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Abstract

In non-private stochastic convex optimization, stochastic gradient methods converge much
faster on interpolation problems—problems where there exists a solution that simultaneously min-
imizes all of the sample losses—than on non-interpolating ones; we show that generally similar
improvements are impossible in the private setting. However, when the functions exhibit quadratic
growth around the optimum, we show (near) exponential improvements in the private sample com-
plexity. In particular, we propose an adaptive algorithm that improves the sample complexity to
achieve expected error « from % to aip + glog (é) for any fixed p > 0, while retaining the
standard minimax-optimal sample complexity for non-interpolation problems. We prove a lower
bound that shows the dimension-dependent term is tight. Furthermore, we provide a supereffi-
ciency result which demonstrates the necessity of the polynomial term for adaptive algorithms:
any algorithm that has a polylogarithmic sample complexity for interpolation problems cannot
achieve the minimax-optimal rates for the family of non-interpolation problems.

1 Introduction

We study differentially private stochastic convex optimization (DP-SCO), where given a dataset S =

i .
Sn X P we wish to solve

minimize f(z) =Ep[F(z;95)] :/QF(:E;s)dP(s) 0

subject to x € X,

while guaranteeing differential privacy. In problem (1), X C R is the parameter space, 2 is a sample
space, and {F(-;s) : s € S} is a collection of convex losses. We study the interpolation setting, where
there exists a solution that simultaneously minimizes all of the sample losses.

Interpolation problems are ubiquitous in machine learning applications: for example, least squares
problems with consistent solutions [SV09, NWS14], and problems with over-parametrized models where
a perfect predictor exists [MBB18, BHM18, BRT19]. This has led to a great deal of work on the
advantages and implications of interpolation [SST10, CSSS11, BHM18, BRT19].

For non-private SCO, interpolation problems allow significant improvements in convergence rates
over generic problems [SST10, CSSS11, MBB18, VBS19, WS21]. For general convex functions, [SST10)
develop algorithms that obtain O(%) sub-optimality, improving over the minimax-optimal rate O(\/LE)
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for non-interpolation problems. Even more dramatic improvements are possible when the functions
exhibit growth around the minimizer, as [VBS19] show that SGD achieves exponential rates in this
setting compared to polynomial rates without interpolation. [AD19, ACCD20, CCD22] extend these
fast convergence results to model-based optimization methods.

Despite the recent progress and increased interest in interpolation problems, in the private setting
they remain poorly understood. In spite of the substantial progress in characterizing the tight con-
vergence guarantees for a variety of settings in DP optimization [BST14, BFTT19, FKT20, AFKT21,
ALD21], we have little understanding of private optimization in the growing class of interpolation
problems.

Given (i) the importance of differential privacy and interpolation problems in modern machine
learning, (ii) the (often) paralyzingly slow rates of private optimization algorithms, and (iii) the faster
rates possible for non-private interpolation problems, the interpolation setting provides a reasonable
opportunity for significant speedups in the private setting. This motivates the following two questions:
first, is it possible to improve the rates for DP-SCO in the interpolation regime? And, what are the
optimal rates?

1.1 Our contributions

We answer both questions. In particular, we show that

1. No improvements in general (Section 3): our first result is a hardness result demonstrating
that the rates cannot be improved for DP-SCO in the interpolation regime with general convex
functions. More precisely, we prove a lower bound of Q(n%) on the excess loss for pure differen-
tially private algorithms. This shows that existing algorithms achieve optimal private rates for
this setting.

2. Faster rates with growth (Section 4): when the functions exhibit quadratic growth around
the minimizer, that is, f(z) — f(2*) > A||x — 2*||3 for some A > 0, we propose an algorithm
that achieves near-exponentially small excess loss, improving over the polynomial rates in the
non-interpolation setting. Specifically, we show that the sample complexity to achieve expected

excess loss a > 0 is O(% + g log (é)) for pure DP and O(% + 7““05(1/6) log (%)) for (e,9)-DP,
for any fixed p > 0. This improves over the sample complexity for non-interpolation problems

with growth which is O(é + ada). We also present new algorithms that improve the rates
for interpolation problems with the weaker k-growth assumption [ALD21] for k > 2 where we
achieve excess loss O((ﬁ +-4)%=2), compared to the previous bound O((\/iH + -L)%=T) without

ne

interpolation.

3. Adaptivity to interpolation (Section 4.3): While these improvements for the interpolation
regime are important, practitioners using these methods in practice cannot identify whether the
dataset they are working with is an interpolating one or not. Thus, it is crucial that these
algorithms do not fail when given a non-interpolating dataset. We show that our algorithms
are adaptive to interpolation, obtaining these better rates for interpolation while simultaneously
retaining the standard minimax optimal rates for non-interpolation problems.

4. Tightness (Section 5): finally, we provide a lower bound and a super-efficiency result that
demonstrate the (near) tightness of our upper bounds showing sample complexity €( g log (1))
is necessary for interpolation problems with pure DP. Moreover, our super-efficiency result shows
that the polynomial dependence on 1/« in the sample complexity is necessary for adaptive algo-
rithms: any algorithm that has a polylogarithmic sample complexity for interpolation problems
cannot achieve minimax-optimal rates for non-interpolation problems.

1.2 Related work

Over the past decade, a lot of works [CMS11, DJW13, ST13, BST14, ACGT16, BFTT19, FKT20,
AFKT21, ADF*™21, BFGT20] have studied the problem of private convex optimization. [CMS11] and



[BST14] study the closely related problem of differentially private empirical risk minimization (DP-
ERM) where the goal is to minimize the empirical loss, and obtain (minimax) optimal rates of d/ne
for pure DP and +/dlog(1/9)/ne for (e, §)-DP. Recently, more papers have moved beyond DP-ERM to
privately minimizing the population loss (DP-SCO) [BFTT19, FKT20, AFKT21, ADF+21, BGN21,
ALD21]. [BFTT19] was the first paper to obtain the optimal rate 1/y/n + \/dlog(1/8)/ne for (e, d)-
DP, and subsequent papers develop more efficient algorithms that achieve the same rates [FKT20,
BFGT20]. Moreover, other papers study DP-SCO under different settings including non-Euclidean
geometry [AFKT21, ADF*21], heavy-tailed data [WXDX20], and functions with growth [ALD21].
However, to the best of our knowledge, there has not been any work in private optimization that
studies the problem in the interpolation regime.

On the other hand, the optimization literature has witnessed numerous papers on the interpolation
regime [SST10, CSSS11, MBB18, VBS19, LB20, WS21]. [SST10] propose algorithms that roughly
achieve the rate 1/n + /f*/n for smooth and convex functions where f* = mingex f(z). In the
interpolation regime with f* = 0, this result obtains loss 1/n improving over the standard 1/y/n rate
for non-interpolation problems. Moreover, [VBS19] studied the interpolation regime for functions with
growth and show that SGD enjoys linear convergence (exponential rates). More recently, several papers
investigated and developed acceleration-based algorithms in the interpolation regime [LB20, WS21].

2 Preliminaries

We begin with notation that will be used throughout the paper and provide some standard definitions
from convex analysis and differential privacy.

Notation We let n denote the sample size and d the dimension. We let & denote the optimization
variable and X C R? the constraint set. s are samples from €, and S is an Q-valued random variable.
For each sample s € Q, F(-;s) : R — RU {+o0} is a closed convex function. Let OF(z;s) denote
the subdifferential of F(-;s) at z. We let Q™ denote the collection of datasets S = (s1,...,5,) with n
data points from Q. We let fs(z) = 13 < F(z,s) denote the empirical loss and f(z) := E[F(x; S)]

T n

denote the population loss. The distance of a point to a set is dist (z,Y) = minyey ||z — y||,. We use
Diam(X) = sup, ,ecx [[z — yll, to denote the diameter of parameter space X and use D as a bound on
the diameter of our parameter space.

We recall the definition of (g, §)-differential privacy.

Definition 2.1. A randomized mechanism M is (e, d)-differentially private ((¢,0)-DP) if for all
datasets S,8 € Q" that differ in a single data point and for all events O in the output space of
M, we have

P(M(S) € O) <efP(M(S') € O) + 6.
We define e-differential privacy (e-DP) to be (g, 0)-differential privacy.
We now recall a couple of standard convex analysis definitions.

Definition 2.2.

1. A function h : X — R is L-Lipschitz if for all z,y € X
h(z) = h(y)l < Lz —yll,-
FEquivalently, a function is L-Lipschitz if |V f(x)|, < L for all z € X.
2. A function h is H-smooth if it has H-Lipschitz gradient: for oll x,y € X

IVh(z) = Vh(y)ll, < H [z = yll, -



3. A function h is A-strongly convex if for all xz,y € X
A
h(y) > h(z) + V()" (y = 2) + 5 |y = 23

We formally define interpolation problems:

Definition 2.3 (Interpolation Problem). Let X* := argmin, .y f(z). Then problem (1) is an interpo-
lation problem if there exists x* € X* such that for P-almost all s € Q, we have 0 € IF(x*;s).

Interpolation problems are common in modern machine learning, where models are overparameter-
ized. One simple example is overparameterized linear regression: there exists a solution that minimizes
each individual sample function. Classification problems with margin are another example.

Crucial to our results is the following quadratic growth assumption:

Definition 2.4. We say that a function f satisfies the quadratic growth condition if for all x € X
f(z) — inf f(2') > édist (2, X*%)?
' eX* -2 ’ '

This assumption is natural with interpolation and holds for many important applications including
noiseless linear regression [SV09, NWS14]. Past work ([VBS19, WS21]) uses this assumption with
interpolation to get faster rates of convergence for non-private optimization.

Finally, the adaptivity of our algorithms will crucially depend on an innovation leveraging Lipchi-
tizian extensions, defined as follows.

Definition 2.5 (Lipschitzian extension [HUL93]). The Lipschitzian extension with Lipschitz constant
L of a function f is defined as the infimal convolution

fulw) = f () + Lz —yl}- (2)

The Lipschitzian extension (2) essentially transforms a general convex function into an L-Lipschitz
convex function. We now present a few properties of the Lipschitzian extension that are relevant to
our development.

Lemma 2.1. Let f: X — R be convex. Then its Lipschitzian extension satisfies the following:
1. fr is L-Lipschitz.
2. fr is convez.
3. If f is L-Lipschitz, then fr(z) = f(x), for all .
4. Let y(x) = argmin, cga{ f(y) + L ||z — ylly}. If y(x) is at a finite distance from x, we have
wnio = ([ L

le—y @)’

We use the Lipschitzian extension as a substitute for gradient clipping to ensure differential privacy.
Unlike gradient clipping, which may alter the geometry of a convex problem to a non-convex one, the
Lipschitzian extension of a function remains convex and thus retains other nice properties that we
leverage in our algorithms in Section 4.



3 Hardness of private interpolation

In non-private stochastic convex optimization, for smooth functions it is well known that interpolation
problems enjoy the fast rate O(1/n) [SST10] compared to the minimax-optimal O(1/4/n) without
interpolation [Ducl8]. In this section, we show that such an improvement is not generally possible with
privacy. The same lower bound of private non-interpolation problems, d/ne, holds for interpolation
problems.

To state our lower bounds, we present some notation that we will use throughout of the paper.
We let & denote the family of function F' and dataset S pairs such that F' : X x Q — R is convex
and H-smooth in its first argument, |S| =n, and fs(y) = 2 > .5 F(y, s) is an interpolation problem

(Definition 2.3). We define the constrained minimax risk to be

o n\\ ().
M(X,6,¢,0) '_Meljelf(sm (F,ZEI))GGE[JCSH(M(S )] acl/relefS (2)

where M (%) be the collection of (&, §)-differentially private mechanisms from Q" to X. We use M9
to denote the collection of e-DP mechanisms from Q" to X'. Here, the expectation is taken over the
randomness of the mechanism, while the dataset S™ is fixed.

We have the following lower bound for private interpolation problems; the proof is deferred to
Appendix B.1.

Theorem 1. Suppose X C R contains a d-dimensional {5 ball of diameter D. Then the following
lower bound holds for § =0

HD2d
> —
M(X,6,¢,0) 2 96e2ne

Moreover, if 0 < 0 < €/6 and d = 1, the following lower bound holds

HD?
> —
M(X,S,e,6) > 6ot e

Recall the optimal rate for pure DP optimization problems without interpolation is O(\/LH + %)
The first term is the non-private rate, as this is the rate one would get if ¢ = 0. The second term is
the private rate, as this is the price algorithms have to pay for privacy. In modern machine learning,
problems are often high dimensional, so we often think of the dimension d scaling with some function
of the number of samples n. Thus, the private rate is often thought to dominate the non-private rate.
For this reason, in this section, we focus on the private rate. The lower bounds of Theorem 1 show
that it is not possible to improve the private rate for interpolation problems in general. Similarly,
for approximate (g,d)-DP, the lower bound shows that improvements are not possible for d = 1.
For completeness, as we alluded to earlier, we note that our results do not preclude the possibility
of improving the non-private rate from O(1/4/n) to O(1/n). We leave this as an open problem of
independent interest for future work.

Despite this pessimistic result, in the next section we show that substantial improvements are
possible for private interpolation problems with additional growth conditions.

4 Faster rates for interpolation with growth

Having established our hardness result for general interpolation problems, in this section we show that
when the functions satisfy additional growth conditions, we get (nearly) exponential improvements in
the rates of convergence for private interpolation.

Our algorithms use recent localization techniques that yield optimal algorithms for DP-SCO [FKT20,
ALD21] where the algorithm iteratively shrinks the diameter of the domain. However, to obtain faster
rates for interpolation, we crucially build on the observation that the norm of the gradients is de-
creasing as we approach the optimal solution, since |[VF(x;s)||, < H || — 2*||,. Hence, by carefully



localizing the domain and shrinking the Lipschitz constant accordingly, our algorithms improve the
rates for interpolating datasets.

However, this technique alone yields an algorithm that may not be private for non-interpolation
problems, violating that privacy must hold for all inputs: the reduction in the Lipschitz constant may
not hold for non-interpolation problems, and thus, the amount of noise added may not be enough to
ensure privacy. To solve this issue, we use the Lipschitzian extension (Definition 2.5) to transform
our potentially non-Lipschitz sample functions into Lipschitz ones and guarantee privacy even for
non-interpolation problems.

We begin in Section 4.1 by presenting our Lipschitzian extension based algorithm, which recovers the
standard optimal rates for (non-interpolation) L-Lipschitz functions while still guaranteeing privacy
when the function is not Lipschitz. Then in Section 4.2 we build on this algorithm to develop a
localization-based algorithm that obtains faster rates for interpolation-with-growth problems. Finally,
in Section 4.3 we present our final adaptive algorithm, which obtains fast rates for interpolation-with-
growth problems while achieving optimal rates for non-interpolation growth problems.

4.1 Lipschitzian-extension based algorithms

Existing algorithms for DP-SCO with L-Lipschitz functions may not be private if the input function
is not L-Lipschitz [BFGT20, FKT20, ALD21]. Given any DP-SCO algorithm M(Lsyg), which is private
for L-Lipschitz functions, we present a framework that transforms M(LE 5) to an algorithm which is (i)
private for all functions, even ones which are not L-Lipschitz functions and (ii) has the same utility
guarantees as M 5) for L-Lipschitz functions. In simpler terms, our algorithm essentially feeds M( 5)
the Lipschitzian- extens1on of the sample functions as inputs. Algorithm 1 describes our L1psch1t21an—
extension based framework.

Algorithm 1 Lipschitzian-Extension Algorithm
Require: Dataset S = (s1,...,5,) € S™;
1: Let Fr(x;s;) be the Lipschitzian extension of F'(x;s;) for all i.

Fr(z;s:) = igf{F(y; si) + Lz —yll,}

2: Run M(Lsﬁé) over the functions FJ,(+; s;).

3: Let xpyiv denote the output of M(L&(s).
4: return  xpy

For this paper we consider M(Ls 5 to be Algorithm 2 of [ALD21] (reproduced in Appendix A.2 as
Algorithm 5). The following proposition summarizes our guarantees for Algorithm 1.

Proposition 1. Let L}, denote the set of sample function-dataset pair (F,S) such that F is L-Lipschitz
and let F denote the set of sample function-dataset pair (F,S) such that M(L‘E 5) S (€,0)-DP for any

(F,S) € LLNF. Then
1. For any (F,S) € F, Algorithm 1 is (¢,0)-DP.
2. For any (F,S) € L, NF, Algorithm 1 achieves the same optimality guarantees as M(LE_’(;).

Proof For the first item, note that Lemma 2.1 implies that Fy, is L-Lipschitz, i.e. (FL,S) € L, N.F.
Since M(L8 5) is (€,9)-DP when applied over Lipschitz functions in F, we have that Algorithm 1 is
(¢,6)-DP

For the second item, Lemma 2.1 implies that F, = F when F is L-Lipschitz. Thus, in Algorithm 1,
we apply M(Lsyé) over F' itself. O

While clipped DP-SGD does ensure privacy for input functions which are not L-Lipschitz, our
algorithm has some advantages over clipped DP-SGD: first, clipping does not result in optimal rates for



Algorithm 2 Domain and Lipschitz Localization algorithm

Require: Dataset S = (s1,...,8,) € S™, Lipschitz constant L, domain X, probability parameter 3,

initial point xg

1: Set Ly =L, D; = Diam(X) and X; = X

2: Partition the dataset into T partitions (denoted by {Si}i_,) of size m each; S =
(S(k—l)m-i-la <oy Skm)

3: fori=1toT do

4:  x; < Run Algorithm 1 with dataset S;, constraint set X, Lipschitz constant L;, probability

parameter 8/T, privacy parameters (g, ), initial point x;_1,
5. Shrink the diameter

Dot — 956 (ﬁ {\/log(T/B) log®?m  min(d, \/dlog(1/8))log(T/B) 1Ogm}>
+1 — )\ max \/m

’ me

6: Set XiJrl = {I : HI — $Z||2 < D1+1/2}
T Set Li+1 = HDi+1

8: end for

9: return the final iterate xr

pure DP, and second, clipped DP-SGD results in time complexity O(n3/ 2). In contrast, our Lipschitzian
extension approach is amenable to existing linear time algorithms [FKT20] allowing for almost linear
time complexity algorithms for interpolation problems. Finally, while clipping the gradients and using
the Lipschitzian extension both alter the effective function being optimized, only the Lipschitzian
extension is able to preserve the convexity of said effective function (see item 2 in Lemma 2.1). We
make a note about the computational efficiency of Algorithm 1. Recall that when the objective is in
fact L-Lipschitz, computing gradients for the Lipschitzian extension (say in the context of a first-order
method) is only as expensive as computing the gradients for the original function. In particular, one
can first compute the gradient of the original function and use item 4 of Lemma 2.1; when the problem
is L-Lipschitz, ||V f(z)||2 is always less than or equal to L and thus the gradient of the Lipschitzian
extension is just the gradient of the original function.

4.2 Faster non-adaptive algorithm

Building on the Lipschitzian-extension framework of the previous section, in this section, we present
our epoch based algorithm, which obtains faster rates in the interpolation-with-growth regime. It uses
Algorithm 1 with M(LE 5) 8s Algorithm 5 (reproduced in Appendix A.2) as a subroutine in each epoch,
to localize and shrink the domain as the iterates get closer to the true minimizer. Simultaneously, the
algorithm also reduces the Lipschitz constant, as the interpolation assumption implies that the norm of
the gradient decreases for iterates near the minimizer. The detailed algorithm is given in Algorithm 2
where D; denotes the effective diameter and L; denotes the effective Lipschitz constant in epoch 1.

The following theorem provides our upper bounds for Algorithm 2, demonstrating near-exponential
rates for interpolation problems; we present the proof in Appendix C.

Theorem 2. Assume each sample function F' is L-Lipschitz and H-smooth, and let the population
function f satisfy quadratic growth (Definition 2.4). Let Problem (1) be an interpolation problem.

Then Algorithm 2 is (¢,6)-DP. For § = 0, 8 = an m = 256log? nw max{%, s\/liﬁ}’

T =n/m and any p > 0, Algorithm 2 returns xp such that

E[f(2r) — f(a*)) < LD (% +exp (—é (”H—Aj» +exp (—’é (%))) . (3)

For o >0, f = niw m = 25610g2nHl°gA(1/’8) max{25§H, \/5\1;%6)}’ T =n/m and any p > 0,




Algorithm 2 returns xp such that

E[f(xr) — f(z*)) < LD <n—1ﬂ + exp (’é (”H—Aj» +exp (—’é <H\/;17%(1/5)>>> o

The exponential rates in Theorem 2 show a significant improvement in the interpolation regime
over the minimax-optimal O((ﬁ + %)2) without interpolation [FKT20, ALD21]. To get the linear

convergence rates, we run roughly n/logn epochs with logn samples each. Thus, each call of the
subroutine runs the algorithm on only logarithmic number of samples compared to the number of
epochs. Intuitively, growth conditions improves the performance of the sub-algorithm, while growth
and interpolation conditions reduce the search space. This in tandem leads to faster rates.

To better illustrate the improvement in rates compared to the non-private setting, the next corollary
states the private sample complexity required to achieve error « in the interpolation regime.

Corollary 4.1. Let the conditions of Theorem 2 hold. For § =0 , Algorithm 2 is e-DP and requires

~ (1 d 1
af  pe o
samples to ensure E[f (z7) — f(2*)] < « for any fized p > 0, where 9] ignores only polyloglog factors in

1/a.
Moreover, for § > 0, Algorithm 2 is (e,9)-DP and requires

n=0 <i + — dlog(1/9) log (l>>
ar pE e}
samples to ensure B[f (z7) — f(2*)] < a, for any fixed p > 0, where O ignores polyloglo factors in 1/a.

As the sample complexity of DP-SCO to achieve expected error a on general quadratic growth

problems is [ALD21]
o 1 n d
a  eja)’

Corollary 4.1 shows that we are able to improve the polynomial dependence on 1/« in the sample
complexity to (nearly) logarithmic for interpolation problems.

Remark 1. In contrast to Corollary 4.1, we can tune the failure probability parameter 3 to get the
sample complexity g log? (é) FEven though this sample complexity does not have the polynomial factor,
it may be worse than % + glog (é), because generally the dimension term is the dominant one.

We end this section by considering growth conditions that are weaker than quadratic growth.

Remark 2. (interpolation with k-growth) We can extend our algorithms to work for the weaker k-
growth condition [ALD21], i.e., f(z) — f(z*) > 2|z —a*||5. We present the full details of these
algorithms in Appendiz C.1 (see Algorithm 6). In this setting, we obtain excess loss

(27

for interpolation problems, improving over the minimaz-optimal loss for non-interpolation problems

which s .
1 d\ T

As an example, when k = 3, this corresponds to an improvement from roughly (d/ne)3/? to (d/ne)?.
Like our previous results, we are again able to show similar improvements for (¢,0)-DP with bet-
ter dependence on the dimension. Finally, we note that we have not provided lower bounds for the
interpolation-with-r-growth setting for k > 2. We leave this question as a direction for future research.



Algorithm 3 Algorithm that adapts to interpolation

Require: Dataset S = (s1,...,8,) € S™, Lipschitz constant L, domain X, probability parameter 3,
initial point xg
1: Partition the dataset into 2 partitions S; = (s1,...,5,/2) and Sz = (S(n/2)41,- -+ 5n)
2: 1 < Run Algorithm 1 with dataset Sy, constraint set A;, Lipschitz constant L;, probability
parameter (§/2, privacy parameters (g,0), initial point x;_1,
3: Shrink the diameter

Do — 128L <\/10g(2/6) log®? n n min{d, \/dlog(1/6)}log(2/8) 10gn>
int — A \/ﬁ ne

4 Xine = {x : |z — 21|y < Dine/2}

5 Tadapt < Run Algorithm 2 with dataset Ss, diameter Dijy, Lipschitz constant L, domain AXjipg,
smoothness parameter H, tail probability parameter 3/2, growth parameter A, initial point 24

6: return the final iterate Taqapt.

4.3 Adaptive algorithm

Though Algorithm 2 is private and enjoys faster rates of convergence in the interpolation regime, it is
not necessarily adaptive to interpolation, i.e. it may perform poorly given a non-interpolation problem.
In fact, since the shrinkage of the diameter and Lipschitz constants at each iteration hinges squarely
on the interpolation assumption, the new domain may not include the optimizing set X* in the non-
interpolation setting, so our algorithm may not even converge. Since in general we do not know a priori
whether a dataset is interpolating, it is important to have an algorithm which adapts to interpolation.

To that end, we present an adaptive algorithm that achieves faster rates for interpolation-with-
growth problems while simultaneously obtaining the standard optimal rates for general growth prob-
lems. The algorithm consists of two steps. In the first step, our algorithm privately minimizes the
objective without assuming it is an interpolation problem. Next, we run our non-adaptive interpola-
tion algorithm of Section 4.2 over the localized domain returned by the first step. If our problem was
an interpolating one, the second step recovers the faster rates in Section 4.2. If our problem was not
an interpolating one, the first localization step ensures that we at least recover the non-interpolating
convergence rate. We stress that the privacy of Algorithm 3 requires that the call to Algorithm 2
remains private even if the problem is non-interpolating. This is ensured by using our Lipschitzian ex-
tension based algorithm with MLs 5 as Algorithm 5. The Lipschitzian extension allows us to continue
preserving privacy. We present the full details of this algorithm in Algorithm 3.

The following theorem (Theorem 3) states the convergence guarantees of our adaptive algorithm
(Algorithm 3) in both the interpolation and non-interpolation regimes for the pure DP setting. The
results for approximate DP are similar and can be obtained by replacing d with \/dlog(1/6); we give
the full details in Appendix C.

Theorem 3. Let each sample function F be L-Lipschitz and H -smooth, and let the population function
[ satisfy quadratic growth (Definition 2.4) with coefficient A. Let Tagapt e the output of Algorithm 3.
Then

1. Algorithm 8 is e-DP.

2. Without any additional interpolation assumption, Tadapt Satisfies

2
Elf(er) - f(z*)] < LD -0 (% n g) |

3. Let problem (1) be an interpolation problem. Thentadqapt satisfies

E[f(zr) — f(z*)) < LD (% +exp (—’é (”H—Aj» +exp (—é (%))) .



Proof The privacy of Algorithm 3 follows from the privacy of Algorithms 1 and 2 and post-processing.

To prove the convergence guarantees, we first need to show that the optimal set X'™* is in the shrinked
domain Aini. Using the high probability guarantees of Algorithm 1, we know that with probability
1— /2, we have

o} 0032 o o oo
fa - 1@ < 2L (@1 €0 | TR0 los(2/)lo )

A

Using the quadratic growth condition, we immediately have [|2* — 21|y < Dint/2 and hence X* C Xjps.
Using smoothness, we have that for any x € Xy,

HD?
fl@) — @) < =5,
Since Algorithm 2 always outputs a point in its input domain (in this case Xjn), even in the non-
interpolation setting that

2
E[f(ar) - f(a*)] < LD -0 (% n ni) |

In the interpolation setting, the guarantees of Algorithm 2 hold and result is immediate. O

5 Optimality and Superefficiency

We conclude this paper by providing a lower bound and a super-efficiency result that demonstrate
the tightness of our upper bounds. Recall that our upper bound from Section 4 is roughly (up to

constants) i . (—é (n_g)) (5)
ne d/))’

for any arbitrarily large c. We begin with an exponential lower bound showing that the second term
in (5) is tight. We then prove a superefficiency result that demonstrates that any private algorithm
which avoids the first term in (5) cannot be adaptive to interpolation, that is, it can not achieve the
minimax optimal rate for the family of non-interpolation problems.

Theorem 4 below presents our exponential lower bounds for private interpolation problems with
growth. We use the notation and proof structure of Theorem 1. We let &* C & be the subcollection
of function, data set pairs which also have functions fs» that have A-quadratic growth (Definition 2.4).
The proof of Theorem 4 is found in Appendix D.1.

Theorem 4. Let X C R? contain a d-dimensional {2-ball of diameter D. Then

AD? 2\ne
A

> — — .
M(X,6%,¢,0) > 9% exp( Hd)

This lower bound addresses the second term of (5); we now turn to our superefficiency results to
lower bound the first term of (5). We start with defining some notation and making some simplifying
assumptions. For a fixed function F : X, — R which is convex, H-smooth with respect to the first
argument, let G4 (F) be the set of datasets S of n data points sampled from Q such that fs(z) ==
% > scsn F(x,8) is L-Lipschitz and have A-strongly convex objectives. For simplicity, we will assume
that 1. infyexy F(z;s) =0 for all s € Q, 2. X = [-D,D] C R, and 3. the codomain of F is R,.
With this setup, we present the formal statement of our result; the proof of Theorem 5 is found in
Appendix D.2.

Theorem 5. Suppose we have some S € &% (F) with L = 2HD such that (F,S) satisfy Definition 2.3.
Suppose there is an e-DP estimator M such that

E[fs(M(8))] = inf fs(x) < eD2e—0((ne)")
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for some t > 0 and absolute constant c. Then, for sufficiently large n, there exists another dataset
S’ € GL(F), where (F,S") may not satisfy Definition 2.3, such that

2
Elfe (4(8)] - inf, o) = (B

To better contextualize this result, suppose there exists an algorithm which atttains a exp(—0 (ne/d))
convergence rate on interpolation problems; i.e., the algorithm is able to avoid the 1/n° term in (5).
Then Theorem 5 states that there exists some strongly convex, non-interpolation problem on which
the aforementioned algorithm will optimize very poorly; in particular, the algorithm will only be able
to return a solution that attains, on average, constant error on this “hard” problem. More generally,
recall that in the non-interpolation quadratic growth setting, the optimal error rate is on the order
of 1/(ne)? [ALD21]. Theorem 5 shows that attaining better-than-polynomial error complexity on
quadratic growth interpolation problems implies that the algorithm cannot be minimax optimal in the
non-interpolation quadratic growth setting. Thus, the rates our adaptive algorithms attain are the best
we can hope for if we want an algorithm to perform well on both interpolation and non-interpolation
quadratic growth problems.
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A Results from previous work

A.1 Proof of Lemma 2.1
1. Follows from Proposition IV.3.1.4 of [HUL93].

2. Follows from Proposition 1V.3.1.4 of [HUL93].
3. Follows since for L-lipschitz functions 0 € V f(z) + LBs.
4. Follows from Section VI.4.5 of [HUL93].

A.2 Algorithms from [ALD21]

A.3 Theoretical results from [ALD21]
We first reproduce the high probability guarantees of Algorithm 4 as proved in [ALD21].

Proposition 2. Let 8 < 1/(n+d), D2(X) < D and F(x;s) be convex, L-Lipschitz for all s € S.
Setting

D 1 €
A («/nlog(l/ﬂ), legﬂ/B))

then for 6 =0, Algorithm 4 is e-DP and has with probability 1 — 3

f(x) - f(2*) < 128LD- < Y 10g(1/5%10g3/2n 1 Log1/5) log”> .

ne

Proposition 3. Let § < 1/(n+d), D2(X) < D and F(z;s) be convex, L-Lipschitz for all s € S.
Setting

D . 1 £
=T <\/n1og(1/ﬂ)’ /dlog(1/3) 1og(1/ﬂ>> ’

13



Algorithm 4 Localization based Algorithm

Require: Dataset D = (s1,...,5,) € S™, constraint set X, step size 7, initial point xg, Lipschitz
(clipping) constant L, privacy parameters (g,0);
1: Set k = [logn] and ng = n/k
2: fori=1to k do
3t Setn; = 2%y
4:  Solve the following ERM over X; = {z € X : ||z — z;_1||, < 2Ln;ng}:

1 ino 9
Fi(r)=— Y Flais)+—|le—zial;
O j=1+(i-1)no ‘

5. Let Z; be the output of the optimization algorithm.
6: if 6 =0 then

7 Set ¢; ~ Lap,(0;) where o; = 4Lm\/g/5i

8  elseif § >0 then

9: Set ¢; ~ N(0,0?) where o; = 4Ln;\/log(1/6)/e
10:  end if

11: Set z; = &; + (;

12: end for

13: return the final iterate xy

Algorithm 5 Epoch-based algorithms for k-growth

Require: Dataset S = (s1,...,8,) € S™, constraint set X, Lipschitz (clipping) constant L, initial
point xg, number of iterations T', probability parameter (3, privacy parameters (g, 9);

: Set ng =n/T and Dy = diam(X)

2: if 6 =0 then

. — Do i 1 €
3: Set np = 57 min JroTog(no) 1o5(1/5) dlog(l/,@))
4: else if § > 0 then

=

5: Set
) Do min ! c
0= 57 )
2L /1o log(ng)log(1/8) +/dlog(1/9)log(1/B)
6: end if
7. fori=0toT —1 do
8: Let 81' = (Slf(ifl)n(n RN Sino‘)
9:  Set D; =2""Dg and n; = 27"

10: Set X; = {I e X: HZC — IlHQ < Dl}

11:  Run Algorithm 4 on dataset S; with starting point z;, Lipschitz (clipping) constant L, privacy
parameter (g,d), domain X; (with diameter D;), step size n;

12:  Let x;41 be the output of the private procedure

13: end for

14: return xp
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then for 6 > 0, Algorithm 4 is (¢,0)-DP and has with probability 1 — (

N Viog(1/8)1og®?n \/dlog(1/6)log(1/5)logn
f(z) — f(a*) <128LD- < Jn + 2 .

Now, we reproduce the high probability convergence guarantees of Algorithm 5.

Theorem 6. Let < 1/(n+d), D2(X) < D and F(x;s) be convex, L-Lipschitz for all s € Q. Assume
. . . 2logn . .

that f has k-growth (Assumption 2.4) with k > k > 1. Setting T = {E—fgl—‘ , Algorithm 5 is e-DP and

has with probability 1 — £

. 4032 L log(l/ﬁ)log3/2n Ldlog(1/8)logn =

reX AF—1

Theorem 7. Let f < 1/(n+d), D2(X) < D and F(x;s) be convex, L-Lipschitz for all s € Q. Assume
that f has k-growth (Assumption 2.4) with k > k> 1. Setting T = [2’10%1"—‘ and § > 0, Algorithm 5 is
(€,0)-DP and has with probability 1 — 8

f@ﬂ—mmﬂ@<4%?(Lwiﬁﬁﬁ@””+Lwﬁaﬁammmm%nyﬂ.

TEX T AT ne(k—1)

B Proofs from Section 3

B.1 Proof of Theorem 1

Consider the sample risk function

F(xz;s) = g |z — SHg -1{s # 0}.

We define the datasets S” = {0}" % U {v}*. We define the corresponding population risk to be
fo(x) =1 D oses, Flz;s) = EH 2 — ng We select V to be a «-packing (with respect to the ¢3 norm)
of diameter D ball contained in X. Define the separation between v, v’ € V with respect to the loss f,
and f, by

o fol@) | fo(@) kH ,
/) = > = —ye.
dopt (fu, for) zuelgc 2 5 =°¢ sn |
For the sake of contradiction, suppose that E[f, (M (S,))] < 7 for 7 < —8n(1+e]f£[212’yd/Dd) forallv e X.

Then by Markov’s inequality, P(f,(M(S,)) > ¢) < L and P(f,(M(S,)) <c¢) > 1— I for all v, and so

— cC

—~

TS B(f(M(S.) >

(i4)

> P(Uyew\ (o} for (M(Sy)) < ¢)
et S B (M(S0) < o)

v’ eV\{v}
@
> et (vi-1(1-1),
c
where inequality (i¢) follows from the definition of the separation, and (iii) follows from privacy and
the disjoint nature of the events in the union. Rearranging, we get that

kH~?
T > ,
~ 8n(1+ k(Y] —1)71)
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which is a contradiction. By standard packing inequalities [Wail9], we know that [V| > (D/2v)<.
Setting k = d/e and v = D/2e and using the fact that z/(x — 1) is decreasing in x gives

S dH D? . HD?%d

~ 32nee?(1 +ed(ed —1)~1) T 96e2ne’

We now prove the (g,)-DP lower bound. Consider the following sample risk function

F(xz;s) = g(ac —5)?1{s # 0}.

We define the datasets 8" := {0}" % U {v}* inducing the corresponding population risk f,(x) =

LY es, Flzs) = BH (3 — v)2. We select two points v,v’ contained within the diameter D ball

2n
contained in X such that |v — v'| = D. Define the separation between v,v’ € V with respect to the
loss f, and f,/ as
v v’/ kJH
CI) o) RH
eX 2 2 8n

Opt(fvva ) T

2 —ke —€
kgf € 1+;]fi€ 6) for all

T and P(f,(M(S,)) <¢) > 1—Z for all v,

For the sake of contradiction, suppose that E[f,(M(S,))] < 7 for 7 <
<

v € X. Then by Markov’s inequality, P(f,(M(S,)) > ¢)
and so

(é e ke (1 — —) — ke %0,

c

where inequality (i¢) follows from the definition of the separation, and (#i7) follows from group privacy
of (¢,6)-privacy [DR14]. Rearranging, we get that

EHD? (e~ % — ke—2§
T > ,
~ 8n 14 eke

which is a contradiction. Setting k = 1/ and using the fact § < ee~!/2 gives the first result.

C Proofs from Section 4

We first prove a lemma that each time we shrink the domain size, the set of interpolating solutions
still lies in the new domain with high probability, and the new Lipschitz constant we define is a valid
Lipschitz constant for the loss defined on the new domain. We prove it in generality for xk-growth.

Lemma C.1. Let X* denote the set of interpolating solutions of problem (1). Then X* C X; for all
i € [T] with probability 1 — B, and ||VF(y;s)|l, < L; for all y € X;.

Proof We prove this lemma for the case when 6 = 0, the case when § > 0 follows similarly. For
epoch 7, using Theorem 2 of [ALD21], we have with probability 1 — 3/T,

{L iv/1og T/ﬂ log®?m Lidlog(T/ﬁ)logm}ﬁﬁ1

me

f(@:) — fa") <

)\mfl
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Using the growth condition on f(-), we have

) /m ’ Ame

Using ¢, = 2(Cyr)/*, we get ||#; — 2*||, < D;11/2 with probability 1 — 8/T. Thus, for each epoch i,
with probability 1 — 3/T, each point in the set X* of optimizers lies in the domain X;. Using a union
bound on all epochs, we have X* C X; for all ¢ € [T] with probability 1 — §.

We now prove the second part of the lemma. Using the smoothness of F'(+; s) and that VF(z*;s) =0
for all z* € X*, we have

I (R (TP { Lo/ ToalT/ B log* m Ludlog(T'/8) logm } -

IVE(y;s)lly = IVE(y;s) = VE(@*s)lly, < H|ly — 2|, < H (|ly — &all, + 187 — 24ll,) < HD; = Ly
as desired. O

We now restate and prove the convergence rate of Algorithm 2

Theorem 2. Assume each sample function F is L-Lipschitz and H-smooth, and let the population
function f satisfy quadratic growth (Definition 2.4). Let Problem (1) be an interpolation problem.

Then Algorithm 2 is (g,8)-DP. For § = 0, 8 = ., m = 256log” nw max{% d },

Py ? e/logn
T =n/m and any p > 0, Algorithm 2 returns xr such that

E[f(xr) — f(a*)) < LD (% +exp (—é ("H—Aj» +exp (—’é (%))) . 3)

For § >0, g = an m = 25610g2nH1°gA(1/’6) max{25§H, ‘/zf;’%‘s)}, T =n/m and any p > 0,

Algorithm 2 returns xp such that

N 1 ~ (n)\? ~ Ane
Elf(zr) — f(«¥)] < LD <W + exp (@ <F>) + exp (—@ <m>>> . (4)

Proof First we prove the privacy guarantee of the algorithm. Each sample impacts only one of the
iterates &;, thus Algorithm 2 satisfies the same privacy guarantee as Algorithm 5 by postprocessing.

We divide the utility proof into 2 main parts; first is to check the validity of the assumptions while
applying Algorithm 5 and second is using its high probability convergence guarantees to get the final
rates. To check this, we ensure that the optimum set lies in the new domain X; at step ¢+ and that
the Lipschitz constant L; defined with respect to the domain is a valid lipschitz constant. This follows
from Lemma C.1.

Next, we use the high probability convergence guarantees of the subalgorithm Algorithm 5 to get
convergence rates for Algorithm 2. We prove it for the case when d = 0, the case when § > 0 is similar.
We know that

L;=HD,
HL; . { V1og(T/B)1og®?m  dlog(T/B)logm }
max .
A 3

vm me

Thus we have

A me

Ly <02£ e { \/log(T/j)ﬁlogW2 m dlog(T/B)logm })Tl L.
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Using Theorem 2 of [ALD21] on the last epoch, we have with probability 1 — 3 that

L2 { log(T/B)1log®*m d?log?(T/B3)logm }

flar) - f(@%) < Co=L max 2 ko

T
B < , H? {log(T/B log®?m d21og*(T/B) 10gm}> CoL2)\
€5 — max ,

m m2e? H2c2

3/2 2 T
_ < , H? max{log(T/B) log m7 d*log*(T/83) 10gm}> L2\

5 — )
22 m m2g2 8H?

Let m = klog?n and T = n/m for some k such that

2 o {10800 (3K 1087 n)) Log? *(klog® ) & log? (n (3 log? ) og(klog” ) | | _ 1.
A2 klog®n (klog® n)2e2 T e
This holds for example for
k:256Hlog(1/ﬁ) e 256H7 d 7
A A Tevlogn
for sufficiently large n. Using these values of m and 7', we have
CoL? )\ n L3\ n
ir) — f(a*) < —— — =1 — . 6
)~ fa) < e () = gt ew (—ers ©)

To get the convergence results in expectation, let A denote the “bad” event with tail probability
2
1

B, where f(&7) — f(z*) > 8LH>2‘ exp (—ﬁ). Now,

HD?
E[f(2r) = f(@")] < f—— + (1 = DE[f (2r) — f(=7) | A%
HD?
< 612 i) - fo) | A
Substituting 8 = -1 and using Equation (6), we get the result. O

C.1 Algorithm for general «

Remark ¢, is an absolute constant dependent on the high probability performance guarantees of
Algorithm 5. We can calculate that C, is at most 2'2(~ 4000) and hence ¢, < 2(2'2k)Y/* < 4.212/%,

Theorem 8. Assume each sample function F be L-Lipschitz and H-smooth, and let the population
function f satisfy quadratic growth (Definition 2.4). Let Problem (1) be an interpolation problem.
Then, Algorithm 6 is (,0)-DP. For § =0, Algorithm 6 with T =logn and m = we have

_n_
logn’

flar) - fa*) <O (% + n%) -

with probability 1 — 8. For § > 0, Algorithm 6 when run using T = logn and m = n/logn achieves
error

fler) - f*) < (% . M) -

with probability 1 — 3.
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Algorithm 6 Epoch based epoch based epoch based clipped-GD
Require: number of epochs: T', samples in each round: m = n /T, Diameter at the start: D1, lipschitz
constant at the start L1, domain X7, initial point Zg
1: fori=1to T do
2:  &; + Output of Algorithm 5 when run on domain X; (diameter D;), with lipschitz constant L;
using m samples.

3: if 6 =0 then

1

. / 3/2 =T
Set Diy1 = cx <& max{ log(T'/5) log m7 dlog(T/B)logm })
) Vi

me

5. else if § > 0 then

1

Set Dypy — <£ {\/bg'(T/B)log?’/?m V/@1og(1/3) log(T/5) 1ogm}>“
e i+l = Cr \ max \/ﬁ ,

me

7. end if

8: Set Xi—i—l = {f : Hf — i’z”g < Di+1/2}
9: Set Li+1 = HD»L'+1

10: end for

11: return the final iterate zr

Proof The privacy guarantee follows from the proof of Theorem 2. We divide the utility proof into 2
main parts; first is to check the validity of the assumptions while applying Algorithm 5 and second is
using its high probability convergence guarantees to get the final rates. To check this, we ensure that
the optimum set lies in the new domain defined at every step and that the lipschitz constant defined
with respect to the domain is a valid lipschitz constant. This follows from Lemma C.1.

Next, we use the high probability convergence guarantees of the subalgorithm Algorithm 5 to get
convergence rates for Algorithm 2.

We prove it for the case when § = 0, the case when § > 0 is similar. We know that

L;=HD;
(L“ { V10g(T/B) log®*m  dlog(T/$)logm }) -
=c.H max , .
A /m me

Thus, we have

me

(e —
Ly = (coH) 2 (- 55m=T) <lmax{\/10g(T/B)1og3/2m dlog(T/ﬁ)logm}> () LT
" A vm ’ '

We note that for T' ~ logn, (m—ll)T*1 = nlog(lﬁ,l) and thus for large n, we ignore the terms of the form

N
a »°==1) gince they are &~ 1. Ignoring these terms by including an additional constant C’ we can
write

- V1og(T /) log®/? R
Ly = O (e H) b 1 o) Vlos(T/5)log m dlog(T/B)logm LT
A vm me !

19



Using Theorem 2 of [ALD21] on the last epoch, we have with probability 1 — 8 that

Lpy/10g(T/B)log®*m  Lydlog(T/B)logm =1
Vm ’ me

(C)= T CnlenD) 2 {\/log(T/B)logg/Qm dlog(T/B)logm | "7 | 5
X .
A/ M ’ !

flar) = f(a) < < max{

= me

Choosing T' = logn and m = n/logn, we have

K

(C") "1 C(c H) =2 { Viog(logn/B) log®?(n/logn) dlog(logn/B)log(n/logn) }H i

f(ar) = ") < = e V/n/logn ’ en/logn

Now we write results in terms of sample complexity required to achieve a particular error. The
sufficient number of samples. To ensure f(Zr) — f(z*) < «, it is sufficient to ensure

= = Tog(T/5) log®/? G
(C)= Cplen )2 {\/ og( /\/Bl o m dlog(T/B)logm | ™7 |
m

= me

—2

Choosing n = O (max{(%)%, EnE }) ensures error < a. O

EQ

Corollary C.1. Under the conditions of Theorem 8, for § = 0, the expected error of the output of
algorithm is upper bounded by

sisten) — s <0 (= )

for arbitrarily large p. For 6 > 0, the expected error of the output of algorithm is upper bounded by

E[f(i7) — f(z*)] < O (i n i) -

vno ne

for arbitrarily large p.

C.2 (g,0) version of Theorem 3

Theorem 9. Assume each sample function F be L-Lipschitz and H-smooth, and let the population
function f satisfy quadratic growth (Definition 2.4) with coefficient X. Let Tadaps e the output of
Algorithm 3. Then,

1. Algorithm 8 is e-DP.

2. Without any additional interpolation assumption, we have that the expected error of the Tadapt
s upper bounded by

n ne

2
E[f(er) — f(@*)] < LD-O (% + @) .

3. Let problem (1) be an interpolation problem. Then, the expected error of the Tadapt 1S upper
bounded by

~ /)2

E[f(zr) — f(z*)] < LD <n—lu + exp <—® <F>)

_ Ane
+ exp (‘6 (mg(l/&))) |
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Proof First, we note that the privacy of Algorithm 3 follows from the privacy of Algorithm 2 and
Algorithm 1 and post-processing.

To prove the convergence guarantees, we first need to show that the optimal set X'* is included in
the shrinked domain Xi,¢. Using the high probability guarantees of Algorithm 1, we know that with
probability 1 — 3/2, we have

Flan) — @) < % log(r—1) <\/log(2/5%10g3/2n N ,/dlog(l/é)i(;g(Q/ﬁ) logn> .

Using the quadratic growth condition, we immediately have [|2* — 21|y < Dint/2 and hence X* C Xjps.
Using smoothness, we have that for any x € Xy,

HD?

fla) = @) < =5,

Since Algorithm 2 always outputs a point in its input domain (in this case Xi,), even in the non-
interpolation setting we have that

E[f(xr) ~ f(z*)] < LD -0 (% N d1+<1/5>> |

In the interpolation setting, the guarantees of Algorithm 2 hold and the result is immediate. [

D Proofs from Section 5

D.1 Proof of Theorem 4
An

The proof is exactly the same as Theorem 1, except we set k = 57 to ensure that f,(z) for any v € X

has A-quadratic growth. Finally we set v = % exp( }?’dw) and use the fact that e“#= > 2 and the fact
that z/(x — 1) is decreasing in x to give the desired lower bound.

D.2 Proof of Theorem 5

The proof of this result hinges on the two following supporting propositions. We first copy Proposition
2.2 from [AD20] (listed as Proposition 4 below) in our notation for convenience. We then state Propo-
sition 5 which gives upper and lower bounds on the modulus of continuity (defined in Proposition 4).
We note that the lower bound presented in Proposition 5 is one of the novel contributions of this paper;
the proof of Proposition 5 can be found in Appendix D.2.1. We will first assume this to be true and
prove Theorem 5 before returning prove its correctness.

Proposition 4. For some fized F : X,Q0 — R which is conver and H-smooth with respect to its
first argument, let S € GX(F) for L = 2HD. Let x5 = argming . fs(z'). Define the corresponding
modulus of continuity

w(S,1/e) = sup {|z5— 25| dham(S,S) < 1/e}.
S'eek(F)

Assume the mechanism M is e-DP and for some v < % achieves

W(S; 1/5)) |

Bl () - o] < v (45

Then there exists a sample S' € &L (F) where dpam(S,S’) < % such that

1og(1/27)>) '

! * 1 1 !
5> e[z .
E[|M(S") — z5/]] > 4[ 4w S’ 5
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Proposition 5. Let F : X, — R be convex and H-smooth in ils first argument and satisfying
infyex F(x;8) =0 for all s € Q. Suppose we have some S € &% (F) with L = 2HD which also induces
an interpolation problem (a problem which satisfies Definition 2.8). With respect to the dataset S, the
modulus of continuity w(S,1/e) satsifies

D 8HD

— <w(S,1/e) < ——

ne — (8,1/¢) < Ane

With these two results, we can now prove Theorem 5. Restating the conditions of the theorem

formally, suppose for some constants ¢y and c; there is an e-DP estimator M such that

E[fS(M(S))] — zlg/'f’( fs(x) < COD2efcl(ng)t'

If t > 1, set t = min(1,¢), then the bound certainly still holds for large enough n. If we let 2§ =
argmin, c y fs(x), using the definition of strong convexity, we have that there exists some c; and c3
such that

E[|M(S) — 2%|] < caDe ()"

To satisfy the expression from Proposition 4, we select 7y such that

Yw(S;1/¢)

5 = 02D6_03("€)t.

Using Proposition 5 we must have 3%£c; exp(—c3(ne)’) < v < 2necy exp(—cs(ne)'). Using Proposi-

tion 4, we have that

E[[M(S) —a5]] = w <S’; %)

log(1/2
% does not exceed

Before performing a further lower bound on this quantity, we first verify that
the total size of the dataset, n. Using our bounds on v, we see that

log(1/2y) 1 ; Ane
o\~ _ _ i
9 <3 c3(ne)’ —logco — log 5 H

For any ¢ € (0, 1], for sufficiently large n, this quantity is less than n. We now lower bound the modulus
of continuity by using the fact that it is a non-decreasing function in its second argument:

E[[M(S") — 2% ] > w (8'; %) > w (8'; c3(ne)t — 10g2§2 - log(4n5))

> Ine [cs(ne)t — log ca — log(4ne)] .

This is the desired result; the last inequality comes from another application of Proposition 5 but with
c3(ne) —log co—log(4ne)
2e

in place of 1/e.
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D.2.1 Proof of Proposition 5

Proof Outline

At a high level, starting with a function fs, we first remove an arbitrary 1/e fraction to cre-
ate a function f ga' We then replace the sample functions we removed with 1/ samples of & (2 — D)?

and argue how far the minimizer of fqo° + QHTE(:Z: — D)? is away from the minimizer of fs. We will need

many supporting lemmas to complete this proof; we quickly outline how we use these lemmas.
1. We use Lemma D.1 to argue that the minimizers of f‘és are no different that fs.
2. We use Lemma D.2 to argue about the growth of fq".

3. We use Lemma D.3, Lemma D.4, Lemma D.5 to lower bound how far the minimizer of f‘éa +
+L (x — D)? has moved from the minimizer of fs.
4. We use Lemma D.6 to upper bound how far the minimizer of f‘éa + o (2 — D)? has moved from

o 2ne
the minimizer of fs.

We now formally introduce the several supporting lemmas which will aid our proof of Proposition 5.
The first ensures that the minimizing set does not change upon the removal of a constant number of
samples.

Lemma D.1. Assume that inf,cx F(z;8) = 0 for all s € Q. Suppose fs satisfies Definition 2.3
and has \-quadratic growth. Let X* = argmin,cy fs(z). Let S. C S consist of any (constant

not scaling with n) 1/e > 0 data points. Then, for f§° = %2568\85 F(x;s) we have that Xy =
argmin, ¢ v f5 () = X*.

Proof Suppose for the sake of contradiction that X* £ X\*a Since fs is an interpolation problem,
the removal of samples can only increase the size of X\*a. Suppose that X\*a \ X* # (). There exists at

most 1/e points in S that have non-zero error on X\*S \ X*. However, by smoothness of each sample
function (and the fact that f(z*) = 0 and f’(2*) = 0 by construction), we have that for x € [a, b]

fs(x) < E dist(z, X*)Q.

ne

Since lim,,— oo n% = 0, this contradicts A-quadratic growth. O

This second lemma ensures that deleting a constant number of samples does not affect the growth
or strong convexity of the population function by too much.

Lemma D.2. Assume that inf,ecx F(x;8) =0 for all s € Q. Suppose fs satisfies Definition 2.8 and
has A-quadratic growth (respectively \-strong convexity). Let fS5 be defined as in Lemma D.1. Then
fga has v-quadratic growth (respectively y-strong convezity) for any v < X — g

ne '’

Proof By Lemma D.1, that the minimizing set of fga is the same as fs. Suppose for the sake of
contradiction that fS5 does not have y-quadratic growth. Then there must exist 21 such that

F& @) = £8@") < llan =]l

By smoothness and growth we have

H w2, %112 * A 2
o= oy =5+ 3 oy =15 > fs(on) = fs(@®) = 5 lan =15

This implies that v > A — £ a contradiction.

ne’
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Suppose for the sake of contradiction that f;e does not have ~y-strong convexity. Then there must
exist x1 and w9 such that

J& (@) = £ (@2) < Nl — 215 + (V8 (22), 1 — ).

By smoothness and strong convexity we have

H A
oz e = a5 + % |21 — 2|3 + (Vfs(x2), 21 — x2) > fs(w1) — fs(w2) > 5 llex = a3+ (V fs(@2), 21 — 23).
However, this implies that v > A — % which is a contradiction. O

The next lemma is a standard result on the closure under addition of strongly convex functions.

Lemma D.3. Let functions hi and he be A and =y strongly convex respectively, then hy + ho is A+~
strongly convex.

This lemma provides some growth conditions on the gradient under smoothness, strong convexity
and quadratic growth.

Lemma D.4. Let g: X — Ry be a convez function with X* = argmin, .y g(x) such that for z* € X*,
g(x*) = 0. Suppose g has A-quadratic growth, then
/ A x

@) > 5 dist(r, &),
If instead g has A-strong convezity, then

lg'(x)| > Ndist(x, X™).
Alternatively, suppose g has H-smoothness, then

lg'(x)| < H dist(x, X*).
Proof We note that by first order optimality conditions, for all z* € X*, Vg(z*) = 0. To prove the
first inequality, we have that for any z* € X™*, the following is true:

A
5 dist(z, 4%)* < g(2) = ¢* <|¢'(x)||lz — 27].

In particular, minimizing over z* on the right hand side and rearranging gives the desired result. To
prove the second result, we know that by strong convexity for any z* € X*

l9'(@)] =1g'(x) — g'(2™)[ = Al — 27].

To prove the last result, we know that by smoothness for any z* € X*

lg'(x)] = 1g'(z) — ¢ («")| < H|z — 2.

Minimizing over z* on the right hand side gives the desired result. O

This lemma controls how much the minimizers of a function can change if another function is added.
This will directly be useful in lower bounding the modulus of continuity.

Lemma D.5. Suppose h: [-D,D] — Ry and g : [-D, D] — Ry. Let x} be the largest minimizer of
h and z}; be the smallest minimizer of g, and assume that xy < x7. Let x* be any minimizer of h+g.
Assume that h(z};) = 0 and g(z;) = 0. If h has An-quadratic growth and g is H,-smooth, then

Hy(x} — 7))

*
9g\"g
An
3+ Hy

-1z <
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If h is Hp-smooth and g has Ag-quadratic growth, then

)\g * *

T(xg _xh) <ot g*
by h
%+ Hy,

The same relation holds with Ag/2 and A, /2 replaced with Ay and A, respectively if the above statement
is modified such that g and h are Ay and Ay, strongly convex instead.

Proof If 2} # D, then the first order condition for optimality implies
W(xj) + g (x;) = g'(a}) <0 and  h'(z}) + g'(x}) = ' (z}) > 0.

Thus, z* € (z},z;). By the monotonicty of the first derivative of convex functions that for z* €

(z},75), ¢'(*) < 0 and h/(2*) > 0. Combining this with Lemma D.4, we get

Combining these facts gives

At — ) 4 Hy (ot — ) < () 4 g(a) = 0 < Hy(a* — ) + S (" — )
Rearranging these two inequalities gives the desired result. We note that the lower bound only re-
quires that h is Hp-smooth and g has Aj-quadratic growth, and the upper bound only requires h has
Ap-quadratic growth and g is Hg-smooth. The last statement about strong convexity follows from the
same reasoning, except using the strong convexity inequality in Lemma D.4 instead of the quadratic
growth inequality. O

The following lemma is a slight modification of Claim 6.1 from [SSSSS09] and will be helpful for
us to upper bound the modulus of continuity.

Lemma D.6. Let 8’ consist of n data points where |SAS'| = k. Suppose that fs is \-strongly
convex and satisfies Definition 2.3. Assume the sample function F : X x Q — Ry is L-Lipschitz
in its first argument and that inf,ex F(x;5) = 0 for all s € Q. For xs € argmin,cy fs(z) and
xsr € argmingc y fs/(x), we have that

4kL

|zs —zs/lly < v

Proof By strong convexity, we have that
A 2
fs(zs) — fs(ws) > 3 zs — zslly

since by first order optimality conditions, we know that V fs(xs) = 0 as a consequence of Definition 2.3.
We also have

1 1
fs(zs) = fs(zs) = —~ > [Flzsiss) — F(zs; )] + - Y [Flasis) — Flas;s)]
s€S\S’ sesSNs’
1 1
== > [Flasis) — Flus;s)] - - > [Flzsis) — Flus;s)] + fsi(xs) — fsr(xs)
SES\S' SES\S
< 2 ng — zsl
— ||zs — =
=, S Sllg s
where the last inequality comes from the Lipschitzness of F' and that zs: € argmin, ¢y fs(z). O
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Armed with these supporting lemmas, we can now bound the modulus of continuity. Let zj be
the largest minimizer of fs following the steps of the proof outline. Without loss of generality, we
assume that «f < 0. If § > 0, by symmetry, it suffices to consider the problem replacing %(x —D)?
with %(:1: + D)? in the following proof. By Lemma D.1, fgg has the same minimizing set as fs. By
Lemma D.2, fS5 has A — nﬂs—strong convexity. Replace the 1/¢ datapoints removed with samples that
have the loss function % (x— D)?; we note that it is clear that % (r— D)? satisifies the desired Lipschitz
condition. Our constructed non-interpolation population function is

€ 2
—(x—D
F¥@) + oo - DY,
which is A-strongly convex by Lemma D.2 and Lemma D.3 and is 2H D-Lipschitz. This means that the

&' this function corresponds to belongs to GX(F). Let 2* be the minimizer of fgg(:zr) + £ (xz — D)2,

2ne

n 2ne

By the triangle inequality, we have f‘;a is (
Thus, by Lemma D.5 setting h(z) := fq (z) and g(z) := 5= (z — D)?, we have that

2ne

Lm) H-smooth. 5 (z — D)? is £- strongly convex.

ae(D—at) D-azp D+lag|l D
(n—l/a)H+£_ ne  me  ne
ne

n

|o* —af| = 2% — af >

Here, implicitly, we are using the fact that z{ is also a minimizer of f ;E by Lemma D.2. This completes
the proof of the lower bound.
The upper bound follows from Lemma D.6 with k = 1/¢ and L = 2HD.
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