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Abstract

We study probabilistic prediction games when the underlying model is misspecified, investigating
the consequences of predicting using an incorrect parametric model. We show that for a broad class of
loss functions and parametric families of distributions, the regret of playing a “proper” predictor—one
from the putative model class—relative to the best predictor in the same model class has lower bound
scaling at least as \/yn, where 7 is a measure of the model misspecification to the true distribution
in terms of total variation distance. In contrast, using an aggregation-based (improper) learner, one
can obtain regret dlogn for any underlying generating distribution, where d is the dimension of the
parameter; we exhibit instances in which this is unimprovable even over the family of all learners that
may play distributions in the convex hull of the parametric family. These results suggest that simple
strategies for aggregating multiple learners together should be more robust, and several experiments
conform to this hypothesis.

1 Introduction

Suppose we seek a probability distribution p(y | ) modeling outcomes y given data x. The typical
approach is to choose a parametric family of probability distributions, then find the “best” member
of this family according to a given loss. It is rarely realistic to assume that the parametric family is
well-specified, and thus it is important to understand the consequences of misspecification and how to
circumvent these downsides. To address these challenges, in this paper we derive a new measure of a
problem’s robustness to misspecification that relies on the curvature of the loss at hand and putative
parametric family, proving that this measure lower bounds convergence rates for prediction error and
certifies the failure of a parametric family and loss to be robust (or achieve optimal convergence rates
for prediction). To complement this new family of lower bounds for probabilistic prediction problems,
we build out of earlier work on improper learning [40, 14]—when we may choose predictions p(y | x)
outside the given model family—to show how it is possible to be robust to such misspecification, and
moreover, we give new optimality guarantees for such improper procedures.

Formalizing our setting, we consider the following probabilistic game: a player receives a covariate
vector x € X, plays a distribution p(- | ) on a target set ), then receives y € ) and suffers loss

L(p(- | x),y).

We study both a sequential and a stochastic variant of this problem. In the former, for a sequence of

examples {(z;, y;)}i,, a player chooses a distribution pj depending on the past examples {(x;, y;) f;ll,
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and then for a fixed conditional distribution p on Y | X, suffers regret

Reg,,(p ZLpZ (- 22),94) ZL (- | %2), 2)-

In the stochastic variant, the examples (x;, y;) are i.i.d. from an unknown distribution P, and we consider
the risk of the conditional p.m.f. p,

Riskp (p) = E[L(p(Y | X))] = / Lp(- | 2).y)dP(z.y),

where the expectation is taken over (X,Y) ~ P. The goal is to play p; or p above to make the regret
and risk as small as possible.

This regret and risk minimization framework is familiar from the universal prediction and probabilistic
forecasting literature [32, 18, 16, 9, 5], which considers best possible estimators and online learners
for the regret Reg,, over various losses L and families P of possible predictive distributions. In this
paper, we study these regret and risk minimization formulations over parametric families of distributions
{po(- | *)}oco, where © C R? is a convex set. We shall either consider the regret

n
Reg;, := sup Reg, (po:) ZL pi(- | %),y —ei*retf@;L(pi(- | ), yi) (La)

or—in the stochastic version of the problem—the excess risk relative to this family,

Risk®(p) := Riskp(p) — nf Riskp(pg+ ). (1b)

When the conditional distribution of Y | X belongs to the parametric family {pg}sco where © C R?,
maximum likelihood estimators enjoy rates of convergence of O(d/n) for the excess risk (1b) as n
grows [36]. In typical practice, however, the data generating distribution is misspecified, so it is
important to understand how this misspecification impacts possible convergence rates and optimal
estimators.

We thus consider three intertwined objects: the parametric family {pp}gce against which we compare
the performance of our prediction p, a family I" of distributions on Y given X that we may play (i.e.
predict from), and the family P of data generating distributions that nature may choose. We study the
interaction between these three and the impact of allowing the family P to differ from the parametric
model {pg}pco. The traditional approach considers the minimax excess risk over the family ©,

inf sup Epp [Rlskp(pn)] , (2)
Pn 0O

where the infimum is over all estimators p,, that use the n points {(X;, Y;)}!_; to output a distribution

p(Y | X), and the expectation is taken over {(X;,Y;)}7m uwd Py, where we have abused notation to use
Py to denote the joint over (X,Y) when Y | X == follows po(- | ). We elaborate this setting slightly.
First, we restrict the estimator p,, to take values in a set I' of distributions (for example, we might take
I' = {ps}oco, the parametric family, or its convex hull), which we write as p,, € I. Second, we expand
the supremum (2) to also include distributions P near the model Py: recalling the definition of the
total-variation distance ||[P — Q| := supy |[P(A) — Q(A)|, we consider distributions P for which there

is some 6§ € © such that ||P — Py|lp < . This gives us our misspecified minimax risk.

Definition 1.1. Let © C R, v >0, and T be a set of allowable distributions p(Y | X). The minimax
risk at variation distance vy is

M, (0,T,7) := inf sup  sup  Epn[Risk®(5,)]. (3)
Prel 06 P:||P—Pylrv<y



The quantity (3) is somewhat complex. The idea is to quantify—via the parameter y—the impact of
allowing the data generating distribution P to depart slightly from the parametric family {pg}sco while
constraining ourselves to play a prediction from the family I'.

The typical setting in online convex optimization and learning [5] is to take the family of “playable
distributions to be the parametric family I' = {pg }pco. In this case, standard minimax risk bounds show
that in the well-specified setting that the data comes from the parametric family (i.e. ¥ =0 in Def. 1.1)
and the loss L is smooth, then we expect the risk to scale as d/n (cf. [36, 41, 3]). Yet as we show in the
first part of this work, such results need not be stable to perturbations away from the parametric model.
We show that the curvature of the loss relative to predictions and the parameter space © essentially
governs convergence rates: when losses are appropriately “flat,” there is little information and rates
are necessarilty slow and misspecification carries a potentially heavy penalty; conversely, when there
is substantial curvature, rates exhibit less antagonistic behavior. Accordingly, we introduce what we
term the linearity constant Lin of the loss L, family {py}goco, and misspecification +y, showing a lower
bound of roughly min{1/y/n,Lin/n} on the minimax risk (3). In some cases we delineate, Lin may be
exponentially large in problem parameters, so convergence rates slow to the worst-case rates for general
online convex optimization [44, 34, 1|, and we consider the family sensitive to misspecification.

To complement these negative results, we highlight a solution to this instability by considering
the convex hull of the parameteric family, that is the set of mixtures, aggregations, or ensembles
Conv{pgtoco = {[pco Podu(9) s:t. [jco du(f) = 1 and du > 0}. The idea to combine probabilistic
forecasts is classical [17, 15, 26, 7, 19]. When the loss function is mizable (which we define later),
Vovk’s Aggregating Algorithm and its variants, e.g. exponential weights, Exp3, and Bayesian universal
prediction [38, 39, 40, 18, 5, 2|, provide stability and achieve minimax regret O(dlogn) for any 7 in
Definition 1.1. By a standard online-to-batch conversion (Jensen’s inequality) [6], this guarantees a
minimax excess risk (3) of at most O(dlogn/n). We also show that for generalized linear models, Vovk’s
Aggregating Algorithm is optimal up to log-factors with respect to the misspecification parameter ~.
That is, there is no better algorithm to use if you are guaranteed certain values of ~.

It is perhaps unfair to consider the entire convex hull of {pg}oco for the class T', as this could
potentially yield much smaller risk than the parametric family in the risk (1b). Indeed, we give an
example in which the best parameteric predictor has no predictive power, while returning a mixture of
two parameterized distributions achieves zero loss (though we also give examples in parametric families
where considering the convex hull provides no benefit). To justify the aggregation strategy we give
a Bernstein von-Mises theorem under misspecification, which shows that the strategy converges to a
Gaussian centered at the risk-minimizing parameter estimate 6,, with covariance shrinking at rate O(1/n);
a corollary of this is that Vovk’s Aggregating Algorithm returns a distribution which converges in total
variation distance to p; € {po}oco. Thus, aggregation (or exponential weights) stabilizes predictions
while asymptotically enjoying identical convergence to standard risk-minimization procedures.
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1.1 Related Work

Our results broadly fall under probabilistic universal prediction in which the data (z,y:) can be any
arbitrary sequence [33, 32, 4, 5, 18, 8]. That Vovk’s Aggregating Algorithm provides minimax rate
stability is known [14], and this is similar to the minimax guarantees of Bayesian models in universal
prediction [18]; a long line of work gives the same logarithmic minimax rates [32, 11, 21, 42|. Early work
in these prediction problems focuses on the logarithmic loss Liog(p(-),y) = —logp(y), while more recent
work extends these bounds to exp-concave and so-called “mixable” losses [23, 5|. Our results on minimax
lower bounds, distinguishing carefully between well-specified and misspecified models and proper and
improper predictions, are novel.

While our results are general, applying to exponential families and beyond, related results are available
for logistic regression. In this case, for B, R > 0 we consider © = {6 : ||0|| < B}, X C {z : ||z|| < R},



and let {pg}oco be the family of binary logistic distributions, pg(y | z) = (1 + e‘yeTx)_l, with log
loss. Hazan et al. [24] show that any algorithm returning some py suffers minimax risk (recall (3))
Q(y/B/n) in the regime where n = O(exp ¢B) for some positive constant ¢ > 0, R = 1, and the allowable
perturbation v = 1. Foster et al. [14] show that Vovk’s Aggregating Algorithm [40] guarantees minimax
risk O(dlog(Bn)/n), allowing one to sidestep this lower bound via improper learning, which we also
leverage. In the special case of logistic regression—see Example 1 to come in Section 2.2—a simplification
of our results gives lower bound Q(1)y/yBR/n if n < exp(RB/2) and (1) exp(2BR/5)/n otherwise.
We thus show that even when the perturbations away from the parametric family are small, the minimax
risk when the set of playable distributions is I' = {pp }gco may grow substantially; this generalizes Hazan
et al. [24], where R =1 and 7 = 1, and gives somewhat sharper constants.

2 Parametric Model Instability

Our first step towards understanding sensitivity to misspecification is to provide optimality guarantees
for the minimax risk in Definition 1.1 when the player can play only elements of the parametric family of
interest, that is, when I' = {pg}gco. We focus on losses that depend specifically on 67z, where we have

L(po(- | z),y) = £(67z,y) (4)

for some twice differentiable and convex ¢ : R x ) — R4. A broad range of models and losses take this
form, including all generalized linear models [20].

2.1 Main lower bound

Our key contribution is to lower bound the minimax risk via a quantity we term the linearity constant
of the induced loss ¢, which measures the sensitivity of ¢ around various points in its domain. The first
component is (roughly) a measure of the signal contained in ¢ for different targets y, where for t € R,
y € Y, and ¢'(to,yo) as shorthand for %K(t, Y (t,y)=(to,y0) We define

afl(at’ yO)
al'(at,yo) — U'(t,y)

q(t,y) ==  sup

| sign(af(at, o)) signw(t,y))} )
YoV, ac[—1,1]

We always have ¢;(t,y) € [0,1]. For many cases, this quantity is a positive numerical constant (e.g. for
the squared error £(t,y) = 1(t — y)* with Y = R, we have g (t,y) = 1). Then for given radii R and B,
misspecification size vy € [0, 1], and sample size n, we define

_ ) _ " o(t, x(t,
Lin({, Y, R,B,n,7y) :=  sup {If (t, y)lmln{5\/7qg(t,y), supML;(E”(z)—'I-A m q%)}}- (6)

y€y22
2 2. R“B
1246222

This linearity constant roughly measures the extent to which the loss grows quickly without substantial
curvature, that is, ¢'(¢,y) is large while £(t, y) is small. A heuristic simplification may help with intuition:
by ignoring the ¢j term and perturbation by A in ¢”, we roughly have

. heuristically / . M’(tjy” 1
Lin(¢,Y, R, B,n, v = " 0(1)- sup |ty mm{RB YV ey 7
( ) () yGMMSRB‘ ( )‘ f E”(t,y) \/,ﬁ ()

which makes clearer the various relationships. When the ratio of ¢/(¢,y) to £”(t,y) is large, estimation
and optimization are intuitively hard: there is little curvature to help identify optimal parameters,
while small changes in the parameter induce large changes in the loss (as ¢'(¢,y) is large relative to £”).
The allowable misspecification of the model—via the parameter y—means that in the lower bound, an



adversary may essentially put positive mass on those points for which the ratio ¢'/¢” is large, so that
one must pay this worst-case cost.
We then have the following theorem, whose proof we provide in Appendix A.

Theorem 1. Let the loss L and family {pp} satisfy Eq. (4), where X = {z : ||z|| < R}. Consider
' ={py}oco, where © = {0 :||0|| < B}. Then

Mm,(e,I,y) >

1
4\/ﬁLin(ﬁ, Y,R,B,n,~).
Using the heuristic display (7) above can provide some intuition. When |¢'(t,y)|/¢"(t,y) = /n, so that

the problem has little curvature, the (heuristic) linearity constant (7) scales as sup, , |¢'(¢, y)|RB, which
[¢'(t,y)|RB
Jn
optimization with Lipschitz objective on a compact domain [1]. As the worst-case constructions look
very little like standard prediction problems, one might hope (at least in the absence of misspecification)

to achieve better rates; Theorem 1 helps to delineate problems where this may be impossible.

gives the lower bound sup, , ; this is the familiar worst-case minimax bound for stochastic convex

2.2 Examples with the logarithmic loss

It is instructive to consider a few examples to build intuition for Theorem 1 beyond the heuristic (7), as
the linearity constant as defined may be somewhat challenging to work with. As we shall see, however,
its generality allows exploration of many losses, including various scoring rules [16]; for this section, we
focus on the common logarithmic loss for four well-known exponential family models. In what follows
we use the following notation: For a set {2 such that f,g: Q — R we write f = g if there exists a finite
numerical constant C' such that for any w € Q, f(w) > Cg(w) and we write f < gif f 292 f.

For our first example, we consider logistic regression, showing that if we must play proper predictions
pg, parametric 1/n rates are impossible until n is very large or if the radii R and B are small.
Example 1 (Logistic regression): For logistic regression with logarithmic loss, we have ) = {—1, 1},

p@(y ‘ m) = m, a.nd f(t,y) = log(l + eity), SO that
— ty
Y 1" €
O(ty) = —— d 0"(t,y) = ———.
( 7y) 1 +6ty an ( ’y) (1 +6ty>2

Without loss of generality, let y = 1. If RB < 1, then by taking t = %BR and § = %BR, it is immediate
that ¢} (t,y) 2 1, and each of ¢'(t,y) and ¢’(t,y) are numerical constants. Then we obtain the lower
bound

1
Lin(¢,Y, R, B,n,~y) > c¢min {BRW, \/ﬁ} ,

so that Theorem 1 yields minimax lower bound min{ RBr‘Lﬁ, %}
The more interesting regime is when RB > 1—for example, in the natural case that the data and
parameter radii scale with the dimension of the problem—so let us assume RB > 1. Here, take y = —1

and yo = 1, so that for any a € [0,1] and ¢t € R we have sign(¢'(t,y)) = 1 # —1 = sign(¢'(at,yo)).
Let € € [0,1] to be chosen and set > = (1 — e)@ (where ¢t > 0). Then by taking o = 35, in the
definition (5) we have

1

Gty) > — T ! > ! > 1
M) et o T T RIS ST+ DRB © RD
and 0'(t,y) = 1 +1e—t > 1. Thus for all § € [0, RB+/¢/2], the linearity constant has lower bound

1 1
Lin(¢,),R, B > in< d/v/RB
m( >ya ) ,’I’L,’}/) Z cmin { 7/ ) SUP\A\gé €—t+A RB\/E}

5



where ¢ > 0 is a numerical constant. Taking § = RB+/€/2 and € = 1/9 then gives

1
Lin(¢, Y, R, B,n,v) > cmin {\/’yRB,eXp (3RB/(5\/§)) M} .
In particular, if n < 66}?;#, then Lin(¢, Y, R, B,n,v) > c\/YRB, and otherwise (as e*/x > 99 for
all z > 1) Lin(¢, Y, R, B,n,v) > exp(RB/4)/+/n, giving us the minimax lower bound

VYRB exp(2RB/5)
N n '
We may contrast this lower bound with previous results. In the regime where v = 1, Hazan et al. [24]
show that for R = 1 and numerical constants cg,c; > 0, any algorithm playing parametric predictors pyg

necessarily suffers minimax risk Q(y/B/n) whenever n < ¢gexp(c1B). The result (8) recovers this lower
bound while applying whenever v > 0. ¢

(8)

M, (0,I,7) > cmin {

To show some of the generality of our approach, we consider other exponential family models. The
first is similar to the previous example.
Example 2 (Geometric distributions): We say Y ~ Geo()) for some A € (0,1) if Y has support
{0,1,2,...,} and P(Y = y) = A(1 — A)Y. We model this via Y | 2 ~ Geo(e? /(1 + ¢ *)), giving losses

Liog(po(- | x),y) = (y + 1) log(1 + exp(0Tz)) — 6Tz and ((t,y) = (y+ 1)log(1 + ') —t.

We perform a quick sketch, letting b = RB for shorthand, assuming that b > 1 and that diam()) :=
max{y € Y} is finite and at least 3.

First, we construct a lower bound on ¢ (¢,y): take y = max{y € Y} to be the maximum element of
Y, and set yo = y and ¢ = —b. Then setting @ = —1/b in the definition (5) we obtain

y+1 1 1 ytl _ g 1

q(t,y) > b lte b = Lte > =
) 1 b 1 b ~

et WA Da 1l e -bH by T

as b>1 and y > 3. Additionally, we have |[¢/(t,y)| = y and £”(t,y) < ye™?, and so, as in the derivation
in Example 1 and by setting 6 = b, we obtain that there exist numerical constants cg, c; > 0 such that

c1b
Lin(¢,Y, R, B,n,7) > coy min {\/vb, i/ﬁ} )
Substituting, we obtain the analogue of inequality (8), that is,
VYRB exp(c1RB)
N n )
Again, we see that until n 2 exp(cRB), any method playing the models py for points 6 € © necessarily
cannot converge faster than diam())/y/n. ¢

M, (0,1, 7) > codiam()) min{

Poisson regression yields a similar lower bound:
Example 3 (Poisson regression): In the poisson regression problem, we model y € N as Poisson(eng),
so that

QT

—logpe(y | z) =€’ ¥ — yo"x + log(y!),

and we may consider the loss £(¢,y) = e! — yt. We claim that in the setting of Theorem 1, where we set
diam()) = max{y € Y} > 3 as in Example 2, we have

9)

c1RB q; 2
Ma(O,T,7) Zcomin{diam()})\/@ et diam(Y) }

N n

6



To see the lower bound (9), it is sufficient to lower bound the linearity constant, and we may assume
that RB > 2. Our first step is to lower bound the quantity ¢;. Let b = RB/2 for shorthand, and set
t =b, y =diam(}), and yo = y, and o = —% > —1, so that £'(t,y) = ¢! —y = e —y < 0 while
al(at,y) = -+ (e —y) > 0. As a consequence, completely parallel to our derivation in Example 2, we
obtain ¢ (t,y) 2 . Moreover, the bounds ¢”(t,y) = e’ and the choice § = b/2 in the definition (6) yield

that for numerical constants ¢y, c; > 0 we have

eclb

Lin(¢, Y, R, B,n,v) > coy min {\/fyb, \/ﬁy} :

Substituting this into Theorem 1 then implies the claim (9). ¢

In contrast, for linear regression problems, there is limited worst-case behavior, which is natural: the
problem is always strongly convex, no matter the misspecification of the model.
Example 4 (Linear regression): Again we consider the log loss, but we assume that our model is that
y | 2 ~ N(0Tz,1), so that the loss becomes Liog(pa(- | ),y) = 3(0Tz — y)* and £(t,y) = 1(t — y)®. In
this case, we may take ¢; 2 1 in Eq. (5), and the linearity constant (6) becomes

Lin(¢,Y, R, B,n,y) <sup  sup {(t — y) min {5\5, t_\/ﬁy}}

€Y 2, 52 R2B2
YV 246 <S5

212 7 2
= min {RB max{RB,diam(}))}/7, max{R°B*, diam()) }} 7

Vn

yielding minimax lower bound

M, (O.T, ) > Cmin{maX{R2BQ,RBdiam(y)}\ﬁ maX{RQB2,diam(y)2}}

vn ’ n
This is sharp: the stochastic gradient method achieves the bound [22], as ¢ is strongly convex and has
Lipschitz constant max{BR, diam())}.

With that said, this behavior—which depends on diam())—is worse than what one achieves in
well-specified or stochastic settings, where the stochasticity means that rates of 1/n are achievable. ¢

2.3 Scoring rules and general losses

In probabilistic prediction and forecasting, one more generally may consider scoring rules [16], which are
losses designed to engender various behaviors: honesty in eliciting predictions, calibration of forecasts,
robustness, or other reasons. Typically, these induced losses are exp-concave (as we discuss in the
next section, which will allow us to describe an efficient algorithm for them). For example, to achieve
robustness [31, 25| (there are no unbounded losses) one might consider the squared error or Hellinger-type
losses

Lsq(p(- | 2),y) := %(p(y |2) —1)* and Lya(p(- | 2),y) = (Vp(y | =) — 1), (10)

neither of which is proper (so that the true distribution may not minimize the loss). Alternatively,
proper scoring rules [16] are minimized by the true predictive distribution, and include the logarithmic
loss and the quadratic scoring rule with loss

Lauaa(p(- | 2),9) = 3 S0l | 2) = 1{k =9})* = J0oly [ 0) ~ P+ 3 Splk [ (11)

key k;éy

As these scoring rules are differentiable and at least C? on p € (0, 1), an argument by the delta method [36]
shows that in well-specified cases, one expects to achieve convergence at rate 1/n. Moreover, as we will



see in the next section, aggregating algorithms can achieve regret scaling as logn for each of these loss
measures.

Yet, at least in an asymptotic sense, the minimax bound in Theorem 1 shows that this is unachievable
with misspecification. Here, because of the complexity of the losses and resulting calculations, we take a
completely asymptotic perspective, saying that we have an asymptotic rate r(n) minimaz lower bound if
r(n) — 0 as n — oo, while

. IM(O,T )
liminf ————=

>0
n—00 r(n)

for all v > 0. Each of the bounds in Examples 1-4 is then asymptotic rate r(n) = % Once we move
beyond the log loss to alternative scoring rules, however, the rate r(n) = % is no longer achievable with
misspecification if I' = {py} are the proper models.

As usual we consider losses taking the form L(pg(- | z),y) = £(67x,y) for some scalar induced loss
l:Rx)Y — R. We restrict our focus to losses for which no universally perfect prediction exists, meaning
that if t € R and y € Y satisfy £/(t,y) # 0, there exists yp € Y such that ¢'(¢,y)¢'(t,y0) < 0. We have

the following result, whose proof we provide in Appendix A.4.

Proposition 2. Assume that the scalar loss allows no universally perfect prediction. If there exists
[t| < RB/2 and y € Y such that '(t,y) # 0 while £"(t,y) = 0 and £(-,y) is C> near t, then the prediction
family T = {pgteco has asymptotic rate r(n) = n=3/* minimaz lower bound.

Roughly, the result in the proposition is simple: if the induced scalar loss ¢ is not convex in ¢, then
proper predictions cannot be rate-optimal (as rates scaling as 1/n are achievable here).

While it is possible in some cases to achieve explicit constants—for example, for logistic regression
this is relatively straightforward—in general it is somewhat tedious. Nonetheless, we have the following
result, whose tediousness in verification precludes our including a formal proof, but essentially we need
simply note that the induced losses £(¢,y) for each problem are non-convex in ¢ but are smooth.

Corollary 3. Let I' = {Py} be any of the logistic-, geometric-, poisson-, or linear-regression families of
predictive densities. Then for any of the squared Lgy, Hellinger Lye, or quadratic Lqyaq losses (Eqgs. (10)
and (11)), M, (O,T',~) has asymptotic rate lower bound r(n) = # for any v > 0.

Theorem 1 and its consequences via Proposition 2 assert that any algorithm returning elements
of the parametric family {pg}gco must suffer when misspecification is possible. These results are
information-theoretic, and as such, we see that in situations where misspecification is possible, to perform
better it is essential that the family I of allowable distributions be improper.

3 Robustness via Improper Learning

While proper algorithms evidently must suffer losses when they are misspecified, we now show that
simply by considering I' = Conv{pyg }gco we can sidestep the lower bound of Theorem 1. Specifically, we
consider Vovk’s Aggregating Algorithm and show that this provides stability to misspecification. We
present the algorithm in an online setting, though standard online-to-batch conversion techniques [5]
extend the result to the stochastic optimization setting in which we have proved each of our lower
bounds.

To give a regret bound, we continue our usual focus by considering losses L and families {pp}gce for
which we can write L(py(- | z),y) = £(07z,y). We restrict ourselves somewhat to considering mizable
losses, where for some 7 > 0, the function p — exp(—nL(p,y)) is concave over the collection P()) of
distributions on ). This constant 1 guaranteeing the exp-concavity of L bounds the mizability constant,
which allows one to obtain “fast rates” via exponentially-weighted averaging in many online learning
problems [40, 5, 37]. In Table 1, we record the mixability constants for several example losses—each of



Algorithm 1 Vovk’s Aggregating Algorithm (Online Setting)

Define I' = Conv{pg }sco and let 1 be some fixed value > 0.
Fort=0,...,n
Nature reveals x;.
Define dfiy's™(8) o< exp(—n 3=y L(Po(ys | x4))).
Decision Maker plays P,;Y,?Vk = Jpeo Pol- | $t)dﬁxg"k(9).

Nature reveals y; and Decision Maker suffers loss L( At\f;"k(yt | z1)).

Llog qu Lhel Lquad
Mixability Constant 1 1 3 1/2

Table 1. Mixability constants for common losses in Eqgs. (11) and Egs. (10), where Liog(p, y) = —log p(y),
Leg(p,y) = 3(0(y) = 1), Lna(p,y) = (v/p(y) — 1)?, and Lauaa(p,y) = 3 [IP(-) — ey[[5. See Appendix B.1.

which we touch on in Sec. 2.3—showing that Vovk’s aggregating algorithm achieves logarithmic regret
for any of them once we apply the coming convergence result.

Corollary 4 (Foster et al. [14], Theorem 1). Let ﬁt\f,‘;"’k be as defined above. Let Lip,(T') be the Lipschitz
constant of ¢ restricted to [=T,T]| x Y. Then for any sequence (x;,y;)i_, and 6* € ©,

Li B
ip,(RB)n +6).

~ d
Vovk
Reg, (P, 2" o) < 56 log < 7

Using Corollary 4 and Theorem 1, we see that the aggregating algorithm typically provides a stronger
convergence guarantee than algorithms constrained to {py}gce can attain. In each of Examples 1-3, the
lower bounds necessarily suffer exponential dependence exp(Q2(1)RB) as n — 0o, and so as long as the
Lipschitz constant Lip,(RB) is not super-exponential in RB, Corollary 4 guarantees better convergence.
Even more, in some cases—for example, when using the general (potentially non-convex in ) losses
as in Sec. 2.3—even for fixed radii R, B we have \/nLin(¢, Y, R, B,n,v) — 0o as n — oo. In this case,
Corollary 4 even guarantees a better asymptotic rate in n.

3.1 Lower bounds for arbitrary improper algorithms

An important question is whether the Aggregating Algorithm 1 achieves optimal rates when the
misspecification parameter v changes. As the coming Theorem 5 shows, Corollary 4 is tight to within
logarithmic factors, as we can show an (asymptotic) lower bound of d/n even for well-specified families
of generalized linear models. The theorem also shows that while playing in the convex hull of a
parameterized family {pg}oco allows more powerful mechanisms, in natural (well-specified) scenarios,
this extra power is no panacea: the upper bound on the risk of the Aggregating Algorithm 1 is tight to
a logarithmic factor over all algorithms that may play arbitrary elements in the convex hull (or even
algorithms playing any probability distribution). Indeed, let Ty be the collection of all probability
distributions on Y | X, so that an algorithm may play an arbitrary distribution (which is of course larger
than Conv{pp}gco). We then take the risk to be the expected logarithmic loss, where for a conditional
distribution p(y | ) we define

Riskp(p) := Ep[Liog(p(- | X),Y)] = —Epllogp(Y [ X)],

and we let Riskp = inf, Riskp(p) be the smallest risk across all predictive distributions p(y | ). When
the models pg are not misspecified, i.e., ¥ = 0, we have Risk}e = Riskp, (pp), and we have the following
lower bound.



Theorem 5. Let {pp}gco be a generalized linear model of the form
dPy(y | z) = exp(yf’z — A" x))dv(y),

where v is a base measure and X ~ Uni({—1,1}9), 0 is in the interior of dom A, and let © contain 0 in
its interior. Then for the log loss Liog, there exists a numerical constant ¢ > 0 such that for all large
enough n
M, (0, Tan, 0) = inf sup B}, [Riskp, (p,) — Riskp, | > cg
pn 9co n
See Appendix B.2 for the proof of Theorem 5. As we essentially only care about the conditional
distribution py(y | x), here we chose the marginal over X to be uniform for convenience; other choices
suffice as well.
Comparing the lower bound Theorem 5 provides with the regret bound in Corollary 4, we see that
holding RB constant (and Lip,(RB) constant) then for risk functional Riskp(p) := Ep[Liog(p(- | X),Y)],
a standard online-to-batch conversion (or Jensen’s inequality) implies

dlogn

E |Riskp(pyovs) — Jnf Riskp(pp)| < (54 o(1))
*e

as n — 0o, where o(1) — 0 hides problem-dependent constants. To within a factor O(1)logn, then,
Vovk’s aggregating algorithm is generally unimprovable.

3.2 Asymptotically aggregating to point predictions

While in general the ability to play elements in Conv{py}gce could (in principle) yield much better
performance than any individual element py for 6 € ©, in a sense, the aggregating algorithm is only
performing a small amount of averaging to substantially increase its robustness. Indeed, when the
risk minimization problem at hand is classical—the loss has continuous derivatives and the population
risk Riskp is strongly convex in a neighborhood of its minimizer *—then we can show that Vovk’s
aggregating algorithm asymptotically plays points very close to {pp}ece. That is, in “nice” cases, the
aggregating algorithm more or less behaves as the empirical risk minimizer, which is asymptotically
optimal [13]. In these cases, stochastic gradient methods (which are necessarily proper, as they optimizer
over 6) similarly achieve optimal asymptotic rates [13], and sometimes similarly strong finite sample
rates [3].

We make this more formal via a generalized Bernstein von-Mises Theorem, which shows that when

a unique minimizer exists, the density dﬂ){f’,;’ K'in Alg. 1 converges to a normal density centered at the

empirical minimizer 5,1 € © with covariance operator shrinking at the rate 1/n. Such posterior limiting
normality results are relatively well-known: see [36, 28|. In our setting, rather than considering just
the posterior distribution—as our models may be misspecified, so that a posterior is less sensible—we
consider distributions over © of the form of ﬁx";}’ k. when L is the log-loss, this is the usual posterior. We

first define the class of families and losses for which Theorem 6 holds.

Definition 3.1. The family and loss pair ({pp}teco,L) is Bernstein von-Mises generalizable if there
exist €1, €2 > 0 such that the risk Riskp(0) := Ep[L(Py(Y | X))] satisfies the following conditions:

(i) The minimizer 0* = argmingcg Riskp(6) is unique and has positive definite Hessian V*Riskp(6*) =
0.

(i) On the e1-ball around 6, 0* + 1B, the loss O — L(Py(- | x),y) is Myipo(z,y) Lipschitz and has
Myip.o(z,y)-Lipschitz Hessian, where E[Myip0(X,Y)?] < oo and E[Mpip2(X,Y)] < c0.

(i4i) For all 6 € ©\ {0* + e;BE}, we have Riskp () > Riskp(0*) + €s.
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When 0 — L(Py(- | z),y) is convex, condition (iii) is redundant given the others, and the other conditions
of Definition 3.1 hold for generalized linear models. Under the conditions Definition 3.1 specifies, we
then obtain the following convergence guarantee, whose proof we provide in Appendix B.3.

Theorem 6 (Generalized Bernstein von-Mises). Let the pair ({pg}oco, L) be Bernstein von-Mises
generalizable (Definition 3.1), and for (X;,Y;) p define Risk, () = L 3°0 | L(Py(- | X;),Y;). Assume

© is compact and 6* € int ©. Let 6,, := argmingcg Risk,,(6) and ﬂ){g}’k be as defined in Vovk’s Aggregating

Algorithm. Then

o~ 0 1 1 0, N —
gy —N (9”’ ¥ Riskn(6n) 1) TV o

Using the theorem and its proof, we can also (under a minor continuity condition) establish a
convergence guarantee showing roughly that the aggregating algorithm asymptotically plays essentially
the empirical point estimator. We consider the following assumption.

Assumption 1. There ezists a neighborhood B of 0* such that the log-likelihood 0 +— logpy(y | x) is
Lip,(z,y)-Lipschitz on B, and Lip,(r) := supgep fy Lip,(z,y)dPs(y | x) < oo for each x.

We then have the following corollary, whose proof we provide in Appendix B.4.

Corollary 7. In addition to the conditions of Theorem 6, let Assumption 1 hold. Then for each x € X,

Roughly, Theorem 6 and Corollary 7 show that the aggregating algorithm 1 is asymptotically
constrained to making predictions in {pg}gco, at least in non-adversarial cases. In a sense, then, the
aggregating algorithm 1 is not taking full advantage of its improperness: while it can return any
distribution in Conv{py}sco, it (eventually) is nearly playing elements of {pg}oce. While this is optimal
in some cases (Theorem 5), the question of how to efficiently and optimally return predictions in
Conv{pp}gco remains open and a natural direction for future work.

PYok(- | ) = Py, (| )||_ “Fo.

4 Experiments and Implementation Details

Before discussing our experiments, we make a few remarks on the computability of Vovk’s Aggregating
Algorithm. Whenever L(Py(- | x),y) is convex in 6 and S-smooth, there exists an algorithm [14]
approximating 13,\/ ?7"" that achieves the regret bound in Corollary 4 to within an additive factor 1/n,
and the algorithm is polynomial in (RB,d, Lip,(RB),n). Yet these algorithms are still computationally
intensive; assuming our theoretical results are predictive of actual performance, one might expect that
aggregating-type strategies could still yield improvements over standard empirical risk minimization.
Indeed, Jézéquel et al. [27] take the computational difficulty of the approximating algorithms in the
paper [14] as motivation to develop an efficient improper learning algorithm for the special case of logistic
regression, which (roughly) hedges its predictions by pretending to receive both positive and negative
examples in future time steps, constructing a loss that depends explicitly on the new data x;; Jézéquel
et al. show that it achieves a regret bound with a multiplicative RB factor of the logarithmic regret in
Corollary 4. It is unclear how to extend this approach to situations in which the cardinality |Y| of Y is
much larger than 1, though this is an interesting question for future work. In our experiments, we take
a heuristic approach, focusing on the risk minimization setting, and perform aggregation of subsampled
maximum likelihood estimators; this approach is reminiscent of the subsampled and bootstrapped
estimators [43, 29|, but we use aggregation as in Alg. 1 to weight predictions. We call the procedure
AHA (A Heuristic Aggregation) for short.

11



Algorithm 2 AHA (A Heuristic Aggregation)
Input: {(x;,y;)}7-, and parameter radius B
Output: Pn”jg
For k=1,--- K
Sk < random subset of the data of size |Si| = 2n/3
0% « argming<p 3 (4 yes, LPoy | )
b < exp(y ~Lipgy (v | )
Pl = (0 mhwge) /(S0 k)

Our results suggest that when performing a probabilistic forecasting task with parameterized model
{po}oco, returning the mixture distribution from Vovk’s Aggregating Algorithm should be more robust
to misspecification than an algorithm which returns Py; we thus expect Algorithm 2 should exhibit
more robustness as well. To that end, we consider two experiments: the first a synthetic experiment
with linear regression, where we may explicitly control the degree of misspecification, and the second a
logistic regression problem on real digit recognition data, where we mix two populations and we expect
(roughly) that a model should do well on one, but may be missing important aspects of the other.

Improper Linear Regression For the synthetic data, we let X € R% be an observed covariate and
H € R a hidden variable, and for 7 € R} we let y have density

pr(y| X =2,H=h)= —%(y—(xTO*-Hh)Z.

e
2

We fix the dimension d = 10 and let §* € RY be uniform on S !; we generate data by drawing
(X, H) ~ N(0,1;) x N(0,1). We then use the parametric model {pp}gco to model Y | X =z ~ N(Tz, 1),
which is misspecified when 7 > 0. As 7 grows larger—increasing misspecification—we expect greater
differences between the M.L.E. 6,, and the AHA Algorithm 2.

Logistic Regression We consider the MNIST handwritten digits [30], where we mix in typed digits;
as our base featurization, we use a standard 7-layer convolutional neural network trained on the MNIST
data, so that the typewritten digits (roughly) represent a misspecified sub-population, and as the
proportion 7 of typewritten digits increases, we expect increasing misspecification. We consider a
simplified binary version of this problem, where we seek to distinguish digits 3 and 8, and we use a
logistic regression model py(y | ) = (1 + e~¥*"#)~1 with log loss.

Experiment For both linear regression and logistic regression, we conduct the following experiment:
For a training sample size n and parameter radius B, we compute the constrained MLE

~

n
Gn = argmin L(PO( ’ xl)vy’b)
llen<s ;

and return Pgn, and also compute ngg as the output of Alg. 2 with resampling size K = 20 for the
improper linear regression experiment and K = 10 for the MNIST experiment. We use a held-out test
set of size N = 5000 to approximate the risk Risk(p) of the returned conditional probability p. We plot
how this approximated risk decays as we increase training sample size n up to 1000 for improper linear
regression and up to 200 for logistic regression.

Within each experiment, we implement several regularization schedules. We test B = ¢, B = clogn,
B = c¢y/n, and B = cn for ¢ € {0.1,0.2,1}. In Figures 1 and 2 we only show the results for the best choice

12
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Figure 1. Linear Regression, Synthetic Data. As misspecification 7 increases, the improper learning
algorithm AHA (Alg. 2) outperforms the best constrained MLE.

of B according to the performance of the Maximum Likelihood Estimator. We repeat the experiment
100 times on the synthetic data and 10 times on the real dataset and average the results. We run the
experiment for 7 = 0,2.5,5 on the synthetic dataset and 7 = 0%, 5%, 20% for the real dataset.

0.07 - 0.07 1 0.07 -

——Maximum Likelihood ——Maximum Likelihood ——Maximum Likelihood
0.06 - — Improper Mixture 0.06 - — Improper Mixture 0.06 - — Improper Mixture

0.05 0.05 -
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i

~0.03 0.03
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0 0 : : ! 0 ‘ ‘
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Number of training samples Number of training samples Number of training samples
(a) 7= 0% (b) 7 =5% (c) 7 =20%

Figure 2. Logistic Regression, MNIST Data mixed with typed data. As misspecification 7 increases,
the improper learning algorithm AHA’s performance remains stable, while the best regularized MLE’s
performance worsens.

The results of Figure 1 and Figure 2 are consistent with our expectations: as the magnitude of
misspecification (as measured by 7 > 0) increases, the gap in performance between the maximum
likelihood estimator and the aggregated solution increases. Even more, if we may be so bold, the results
suggest that using a subsampling and aggregation strategy as in Alg. 2 may be a useful primitive for
other learning problems; we leave this as a possibility for future work.

5 Discussion

This work takes steps toward addressing the fundamental and practically important challenge of the
cost of inaccurate modeling. While modeling assumptions are ubiquitous throughout statistics, machine
learning, and data science—allowing analyses that demonstrate fast convergence rates, efficient algorithms,
interpretable conclusions—most such assumptions are (at least) slightly flawed. This misspecification can
have downsides: in addition to perhaps faulty conclusions from a faulty model, even convergence rates of
estimators may degrade. This adds a wrinkle to data-modeling tasks: not only must we choose a model
that closely fits the data, but we must be mindful of the cost of model misspecification, as this cost is
not uniform across models. Our development of the linearity constant Lin(¢,), R, B,n,~) in Eq. (6) of
the model family gives a reasonably concise description of potential sensitivity to misspecification for
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many model families.

Yet as we additionally consider, for probabilistic prediction problems aggregation strategies can at

least ameliorate these challenges. Of course, aggregation approaches are familiar throughout statistical
learning [35, 10, 37|, but we believe their potential for improvement beyond “optimal” point estimators
remains unexplored; our results provide one lens for viewing this problem.
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A  Proof of Theorem 1

Before we give the proof of the theorem proper, we first recall Le Cam’s method. As we consider the
excess loss, central to our development is the following separation quantity [cf. 12, Sec. 5].

Definition A.1 (Separation). Let f1 : © — R, fo: © — R. Their separation with respect to © is

(0) < infgeo f1(0) +¢ implies f2(0) > infpep fa(0) +&

(6) < infyco fo(0) + implies f1(0) > infyco f1(8) +=, “ 0 € @}'

sep(f1, f2,0) :=sup {8 >0 ;;

This separation measures the extent to which minimizing a function f; means that one cannot minimize
a function fo, and by a standard reduction of estimation and optimization to testing—if one can optimize
well, then one can decide whether one is optimizing f; or fo—we have Le Cam’s method. (See [12,
Sec. 5.2| for this specific form.)

Lemma 8 (Le Cam’s Method). Let v € {£1} and P, be arbitrary distributions on a set Z and
fv 1 © = R be functions similarly indexed by v € {£1}, where f; = infgco fu(0). Then

~

inf max Epy [L0(Z1,-.. 2) — 12] = sep(fi. -1,0) (1 ”Dk1<P1||P1>),
7 ve{-1,1} 2

where the infimum is over 0:2" — O and the expectation is over Z; s P,.

To use Lemma 8 to prove lower bounds, then, the key is to show that for a given loss L, there are
distributions Py, P_; that induce a large separation in the risks Riskp, while having small KL-divergence.
The basic approach, familiar from other lower bounds [12, 41], is to show that for some constants
0 < ¢g,c1 < 00 and a power 8 > 0, we can choose Py to scale with a desired rate ¢ via

sep(Riskp,, Riskp_,,©) > coe® while Dy (Py|P_1) < ¢1€2.

2 _

Given these separation and divergence bounds, it is then evidently the case that we may choose € = Sern

which immediately yields a lower bound via Lemma 8 scaling as

iy
0 2c1n '

Thus any lower bounds we prove become larger as the separation rate 8 decreases or constant cg grows.
The next lemma does precisely this, though there is some sophistication required because of the different
constraints on our losses.

Lemma 9. Let the loss take the form L(pg(y | ©)) = €(0Tz,y). Lete € [0,2], y €Y, and t € R, and
q;(t,y) be as in definition (5). Assume t and § > 0 jointly satisfy

sup 60" (t+ A,y) < eqi(t, )|l (t,y)| and 2(t* + %) < R*B. (12)
|A[<é

Then for any X D {x € R? | ||z||, < R}, there exist distributions {P11} on X x Y such that

q;(t,y)

sep(Riskp, , Riskp_,,0) > TW(@ y)|o-e

while
D (Py|P_1) < g (t, )2,
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We prove Lemma 9 in Appendix A.2.

Now we leverage Lemma 9 to provide a minimax risk bound over « variation distance perturbations.
The key here is that the family {FPy} restricts only conditional distributions—the marginal distribution
over X € X may be arbitrary—allowing us to give appropriate mixtures.

Lemma 10. Assume that X D {x € R? | ||z||, < R} and let Pyy be distributions on X x ). Let
v €10,1]. Then there exists a distribution Py € {Py}gce such that for Qi+~ = (1 — )Py + vP+1,

sep(RistW, RiSinw @) =7 Sep(RiSkp17 Risl(p_1 y @) and Dkl (Q’Y ”Q—W) < ’}/Dkl (P1 ”P_l) .
See Appendix A.3 for the short proof of the result.
With Lemma 10 in hand we can now prove Theorem 1.
A.1 Proof of Theorem 1 proper

First, recalling the perturbed minimax risk from Definition 1.1,

gﬁn(@j,fy) = jnf sup sup EP"[RiSk%(ﬁn)]v
Pn€l 9cO P:||P—Py||rv<y

where the infimum is over all procedures. Now, let (g,y,t,d) be any collection satisfying the conditions
of Lemma 9 and {P4+1} be the distributions the lemma guarantees exist. Additionally, let Q4 be the
perturbed distributions Lemma 10 provides, so that there exists Py € {Fp} such that [[Py — Q4 |y <
Y| Po — P+i|lpy < 7. Then we immediately obtain

> i . |RiskS (8,
Mm,(e,I,y) > %if max Eqp. [Rlstm(Qn)}

(i)
> sep(Riskg, , Riskg ., 0) <1 - \/ ngI (Q7||QV)>

(i)
> ~sep(Riskp,, Riskp._,, ©) <1 - \/”JDM (P, HP_1)>

i) yqp (t, y)|F (¢, 9)]0
L ’Y%(JJ); (t,v)| 6<1_\/W)’

where inequality (i) is Le Cam’s inequality (Lemma 8), inequality (ii) follows via Lemma 10, and

Lemma 9 gives inequality (ii7) whenever ¢ < % Choosing €2 = m (where we use that n is large
e b

enough that €2 < %) yields the lower bound

Vg & y)
>V AT/
M,(0.7.7) > YLD (1) (13)
valid for all 6 > 0 satisfying
5 < (. y)] 7 (t,y)
T osupja<s (E+Ay) 2y

This is circular, but we note that if we define

/ * t
Mn(8) = ma(8,1,,£,7) = min {5, Aol vaty) }

supjaj<s (t+ Ay) 2y
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then my,(0) satisfies m,,(d) < SN WEZ’)yZ),l,(HA ) qe;s;y), and substituting m,(4) for § in the lower
bound (13) gives B

x t U * t
M0, 7,7 = YIEE i s £, y) Gty |
4vn suppaj<s Ot + Ayy) /2y

valid for all § > 0 satisfying 2(t? + §?) < R2B? as in Eq. (12).

A.2 Proof of Lemma 9

Recall throughout that e € [0, 1]. We provide the proof in two parts. In the first, we demonstrate the
claimed risk separation by a Taylor approximation argument, and in the second, we provide the claimed
bound on the KL divergence.

To show the risk separation, choose orthogonal vectors v, w € R? satisfying |[v||, = ||w|l, = R/V/2
and (v,w) = 0, so that ||[v £ wl||, = R. For values ¢ € [0,1], a € [-1,1], and yo € ) to be specified
presently, we consider distributions on R? x ) defined for o € {—1,0,1} by

(av,yo) with probability 1 — ¢
P (X,Y)=<{ (v4+w,y) with probability (1 + o¢) (14)
(v —w,y) with probability 4(1 — o¢).

In this case, the risk evidently satisfies
Riskp, (0) = (1 - 4)(a07 0, yo) + 2 [(07 (v -+ w), y) + £(67 (v = w), )]

We now construct its minimizer by judicious choice of g, where scaling by « € [—1, 1] is sometimes
necessary. Define 0y = %tv, so that [|0pl, = V2t/R < B, 0fw = 0 and §fv = ¢, and

VRiskp, (00) = a(1 — q)¢ (at,yo)v + ¢l (t, y)v,

so that if
ol (at, yo)
al!(at,yo) — U'(t,y)

satisfies ¢ € [0, 1], we have VRiskp,(6p) = 0 and 6y € argmingg Riskp,(#). In particular, we may choose

al'(at, yo)
all(at,yo) — (t,y

q:

q=gq;(t,y):=  sup
y0€y7a€[*171}

] s.t. sign(al (at,yo)) # sign(ﬁ’(t,y))} .

We will perform a Taylor approximation of the risks Riskp, for o € {+1} around 6y to show the
desired separation bound. To that end, for 4 € R define the shifted vector

26

05 : tv+(5w):90+ﬁw,

2
= 5
for which we have HO(;Hg = 2(t? + 6?)/R? and 0T (v £ w) = t £ 6. Using the risk expansion

qoe

Riskpc (9) = RiSkPO (9) + 9

[£(67 (v + w),y) — £(67 (v — w), y)] (15)
and the Taylor approximation

2
0t +06,y) = €(t,y) + £ (t,y)d + %f"(t +A4,y) for some A € [0, 4],
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we obtain

. 52
Riskp, (65) = (1 — q)l(t,yo) + ql(t,y) + oeql (t,y) - § + Erem(é)

2
= Riskp, (00) + oeql'(t,y) - § + Erem(é),

where the remainder term |rem(d)| < supjaj<5 £”(t + A, y). In particular, if || is small enough that the
conditions (12) hold, that is,

sup [0¢"(t + A, y) <eqll'(t,y)| and 2(t* +6) < R*B?,
[A[<]]

then setting s = —sign(o?'(t,y)) and letting 6 > 0 satisfy the conditions (12), we have 6,5 € © and

inf Riskp, (9) < Riskp, (05) < Riskg, (60) - %\E’(i,y)]é.
€

Combining this inequality with the risk expansion (15), we see immediately that if § € O satisfies
E(QT(U + w)) y) > E(HT(U - w)v y) then

. . . qe
Riskp, (0) > ég(g Riskp, (0) + ?M’(t,y)lé,
and conversely (07 (v — w),y) < £(0T (v — w), y) implies
. . . qe
Riskp_, (0) > ég(g Riskp, (8) + ?M’(t,y)]d

As 6 minimizes Riskp,, the expansion (15) implies that any # minimizing Riskp,(#) over © necessarily
satisfies o [£(07 (v +w),y) — £(6T (v — w),y)] < 0, so we obtain the risk separation

sep(Risk%, Riskleg_l, 0) > %M’(t, y)|0,

valid for any § satisfying the constraints (12), which proves the claimed risk separation in the lemma.
To see the KL bound in Lemma 9, we note that for any pair of distributions of the form (14), we

have

q(l+e), 14e q(l—-¢), 1-—c¢ 1+ ®
Dy (Py|P1) = 1 1 = ¢el <
i (P P-1) 5 gt 5l =gelog i < ¢,

. . c . 3
where inequality (x) is valid for e < &.

A.3 Proof of Lemma 10

Let Py have any distribution on Y | X and Py(X = 0) = 1, that is, the marginal over X is supported
completely on 0. Then it is immediate that for Q4+ = (1 — v)Py 4+ vP4+1, we have

Riskq.., (0) = (1 = 7)Ep, [((0,Y)] + yRiskp,, (6),

and therefore Riskgh(Q) = 'yRiskgﬂ(O). It is therefore immediate that sep(Riskg.,Riskg_,,0) =
~vsep(Riskp,, Riskp_,,©). For the gap on the KL divergence, we use joint convexity to obtain

Dy (Q4]|Q—-+) = Dia (1 = v)Po + vPu[[(1 —v)Po +vP-1) < (1 =) D (Po|FPo) +vDia (P1|P-1) -
=0
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A.4 Proof of Proposition 2

By assumption, there exist t,y, yo satisfying ¢'(¢,y)¢'(t,y0) < 0, and £”(t,y) = 0. Then it is evidently
the case that ¢j = ¢j(t,y) > 0, so that we obtain the lower bound

. : 10, y)| a4
Lin(¢,Y,R,B,n,v) >c¢ sup |¢(t,y)|min< d\/vq}, .
( ) 0353123/2’ (t,9)] £ supjaj<s £ (t+ A, y) /2n

Now, we recall that £ is C3 near ¢t and by assumption £”(t,y) = 0, for all suitably small § we obtain
107 (t + A, y)| > 107 (t,y)||Al/2, and so in particular for all small 4,

20| 4 }
[£7(t,9)[0 v/2n

Set §2 = ﬁ to obtain that for some problem-dependent constant cprop, we have Lin(4, Y, R, B,n,vy) >

Lin(¢, Y, R, B,n,v) > c|l'(t, y)|m1n{6\/ vq;,

cpmbﬁ. Substitute this lower bound in Theorem 1.

B Technical appendices

B.1 Proofs of mixability in Table 1

We assume that ) is discrete and of size k (it is not difficult to obtain a result when ) = N), so that we
may identify distributions on Y with vectors p € Ay, := {v € R¥ | 17y = 1}, the probability simplex in
R*. Consider any C? function h : A — R, noting that

Vexp(—nh(p)) = —nexp(—nh(p)) Vh(p),
V2 exp(—nh(p)) = nexp(—nh(p)) [nVh(p)Vh(p)" — V?h(p)] .

We consider each of the columns of the table in turn. Thus to demonstrate exp-concavity it is sufficient

that V2h(p) = nVh(p)Vh(p)T for all p € Ay.
1. For Lyog, we take h(p) = —logp, for which it is immediate that n = 1 suffices as exp(—h(p)) = p.
2. For Lyq, we have h(p) = 3(p — 1)%, W' (p) = (p — 1), and h”(p) = 1, so n = 1 suffices.

(

3. For Lyel, we have h(p) = (\/p—1)>=p—2p+1, K(p)=1— f’ and h"(p) = 2]3%/2. Thus, we seek

71 such that
2% 3/2 >n(1—1/y/p)* or *>n( 82 —2p+ /p)

for all p € [0,1]. Letting 8 = /p and solving for the stationary points of B3 —284p at VP=p=1/3
and [ =1, we see it is sufficient that 1 > 2n(1/27 —-2/9+41/3) = 2%77, orn < %.

l\D\H

4. For Lquaa, we have h(p) = 3 |[p — eyHg, so it suffices that I —n(p —e,)(p — e,)T =0, or n <

B.2 Proof of Theorem 5

Recall Definition A.1 of the separation between two functions. We first recall the essentially standard
reduction of estimation to testing, which proceeds as follows. Let ) be a finite set indexing a collection
{P, }vey of distributions on X x ) and a collection of functions {f,}. Consider the following process:

draw V € V uniformly at random, and conditional on V = v, observe (X;,Y;) ~ P fori=1,2,.
Then we have the following lemma, which reduces optimization of f, to testing the index V' (see, e.g. [12,
Sec. 5| or [41, Ch. 15]).
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Lemma 11. Let f} = infgce fo(0) for v € V. Then

inf max Epy | fo(0n (X7, Y1) — 4| > min_sep(fy, fu, ©) - inf P(W,, (X7, Y) £ V),
9, VeV vEWEY T,

where the infima are over procedures é\n X" x Y — O and all measurable functions \/I\fn, respectively.
We thus lower bound the probability of error in testing, T # V, for which we use Fano’s inequality [9]:
Lemma 12 (Fano’s Inequality). Let I(V; X7, Y{") be the (Shannon) mutual information between V' and
(X1, Y]"), where (X;,Y;) ~ % P, conditional on V =v and V is uniform on V. Then for any U,
V; X7, Y") +log 2

log [V|

Now, we define the collection of problems we consider and their induced risks. Let X be uniform on
{£1}4, and let

PO, Y £V) > 1- 1

po(y | x) = exp(yb’z — A6 x))
be the density of Py with respect to the base measure v. For a value d > 0 to be chosen, let P, be the

joint distribution on (X,Y) with § = dv. We first demonstrate that these induce a separation in the
expected log loss of a predictive distribution p(- | ), where for such a p we define the risk

Ri5k6v(p) = IEPW [Llog(p<' ‘ X)7Y)] - EPU[_ logp(Y ’ X>]7

where we note that ps, minimizes Risks, as it is well-specified. The key to applying Lemmas 11 and 12
are the following two technical results, which respectively lower bound the separation and upper bound
the KL-divergence between distributions. We defer proofs to Sections B.2.1 and B.2.2.

Lemma 13. Let P be the collection of all conditional probability distributions on'Y | X. There exists a
constant C(A) depending only on the log partition function A(-) such that for all § > 0 and u,v € R?,

1 b
76 A" (08 [ — w5 — C(A) 2 max{[[vl], , [wl],}*

Lemma 14. For v € RY, let Ps, denote the joint distribution over X ~ Uni({-1,1}%) and Y | X =z
having exponential family density ps,(y | ) = exp(y0Tx — A(6Tx)). There evists a constant C(A)
depending only on the log partition function A(-) such that for all 6 € [0,1] and u,v satisfying |lull, <1,
[olly <1,

sep(Risks,, Risksy, P) >

52
Dia (Psol Psw) < 5 A"(0) [|v — wl3 + C(A)8* [lv — w3

With these two lemmas, the result is relatively straightforward. We consider two cases: that d > 8
and (for completeness) that d < 8, which we defer temporarily. Let d > 8. By a standard volume
argument [41, Ch. 15|, there exists a packing set V C {v € R? | ||lv|, = 1} of the ¢» sphere satisfying
V| > exp(d/4) and |[v — w||y > 5 for each v # w € V. Let V be uniform on V as in our construction
above. Then naive bounds on the mutual information I (V; XT1,Y]") yield that

I(V; XY < |2 > Da(Pr|P) < Z 52A"(0) |lv — w3 < 4n62 A" (0),

v,weY v,weY

where inequality (%) holds for any sufficiently small 6 > 0 by Lemma 14. Applying Lemmas 11 and 13
by noting that ||v — wl|, > 3, there exists a numerical constant ¢ > 0 such that for small enough § > 0,

M, (0,P,0) > cA"(0)82 inf P(,, (X, V") # V)
v,

> CA//(0)52 <1 o I(V7X?7}/1n) + 10g2>

log [V|
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where the second inequality is Fano’s inequality (Lemma 12). Applying the preceding bound on the
mutual information and that log |V| > d/4 then implies
16n5%2A"(0) + 4 log 2)
. .

M, (6, P,0) > cA”(0)5? (1 —

Choosing §% = m then gives the theorem in the case that d > 8.

For the final case that d < 8, we apply Le Cam’s method as in our proof of Theorem 1. We assume
that d = 1, as increasing the dimension simply increases the risk bound, and let X ~ Uni({—1,1}).
Recalling Lemma 8, we apply Lemmas 13 and 14 to obtain

M, (O, P,0) > cA”(0)82 (1 - on52A~(0)) :

where 0 < ¢ and C' < oo are numerical constants. Setting 62 W”’() then yields the result.

B.2.1 Proof of Lemma 13

We define the excess risk functional

Y| X
fsu(0) = Risks, (p) — inf Risks, (p) = Ep, [bg Peu(Y | X)

p(Y [ X)

where we have used that the exponential family model ps, minimizes Risks,, and we note that

sep v fous P) > 5 10 {foo(p) + frul0)}

} — E (D (950 | X)lpl- | X))

(this inequality is valid for any functions and set P). Thus
2 sep(Risksy, Risksw, P) = 2sep(fsv, fow, P) 2 E [ifl}f {Dua (psv(- | X)|p) + Dia (pew (- | X)[p)}| -

Now we use that for any three distributions Py, P;, Q, if P = %(Po + Py) then
Dy (Po|Q) + D (P1|Q) = Dyt (Po|P) + Dy (P1|P) + 2Dy (P|Q) = D (Po|P) + Dw (P1|P) ,
and substituting this into the preceding lower bound on the separation gives
2 sep(Risksy, Risksw, P) = E [Dia (pso (- | X)[(1/2)(psu(- | X) + psw(- [ X)))]
+ E [Dia (s (- | X)1(1/2)(pso (- | X) + psw(- | X)))],

where the outer expectation is over X ~ Uni({—1,1}9).
We now provide an asymptotic lower bound on the KL divergences, focusing on a single term given
X = z in the lower bound (16). By a Taylor expansion,

(16)

2

t
log(1 log 2
og( +e) og +2+8

where O(1) denotes a universal numerical constant and the expansion is valid for all ¢ € R because
t + log(1 + €') is 1-Lipschitz. Using the shorthand ¢t = v’z and u = 6w’z and p;(y) = ps, (- | ) and
similarly for p,,, we have

+0(1)F,

2

Dia (rl(1/2)(pe+20) = [ 7o) o s

pe(y log 2 —log < + ey(uft)f(A(“)fA(t)))} dv

fo
/pt [ y(t —u) + A(u) — A(t)  (y(t —u) + A(u) — A(t))?

2 - 3 £ O(1)(y(t —u) + A(u) — A1) | dv.
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By standard properties of exponential families, if E; denotes expectation under p;, we have A’(t) = E,[Y],
and A is C* near 0, so that A(u) — A(t) = A'(t)(u —t) + 3 (u — t)>A” (%) for some @ € [u,t]. We may
thus write

Dy (pe](1/2)(pt + pu))
/ "~ Al _u w— "G 2
= /Pt(y) [(y — A1)t —u) n (u—t)2A"@)  ((y—A@)t—u) + (u—1t)>A"(u)/2)

2 4 8

+0() [ly— A@)Pt—ul® + (¢t —uw)°A"(@)*] |dv
= LA @)~ 1)~ AW~ 1) — o AT @~ 1) £ OWEY ~ BVt~ uf®

As A(+) exists in a neighborhood of 0, the moment generating functions of py, p,, exist, this expansion is
uniform in u, ¢ near 0, and so we obtain

1
Dia (pe|(1/2)(pr + pu)) = 5 (u =) A"(0) £ C(A)|u — ¢, (17)
where C(A) is a constant depending on the log partition function A(-), and the expansion is uniform for

u, t in a neighborhood of 0.
Finally, we recall that t = dvTz and u = dw’x, and as [vTz| < ||v||, ||z||5, we have the lower bound

nf { Dy (pso (- | 2)p) + Dia (pow (- | 2)[p)} = %A"(O)éQ(ﬂfT(w —0))? = C(A)§*d** max{|[wll, . ||v]l}*.

Substituting this into our lower bound (16) and using that E[X X”T] = I; by construction then gives the
lemma.

B.2.2 Proof of Lemma 14

Without loss of generality, assume that [|v||, > [Jwl|,. We have

Dy (Psy| Psw) = E [Dya (pso(- | X)psw(- | X))]-

Fix x temporarily, and consider the inner KL-divergence term. As in the proof of Lemma 13, we use
the shorthands t = 0vT'z, u = dwlz, p; = psu(- | ) and p, = psw(- | =), noting that [t| < §v/d[|v[|, and
similarly for u. Then writing E; for expectation under p;, we have

Dy (pellpu) = Ee [Y (£ — w)] + A(u) — A(t) = A(u) — A(t) - A'(t)(u—t) = %A"(ﬁ)(u — )%,
where @ € [u,t]. As A is C* near 0, we obtain that for a constant C'(A) depending only on A that
Dia (ilpa) < 54" (O) (= 1)? + C(A)u— 1,
valid for all u,t € [—6v/d ||v||,,dV/d ||v]|,]. We we obtain
Dia (Pl Pyw) < 5 A"O)B((XT (0~ w))Y) + CAWE(XT (0 — )]

and using E[( X (v — w))?] = |jv — ng and E[|XTv|?] < HU||§ for X ~ Uni({—1,1}9) gives the lemma.
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B.3 Proof of Theorem 6

Recall 6,, = argmingeg Risky (#) and Definition 3.1. For shorthand, we use the standard empirical process
notation that Pf = Ep[f] and P, f = %Z;;l f(X;,Y;). Let 6, > 0 be any sequence satisfying

loglogn 9 1

S oLk 7

We will define a “good event,” which is roughly that the empirical risk Risk,, approximates the true risk
Riskp well and a local quadratic approximation to both is accurate, and perform our analysis (essentially)
conditional on this good event. To that end, let Apin = Amin(V2Riskp(6*) and Amax = Amax(V2Riskp(6%))
be the minimum and maximum eigenvalues of VZRiskp(0*). Recall that ¢; > 0 is the radius of the ball
on which V2L(py(- | ©),y) is Myip2(w,y) Lipschitz (Def. 3.1), and for an € > 0 to be determined

En =

Amin . ~
{PnMLin S 2PMLip,27 ?I j Vleskn(G) j 2)\maxl for H0 — G*HZ S €, HQTL — 9*”2 S (Sn} .

(18)

We prove the theorem in a series of lemmas. The first shows that &, occurs eventually, and the
remainder we will demonstrate hold on the event.

Lemma 15. For all sufficiently small e > 0, &, happens eventually. That is, there is a (random) N,
finite with probability 1, such that &, occurs for alln > N.

Proof. By the strong law of large numbers, we have P,Mi;p2 3 PMiip2, so that P,My,2 <
2PMyp 2 eventually, while Definition 3.1 implies that [|[V2Risk, () — V2Risk,(6*)[lop < 2PMyp o€
for all |§ — 6*||, < € on the same event. Whenever € is small enough that PMp;, 2 < /\“2‘&" and
PMyp2¢ < ’\T“, we then obtain that >\me[ =< V?Risk,(#) = 2Amax] by choosing

€ < minH €1, & .
- 4PMLip,2

Finally, we argue that ||, — 6*||2 < &, eventually. A standard argument [36, Thm. 5.7] and the Glivenko
Cantelli theorem, which implies supgcg |Riskn(6) — Riskp(6)| 3 0 by the compactness of ©, gives the

consistency é\n 2% 9*. As 0* € int ©, Taylor’s theorem implies that
0 = VRisk, (6,) = VRisky, (6%) + (V2Risky (8%) + Ep (6, 6))(0,, — 6%),
where F, is an error matrix that Definition 3.1 implies satisfies
1 ¢ ~
1Bnllop < =~ Muip2(X:, Y:) [0 = 6o
=1

Thus [| By, “5 0, and as V2Risky, (6%) “3 V2Risk(6*), we have §,—0* = —(VRisk(*)+E;,) ' VRisk, (6%),

where E/, 2% 0 is an error matrix. By the a.s. convergence E!, — 0 and law of the iterated logarithm,

n

. 20 -1 .
hmnsup @ H(V Rlsk(e*) + EY/’L) VR|Skn(9*)H2
2p:; *\—1 : n . *
< |[V*Risk(6*) mop hmnsup1 /m | VRisk,, (6%)]|, < oo
with probability 1. In particular, whenever §2 > longmgn, we have ||§n — 0*[|2 < §,, eventually. O
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An immediate consequence of the identifiability condition (iii) in Definition 3.1 and Taylor’s theorem
is the following lemma.

Lemma 16. For all large enough n, on event &, we have
Risky, (0) < Risky, (6) + 2Amax |0 — |3 for all |6 — 8,[|2 < 6,

and
Risk, (8) > Risky,(6,,) + ixmma;i for all§ € © s.t. [|6 — Oz > 6y

Finally, we show that on &, we have

— 0.

~ 1 ~
ﬁVovk —N <9 VQRiSkn(gn)_l)
TV

n,n LA

For shorthand, let 7, be the probability distribution N(@n7 %VQRiskn(gn)_l). We split the variation
distance into two terms. Let B, = &JB%% be an ¢5 ball of radius d,,. Then

et = [t amle [ et dml e p©). (9
TV 0n+Bn e\{07l+Bn} T
=T =T 7

We bound each of the terms 7; in turn. For the second term, we compute bounds on the densities
themselves. Let 6 € © \ {0,, + B, }. Then for any ¢ > 0 small enough that /\‘?Ti“ — 2% Apax =: K > 0,

i,\vovk((9> exp(—nRisk, (0)) < exp(—nRisk,(9))

dg'mn - Jo exp(—nRisky, (6"))d6" — f§n+cBn exp(—nRisk, (0))do’
(@) exp(—)"f‘T‘“n(S%)

<
~ exp(—2Amaxc?0?) Vol

1
(B = exp (—nKéz + dlog — — cd> ,

cop,

where inequality (i) follows from Lemma 16 and c¢q = log Vol(B$) is the log volume of the f5-ball. A
completely analogous calculation gives

d ) exp(—2(6 — 6,) T V2Risky, (6,) (0 — 6,))

— Ty, = = = =

d [ exp(=2(0" — 0,)TV2Risk,, (6,) (6" — 6,,))d¢’
exp(—4ndy)

<
= exp(—2Amaxc?02) Vol(cBy,)

1
= exp (—nK(STQL +dlog — — cd> ,
cop,

where the inequality uses the definition (18) of &,. In particular, setting the constant ¢ = % ﬁ, the

term K = %)\min and we may bound term T3 in expression (19) by

d 16 max
T> < 2Vol(O) exp <—nK5,21 + §log - ;2 - cd> — 0,

as 9, > ﬁ and 6, — 0.

Let us turn to term 7} in expression (19). For sets A C R? we define the normalizing constants

ZN, = /A exp (-%(9 — §,)TV?Risky (8,)(0 — m) df and ZYo := /A exp (—n(Riskn(H) - Riskn(§n))> dh.
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Changing notation slightly to let B, = §n + 5nIB§‘21, Lemma 16 implies the inequalies

Ao
max { 280 1. 28,5, 0 } < Vol(O) exp (_ min, 52)
and
min {ZB > Z]\§°"k} > exp(—2nAmaxc?02) Vol(c, BY),
valid for any ¢ < 1. Thus, the ratio

Vovk N
Pn 1= max Z@ian, Z@\Bn,n < VOI(@) exp( mm n62)
n - ZN,L ’ gz Vovk eXp(_Qn)\maxc%%) VOl(C(Sn]Bg)

Bn,n Bn,n

)\min 1
< Vol(©) exp <—n53l ( 1 202)\max> + dlog o cd) ,
COn,

where as before ¢; = log Vol(BY), so that for all small ¢ > 0 we have p, — 0 as n — co on the event &,.
We may then bound the normalizing constant ratio by

Zow oIk, ze zgk (7, N7
N +pn 2 7N 2 ZN 2 7N 7N =\ zVovk + pn (20)
Bp,n Bn,n O,n Bp,n + O\ Bn,n Bn,n

Performing a Taylor expansion, on &,, for any § € B,, the Lipschitz continuity of V2Risk,(f) implies
. 1 . - -
Risky (6) = Risky (0n) + 5 (0 — 0,)" V?Risk,, (0,)(0 — 0,,) + PMyp 2 - 03

Using this O(63) remainder term, we then immediately obtain the ratio bounds

7)ok [ exp (—n(Riskn(O) Risky, (0, ))) df
N"’” — r _ € exp (:l:PMLin . 52) .
28 0 J exp(=3(0 — 0,)TVRisky (0,)(0 — 6,,))d0

Substituting this containment in the inequalities (20), we find that for all large enough n, on the event
En in Eq. (18), we have the bounds

ZVovk
exp(—PMyip262) — O(1)py, <

< exp(PMyipa - 62) + O(1)pp. (21)
@,n

Finally, we return to computing the densities in the term 77 in Eq. (19). Let Z,')' = Zﬁ‘d?n, where

an argument similar to those above shows that ZN /Zgn — 1 as n — o00. Defining the remainder

remy, () = Riskn(0)—Riskn(§n)—%(0—0 )TV 2Risky, (6,,)(#—6,,) and using that ||lrem,, (6) ]2 < PMyip2-63

for any 6 € B, as above, the inequalities (21) imply

AYS(0) = dma(6)] /d0 = exp (=5 (0 — )T V?Riskn (0)(0 — 00)) ep(-ra(f) 1

zgk
. N _ —~ ~ N
exp(—2(0 — 0,) T V2Riskn (6,,) (0 — 0,,)) 3 2o ! .
< 7N exp(—nPMyip2 - 0 )ZVovk ZN zN

Integrating over B,, and invoking inequality (21) then implies

[, exp(—3(0 -, )TVQRiskn(gn)(G—Gn))'
ZY

Tl :/ |d/\Vovk d7Tn| <
B,
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Lastly, we note that the final term T3 in the variation distance (19) satisfies 7, (©¢) — 0 as n — oo
as on event &,, there is eventually a ball of some (fixed) radius € > 0 such that 6, + B¢ C ©, and

V?2Risk,, (é\ ) = (Amin/2)I. For Standard normal concentration results then 1mmed1ately imply that
T (0°) < T ({6 + eB¢}) — 0, as the variance of 6 ~ 7, satisfies E, [[|0 — E[6]||3] < C/n for some
problem-dependent C. We conclude that each of T1,T5,T5 — 0 in the variation distance (19).

B.4 Proof of Corollary 7

We again use the event &, in Eq. (18) in the proof of Theorem 6 and logl% <2< ﬁ as well. Let

ﬁTX%Vk and p, = MV°"k for shorthand, and let P, the the point model. Let B,, = é\n + n_1/4IB%g be
~1/4

DPn =
a ball of radius n around @n, where for all large enough n, on &, we have B,, C B C O, where we
recall that B is the neighborhood of #* in Assumption 1. Then for the base measure v on ), we expand

?

pot 1) =5, 10y = [ | [ (oo 1) = 55,01 0) din(®

dv(y)

<@ \8)+ [| [ (mly12) =15, (01 2)) )] )

By Theorem 6, we have p, (0 \ Bn) — 0 on &,. Now, let £y = logps for shorthand, and also define
the shorthands py = Vypy and £y = Voly = pz. The Lipschitz condition on logpy in Assumption 1

P
guarantees that (for large n) on the set B,, we have |p9 Zli)\ < Lip,(w,y) for 6 € B,,. Writing
1
po(y | x)—pg, (y | ) —/ Bror -5, W 1 2)7 (06— / Cgai—p, W | ) (0=00)pyy, 1y (v | 2)dt,
we have

1
Ipo(y | ) — pg. (y | )] < Liny(z, )6 — Bulla / Posi_op, (v | 2)dt

Thus

dv(y)

/ U (poly | @) = p5, (v | 2)) dpin(6)
Y IJBy,
1
< /y /B Lin o, 0)10 — Bl /0 P 1o, W | @)ty (0)dv(y)
= /01 /Bn 16 — é\nHQ [/y Lipp(l“,y)Ptﬂ(pt)é‘n(y | z)dv(y)| dp,(0)dt < Lipp(x)n*1/4

on &,, and we have the desired convergence.
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