2)∥ec∥22
∥e2r∥22 + (l − 3)∥ec∥22

≤ (l − 2)∥ec∥22
∥e1∥22 + r

n−2r∥ec∥
2
2 + (l − 3)∥ec∥22

≤
(l − 2)n−2r

n−r

1 + ( r
n−2r + l − 3)n−2r

n−r

=
(l − 2)(n− 2r)

n+ (n− 2r)(l − 3)
.

Thus,

δlb ≥ max
e:tr(M)≤tr(M∗)

1− δ(e)

1 + δ(e)
=

2r

n+ (n− 2r)(2l − 5)
.



Proof of Theorem 5
Proof. The matrix completion problem with the least-squares objective function can be written as

min
x∈Rn

f(x) = (x2
1 − (x∗

1)
2)2 + 2

n−1∑
i=1

(xixi+1 − x∗
i x

∗
i+1)

2. (24)

We assume that every element of the vector x∗ is nonzero, i.e. x∗
i ̸= 0, ∀i ∈ [n]. In this case, the problem (24) does not have any

spurious solutions. In order to prove the inexistence of a non-global second-order critical solution, we need to investigate the
second-order necessary optimality conditions. The gradient and Hessian of the above objective can be written as

[∇f(x)]i =


(x2

1 − (x∗
1)

2)x1 + (x1x2 − x∗
1x

∗
2)x2, if i = 1

(xi−1xi − x∗
i−1x

∗
i )xi−1 + (xixi+1 − x∗

i x
∗
i+1)xi+1, if i ̸∈ {1, n}

(xn−1xn − x∗
n−1x

∗
n)xn−1, if i = n

,

[∇2f(x)]i,j =



3x2
1 − (x∗

1)
2 + x2

2, if i, j = 1

x2
i−1 + x2

i+1, if i = j, i, j ̸∈ {1, n}
x2
n−1, if i, j = n

2xixj − x∗
i x

∗
j , if |i− j| = 1

0, otherwise

Note that for the point x̂ to be a second-order stationary point, we require ∇f(x̂) = 0 and ∇2f(x̂) ⪰ 0. [∇f(x̂)]n = 0 implies
either x̂n−1x̂n = x∗

n−1x
∗
n or x̂n−1 = 0. The latter results in ∇2f(x̂) ̸⪰ 0 since the following principal minor is not positive

semidefinite:

[∇2f(x̂)]n−1:n,n−1:n =

[
(x̂n−2)

2 + (x̂n)
2 2x̂n−1x̂n − x∗

n−1x
∗
n

2x̂n−1x̂n − x∗
n−1x

∗
n (x̂n−1)

2

]
=

[
(x̂n−2)

2 + (x̂n)
2 −x∗

n−1x
∗
n

−x∗
n−1x

∗
n 0

]
̸⪰ 0.

Hence, x̂n−1x̂
∗
n = x∗

n−1x
∗
n is the only feasible option for x̂ to be a second-order critical point. Next, we show that no second-order

critical point x̂ can have a zero entry, i.e. x̂i ̸= 0 for all i ∈ [n].
The first goal is to identify the structure of the stationary points with at least one zero entry. If x̂1 = 0, [∇f(x̂)]1 implies

x̂2 = 0. Then, [∇f(x̂)]2 gives x̂3 = 0. Continuing iteratively gives that the only possible stationary point with x̂1 = 0 is x̂ = 0,
which cannot be a second-order critical point. Similarly, if x̂n = 0, then [∇f(x̂)]n implies x̂n−1 = 0. Then, [∇f(x̂)]n−1 gives
x̂n−2 = 0. Hence, the only stationary point with x̂n = 0 is x̂ = 0. Consequently, x̂1 ̸= 0 and x̂n ̸= 0 for a second-order
stationary point.

Let k be defined as an index with the property that x̂1, x̂2, . . . , x̂k−1 ̸= 0 and x̂k = 0. Then, [∇f(x̂)]k−2 yields x̂k−2x̂k−1 =
x∗
k−2x

∗
k−1. Continuing iteratively backwards on [∇f(x̂))]i for 1 ≤ i ≤ k − 2 gives the following conditions on second-order

critical points, which are correct values for the corresponding edges:

x̂k−2x̂k−1 = x∗
k−2x

∗
k−1,

x̂k−3x̂k−2 = x∗
k−3x

∗
k−2,

...
x̂1x̂2 = x∗

1x
∗
2,

(x̂1)
2 = (x∗

1)
2.

We can focus on entries of the stationary point x̂ corresponding to x̂i for i > k. We show that x̂k+1 ̸= 0 and x̂k+2 ̸= 0 for every
second-order critical point. If x̂k+1 = 0, then [∇f(x̂)]k = 0 gives x∗

k−1x
∗
k = 0, which contradicts the assumption on the ground

truth matrix. Since x̂n−1, x̂n ̸= 0, we have k ≤ n− 2 for each second-order critical point. If x̂k+2 = 0, then the 2× 2 submatrix
of the Hessian will have the form

[∇2f(x̂)]k:k+1,k:k+1 =

[
(x̂k−1)

2 + (x̂k+1)
2 2x̂kx̂k+1 − x∗

kx
∗
k+1

2x̂kx̂k+1 − x∗
kx

∗
k+1 (x̂k)

2 + (x̂k+2)
2

]
=

[
(x̂k−1)

2 + (x̂k+1)
2 −x∗

kx
∗
k+1

−x∗
kx

∗
k+1 0

]
̸⪰ 0.

Let m be defined as an index with the property that x̂k+1, x̂k+2, . . . , x̂m ̸= 0 and either x̂m+1 = 0 or m = n. By the previous
arguments and the definition of m, we have the condition k + 3 ≤ m ≤ n. We are not interested in the entries after the



m-th entry because we can show that a stationary point with this structure cannot be a second-order critical point because
[∇2f(x̂)]1:m,1:m ̸⪰ 0. By using the first-order partial derivatives and algebra, we obtain the following equations for the stationary
point x̂:

[∇f(x̂)]k = 0 −→ x̂k+1 = −
(x∗

k−1

x∗
k+1

)2
x∗
k+1 = −αx∗

k+1,

[∇f(x̂)]k+1 = 0 −→ x̂k+2 = −
(x∗

k−1

x∗
k+1

)−2

x∗
k+2 = −α−1x∗

k+2,

...

[∇f(x̂)]m−1 = 0 −→ x̂m = −
(x∗

k−1

x∗
k+1

)2(−1)(m−k+1)

x∗
m = −α((−1)m−k+1)x∗

m,

where α =
(

x∗
k−1

x∗
k+1

)2
. As a result, the possible candidates for second-order critical points with at least one zero entry have the

form:

x̂ = [x∗
1, x

∗
2, . . . , x

∗
k−1, 0,−αx∗

k+1,−α−1x∗
k−2, . . . ,−α((−1)m−k+1)x∗

m, . . . ]

or the form

x̂ = [−x∗
1,−x∗

2, . . . ,−x∗
k−1, 0, αx

∗
k+1, α

−1x∗
k−2, . . . , α

((−1)m−k+1)x∗
m, . . . ].

These points correspond to the same matrix completion and they lead to the same Hessian matrix. As mentioned before, we
focus on the m×m Hessian submatrix [∇2f(x̂)]1:m,1:m:

[∇2f(x̂)]1:m,1:m =

 E D

DT A B
BT C

 ,

where A ∈ R3×3,B ∈ R3×(m−k−1),C ∈ R(m−k−1)×(m−k−1),D ∈ R(k−2)×(m−k+2) and E ∈ R(k−2)×(k−2). The submatri-
ces can be written as

A =


(x∗

k−2)
2 −x∗

k−1x
∗
k 0

−x∗
k−1x

∗
k (x∗

k−1)
2 +

(x∗
k−1)

4

(x∗
k+1)

2 −x∗
kx

∗
k+1

0 −x∗
kx

∗
k+1

(x∗
k+1)

4(x∗
k+2)

2

(x∗
k−1)

4

 ,

B =

 0 0 . . . 0
0 0 . . . 0

x∗
k+1x

∗
k+2 0 . . . 0

 ,

C =



α2(x∗
k+1)

2 + α2(x∗
k+3)

2 x∗
k+2x

∗
k+3 0 . . . 0

x∗
k+2x

∗
k+3 α−2(x∗

k+2)
2 + α−2(x∗

k+4)
2 x∗

k+3x
∗
k+4 . . . 0

0 x∗
k+3x

∗
k+4 α2(x∗

k+3)
2 + α2(x∗

k+5)
2 . . . 0

...
...

...
. . .

...
0 0 0 . . . x∗

m−1x
∗
m

0 0 0 . . . (α2)((−1)m−k)(x∗
m−1)

2


,

D =

 0 0 . . . 0
...

...
. . .

...
x∗
k−2x

∗
k−1 0 . . . 0

 ,

E = [∇2f(x∗)]1:k−2,1:k−2.

We investigate three different cases: A ̸⪰ 0, A ⪰ 0 with at least one of the eigenvalues being equal to 0, and A ≻ 0. If A ̸⪰ 0,
then [∇2f(x̂)]1:m,1:m ̸⪰ 0 because A is a principal minor of the Hessian. Therefore, x̂ cannot be a second-order critical point. If
A ⪰ 0 with an eigenvalue equal to 0, we consider the following 4× 4 principal minors of the Hessian:(x∗

k−3)
2 + (x∗

k−1)
2 x∗

k−2x
∗
k−1 0 0

x∗
k−2x

∗
k−1

0
0

A

 ,

 A
0
0

x∗
k+1x

∗
k+2

0 0 x∗
k+1x

∗
k+2 α2(x∗

k+1)
2 + α2(x∗

k+3)
2

 .



The submatrices are not positive semidefinite by Schur complement if

A− 1

(x∗
k−3)

2 + (x∗
k−1)

2

(x∗
k−2)

2(x∗
k−1)

2 0 0
0 0 0
0 0 0

 ̸⪰ 0

and

A− 1

α2(x∗
k+1)

2 + α2(x∗
k+3)

2

0 0 0
0 0 0
0 0 (x∗

k+1)
2(x∗

k+2)
2

 ̸⪰ 0,

respectively. If Av = 0, then v1 and v3 cannot be equal to 0 at the same time because (x∗
k−1)

2 +
(x∗

k−1)
4

(x∗
k+1)

2 > 0. If v1 ̸= 0, then

vTAv − vT 1

(x∗
k−3)

2 + (x∗
k−1)

2

(x∗
k−2)

2(x∗
k−1)

2 0 0
0 0 0
0 0 0

v = 0−
v21(x

∗
k−2)

2(x∗
k−1)

2

(x∗
k−3)

2 + (x∗
k−1)

2
< 0.

Hence, the quadratic form of the Hessian has a descent direction. If v1 = 0, then v3 ̸= 0 and we can use the second submatrix
to show that the submatrix is not positive semidefinite. Thus, x̂ cannot be a second-order critical point. As a result, if x̂ is a
second-order critical point, then A ≻ 0. In that case, we can show that the submatrix[

A B
BT C

]
cannot be positive semidefinite. This requires proving that C−BTA−1B ̸⪰ 0. Note that

BTA−1B =


A−1

3,3(x
∗
k+1)

2(x∗
k+2)

2 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 .

We can calculate A−1
3,3 by using the cofactors of A as

A−1
3,3 =

1

det(A)

(
(x∗

k−2)
2(x∗

k−1)
2 + (x∗

k−2)
2 (x

∗
k−1)

4

(x∗
k+1)

2
− (x∗

k−1)
2(x∗

k)
2
)
,

where

det(A) = (x∗
k−2)

2
( (x∗

k+1)
4

(x∗
k−1)

2
(x∗

k+2)
2 + (x∗

k+1)
2(x∗

k+2)
2 − (x∗

k)
2(x∗

k+1)
2
)
−

(x∗
k)

2(x∗
k+1)

4(x∗
k+2)

2

(x∗
k−1)

2
.

An algebraic manipulation shows that
dA−1

3,3

d(x∗
k)

2 > 0. Thus, the value of A−1
3,3 is minimized when (x∗

k)
2 −→ 0. Whenever (x∗

k)
2 = 0,

A−1
3,3(x

∗
k+1)

2(x∗
k+2)

2 is equal to α2(x∗
k+1)

2. As a result, A−1
3,3(x

∗
k+1)

2(x∗
k+2)

2 > α2(x∗
k+1)

2 by the non-zero assumption on x∗
k.

We can write the matrix C−BTA−1B as the summation of m− k − 1 matrices as

C−BTA−1B =


α2(x∗

k+1)
2 −A−1

3,3(x
∗
k+1)

2(x∗
k+2)

2 0 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0
0 0 . . . 0 0

+


α2(x∗

k+3)
2 x∗

k+2x
∗
k+3 . . . 0 0

x∗
k+2x

∗
k+3 α−2(x∗

k+2)
2 . . . 0 0

...
...

. . .
...

...
0 0 . . . 0 0
0 0 . . . 0 0

+ · · ·+


0 0 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . (α2)(−1)m−k+1

(x∗
m)2 x∗

m−1x
∗
m

0 0 . . . x∗
m−1x

∗
m (α2)(−1)m−k

(x∗
m−1)

2

 .



Consider the vector v defined as v2t+1 =
x∗
k+2t+2

x∗
k+2

and v2t = α2 x∗
k+2t+1

x∗
k+2

for t = 0, . . . , ⌊(m− k − 1)/2⌋. Then,

vT (C−BTA−1B)v = α2(x∗
k+1)

2 −A−1
3,3(x

∗
k+1)

2(x∗
k+2)

2 + 0 + · · ·+ 0 < 0.

As a result, C−BTA−1B is not positive definite. Hence, the Hessian is not positive definite either. Consequently, the problem
cannot have a second-order critical point x̂ with x̂i = 0 for some i ∈ [n]. Then, the only possible second-order-critical points
must satisfy (x̂1)

2 = (x∗
1)

2 and x̂ix̂i+1 = x∗
i x

∗
i+1, i = 1, . . . , n− 1, which correspond to the valid factors of the ground truth

completion of the matrix M∗.

Proof of Theorem 6
Proof. To show that the SDP formulated as (2) fails to solve the problem, consider two indices j, k such that x∗

k > x∗
j and

j, k > 2. Then, we construct a feasible solution M̂ that is strictly better than the ground truth solution, which shows the failure
of SDP. Let M̂ = yyT + zzT , sum of two rank-1 matrices, where

yi = x∗
i , ∀i ∈ [n]\{k}, yk = x∗

j

and
zi = 0, ∀i ∈ [n]\{j, k}, zj = zk = (|x∗

jx
∗
k| − (x∗

j )
2)1/2.

Since the sum of PSD matrices is PSD and M̂ satisfies the observed entries, M̂ is a feasible solution. Moreover, the objective
value corresponding to M̂ is

∑
i̸=j,i ̸=k(x

∗
i )

2 + 2|x∗
jx

∗
k|. Hence, by the assumption, the feasible solution M̂ is strictly better than

the ground truth solution M∗. Thus, SDP fails to recover the true solution.

Proof of Theorem 7
Proof. Note that the nodes are numbered from 0 to 2k as opposed to earlier examples. Hence, the matrix completion problem
with the least-squares objective function can be written as

min
x∈Rn

f(x) = 2
2k∑
i=0

(xixi+1 − x∗
i x

∗
i+1)

2 + 2(x0x2k − x∗
0x

∗
2k)

2. (25)

The gradient and Hessian of the above objective can be written as

[∇f(x)]i =


(x0x2k − x∗

0x
∗
2k)x2k + (x0x1 − x∗

0x
∗
1)x1, if i = 0

(xi−1xi − x∗
i−1x

∗
i )xi−1 + (xixi+1 − x∗

i x
∗
i+1)xi+1, if i ̸∈ {0, 2k}

(x2k−1x2k − x∗
2k−1x

∗
2k)x2k−1 + (x0x2k − x∗

0x
∗
2k)x0, if i = 2k

,

[∇2f(x)]i,j =



x2
1 + x2

2k, if i, j = 0

x2
i−1 + x2

i+1, if i = j, i, j ̸∈ {0, 2k}
x2
0 + x2

2k−1, if i, j = 2k

2xixj − x∗
i x

∗
j , if |i− j| = 1

0, otherwise

.

The optimization problem (25) does not have any spurious solution x̂ such that x̂i = 0 for some i = 0, . . . 2k. To prove
this, assume without loss of generality that x̂0 = 0 for a stationary point x̂. By the proof of Theorem 5, we know that
x̂2k−1, x̂2k, x̂1, x̂2 ̸= 0. Let m be defined as an index such that x̂1, x̂2, . . . , x̂m ̸= 0 and either x̂m+1 = 0 or m = n. Thus,
2 < m < 2k − 2. One can characterize the stationary points as.

[∇f(x̂)]2k = 0 −→ x̂2k−1x̂2k = x∗
2k−1x

∗
2k,

[∇f(x̂)]0 = 0 −→ −x∗
0x

∗
2kx̂2k = x∗

0x
∗
1x̂1,

[∇f(x̂)]1 = 0 −→ x̂1x̂2 = x∗
1x

∗
2,

[∇f(x̂)]2 = 0 −→ x̂2x̂3 = x∗
2x

∗
3,

...
[∇f(x̂)]m = 0 −→ x̂m−1x̂m = x∗

m−1x
∗
m.



Setting x̂2k as a free variable gives the following characterization of the stationary points:

x̂2k−2 =
x∗
2k−2

x∗
2k

x̂2k,

x̂2k−1 =
x∗
2k−1x

∗
2k

x̂2k
,

x̂2k = x̂2k,

x̂0 = 0,

x̂1 = −x∗
2kx̂2k

(x∗
1)

2
x∗
1 = −αx∗

1,

x̂2 = − (x∗
1)

2

x∗
2kx̂2k

x∗
2 = −α−1x∗

2,

x̂3 = −αx∗
3,

...

x̂m = −α(−1)m−1

x∗
m.

Similar to proof of Theorem 5, we focus on the following (m + 2) × (m + 2) submatrix of the Hessian that is
[∇2f(x̂)](2k−1):m,(2k−1):m where (2k − 1) : m denotes the rows/columns corresponding to (2k − 1), 2k, 0, 1, . . . ,m in
that respective order:

[∇2f(x̂)](2k−1):m,(2k−1):m =

 E D

DT A B
BT C

 ,

where A ∈ R3×3,B ∈ R3×(m−1),C ∈ R(m−1)×(m−1),D ∈ R1×(m+2) and E ∈ R. The submatrices can be written as

A =


(x∗

2k−1)
2(x∗

2k)
2

(x̂2k)2
−x∗

2kx
∗
0 0

−x∗
2kx

∗
0 (x̂2k)

2 +
(x∗

2k)
2(x̂2k)

2

(x∗
1)

2 −x∗
0x

∗
1

0 −x∗
0x

∗
1

(x∗
1)

4(x∗
2)

2

(x∗
2k)

2(x̂2k)2

 ,

B =

[
0 0 . . . 0
0 0 . . . 0

x∗
1x

∗
2 0 . . . 0

]
,

C =



α2(x∗
1)

2 + α2(x∗
3)

2 x∗
2x

∗
3 0 . . . 0

x∗
2x

∗
3 α−2(x∗

2)
2 + α−2(x∗

4)
2 x∗

3x
∗
4 . . . 0

0 x∗
3x

∗
4 α2(x∗

3)
2 + α2(x∗

5)
2 . . . 0

...
...

...
. . .

...
0 0 0 . . . x∗

m−1x
∗
m

0 0 0 . . . (α2)((−1)m−2)(x∗
m−1)

2

 ,

D =
[
x∗
2k−1x

∗
2k 0 . . . 0

]
,

E = (x̂2k)
2 +

(x∗
2k−2)

2

(x∗
2k)

2
(x̂2k)

2.

Similar to proof of Theorem 5, we can investigate three different cases to demonstrate that x̂ cannot be a second-order critical
point, which are A ̸⪰ 0, A ⪰ 0 with at least one zero eigenvalue, and A ≻ 0. Firstly, if A ̸⪰ 0, ∇2f(x̂) cannot be positive
semidefinite because A is a principal minor of the Hessian. The second case is when A is positive semidefinite but not positive
definite. In that case, for a vector v that satisfies Av = 0, we know that v1 and v3 cannot be zero simultaneously. Consider
following principal minors that correspond to [∇2f(x̂)](2k−1):1,(2k−1):1, which includes the rows/columns corresponding to
(2k − 1), 2k, 0, 1 in that order, and [∇2f(x̂)](2k):2,(2k):2, which includes the rows/columns corresponding to 2k, 0, 1, 2 in that
order, respectively:

(x̂2k)
2 +

(x∗
2k−2)

2

(x∗
2k)

2 (x̂2k)
2 x∗

2k−1x
∗
2k 0 0

x∗
2k−1x

∗
2k

0
0

A

 ,

 A
0
0

x∗
1x

∗
2

0 0 x∗
1x

∗
2 α2(x∗

1)
2 + α2(x∗

3)
2

 .



The submatrices are not positive semidefinite by Schur complement if

A− 1

(x̂2k)2 +
(x∗

2k−2)
2

(x∗
2k)

2 (x̂2k)2

(x∗
2k−1)

2(x∗
2k)

2 0 0
0 0 0
0 0 0

 ̸⪰ 0

and

A− 1

α2(x∗
1)

2 + α2(x∗
3)

2

0 0 0
0 0 0
0 0 (x∗

1)
2(x∗

2)
2

 ̸⪰ 0.

If v1 ̸= 0, then

vTAv − vT 1

(x̂2k)2 +
(x∗

2k−2)
2

(x∗
2k)

2 (x̂2k)2

(x∗
2k−1)

2(x∗
2k)

2 0 0
0 0 0
0 0 0

v = 0−
v21(x

∗
2k−1)

2(x∗
2k)

2

(x̂2k)2 +
(x∗

2k−2)
2

(x∗
2k)

2 (x̂2k)2
< 0.

Hence, the quadratic form of the Hessian has a descent direction. If v1 = 0, then v3 ̸= 0 and we can use the second submatrix to
show that the submatrix is not positive semidefinite. Thus, x̂ is not a second-order critical point. As a result, if x̂ is a second-order
critical point, then A must be positive definite. In that case, however, we can show that the submatrix[

A B
BT C

]
cannot be positive semidefinite, which implies that x̂ cannot be a second-order critical point. We prove the last proposition by
showing that C−BTA−1B ̸⪰ 0 by using Schur complement idea. Note that

BTA−1B =


A−1

3,3(x
∗
1)

2(x∗
2)

2 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 .

We calculate A−1
3,3 by using the cofactors of A as follows:

A−1
3,3 =

1

det(A)

(
(x∗

2k−1)
2(x∗

2k)
2 +

(x∗
2k−1)

2(x∗
2k)

4

(x∗
1)

2
− (x∗

2k)
2(x∗

0)
2
)
,

where

det(A) =
(x∗

2k−1)
2(x∗

2k)
2

(x̂2k)2

( (x∗
1)

4(x∗
2)

2

(x∗
2k)

2
+ (x∗

1)
2(x∗

2)
2 − (x∗

0)
2(x∗

1)
2
)
− (x∗

0)
2(x∗

1)
4(x∗

2)
2

(x̂2k)2
.

An algebraic manipulation shows that
dA−1

3,3

d(x∗
0)

2 > 0. Thus, the value of A−1
3,3 is minimized when (x∗

0)
2 −→ 0. Whenever x∗

0 = 0,

A−1
3,3(x

∗
1)

2(x∗
2)

2 is equal to α2(x∗
1)

2. As a result, A−1
3,3(x

∗
1)

2(x∗
2)

2 > α2(x∗
1)

2 by the non-zero assumption on u0. We can write
the matrix C−BTA−1B as the summation of m− 1 matrices as

C−BTA−1B =


α2(x∗

1)
2 −A−1

3,3(x
∗
1)

2(x∗
2)

2 0 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0
0 0 . . . 0 0

+


α2(x∗

3)
2 x∗

2x
∗
3 . . . 0 0

x∗
2x

∗
3 α−2(x∗

2)
2 . . . 0 0

...
...

. . .
...

...
0 0 . . . 0 0
0 0 . . . 0 0

+ · · ·+


0 0 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . (α2)(−1)m−1

(x∗
m)2 x∗

m−1x
∗
m

0 0 . . . x∗
m−1x

∗
m (α2)(−1)m−2

(x∗
m−1)

2

 .



Consider the vector v defined as v2t+1 =
x∗
2t+2

x∗
2

and v2t = α2 x∗
2t+1

x∗
2

for t = 0, . . . , ⌊(m− 1)/2⌋ so that vT (C−BTA−1B)v

results in zero for all the matrices above except for the first one. Then,

vT (C−BTA−1B)v = α2(x∗
1)

2 −A−1
3,3(x

∗
1)

2(x∗
2)

2 + 0 + · · ·+ 0 < 0.

As a result, C−BTA−1B is not positive definite. Hence, the Hessian is not positive definite either. Consequently, the problem
cannot have a second-order critical point x̂ with x̂∗

i = 0 for some i ∈ [n].
Any solution that meets the requirements of second-order necessary optimality conditions cannot contain any zero entries.

In addition, if a stationary point x̂ satisfies x̂ix̂j = x∗
i x

∗
j for some (i, j) ∈ E , then x̂ix̂j = x∗

i x
∗
j for all (i, j) ∈ E due to the

stationarity condition. Therefore, a spurious solution has the following properties: x̂ix̂j ̸= x∗
i x

∗
j for all (i, j) ∈ E and x̂i ̸= 0 for

all i = 0, . . . 2k.
Define ai,j = xixj − x∗

i x
∗
j . Then, the stationarity condition for the B-M factorized problem (25) can be written as

[∇f(x̂)]i =


â0,2kx̂2k + â0,1x̂1 = 0, if i = 0

âi−1,ix̂i−1 + âi,i+1x̂i+1 = 0, if i ̸∈ {0, 2k}
â2k−1,2kx̂2k−1 + â0,2kx̂0 = 0, if i = 2k

.

The following calculation yields a contradiction because none of the terms can be zero:

2k∑
i=0

(−1)i[∇f(x̂)]i = 2â0,2kx̂0x̂2k = 0.

As a result, all the second-order critical points are global solutions and we obtain the valid factors of the ground truth matrix
completion.

Proof of Theorem 8
Proof. We aim to find an instance of the matrix completion problem with an odd-numbered cycle graph for which the SDP
problem (2) fails. Consider the following rank-1 feasible solution M̂ = yyT with

y0 = (M̂0,0)
1/2 ≥ x∗

0, y2t−1 =

(
(x∗

2t−1)
2(x∗

0)
2

M̂0,0

)1/2

, y2t =

(
(x∗

2t)
2

(x∗
0)

2
M̂0,0

)1/2

,

where t = 1, . . . , k. Note that M̂0,0 is free to choose and we can minimize the trace to find the best rank-1 solution. This is
equivalent to the following optimization problem:

min
M̂0,0≥(x∗

0)
2

M̂0,0

(x∗
0)

2

k∑
t=0

(x∗
2t)

2 +
(x∗

0)
2

M̂0,0

k∑
t=1

(x∗
2t−1)

2.

Note that whenever M̂0,0 = (x∗
0)

2, the solution M̂ is the same as ground truth solution. A basic first-order optimality condition
implies that whenever

∑k
t=1(x

∗
2t−1)

2 >
∑k

t=0(x
∗
2t)

2, the optimal M̂0,0 is strictly larger than (x∗
0)

2. However, the objective
value is strictly better than the trace of the ground truth matrix. Due to the symmetry of the problem, any node can be chosen
as node 0. Therefore, if the condition

∑k
t=1(x

∗
2t−1)

2 >
∑k

t=0(x
∗
2t)

2 holds for some chosen node 0, the SDP fails to solve the
matrix completion problem.


