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Abstract

We study probabilistic prediction games when the underlying model is misspecified, investigating
the consequences of predicting using an incorrect parametric model. We show that for a broad class of
loss functions and parametric families of distributions, the regret of playing a “proper” predictor—one
from the putative model class—relative to the best predictor in the same model class has lower bound
scaling at least as

√
γn, where γ is a measure of the model misspecification to the true distribution

in terms of total variation distance. In contrast, using an aggregation-based (improper) learner, one
can obtain regret d log n for any underlying generating distribution, where d is the dimension of the
parameter; we exhibit instances in which this is unimprovable even over the family of all learners that
may play distributions in the convex hull of the parametric family. These results suggest that simple
strategies for aggregating multiple learners together should be more robust, and several experiments
conform to this hypothesis.

1 Introduction

Suppose we seek a probability distribution p(y | x) modeling outcomes y given data x. The typical
approach is to choose a parametric family of probability distributions, then find the “best” member
of this family according to a given loss. It is rarely realistic to assume that the parametric family is
well-specified, and thus it is important to understand the consequences of misspecification and how to
circumvent these downsides. To address these challenges, in this paper we derive a new measure of a
problem’s robustness to misspecification that relies on the curvature of the loss at hand and putative
parametric family, proving that this measure lower bounds convergence rates for prediction error and
certifies the failure of a parametric family and loss to be robust (or achieve optimal convergence rates
for prediction). To complement this new family of lower bounds for probabilistic prediction problems,
we build out of earlier work on improper learning [40, 14]—when we may choose predictions p(y | x)
outside the given model family—to show how it is possible to be robust to such misspecification, and
moreover, we give new optimality guarantees for such improper procedures.

Formalizing our setting, we consider the following probabilistic game: a player receives a covariate
vector x ∈ X , plays a distribution p(· | x) on a target set Y, then receives y ∈ Y and suffers loss

L(p(· | x), y).

We study both a sequential and a stochastic variant of this problem. In the former, for a sequence of
examples {(xi, yi)}ni=1, a player chooses a distribution pk depending on the past examples {(xi, yi)}k−1

i=1 ,
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and then for a fixed conditional distribution p on Y | X, suffers regret

Regn(p) :=

n∑

i=1

L(pi(· | xi), yi)−
n∑

i=1

L(p(· | xi), yi).

In the stochastic variant, the examples (xi, yi) are i.i.d. from an unknown distribution P , and we consider
the risk of the conditional p.m.f. p,

RiskP (p) := E[L(p(Y | X))] =

∫
L(p(· | x), y)dP (x, y),

where the expectation is taken over (X,Y ) ∼ P . The goal is to play pi or p above to make the regret
and risk as small as possible.

This regret and risk minimization framework is familiar from the universal prediction and probabilistic
forecasting literature [32, 18, 16, 9, 5], which considers best possible estimators and online learners
for the regret Regn over various losses L and families P of possible predictive distributions. In this
paper, we study these regret and risk minimization formulations over parametric families of distributions
{pθ(· | x)}θ∈Θ, where Θ ⊂ R

d is a convex set. We shall either consider the regret

RegΘn := sup
θ?∈Θ

Regn(pθ?) =
n∑

i=1

L(pi(· | xi), yi)− inf
θ?∈Θ

n∑

i=1

L(pi(· | xi), yi) (1a)

or—in the stochastic version of the problem—the excess risk relative to this family,

RiskΘP (p) := RiskP (p)− inf
θ?∈Θ

RiskP (pθ?). (1b)

When the conditional distribution of Y | X belongs to the parametric family {pθ}θ∈Θ where Θ ⊂ R
d,

maximum likelihood estimators enjoy rates of convergence of O(d/n) for the excess risk (1b) as n
grows [36]. In typical practice, however, the data generating distribution is misspecified, so it is
important to understand how this misspecification impacts possible convergence rates and optimal
estimators.

We thus consider three intertwined objects: the parametric family {pθ}θ∈Θ against which we compare
the performance of our prediction p, a family Γ of distributions on Y given X that we may play (i.e.
predict from), and the family P of data generating distributions that nature may choose. We study the
interaction between these three and the impact of allowing the family P to differ from the parametric
model {pθ}θ∈Θ. The traditional approach considers the minimax excess risk over the family Θ,

inf
p̂n

sup
θ∈Θ

EPn
θ

[
RiskΘP (p̂n)

]
, (2)

where the infimum is over all estimators p̂n that use the n points {(Xi, Yi)}ni=1 to output a distribution

p(Y | X), and the expectation is taken over {(Xi, Yi)}ni=1
iid∼ Pθ, where we have abused notation to use

Pθ to denote the joint over (X,Y ) when Y | X = x follows pθ(· | x). We elaborate this setting slightly.
First, we restrict the estimator p̂n to take values in a set Γ of distributions (for example, we might take
Γ = {pθ}θ∈Θ, the parametric family, or its convex hull), which we write as p̂n ∈ Γ. Second, we expand
the supremum (2) to also include distributions P near the model Pθ: recalling the definition of the
total-variation distance ‖P −Q‖TV := supA |P (A)−Q(A)|, we consider distributions P for which there
is some θ ∈ Θ such that ‖P − Pθ‖TV ≤ γ. This gives us our misspecified minimax risk.

Definition 1.1. Let Θ ⊂ R
d, γ ≥ 0, and Γ be a set of allowable distributions p(Y | X). The minimax

risk at variation distance γ is

Mn(Θ,Γ, γ) := inf
p̂n∈Γ

sup
θ∈Θ

sup
P :‖P−Pθ‖TV≤γ

EPn [RiskΘP (p̂n)]. (3)

2



The quantity (3) is somewhat complex. The idea is to quantify—via the parameter γ—the impact of
allowing the data generating distribution P to depart slightly from the parametric family {pθ}θ∈Θ while
constraining ourselves to play a prediction from the family Γ.

The typical setting in online convex optimization and learning [5] is to take the family of “playable”
distributions to be the parametric family Γ = {pθ}θ∈Θ. In this case, standard minimax risk bounds show
that in the well-specified setting that the data comes from the parametric family (i.e. γ = 0 in Def. 1.1)
and the loss L is smooth, then we expect the risk to scale as d/n (cf. [36, 41, 3]). Yet as we show in the
first part of this work, such results need not be stable to perturbations away from the parametric model.
We show that the curvature of the loss relative to predictions and the parameter space Θ essentially
governs convergence rates: when losses are appropriately “flat,” there is little information and rates
are necessarilty slow and misspecification carries a potentially heavy penalty; conversely, when there
is substantial curvature, rates exhibit less antagonistic behavior. Accordingly, we introduce what we
term the linearity constant Lin of the loss L, family {pθ}θ∈Θ, and misspecification γ, showing a lower
bound of roughly min{1/√n,Lin/n} on the minimax risk (3). In some cases we delineate, Lin may be
exponentially large in problem parameters, so convergence rates slow to the worst-case rates for general
online convex optimization [44, 34, 1], and we consider the family sensitive to misspecification.

To complement these negative results, we highlight a solution to this instability by considering
the convex hull of the parameteric family, that is the set of mixtures, aggregations, or ensembles
Conv{pθ}θ∈Θ := {

∫
θ∈Θ pθdµ(θ) s.t.

∫
θ∈Θ dµ(θ) = 1 and dµ ≥ 0}. The idea to combine probabilistic

forecasts is classical [17, 15, 26, 7, 19]. When the loss function is mixable (which we define later),
Vovk’s Aggregating Algorithm and its variants, e.g. exponential weights, Exp3, and Bayesian universal
prediction [38, 39, 40, 18, 5, 2], provide stability and achieve minimax regret O(d log n) for any γ in
Definition 1.1. By a standard online-to-batch conversion (Jensen’s inequality) [6], this guarantees a
minimax excess risk (3) of at most O(d log n/n). We also show that for generalized linear models, Vovk’s
Aggregating Algorithm is optimal up to log-factors with respect to the misspecification parameter γ.
That is, there is no better algorithm to use if you are guaranteed certain values of γ.

It is perhaps unfair to consider the entire convex hull of {pθ}θ∈Θ for the class Γ, as this could
potentially yield much smaller risk than the parametric family in the risk (1b). Indeed, we give an
example in which the best parameteric predictor has no predictive power, while returning a mixture of
two parameterized distributions achieves zero loss (though we also give examples in parametric families
where considering the convex hull provides no benefit). To justify the aggregation strategy we give
a Bernstein von-Mises theorem under misspecification, which shows that the strategy converges to a
Gaussian centered at the risk-minimizing parameter estimate θ̂n with covariance shrinking at rate O(1/n);
a corollary of this is that Vovk’s Aggregating Algorithm returns a distribution which converges in total
variation distance to p

θ̂n
∈ {pθ}θ∈Θ. Thus, aggregation (or exponential weights) stabilizes predictions

while asymptotically enjoying identical convergence to standard risk-minimization procedures.

1.1 Related Work

Our results broadly fall under probabilistic universal prediction in which the data (xt, yt) can be any
arbitrary sequence [33, 32, 4, 5, 18, 8]. That Vovk’s Aggregating Algorithm provides minimax rate
stability is known [14], and this is similar to the minimax guarantees of Bayesian models in universal
prediction [18]; a long line of work gives the same logarithmic minimax rates [32, 11, 21, 42]. Early work
in these prediction problems focuses on the logarithmic loss Llog(p(·), y) = − log p(y), while more recent
work extends these bounds to exp-concave and so-called “mixable” losses [23, 5]. Our results on minimax
lower bounds, distinguishing carefully between well-specified and misspecified models and proper and
improper predictions, are novel.

While our results are general, applying to exponential families and beyond, related results are available
for logistic regression. In this case, for B,R > 0 we consider Θ = {θ : ‖θ‖ ≤ B}, X ⊂ {x : ‖x‖ ≤ R},

3



and let {pθ}θ∈Θ be the family of binary logistic distributions, pθ(y | x) = (1 + e−yθT x)−1, with log
loss. Hazan et al. [24] show that any algorithm returning some pθ suffers minimax risk (recall (3))
Ω(
√

B/n) in the regime where n = O(exp cB) for some positive constant c > 0, R = 1, and the allowable
perturbation γ = 1. Foster et al. [14] show that Vovk’s Aggregating Algorithm [40] guarantees minimax
risk O(d log(Bn)/n), allowing one to sidestep this lower bound via improper learning, which we also
leverage. In the special case of logistic regression—see Example 1 to come in Section 2.2—a simplification
of our results gives lower bound Ω(1)

√
γBR/n if n ≤ exp(RB/2) and Ω(1) exp(2BR/5)/n otherwise.

We thus show that even when the perturbations away from the parametric family are small, the minimax
risk when the set of playable distributions is Γ = {pθ}θ∈Θ may grow substantially; this generalizes Hazan
et al. [24], where R = 1 and γ = 1, and gives somewhat sharper constants.

2 Parametric Model Instability

Our first step towards understanding sensitivity to misspecification is to provide optimality guarantees
for the minimax risk in Definition 1.1 when the player can play only elements of the parametric family of
interest, that is, when Γ = {pθ}θ∈Θ. We focus on losses that depend specifically on θTx, where we have

L(pθ(· | x), y) = `(θTx, y) (4)

for some twice differentiable and convex ` : R× Y → R+. A broad range of models and losses take this
form, including all generalized linear models [20].

2.1 Main lower bound

Our key contribution is to lower bound the minimax risk via a quantity we term the linearity constant
of the induced loss `, which measures the sensitivity of ` around various points in its domain. The first
component is (roughly) a measure of the signal contained in ` for different targets y, where for t ∈ R,
y ∈ Y, and `′(t0, y0) as shorthand for ∂

∂t`(t, y)|(t,y)=(t0,y0) we define

q?` (t, y) := sup
y0∈Y,α∈[−1,1]

{
α`′(αt, y0)

α`′(αt, y0)− `′(t, y)
| sign(α`′(αt, y0)) 6= sign(`′(t, y))

}
. (5)

We always have q?` (t, y) ∈ [0, 1]. For many cases, this quantity is a positive numerical constant (e.g. for
the squared error `(t, y) = 1

2(t− y)2 with Y = R, we have q?` (t, y) = 1). Then for given radii R and B,
misspecification size γ ∈ [0, 1], and sample size n, we define

Lin(`,Y, R,B, n, γ) := sup
y∈Y

t2+δ2≤R2B2

2

{
|`′(t, y)|min

{
δ
√
γq?` (t, y),

|`′(t, y)|
sup|∆|≤δ `

′′(t+∆, y)

q?` (t, y)√
2n

}}
. (6)

This linearity constant roughly measures the extent to which the loss grows quickly without substantial
curvature, that is, `′(t, y) is large while `′′(t, y) is small. A heuristic simplification may help with intuition:
by ignoring the q?` term and perturbation by ∆ in `′′, we roughly have

Lin(`,Y, R,B, n, γ)
heuristically

= O(1) · sup
y∈Y,|t|≤RB

|`′(t, y)|min

{
RB
√
γ,
|`′(t, y)|
`′′(t, y)

1√
n

}
, (7)

which makes clearer the various relationships. When the ratio of `′(t, y) to `′′(t, y) is large, estimation
and optimization are intuitively hard: there is little curvature to help identify optimal parameters,
while small changes in the parameter induce large changes in the loss (as `′(t, y) is large relative to `′′).
The allowable misspecification of the model—via the parameter γ—means that in the lower bound, an
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adversary may essentially put positive mass on those points for which the ratio `′/`′′ is large, so that
one must pay this worst-case cost.

We then have the following theorem, whose proof we provide in Appendix A.

Theorem 1. Let the loss L and family {pθ} satisfy Eq. (4), where X = {x : ‖x‖ ≤ R}. Consider
Γ = {pθ}θ∈Θ, where Θ = {θ : ‖θ‖ ≤ B}. Then

Mn(Θ,Γ, γ) ≥ 1

4
√
n
Lin(`,Y, R,B, n, γ).

Using the heuristic display (7) above can provide some intuition. When |`′(t, y)|/`′′(t, y) & √n, so that
the problem has little curvature, the (heuristic) linearity constant (7) scales as supt,y |`′(t, y)|RB, which

gives the lower bound supt,y
|`′(t,y)|RB√

n
; this is the familiar worst-case minimax bound for stochastic convex

optimization with Lipschitz objective on a compact domain [1]. As the worst-case constructions look
very little like standard prediction problems, one might hope (at least in the absence of misspecification)
to achieve better rates; Theorem 1 helps to delineate problems where this may be impossible.

2.2 Examples with the logarithmic loss

It is instructive to consider a few examples to build intuition for Theorem 1 beyond the heuristic (7), as
the linearity constant as defined may be somewhat challenging to work with. As we shall see, however,
its generality allows exploration of many losses, including various scoring rules [16]; for this section, we
focus on the common logarithmic loss for four well-known exponential family models. In what follows
we use the following notation: For a set Ω such that f, g : Ω→ R we write f & g if there exists a finite
numerical constant C such that for any ω ∈ Ω, f(ω) ≥ Cg(ω) and we write f � g if f & g & f .

For our first example, we consider logistic regression, showing that if we must play proper predictions
pθ, parametric 1/n rates are impossible until n is very large or if the radii R and B are small.
Example 1 (Logistic regression): For logistic regression with logarithmic loss, we have Y = {−1, 1},
pθ(y | x) = 1

1+exp(−yθT x)
, and `(t, y) = log(1 + e−ty), so that

`′(t, y) =
−y

1 + ety
and `′′(t, y) =

ety

(1 + ety)2
.

Without loss of generality, let y = 1. If RB ≤ 1, then by taking t = 1
2BR and δ = 1

2BR, it is immediate
that q?` (t, y) & 1, and each of `′(t, y) and `′′(t, y) are numerical constants. Then we obtain the lower
bound

Lin(`,Y, R,B, n, γ) ≥ cmin

{
BR
√
γ,

1√
n

}
,

so that Theorem 1 yields minimax lower bound min{RB
√
γ√

n
, 1
n}.

The more interesting regime is when RB � 1—for example, in the natural case that the data and
parameter radii scale with the dimension of the problem—so let us assume RB ≥ 1. Here, take y = −1
and y0 = 1, so that for any α ∈ [0, 1] and t ∈ R we have sign(`′(t, y)) = 1 6= −1 = sign(`′(αt, y0)).
Let ε ∈ [0, 1] to be chosen and set t2 = (1 − ε)R

2B2

2 (where t ≥ 0). Then by taking α = 1
RB , in the

definition (5) we have

q?` (t, y) ≥
α 1

1+etα

α 1
1+etα + 1

1+e−t

=
1

1 +RB 1+etα

1+e−t

≥ 1

1 + (e+ 1)RB
&

1

RB

and `′(t, y) = 1
1+e−t ≥ 1

2 . Thus for all δ ∈ [0, RB
√

ε/2], the linearity constant has lower bound

Lin(`,Y, R,B, n, γ) ≥ cmin

{
δ
√

γ/RB,
1

sup|∆|≤δ e
−t+∆

1

RB
√
n

}

5



where c > 0 is a numerical constant. Taking δ = RB
√

ε/2 and ε = 1/9 then gives

Lin(`,Y, R,B, n, γ) ≥ cmin

{√
γRB, exp

(
3RB/(5

√
2)
) 1

RB
√
n

}
.

In particular, if n ≤ e6RB/5
√
2

R2B2 , then Lin(`,Y, R,B, n, γ) ≥ c
√
γRB, and otherwise (as ex/x & e.99x for

all x ≥ 1) Lin(`,Y, R,B, n, γ) ≥ exp(RB/4)/
√
n, giving us the minimax lower bound

Mn(Θ,Γ, γ) ≥ cmin

{√
γRB√
n

,
exp(2RB/5)

n

}
. (8)

We may contrast this lower bound with previous results. In the regime where γ = 1, Hazan et al. [24]
show that for R = 1 and numerical constants c0, c1 > 0, any algorithm playing parametric predictors pθ
necessarily suffers minimax risk Ω(

√
B/n) whenever n ≤ c0 exp(c1B). The result (8) recovers this lower

bound while applying whenever γ > 0. ♦

To show some of the generality of our approach, we consider other exponential family models. The
first is similar to the previous example.
Example 2 (Geometric distributions): We say Y ∼ Geo(λ) for some λ ∈ (0, 1) if Y has support

{0, 1, 2, . . . , } and P (Y = y) = λ(1− λ)y. We model this via Y | x ∼ Geo(eθ
T x/(1 + eθ

T x)), giving losses

Llog(pθ(· | x), y) = (y + 1) log(1 + exp(θTx))− θTx and `(t, y) = (y + 1) log(1 + et)− t.

We perform a quick sketch, letting b = RB for shorthand, assuming that b ≥ 1 and that diam(Y) :=
max{y ∈ Y} is finite and at least 3.

First, we construct a lower bound on q?` (t, y): take y = max{y ∈ Y} to be the maximum element of
Y, and set y0 = y and t = −b. Then setting α = −1/b in the definition (5) we obtain

q?` (t, y) ≥
−y+1

b
1

1+e +
1
b

−y+1
b

1
1+e +

1
b − (y + 1) eb

1+eb
+ 1

=

y+1
1+e − 1

y+1
1+e − b+ 1 + b(y + 1) eb

1+eb

&
1

b

as b ≥ 1 and y ≥ 3. Additionally, we have |`′(t, y)| & y and `′′(t, y) . ye−b, and so, as in the derivation
in Example 1 and by setting δ & b, we obtain that there exist numerical constants c0, c1 > 0 such that

Lin(`,Y, R,B, n, γ) ≥ c0ymin

{√
γb,

ec1b√
n

}
.

Substituting, we obtain the analogue of inequality (8), that is,

Mn(Θ,Γ, γ) ≥ c0diam(Y)min

{√
γRB√
n

,
exp(c1RB)

n

}
.

Again, we see that until n & exp(cRB), any method playing the models pθ for points θ ∈ Θ necessarily
cannot converge faster than diam(Y)/√n. ♦

Poisson regression yields a similar lower bound:
Example 3 (Poisson regression): In the poisson regression problem, we model y ∈ N as Poisson(eθ

T x),
so that

− log pθ(y | x) = eθ
T x − yθTx+ log(y!),

and we may consider the loss `(t, y) = et − yt. We claim that in the setting of Theorem 1, where we set
diam(Y) = max{y ∈ Y} ≥ 3 as in Example 2, we have

Mn(Θ,Γ, γ) ≥ c0min

{
diam(Y)

√
γRB√
n

,
ec1RBdiam(Y)2

n

}
. (9)

6



To see the lower bound (9), it is sufficient to lower bound the linearity constant, and we may assume
that RB ≥ 2. Our first step is to lower bound the quantity q?` . Let b = RB/2 for shorthand, and set
t = b, y = diam(Y), and y0 = y, and α = −1

b ≥ −1, so that `′(t, y) = et − y = e−b − y < 0 while
α`′(αt, y) = −1

b (e− y) > 0. As a consequence, completely parallel to our derivation in Example 2, we
obtain q?` (t, y) &

1
b . Moreover, the bounds `′′(t, y) = et and the choice δ = b/2 in the definition (6) yield

that for numerical constants c0, c1 > 0 we have

Lin(`,Y, R,B, n, γ) ≥ c0ymin

{√
γb,

ec1by√
n

}
.

Substituting this into Theorem 1 then implies the claim (9). ♦

In contrast, for linear regression problems, there is limited worst-case behavior, which is natural: the
problem is always strongly convex, no matter the misspecification of the model.
Example 4 (Linear regression): Again we consider the log loss, but we assume that our model is that
y | x ∼ N(θTx, 1), so that the loss becomes Llog(pθ(· | x), y) = 1

2(θ
Tx− y)2 and `(t, y) = 1

2(t− y)2. In
this case, we may take q?` & 1 in Eq. (5), and the linearity constant (6) becomes

Lin(`,Y, R,B, n, γ) � sup
y∈Y

sup
t2+δ2≤R2B2

2

{
(t− y)min

{
δ
√
γ,

t− y√
n

}}

� min

{
RBmax{RB, diam(Y)}√γ, max{R2B2, diam(Y)2}√

n

}
,

yielding minimax lower bound

Mn(Θ,Γ, γ) ≥ cmin

{
max{R2B2, RBdiam(Y)}√γ√

n
,
max{R2B2, diam(Y)2}

n

}
.

This is sharp: the stochastic gradient method achieves the bound [22], as ` is strongly convex and has
Lipschitz constant max{BR, diam(Y)}.

With that said, this behavior—which depends on diam(Y)—is worse than what one achieves in
well-specified or stochastic settings, where the stochasticity means that rates of 1/n are achievable. ♦

2.3 Scoring rules and general losses

In probabilistic prediction and forecasting, one more generally may consider scoring rules [16], which are
losses designed to engender various behaviors: honesty in eliciting predictions, calibration of forecasts,
robustness, or other reasons. Typically, these induced losses are exp-concave (as we discuss in the
next section, which will allow us to describe an efficient algorithm for them). For example, to achieve
robustness [31, 25] (there are no unbounded losses) one might consider the squared error or Hellinger-type
losses

Lsq(p(· | x), y) :=
1

2
(p(y | x)− 1)2 and Lhel(p(· | x), y) = (

√
p(y | x)− 1)2, (10)

neither of which is proper (so that the true distribution may not minimize the loss). Alternatively,
proper scoring rules [16] are minimized by the true predictive distribution, and include the logarithmic
loss and the quadratic scoring rule with loss

Lquad(p(· | x), y) :=
1

2

∑

k∈Y
(p(k | x)− 1 {k = y})2 = 1

2
(p(y | x)− 1)2 +

1

2

∑

k 6=y

p(k | x)2. (11)

As these scoring rules are differentiable and at least C2 on p ∈ (0, 1), an argument by the delta method [36]
shows that in well-specified cases, one expects to achieve convergence at rate 1/n. Moreover, as we will
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see in the next section, aggregating algorithms can achieve regret scaling as log n for each of these loss
measures.

Yet, at least in an asymptotic sense, the minimax bound in Theorem 1 shows that this is unachievable
with misspecification. Here, because of the complexity of the losses and resulting calculations, we take a
completely asymptotic perspective, saying that we have an asymptotic rate r(n) minimax lower bound if
r(n)→ 0 as n→∞, while

lim inf
n→∞

Mn(Θ,Γ, γ)

r(n)
> 0

for all γ > 0. Each of the bounds in Examples 1–4 is then asymptotic rate r(n) = 1
n . Once we move

beyond the log loss to alternative scoring rules, however, the rate r(n) = 1
n is no longer achievable with

misspecification if Γ = {pθ} are the proper models.
As usual we consider losses taking the form L(pθ(· | x), y) = `(θTx, y) for some scalar induced loss

` : R×Y → R. We restrict our focus to losses for which no universally perfect prediction exists, meaning
that if t ∈ R and y ∈ Y satisfy `′(t, y) 6= 0, there exists y0 ∈ Y such that `′(t, y)`′(t, y0) < 0. We have
the following result, whose proof we provide in Appendix A.4.

Proposition 2. Assume that the scalar loss allows no universally perfect prediction. If there exists
|t| ≤ RB/2 and y ∈ Y such that `′(t, y) 6= 0 while `′′(t, y) = 0 and `(·, y) is C3 near t, then the prediction
family Γ = {pθ}θ∈Θ has asymptotic rate r(n) = n−3/4 minimax lower bound.

Roughly, the result in the proposition is simple: if the induced scalar loss ` is not convex in t, then
proper predictions cannot be rate-optimal (as rates scaling as 1/n are achievable here).

While it is possible in some cases to achieve explicit constants—for example, for logistic regression
this is relatively straightforward—in general it is somewhat tedious. Nonetheless, we have the following
result, whose tediousness in verification precludes our including a formal proof, but essentially we need
simply note that the induced losses `(t, y) for each problem are non-convex in t but are smooth.

Corollary 3. Let Γ = {Pθ} be any of the logistic-, geometric-, poisson-, or linear-regression families of
predictive densities. Then for any of the squared Lsq, Hellinger Lhel, or quadratic Lquad losses (Eqs. (10)
and (11)), Mn(Θ,Γ, γ) has asymptotic rate lower bound r(n) = 1

n3/4 for any γ > 0.

Theorem 1 and its consequences via Proposition 2 assert that any algorithm returning elements
of the parametric family {pθ}θ∈Θ must suffer when misspecification is possible. These results are
information-theoretic, and as such, we see that in situations where misspecification is possible, to perform
better it is essential that the family Γ of allowable distributions be improper.

3 Robustness via Improper Learning

While proper algorithms evidently must suffer losses when they are misspecified, we now show that
simply by considering Γ = Conv{pθ}θ∈Θ we can sidestep the lower bound of Theorem 1. Specifically, we
consider Vovk’s Aggregating Algorithm and show that this provides stability to misspecification. We
present the algorithm in an online setting, though standard online-to-batch conversion techniques [5]
extend the result to the stochastic optimization setting in which we have proved each of our lower
bounds.

To give a regret bound, we continue our usual focus by considering losses L and families {pθ}θ∈Θ for
which we can write L(pθ(· | x), y) = `(θTx, y). We restrict ourselves somewhat to considering mixable
losses, where for some η > 0, the function p 7→ exp(−ηL(p, y)) is concave over the collection P(Y) of
distributions on Y . This constant η guaranteeing the exp-concavity of L bounds the mixability constant,
which allows one to obtain “fast rates” via exponentially-weighted averaging in many online learning
problems [40, 5, 37]. In Table 1, we record the mixability constants for several example losses—each of

8



Algorithm 1 Vovk’s Aggregating Algorithm (Online Setting)

Define Γ = Conv{pθ}θ∈Θ and let η be some fixed value > 0.
For t = 0, . . . , n

Nature reveals xt.
Define dµ̂Vovk

t,η (θ) ∝ exp(−η
∑t−1

s=0 L(Pθ(ys | xs))).
Decision Maker plays P̂Vovk

t,η :=
∫
θ∈Θ Pθ(· | xt)dµ̂Vovk

t,η (θ).

Nature reveals yt and Decision Maker suffers loss L(P̂Vovk
t,η (yt | xt)).

Llog Lsq Lhel Lquad

Mixability Constant η 1 1 3 1/2

Table 1. Mixability constants for common losses in Eqs. (11) and Eqs. (10), where Llog(p, y) = − log p(y),

Lsq(p, y) =
1
2
(p(y)− 1)2, Lhel(p, y) = (

√
p(y)− 1)2, and Lquad(p, y) =

1
2
‖p(·)− ey‖22. See Appendix B.1.

which we touch on in Sec. 2.3—showing that Vovk’s aggregating algorithm achieves logarithmic regret
for any of them once we apply the coming convergence result.

Corollary 4 (Foster et al. [14], Theorem 1). Let P̂Vovk
t,η be as defined above. Let Lip`(T ) be the Lipschitz

constant of ` restricted to [−T, T ]× Y. Then for any sequence (xi, yi)
n
i=1 and θ? ∈ Θ,

Regn(P̂
Vovk

n,η , pθ?) ≤ 5
d

η
log

(
Lip`(RB)n

d
+ e

)
.

Using Corollary 4 and Theorem 1, we see that the aggregating algorithm typically provides a stronger
convergence guarantee than algorithms constrained to {pθ}θ∈Θ can attain. In each of Examples 1–3, the
lower bounds necessarily suffer exponential dependence exp(Ω(1)RB) as n→∞, and so as long as the
Lipschitz constant Lip`(RB) is not super-exponential in RB, Corollary 4 guarantees better convergence.
Even more, in some cases—for example, when using the general (potentially non-convex in θ) losses
as in Sec. 2.3—even for fixed radii R,B we have

√
nLin(`,Y, R,B, n, γ)→∞ as n→∞. In this case,

Corollary 4 even guarantees a better asymptotic rate in n.

3.1 Lower bounds for arbitrary improper algorithms

An important question is whether the Aggregating Algorithm 1 achieves optimal rates when the
misspecification parameter γ changes. As the coming Theorem 5 shows, Corollary 4 is tight to within
logarithmic factors, as we can show an (asymptotic) lower bound of d/n even for well-specified families
of generalized linear models. The theorem also shows that while playing in the convex hull of a
parameterized family {pθ}θ∈Θ allows more powerful mechanisms, in natural (well-specified) scenarios,
this extra power is no panacea: the upper bound on the risk of the Aggregating Algorithm 1 is tight to
a logarithmic factor over all algorithms that may play arbitrary elements in the convex hull (or even
algorithms playing any probability distribution). Indeed, let Γall be the collection of all probability
distributions on Y | X, so that an algorithm may play an arbitrary distribution (which is of course larger
than Conv{pθ}θ∈Θ). We then take the risk to be the expected logarithmic loss, where for a conditional
distribution p(y | x) we define

RiskP (p) := EP [Llog(p(· | X), Y )] = −EP [log p(Y | X)],

and we let Risk?P = infp RiskP (p) be the smallest risk across all predictive distributions p(y | x). When
the models pθ are not misspecified, i.e., γ = 0, we have Risk?Pθ

= RiskPθ
(pθ), and we have the following

lower bound.
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Theorem 5. Let {pθ}θ∈Θ be a generalized linear model of the form

dPθ(y | x) = exp(yθTx−A(θTx))dν(y),

where ν is a base measure and X ∼ Uni({−1, 1}d), 0 is in the interior of domA, and let Θ contain 0 in
its interior. Then for the log loss Llog, there exists a numerical constant c > 0 such that for all large
enough n

Mn(Θ,Γall, 0) = inf
p̂n

sup
θ∈Θ

E
n
Pθ

[
RiskPθ

(p̂n)− Risk?Pθ

]
≥ c

d

n
.

See Appendix B.2 for the proof of Theorem 5. As we essentially only care about the conditional
distribution pθ(y | x), here we chose the marginal over X to be uniform for convenience; other choices
suffice as well.

Comparing the lower bound Theorem 5 provides with the regret bound in Corollary 4, we see that
holding RB constant (and Lip`(RB) constant) then for risk functional RiskP (p) := EP [Llog(p(· | X), Y )],
a standard online-to-batch conversion (or Jensen’s inequality) implies

E

[
RiskP (p̂

Vovk

n )− inf
θ?∈Θ

RiskP (p
?
θ)

]
≤ (5 + o(1))

d log n

n

as n → ∞, where o(1) → 0 hides problem-dependent constants. To within a factor O(1) log n, then,
Vovk’s aggregating algorithm is generally unimprovable.

3.2 Asymptotically aggregating to point predictions

While in general the ability to play elements in Conv{pθ}θ∈Θ could (in principle) yield much better
performance than any individual element pθ for θ ∈ Θ, in a sense, the aggregating algorithm is only
performing a small amount of averaging to substantially increase its robustness. Indeed, when the
risk minimization problem at hand is classical—the loss has continuous derivatives and the population
risk RiskP is strongly convex in a neighborhood of its minimizer θ?—then we can show that Vovk’s
aggregating algorithm asymptotically plays points very close to {pθ}θ∈Θ. That is, in “nice” cases, the
aggregating algorithm more or less behaves as the empirical risk minimizer, which is asymptotically
optimal [13]. In these cases, stochastic gradient methods (which are necessarily proper, as they optimizer
over θ) similarly achieve optimal asymptotic rates [13], and sometimes similarly strong finite sample
rates [3].

We make this more formal via a generalized Bernstein von-Mises Theorem, which shows that when
a unique minimizer exists, the density dµ̂Vovk

n,η in Alg. 1 converges to a normal density centered at the

empirical minimizer θ̂n ∈ Θ with covariance operator shrinking at the rate 1/n. Such posterior limiting
normality results are relatively well-known: see [36, 28]. In our setting, rather than considering just
the posterior distribution—as our models may be misspecified, so that a posterior is less sensible—we
consider distributions over Θ of the form of µ̂Vovk

n,η ; when L is the log-loss, this is the usual posterior. We
first define the class of families and losses for which Theorem 6 holds.

Definition 3.1. The family and loss pair ({pθ}θ∈Θ, L) is Bernstein von-Mises generalizable if there
exist ε1, ε2 > 0 such that the risk RiskP (θ) := EP [L(Pθ(Y | X))] satisfies the following conditions:

(i) The minimizer θ? = argminθ∈Θ RiskP (θ) is unique and has positive definite Hessian ∇2RiskP (θ
?) �

0.

(ii) On the ε1-ball around θ?, θ? + ε1B
d
2, the loss θ 7→ L(Pθ(· | x), y) is MLip,0(x, y) Lipschitz and has

MLip,2(x, y)-Lipschitz Hessian, where E[MLip,0(X,Y )2] <∞ and E[MLip,2(X,Y )] <∞.

(iii) For all θ ∈ Θ \ {θ? + ε1B
d
2}, we have RiskP (θ) ≥ RiskP (θ

?) + ε2.
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When θ 7→ L(Pθ(· | x), y) is convex, condition (iii) is redundant given the others, and the other conditions
of Definition 3.1 hold for generalized linear models. Under the conditions Definition 3.1 specifies, we
then obtain the following convergence guarantee, whose proof we provide in Appendix B.3.

Theorem 6 (Generalized Bernstein von-Mises). Let the pair ({pθ}θ∈Θ, L) be Bernstein von-Mises

generalizable (Definition 3.1), and for (Xi, Yi)
iid∼ P define Riskn(θ) =

1
n

∑n
i=1 L(Pθ(· | Xi), Yi). Assume

Θ is compact and θ? ∈ intΘ. Let θ̂n := argminθ∈Θ Riskn(θ) and µ̂Vovk
n,η be as defined in Vovk’s Aggregating

Algorithm. Then ∥∥∥∥µ̂
Vovk

n,η − N

(
θ̂n,

1

n
∇2Riskn(θ̂n)

−1

)∥∥∥∥
TV

a.s.−→
P

0.

Using the theorem and its proof, we can also (under a minor continuity condition) establish a
convergence guarantee showing roughly that the aggregating algorithm asymptotically plays essentially
the empirical point estimator. We consider the following assumption.

Assumption 1. There exists a neighborhood B of θ? such that the log-likelihood θ 7→ log pθ(y | x) is
Lipp(x, y)-Lipschitz on B, and Lipp(x) := supθ∈B

∫
Y Lipp(x, y)dPθ(y | x) <∞ for each x.

We then have the following corollary, whose proof we provide in Appendix B.4.

Corollary 7. In addition to the conditions of Theorem 6, let Assumption 1 hold. Then for each x ∈ X ,

∥∥∥P̂Vovk

n,η (· | x)− P
θ̂n
(· | x)

∥∥∥
TV

a.s.→ 0.

Roughly, Theorem 6 and Corollary 7 show that the aggregating algorithm 1 is asymptotically
constrained to making predictions in {pθ}θ∈Θ, at least in non-adversarial cases. In a sense, then, the
aggregating algorithm 1 is not taking full advantage of its improperness: while it can return any
distribution in Conv{pθ}θ∈Θ, it (eventually) is nearly playing elements of {pθ}θ∈Θ. While this is optimal
in some cases (Theorem 5), the question of how to efficiently and optimally return predictions in
Conv{pθ}θ∈Θ remains open and a natural direction for future work.

4 Experiments and Implementation Details

Before discussing our experiments, we make a few remarks on the computability of Vovk’s Aggregating
Algorithm. Whenever L(Pθ(· | x), y) is convex in θ and β-smooth, there exists an algorithm [14]
approximating P̂Vovk

n,η that achieves the regret bound in Corollary 4 to within an additive factor 1/n,
and the algorithm is polynomial in (RB, d,Lip`(RB), n). Yet these algorithms are still computationally
intensive; assuming our theoretical results are predictive of actual performance, one might expect that
aggregating-type strategies could still yield improvements over standard empirical risk minimization.
Indeed, Jézéquel et al. [27] take the computational difficulty of the approximating algorithms in the
paper [14] as motivation to develop an efficient improper learning algorithm for the special case of logistic
regression, which (roughly) hedges its predictions by pretending to receive both positive and negative
examples in future time steps, constructing a loss that depends explicitly on the new data xt; Jézéquel
et al. show that it achieves a regret bound with a multiplicative RB factor of the logarithmic regret in
Corollary 4. It is unclear how to extend this approach to situations in which the cardinality |Y| of Y is
much larger than 1, though this is an interesting question for future work. In our experiments, we take
a heuristic approach, focusing on the risk minimization setting, and perform aggregation of subsampled
maximum likelihood estimators; this approach is reminiscent of the subsampled and bootstrapped
estimators [43, 29], but we use aggregation as in Alg. 1 to weight predictions. We call the procedure
AHA (A Heuristic Aggregation) for short.
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Algorithm 2 AHA (A Heuristic Aggregation)

Input: {(xi, yi)}ni=1 and parameter radius B
Output: Pmix

n,B

For k = 1, · · · ,K
Sk ← random subset of the data of size |Sk| = 2n/3
θ̂kn ← argmin‖θ‖≤B

∑
(x,y)∈Sk

L(pθ(y | x))
µk
n ← exp(

∑n
i=1−L(pθ̂kn(yi | xi)))

Pmix

n,B ←
(∑K

k=1 µ
k
npθ̂kn

)
/
(∑K

k=1 µ
k
n

)

Our results suggest that when performing a probabilistic forecasting task with parameterized model
{pθ}θ∈Θ, returning the mixture distribution from Vovk’s Aggregating Algorithm should be more robust
to misspecification than an algorithm which returns P

θ̂
; we thus expect Algorithm 2 should exhibit

more robustness as well. To that end, we consider two experiments: the first a synthetic experiment
with linear regression, where we may explicitly control the degree of misspecification, and the second a
logistic regression problem on real digit recognition data, where we mix two populations and we expect
(roughly) that a model should do well on one, but may be missing important aspects of the other.

Improper Linear Regression For the synthetic data, we let X ∈ R
d be an observed covariate and

H ∈ R a hidden variable, and for τ ∈ R+ we let y have density

pτ (y | X = x,H = h) =
1√
2π

e−
1
2
(y−(xT θ?+τh)2 .

We fix the dimension d = 10 and let θ? ∈ R
d be uniform on S

d−1; we generate data by drawing
(X,H) ∼ N(0, Id)×N(0, 1). We then use the parametric model {pθ}θ∈Θ to model Y | X = x ∼ N(θTx, 1),
which is misspecified when τ > 0. As τ grows larger—increasing misspecification—we expect greater
differences between the M.L.E. θ̂n and the AHA Algorithm 2.

Logistic Regression We consider the MNIST handwritten digits [30], where we mix in typed digits;
as our base featurization, we use a standard 7-layer convolutional neural network trained on the MNIST
data, so that the typewritten digits (roughly) represent a misspecified sub-population, and as the
proportion τ of typewritten digits increases, we expect increasing misspecification. We consider a
simplified binary version of this problem, where we seek to distinguish digits 3 and 8, and we use a
logistic regression model pθ(y | x) = (1 + e−yxT θ)−1 with log loss.

Experiment For both linear regression and logistic regression, we conduct the following experiment:
For a training sample size n and parameter radius B, we compute the constrained MLE

θ̂n := argmin
‖θ‖≤B

n∑

i=1

L(Pθ(· | xi), yi)

and return P
θ̂n

, and also compute Pmix

n,B as the output of Alg. 2 with resampling size K = 20 for the
improper linear regression experiment and K = 10 for the MNIST experiment. We use a held-out test
set of size N = 5000 to approximate the risk Risk(p) of the returned conditional probability p. We plot
how this approximated risk decays as we increase training sample size n up to 1000 for improper linear
regression and up to 200 for logistic regression.

Within each experiment, we implement several regularization schedules. We test B = c, B = c log n,
B = c

√
n, and B = cn for c ∈ {0.1, 0.2, 1}. In Figures 1 and 2 we only show the results for the best choice
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(a) τ = 0 (b) τ = 2.5 (c) τ = 5

Figure 1. Linear Regression, Synthetic Data. As misspecification τ increases, the improper learning
algorithm AHA (Alg. 2) outperforms the best constrained MLE.

of B according to the performance of the Maximum Likelihood Estimator. We repeat the experiment
100 times on the synthetic data and 10 times on the real dataset and average the results. We run the
experiment for τ = 0, 2.5, 5 on the synthetic dataset and τ = 0%, 5%, 20% for the real dataset.

(a) τ = 0% (b) τ = 5% (c) τ = 20%

Figure 2. Logistic Regression, MNIST Data mixed with typed data. As misspecification τ increases,
the improper learning algorithm AHA’s performance remains stable, while the best regularized MLE’s
performance worsens.

The results of Figure 1 and Figure 2 are consistent with our expectations: as the magnitude of
misspecification (as measured by τ ≥ 0) increases, the gap in performance between the maximum
likelihood estimator and the aggregated solution increases. Even more, if we may be so bold, the results
suggest that using a subsampling and aggregation strategy as in Alg. 2 may be a useful primitive for
other learning problems; we leave this as a possibility for future work.

5 Discussion

This work takes steps toward addressing the fundamental and practically important challenge of the
cost of inaccurate modeling. While modeling assumptions are ubiquitous throughout statistics, machine
learning, and data science—allowing analyses that demonstrate fast convergence rates, efficient algorithms,
interpretable conclusions—most such assumptions are (at least) slightly flawed. This misspecification can
have downsides: in addition to perhaps faulty conclusions from a faulty model, even convergence rates of
estimators may degrade. This adds a wrinkle to data-modeling tasks: not only must we choose a model
that closely fits the data, but we must be mindful of the cost of model misspecification, as this cost is
not uniform across models. Our development of the linearity constant Lin(`,Y, R,B, n, γ) in Eq. (6) of
the model family gives a reasonably concise description of potential sensitivity to misspecification for
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many model families.
Yet as we additionally consider, for probabilistic prediction problems aggregation strategies can at

least ameliorate these challenges. Of course, aggregation approaches are familiar throughout statistical
learning [35, 10, 37], but we believe their potential for improvement beyond “optimal” point estimators
remains unexplored; our results provide one lens for viewing this problem.
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A Proof of Theorem 1

Before we give the proof of the theorem proper, we first recall Le Cam’s method. As we consider the
excess loss, central to our development is the following separation quantity [cf. 12, Sec. 5].

Definition A.1 (Separation). Let f1 : Θ→ R, f2 : Θ→ R. Their separation with respect to Θ is

sep(f1, f2,Θ) := sup

{
ε ≥ 0 | f1(θ) ≤ infθ∈Θ f1(θ) + ε implies f2(θ) > infθ∈Θ f2(θ) + ε

f2(θ) ≤ infθ∈Θ f2(θ) + ε implies f1(θ) > infθ∈Θ f1(θ) + ε,
all θ ∈ Θ

}
.

This separation measures the extent to which minimizing a function f1 means that one cannot minimize
a function f2, and by a standard reduction of estimation and optimization to testing—if one can optimize
well, then one can decide whether one is optimizing f1 or f2—we have Le Cam’s method. (See [12,
Sec. 5.2] for this specific form.)

Lemma 8 (Le Cam’s Method). Let v ∈ {±1} and Pv be arbitrary distributions on a set Z and
fv : Θ→ R be functions similarly indexed by v ∈ {±1}, where f?

v = infθ∈Θ fv(θ). Then

inf
θ̂

max
v∈{−1,1}

EPn
v

[
fv(θ̂(Z1, . . . , Zn))− f?

v

]
≥ sep(f1, f−1,Θ)

(
1−

√
n

2
Dkl (P1||P−1)

)
,

where the infimum is over θ̂ : Zn → Θ and the expectation is over Zi
iid∼ Pv.

To use Lemma 8 to prove lower bounds, then, the key is to show that for a given loss L, there are
distributions P1, P−1 that induce a large separation in the risks RiskPv while having small KL-divergence.
The basic approach, familiar from other lower bounds [12, 41], is to show that for some constants
0 < c0, c1 <∞ and a power β ≥ 0, we can choose P±1 to scale with a desired rate ε via

sep(RiskP1 ,RiskP−1 ,Θ) ≥ c0ε
β while Dkl (P1||P−1) ≤ c1ε

2.

Given these separation and divergence bounds, it is then evidently the case that we may choose ε2 = 1
2c1n

,
which immediately yields a lower bound via Lemma 8 scaling as

c0

(
1

2c1n

)β/2

.

Thus any lower bounds we prove become larger as the separation rate β decreases or constant c0 grows.
The next lemma does precisely this, though there is some sophistication required because of the different
constraints on our losses.

Lemma 9. Let the loss take the form L(pθ(y | x)) = `(θTx, y). Let ε ∈ [0, 35 ], y ∈ Y, and t ∈ R, and
q?` (t, y) be as in definition (5). Assume t and δ ≥ 0 jointly satisfy

sup
|∆|≤δ

δ`′′(t+∆, y) ≤ εq?` (t, y)|`′(t, y)| and 2(t2 + δ2) ≤ R2B2. (12)

Then for any X ⊃ {x ∈ R
d | ‖x‖2 ≤ R}, there exist distributions {P±1} on X × Y such that

sep(RiskP1 ,RiskP−1 ,Θ) ≥ q?` (t, y)

2
|`′(t, y)|δ · ε

while
Dkl (P1||P−1) ≤ q?` (t, y)ε

2.
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We prove Lemma 9 in Appendix A.2.
Now we leverage Lemma 9 to provide a minimax risk bound over γ variation distance perturbations.

The key here is that the family {Pθ} restricts only conditional distributions—the marginal distribution
over X ∈ X may be arbitrary—allowing us to give appropriate mixtures.

Lemma 10. Assume that X ⊃ {x ∈ R
d | ‖x‖2 ≤ R} and let P±1 be distributions on X × Y. Let

γ ∈ [0, 1]. Then there exists a distribution P0 ∈ {Pθ}θ∈Θ such that for Q±γ := (1− γ)P0 + γP±1,

sep(RiskQγ ,RiskQ−γ ,Θ) = γ sep(RiskP1 ,RiskP−1 ,Θ) and Dkl (Qγ ||Q−γ) ≤ γDkl (P1||P−1) .

See Appendix A.3 for the short proof of the result.
With Lemma 10 in hand we can now prove Theorem 1.

A.1 Proof of Theorem 1 proper

First, recalling the perturbed minimax risk from Definition 1.1,

Mn(Θ,Γ, γ) := inf
p̂n∈Γ

sup
θ∈Θ

sup
P :‖P−Pθ‖TV≤γ

EPn [RiskΘP (p̂n)],

where the infimum is over all procedures. Now, let (ε, y, t, δ) be any collection satisfying the conditions
of Lemma 9 and {P±1} be the distributions the lemma guarantees exist. Additionally, let Q±γ be the
perturbed distributions Lemma 10 provides, so that there exists P0 ∈ {Pθ} such that ‖P0 −Q±γ‖TV ≤
γ ‖P0 − P±1‖TV ≤ γ. Then we immediately obtain

Mn(Θ,Γ, γ) ≥ inf
θ̂n

max
v∈±1

EQn
vγ

[
RiskΘQvγ

(θ̂n)
]

(i)

≥ sep(RiskQγ ,RiskQ−γ ,Θ)

(
1−

√
n

2
Dkl (Qγ ||Q−γ)

)

(ii)

≥ γ sep(RiskP1 ,RiskP−1 ,Θ)

(
1−

√
nγ

2
Dkl (P1||P−1)

)

(iii)

≥ γq?` (t, y)|`′(t, y)|δ
2

ε

(
1−

√
nγq?` (t, y)ε

2/2

)
,

where inequality (i) is Le Cam’s inequality (Lemma 8), inequality (ii) follows via Lemma 10, and
Lemma 9 gives inequality (iii) whenever ε ≤ 3

5 . Choosing ε2 = 1
2nγq?` (t,y)

(where we use that n is large

enough that ε2 ≤ 1
3) yields the lower bound

Mn(Θ,Γ, γ) ≥
√

γq?` (t, y)

4
√
n

|`′(t, y)|δ (13)

valid for all δ ≥ 0 satisfying

δ ≤ |`′(t, y)|
sup|∆|≤δ `

′′(t+∆, y)

√
q?` (t, y)√
2nγ

.

This is circular, but we note that if we define

mn(δ) = mn(δ, t, y, `, γ) := min

{
δ,

|`′(t, y)|
sup|∆|≤δ `

′′(t+∆, y)

√
q?` (t, y)√
2nγ

}
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then mn(δ) satisfies mn(δ) ≤ |`′(t,y)|
sup|∆|≤mn(δ) `

′′(t+∆,y)

√
q?` (t,y)√
2nγ

, and substituting mn(δ) for δ in the lower

bound (13) gives

Mn(Θ,Γ, γ) ≥
√
γq?` (t, y)

4
√
n

|`′(t, y)|min

{
δ,

|`′(t, y)|
sup|∆|≤δ `

′′(t+∆, y)

√
q?` (t, y)√
2nγ

}
,

valid for all δ ≥ 0 satisfying 2(t2 + δ2) ≤ R2B2 as in Eq. (12).

A.2 Proof of Lemma 9

Recall throughout that ε ∈ [0, 1]. We provide the proof in two parts. In the first, we demonstrate the
claimed risk separation by a Taylor approximation argument, and in the second, we provide the claimed
bound on the KL divergence.

To show the risk separation, choose orthogonal vectors v, w ∈ R
d satisfying ‖v‖2 = ‖w‖2 = R/

√
2

and 〈v, w〉 = 0, so that ‖v ± w‖2 = R. For values q ∈ [0, 1], α ∈ [−1, 1], and y0 ∈ Y to be specified
presently, we consider distributions on R

d × Y defined for σ ∈ {−1, 0, 1} by

Pi : (X,Y ) =





(αv, y0) with probability 1− q

(v + w, y) with probability q
2(1 + σε)

(v − w, y) with probability q
2(1− σε).

(14)

In this case, the risk evidently satisfies

RiskP0(θ) = (1− q)`(αθT v, y0) +
q

2

[
`(θT (v + w), y) + `(θT (v − w), y)

]
.

We now construct its minimizer by judicious choice of q, where scaling by α ∈ [−1, 1] is sometimes
necessary. Define θ0 =

2
R2 tv, so that ‖θ0‖2 =

√
2t/R ≤ B, θT0 w = 0 and θT0 v = t, and

∇RiskP0(θ0) = α(1− q)`′(αt, y0)v + q`′(t, y)v,

so that if

q =
α`′(αt, y0)

α`′(αt, y0)− `′(t, y)

satisfies q ∈ [0, 1], we have ∇RiskP0(θ0) = 0 and θ0 ∈ argminθ∈Θ RiskP0(θ). In particular, we may choose

q = q?` (t, y) := sup
y0∈Y,α∈[−1,1]

{
α`′(αt, y0)

α`′(αt, y0)− `′(t, y)
s.t. sign(α`′(αt, y0)) 6= sign(`′(t, y))

}
.

We will perform a Taylor approximation of the risks RiskPσ for σ ∈ {±1} around θ0 to show the
desired separation bound. To that end, for δ ∈ R define the shifted vector

θδ :=
2

R2
(tv + δw) = θ0 +

2δ

R2
w,

for which we have ‖θδ‖22 = 2(t2 + δ2)/R2 and θTδ (v ± w) = t± δ. Using the risk expansion

RiskPσ(θ) = RiskP0(θ) +
qσε

2

[
`(θT (v + w), y)− `(θT (v − w), y)

]
(15)

and the Taylor approximation

`(t+ δ, y) = `(t, y) + `′(t, y)δ +
δ2

2
`′′(t+∆, y) for some ∆ ∈ [0, δ],
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we obtain

RiskPσ(θδ) = (1− q)`(t, y0) + q`(t, y) + σεq`′(t, y) · δ + δ2

2
rem(δ)

= RiskP0(θ0) + σεq`′(t, y) · δ + δ2

2
rem(δ),

where the remainder term |rem(δ)| ≤ sup|∆|≤δ `
′′(t+∆, y). In particular, if |δ| is small enough that the

conditions (12) hold, that is,

sup
|∆|≤|δ|

|δ|`′′(t+∆, y) ≤ εq|`′(t, y)| and 2(t2 + δ2) ≤ R2B2,

then setting s = − sign(σ`′(t, y)) and letting δ ≥ 0 satisfy the conditions (12), we have θsδ ∈ Θ and

inf
θ∈Θ

RiskPσ(θ) ≤ RiskPσ(θsδ) ≤ RiskP0(θ0)−
qε

2
|`′(t, y)|δ.

Combining this inequality with the risk expansion (15), we see immediately that if θ ∈ Θ satisfies
`(θT (v + w), y) ≥ `(θT (v − w), y) then

RiskP1(θ) ≥ inf
θ∈Θ

RiskP1(θ) +
qε

2
|`′(t, y)|δ,

and conversely `(θT (v − w), y) ≤ `(θT (v − w), y) implies

RiskP−1(θ) ≥ inf
θ∈Θ

RiskP1(θ) +
qε

2
|`′(t, y)|δ.

As θ0 minimizes RiskP0 , the expansion (15) implies that any θ minimizing RiskPi(θ) over Θ necessarily
satisfies σ[`(θT (v + w), y)− `(θT (v − w), y)] < 0, so we obtain the risk separation

sep(RiskΘP1
,RiskΘP−1

,Θ) ≥ qε

2
|`′(t, y)|δ,

valid for any δ satisfying the constraints (12), which proves the claimed risk separation in the lemma.
To see the KL bound in Lemma 9, we note that for any pair of distributions of the form (14), we

have

Dkl (P1||P−1) =
q(1 + ε)

2
log

1 + ε

1− ε
+

q(1− ε)

2
log

1− ε

1 + ε
= qε log

1 + ε

1− ε

(?)

≤ qε2,

where inequality (?) is valid for ε ≤ 3
5 .

A.3 Proof of Lemma 10

Let P0 have any distribution on Y | X and P0(X = 0) = 1, that is, the marginal over X is supported
completely on 0. Then it is immediate that for Q±γ = (1− γ)P0 + γP±1, we have

RiskQ±γ (θ) = (1− γ)EP0 [`(0, Y )] + γRiskP±1(θ),

and therefore RiskΘQ±γ
(θ) = γRiskΘP±1

(θ). It is therefore immediate that sep(RiskQγ ,RiskQ−γ ,Θ) =
γ sep(RiskP1 ,RiskP−1 ,Θ). For the gap on the KL divergence, we use joint convexity to obtain

Dkl (Qγ ||Q−γ) = Dkl ((1− γ)P0 + γP1||(1− γ)P0 + γP−1) ≤ (1− γ)Dkl (P0||P0)︸ ︷︷ ︸
=0

+γDkl (P1||P−1) .
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A.4 Proof of Proposition 2

By assumption, there exist t, y, y0 satisfying `′(t, y)`′(t, y0) < 0, and `′′(t, y) = 0. Then it is evidently
the case that q?` ≡ q?` (t, y) > 0, so that we obtain the lower bound

Lin(`,Y, R,B, n, γ) ≥ c sup
0≤δ≤RB/2

|`′(t, y)|min

{
δ
√

γq?` ,
|`′(t, y)|

sup|∆|≤δ `
′′(t+∆, y)

q?`√
2n

}
.

Now, we recall that ` is C3 near t and by assumption `′′(t, y) = 0, for all suitably small δ we obtain
|`′′(t+∆, y)| ≥ |`′′′(t, y)||∆|/2, and so in particular for all small δ,

Lin(`,Y, R,B, n, γ) ≥ c|`′(t, y)|min

{
δ
√

γq?` ,
2|`′(t, y)|
|`′′′(t, y)|δ

q?`√
2n

}
.

Set δ2 = 1√
n

to obtain that for some problem-dependent constant cprob, we have Lin(`,Y, R,B, n, γ) ≥
cprob

1
n1/4 . Substitute this lower bound in Theorem 1.

B Technical appendices

B.1 Proofs of mixability in Table 1

We assume that Y is discrete and of size k (it is not difficult to obtain a result when Y = N), so that we
may identify distributions on Y with vectors p ∈ ∆k := {v ∈ Rk

+ | 1T v = 1}, the probability simplex in
R
k. Consider any C2 function h : ∆→ R, noting that

∇ exp(−ηh(p)) = −η exp(−ηh(p))∇h(p),
∇2 exp(−ηh(p)) = η exp(−ηh(p))

[
η∇h(p)∇h(p)T −∇2h(p)

]
.

We consider each of the columns of the table in turn. Thus to demonstrate exp-concavity it is sufficient
that ∇2h(p) � η∇h(p)∇h(p)T for all p ∈ ∆k.

1. For Llog, we take h(p) = − log p, for which it is immediate that η = 1 suffices as exp(−h(p)) = p.

2. For Lsq, we have h(p) = 1
2(p− 1)2, h′(p) = (p− 1), and h′′(p) = 1, so η = 1 suffices.

3. For Lhel, we have h(p) = (
√
p− 1)2 = p− 2

√
p+ 1, h′(p) = 1− 1√

p , and h′′(p) = 1
2p3/2

. Thus, we seek

η such that
1

2p3/2
≥ η(1− 1/

√
p)2 or

1

2
≥ η(p3/2 − 2p+

√
p)

for all p ∈ [0, 1]. Letting β =
√
p and solving for the stationary points of β3−2β+β at

√
p = β = 1/3

and β = 1, we see it is sufficient that 1 ≥ 2η(1/27− 2/9 + 1/3) = 8
27η, or η ≤ 27

8 .

4. For Lquad, we have h(p) = 1
2 ‖p− ey‖22, so it suffices that I − η(p− ey)(p− ey)

T � 0, or η ≤ 1
2 .

B.2 Proof of Theorem 5

Recall Definition A.1 of the separation between two functions. We first recall the essentially standard
reduction of estimation to testing, which proceeds as follows. Let V be a finite set indexing a collection
{Pv}v∈V of distributions on X × Y and a collection of functions {fv}. Consider the following process:

draw V ∈ V uniformly at random, and conditional on V = v, observe (Xi, Yi)
iid∼ Pv for i = 1, 2, . . . , n.

Then we have the following lemma, which reduces optimization of fv to testing the index V (see, e.g. [12,
Sec. 5] or [41, Ch. 15]).
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Lemma 11. Let f?
v = infθ∈Θ fv(θ) for v ∈ V. Then

inf
θ̂n

max
v∈V

EPn
v

[
fv(θ̂n(X

n
1 , Y

n
1 ))− f?

v

]
≥ min

v 6=w∈V
sep(fv, fw,Θ) · inf

Ψ̂n

P(Ψ̂n(X
n
1 , Y

n
1 ) 6= V ),

where the infima are over procedures θ̂n : X n × Yn → Θ and all measurable functions Ψ̂n, respectively.

We thus lower bound the probability of error in testing, Ψ̂ 6= V , for which we use Fano’s inequality [9]:

Lemma 12 (Fano’s Inequality). Let I(V ;Xn
1 , Y

n
1 ) be the (Shannon) mutual information between V and

(Xn
1 , Y

n
1 ), where (Xi, Yi)

iid∼ Pv conditional on V = v and V is uniform on V. Then for any Ψ̂,

P(Ψ̂(Xn
1 , Y

n
1 ) 6= V ) ≥ 1− I(V ;Xn

1 , Y
n
1 ) + log 2

log |V| .

Now, we define the collection of problems we consider and their induced risks. Let X be uniform on
{±1}d, and let

pθ(y | x) = exp(yθTx−A(θTx))

be the density of Pθ with respect to the base measure ν. For a value δ ≥ 0 to be chosen, let Pv be the
joint distribution on (X,Y ) with θ = δv. We first demonstrate that these induce a separation in the
expected log loss of a predictive distribution p(· | x), where for such a p we define the risk

Riskδv(p) := EPv [Llog(p(· | X), Y )] = EPv [− log p(Y | X)],

where we note that pδv minimizes Riskδv as it is well-specified. The key to applying Lemmas 11 and 12
are the following two technical results, which respectively lower bound the separation and upper bound
the KL-divergence between distributions. We defer proofs to Sections B.2.1 and B.2.2.

Lemma 13. Let P be the collection of all conditional probability distributions on Y | X. There exists a
constant C(A) depending only on the log partition function A(·) such that for all δ ≥ 0 and u, v ∈ R

d,

sep(Riskδv,Riskδw,P) ≥
1

16
A′′(0)δ2 ‖v − w‖22 − C(A)δ3d3/2max{‖v‖2 , ‖w‖2}3.

Lemma 14. For v ∈ R
d, let Pδv denote the joint distribution over X ∼ Uni({−1, 1}d) and Y | X = x

having exponential family density pδv(y | x) = exp(yθTx − A(θTx)). There exists a constant C(A)
depending only on the log partition function A(·) such that for all δ ∈ [0, 1] and u, v satisfying ‖u‖2 ≤ 1,
‖v‖2 ≤ 1,

Dkl (Pδv||Pδw) ≤
δ2

2
A′′(0) ‖v − w‖22 + C(A)δ3 ‖v − w‖32 .

With these two lemmas, the result is relatively straightforward. We consider two cases: that d ≥ 8
and (for completeness) that d ≤ 8, which we defer temporarily. Let d ≥ 8. By a standard volume
argument [41, Ch. 15], there exists a packing set V ⊂ {v ∈ R

d | ‖v‖2 = 1} of the `2 sphere satisfying
|V| ≥ exp(d/4) and ‖v − w‖2 ≥ 1

2 for each v 6= w ∈ V. Let V be uniform on V as in our construction
above. Then naive bounds on the mutual information I(V ;Xn

1 , Y
n
1 ) yield that

I(V ;Xn
1 , Y

n
1 ) ≤ 1

|V|2
∑

v,w∈V
Dkl (P

n
v ||Pn

w)
(?)

≤ n · 1

|V|2
∑

v,w∈V
δ2A′′(0) ‖v − w‖22 ≤ 4nδ2A′′(0),

where inequality (?) holds for any sufficiently small δ ≥ 0 by Lemma 14. Applying Lemmas 11 and 13
by noting that ‖v − w‖2 ≥ 1

2 , there exists a numerical constant c > 0 such that for small enough δ ≥ 0,

Mn(Θ,P, 0) ≥ cA′′(0)δ2 inf
Ψ̂n

P(Ψ̂n(X
n
1 , Y

n
1 ) 6= V )

≥ cA′′(0)δ2
(
1− I(V ;Xn

1 , Y
n
1 ) + log 2

log |V|

)
,
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where the second inequality is Fano’s inequality (Lemma 12). Applying the preceding bound on the
mutual information and that log |V| ≥ d/4 then implies

Mn(Θ,P, 0) ≥ cA′′(0)δ2
(
1− 16nδ2A′′(0) + 4 log 2

d

)
.

Choosing δ2 = d
32A′′(0)n then gives the theorem in the case that d ≥ 8.

For the final case that d ≤ 8, we apply Le Cam’s method as in our proof of Theorem 1. We assume
that d = 1, as increasing the dimension simply increases the risk bound, and let X ∼ Uni({−1, 1}).
Recalling Lemma 8, we apply Lemmas 13 and 14 to obtain

Mn(Θ,P, 0) ≥ cA′′(0)δ2
(
1−

√
Cnδ2A′′(0)

)
,

where 0 < c and C <∞ are numerical constants. Setting δ2 = 1
4CnA′′(0) then yields the result.

B.2.1 Proof of Lemma 13

We define the excess risk functional

fδv(p) := Riskδv(p)− inf
p
Riskδv(p) = EPv

[
log

pδv(Y | X)

p(Y | X)

]
= E [Dkl (pδv(· | X)||p(· | X))] ,

where we have used that the exponential family model pδv minimizes Riskδv, and we note that

sep(fδv, fδw,P) ≥
1

2
inf
p∈P
{fδv(p) + fδw(p)}

(this inequality is valid for any functions and set P). Thus

2 sep(Riskδv,Riskδw,P) = 2 sep(fδv, fδw,P) ≥ E

[
inf
p
{Dkl (pδv(· | X)||p) +Dkl (pδw(· | X)||p)}

]
.

Now we use that for any three distributions P0, P1, Q, if P = 1
2(P0 + P1) then

Dkl (P0||Q) +Dkl (P1||Q) = Dkl

(
P0||P

)
+Dkl

(
P1||P

)
+ 2Dkl

(
P ||Q

)
≥ Dkl

(
P0||P

)
+Dkl

(
P1||P

)
,

and substituting this into the preceding lower bound on the separation gives

2 sep(Riskδv,Riskδw,P) ≥ E [Dkl (pδv(· | X)||(1/2)(pδv(· | X) + pδw(· | X)))]

+ E [Dkl (pδw(· | X)||(1/2)(pδv(· | X) + pδw(· | X)))] ,
(16)

where the outer expectation is over X ∼ Uni({−1, 1}d).
We now provide an asymptotic lower bound on the KL divergences, focusing on a single term given

X = x in the lower bound (16). By a Taylor expansion,

log(1 + et) = log 2 +
t

2
+

t2

8
±O(1)t3,

where O(1) denotes a universal numerical constant and the expansion is valid for all t ∈ R because
t 7→ log(1 + et) is 1-Lipschitz. Using the shorthand t = δvTx and u = δwTx and pt(y) = pδv(· | x) and
similarly for pu, we have

Dkl (pt||(1/2)(pt + pu)) =

∫
pt(y) log

2

1 + pu(y)/pt(y)
dν

=

∫
pt(y)

[
log 2− log

(
1 + ey(u−t)−(A(u)−A(t))

)]
dν

=

∫
pt(y)

[
y(t− u) +A(u)−A(t)

2
− (y(t− u) +A(u)−A(t))2

8
±O(1)(y(t− u) +A(u)−A(t))3

]
dν.
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By standard properties of exponential families, if Et denotes expectation under pt, we have A′(t) = Et[Y ],
and A is C∞ near 0, so that A(u)−A(t) = A′(t)(u− t) + 1

2(u− t)2A′′(ũ) for some ũ ∈ [u, t]. We may
thus write

Dkl (pt||(1/2)(pt + pu))

=

∫
pt(y)

[
(y −A′(t))(t− u)

2
+

(u− t)2A′′(ũ)
4

−
(
(y −A′(t))(t− u) + (u− t)2A′′(ũ)/2

)2

8

±O(1)
[
|y −A′(t)|3|t− u|3 + (t− u)6A′′(ũ)3

] ]
dν

=
1

4
A′′(ũ)(u− t)2 − 1

8
A′′(t)(u− t)2 − 1

32
A′′(ũ)2(u− t)4 ±O(1)Et[|Y − Et[Y ]|3]|t− u|3.

As A(·) exists in a neighborhood of 0, the moment generating functions of pt, pu exist, this expansion is
uniform in u, t near 0, and so we obtain

Dkl (pt||(1/2)(pt + pu)) =
1

8
(u− t)2A′′(0)± C(A)|u− t|3, (17)

where C(A) is a constant depending on the log partition function A(·), and the expansion is uniform for
u, t in a neighborhood of 0.

Finally, we recall that t = δvTx and u = δwTx, and as |vTx| ≤ ‖v‖2 ‖x‖2, we have the lower bound

inf
p
{Dkl (pδv(· | x)||p) +Dkl (pδw(· | x)||p)} ≥

1

8
A′′(0)δ2(xT (w − v))2 − C(A)δ3d3/2max{‖w‖2 , ‖v‖2}3.

Substituting this into our lower bound (16) and using that E[XXT ] = Id by construction then gives the
lemma.

B.2.2 Proof of Lemma 14

Without loss of generality, assume that ‖v‖2 ≥ ‖w‖2. We have

Dkl (Pδv||Pδw) = E [Dkl (pδv(· | X)||pδw(· | X))] .

Fix x temporarily, and consider the inner KL-divergence term. As in the proof of Lemma 13, we use
the shorthands t = δvTx, u = δwTx, pt = pδv(· | x) and pu = pδw(· | x), noting that |t| ≤ δ

√
d ‖v‖2 and

similarly for u. Then writing Et for expectation under pt, we have

Dkl (pt||pu) = Et [Y (t− u)] +A(u)−A(t) = A(u)−A(t)−A′(t)(u− t) =
1

2
A′′(ũ)(u− t)2,

where ũ ∈ [u, t]. As A is C∞ near 0, we obtain that for a constant C(A) depending only on A that

Dkl (pt||pu) ≤
1

2
A′′(0)(u− t)2 + C(A)|u− t|3,

valid for all u, t ∈ [−δ
√
d ‖v‖2 , δ

√
d ‖v‖2]. We we obtain

Dkl (Pδv||Pδw) ≤
δ2

2
A′′(0)E[(XT (v − w))2] + C(A)δ3E[|XT (v − w)|3],

and using E[(XT (v − w))2] = ‖v − w‖22 and E[|XT v|3] . ‖v‖32 for X ∼ Uni({−1, 1}d) gives the lemma.
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B.3 Proof of Theorem 6

Recall θ̂n = argminθ∈Θ Riskn(θ) and Definition 3.1. For shorthand, we use the standard empirical process
notation that Pf = EP [f ] and Pnf = 1

n

∑n
i=1 f(Xi, Yi). Let δn > 0 be any sequence satisfying

log log n

n
� δ2n �

1√
n
.

We will define a “good event,” which is roughly that the empirical risk Riskn approximates the true risk
RiskP well and a local quadratic approximation to both is accurate, and perform our analysis (essentially)
conditional on this good event. To that end, let λmin = λmin(∇2RiskP (θ

?) and λmax = λmax(∇2RiskP (θ
?))

be the minimum and maximum eigenvalues of ∇2RiskP (θ
?). Recall that ε1 > 0 is the radius of the ball

on which ∇2L(pθ(· | x), y) is MLip,2(x, y) Lipschitz (Def. 3.1), and for an ε > 0 to be determined

En :=
{
PnMLip,2 ≤ 2PMLip,2,

λmin

2
I � ∇2Riskn(θ) � 2λmaxI for ‖θ − θ?‖2 ≤ ε, ‖θ̂n − θ?‖2 ≤ δn

}
.

(18)

We prove the theorem in a series of lemmas. The first shows that En occurs eventually, and the
remainder we will demonstrate hold on the event.

Lemma 15. For all sufficiently small ε > 0, En happens eventually. That is, there is a (random) N ,
finite with probability 1, such that En occurs for all n ≥ N .

Proof. By the strong law of large numbers, we have PnMLip,2
a.s.→ PMLip,2, so that PnMLip,2 ≤

2PMLip,2 eventually, while Definition 3.1 implies that |||∇2Riskn(θ)−∇2Riskn(θ
?)|||op ≤ 2PMLip,2ε

for all ‖θ − θ?‖2 ≤ ε1 on the same event. Whenever ε is small enough that PMLip,2ε ≤ λmax
2 and

PMLip,2ε ≤ λmin
4 , we then obtain that λmin

2 I � ∇2Riskn(θ) � 2λmaxI by choosing

ε ≤ min

{
ε1,

λmin

4PMLip,2

}
.

Finally, we argue that ‖θ̂n − θ?‖2 ≤ δn eventually. A standard argument [36, Thm. 5.7] and the Glivenko
Cantelli theorem, which implies supθ∈Θ |Riskn(θ)− RiskP (θ)| a.s.→ 0 by the compactness of Θ, gives the

consistency θ̂n
a.s.→ θ?. As θ? ∈ intΘ, Taylor’s theorem implies that

0 = ∇Riskn(θ̂n) = ∇Riskn(θ?) + (∇2Riskn(θ
?) + En(θ̂n, θ

?))(θ̂n − θ?),

where En is an error matrix that Definition 3.1 implies satisfies

|||En|||op ≤
1

n

n∑

i=1

MLip,2(Xi, Yi)‖θ̂n − θ?‖2.

Thus |||En|||op
a.s.→ 0, and as∇2Riskn(θ

?)
a.s.→ ∇2Risk(θ?), we have θ̂n−θ? = −(∇2Risk(θ?)+E′

n)
−1∇Riskn(θ?),

where E′
n

a.s.→ 0 is an error matrix. By the a.s. convergence E′
n → 0 and law of the iterated logarithm,

lim sup
n

√
n

log log n

∥∥(∇2Risk(θ?) + E′
n)

−1∇Riskn(θ?)
∥∥
2

≤
∣∣∣∣∣∣∇2Risk(θ?)−1

∣∣∣∣∣∣
op

lim sup
n

√
n

log log n
‖∇Riskn(θ?)‖2 <∞

with probability 1. In particular, whenever δ2n � log logn
n , we have ‖θ̂n − θ?‖2 ≤ δn eventually.
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An immediate consequence of the identifiability condition (iii) in Definition 3.1 and Taylor’s theorem
is the following lemma.

Lemma 16. For all large enough n, on event En we have

Riskn(θ) ≤ Riskn(θ̂n) + 2λmax‖θ − θ̂n‖22 for all ‖θ − θ̂n‖2 ≤ δn

and

Riskn(θ) ≥ Riskn(θ̂n) +
1

4
λminδ

2
n for all θ ∈ Θ s.t. ‖θ − θ̂n‖2 ≥ δn.

Finally, we show that on En we have

∥∥∥∥µ̂
Vovk

n,η − N
(
θ̂n,

1

n
∇2Riskn(θ̂n)

−1
)∥∥∥∥

TV

→ 0.

For shorthand, let πn be the probability distribution N(θ̂n,
1
n∇2Riskn(θ̂n)

−1). We split the variation
distance into two terms. Let Bn = δnB

d
2 be an `2 ball of radius δn. Then

2
∥∥∥µ̂Vovk

n,η − πn

∥∥∥
TV

=

∫

θ̂n+Bn

|dµ̂Vovk

n,η − dπn|
︸ ︷︷ ︸

=:T1

+

∫

Θ\{θ̂n+Bn}
|dµ̂Vovk

n,η − dπn|
︸ ︷︷ ︸

=:T2

+πn(Θ
c)︸ ︷︷ ︸

=:T3

. (19)

We bound each of the terms Ti in turn. For the second term, we compute bounds on the densities
themselves. Let θ ∈ Θ \ {θ̂n +Bn}. Then for any c > 0 small enough that λmin

4 − 2c2λmax =: K > 0,

d

dθ
µ̂Vovk

n,η (θ) =
exp(−nRiskn(θ))∫

Θ exp(−nRiskn(θ′))dθ′
≤ exp(−nRiskn(θ))∫

θ̂n+cBn
exp(−nRiskn(θ′))dθ′

(i)

≤ exp(−λmin
4 nδ2n)

exp(−2λmaxc2δ2n)Vol(cBn)
= exp

(
−nKδ2n + d log

1

cδn
− cd

)
,

where inequality (i) follows from Lemma 16 and cd = logVol(Bd
2) is the log volume of the `2-ball. A

completely analogous calculation gives

d

dθ
πn(θ) =

exp(−n
2 (θ − θ̂n)

T∇2Riskn(θ̂n)(θ − θ̂n))∫
exp(−n

2 (θ
′ − θ̂n)T∇2Riskn(θ̂n)(θ′ − θ̂n))dθ′

≤ exp(−λmin
4 nδ2n)

exp(−2λmaxc2δ2n)Vol(cBn)
= exp

(
−nKδ2n + d log

1

cδn
− cd

)
,

where the inequality uses the definition (18) of En. In particular, setting the constant c = 1
4

√
λmin
λmax

, the

term K = 1
8λmin and we may bound term T2 in expression (19) by

T2 ≤ 2Vol(Θ) exp

(
−nKδ2n +

d

2
log

16λmax

λminδ2n
− cd

)
→ 0,

as δn � 1√
n

and δn → 0.

Let us turn to term T1 in expression (19). For sets A ⊂ R
d we define the normalizing constants

ZN

A,n :=

∫

A
exp

(
−n

2
(θ − θ̂n)

T∇2Riskn(θ̂n)(θ − θ̂n)
)
dθ and ZVovk

A,n :=

∫

A
exp

(
−n(Riskn(θ)− Riskn(θ̂n))

)
dθ.
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Changing notation slightly to let Bn = θ̂n + δnB
d
2, Lemma 16 implies the inequalies

max
{
ZVovk

Θ\Bn,n
, ZN

Θ\Bn,n

}
≤ Vol(Θ) exp

(
−λmin

4
nδ2n

)

and
min

{
ZN

Bn,n, Z
Vovk

Bn,n

}
≥ exp(−2nλmaxc

2δ2n)Vol(cδnB
d
2),

valid for any c ≤ 1. Thus, the ratio

ρn := max

{
ZVovk

Θ\Bn,n

ZN

Bn,n

,
ZN

Θ\Bn,n

ZVovk

Bn,n

}
≤ Vol(Θ) exp(−λmin

4 nδ2n)

exp(−2nλmaxc2δ2n)Vol(cδnB
d
2)

≤ Vol(Θ) exp

(
−nδ2n

(
λmin

4
− 2c2λmax

)
+ d log

1

cδn
− cd

)
,

where as before cd = logVol(Bd
2), so that for all small c > 0 we have ρn → 0 as n→∞ on the event En.

We may then bound the normalizing constant ratio by

ZVovk

Bn,n

ZN

Bn,n

+ ρn ≥
ZVovk

Bn,n
+ ZVovk

Θ\Bn,n

ZN

Bn,n

≥
ZVovk

Θ,n

ZN

Θ,n

≥
ZVovk

Bn,n

ZN

Bn,n
+ ZN

Θ\Bn,n

≥
(
ZN

Bn,n

ZVovk

Bn,n

+ ρn

)−1

. (20)

Performing a Taylor expansion, on En, for any θ ∈ Bn the Lipschitz continuity of ∇2Riskn(θ) implies

Riskn(θ) = Riskn(θ̂n) +
1

2
(θ − θ̂n)

T∇2Riskn(θ̂n)(θ − θ̂n)± PMLip,2 · δ3n.

Using this O(δ3n) remainder term, we then immediately obtain the ratio bounds

ZVovk

Bn,n

ZN

Bn,n

=

∫
Bn

exp
(
−n(Riskn(θ)− Riskn(θ̂n))

)
dθ

∫
Bn

exp(−n
2 (θ − θ̂n)T∇2Riskn(θ̂n)(θ − θ̂n))dθ

∈ exp
(
±PMLip,2 · δ3n

)
.

Substituting this containment in the inequalities (20), we find that for all large enough n, on the event
En in Eq. (18), we have the bounds

exp(−PMLip,2δ
3
n)−O(1)ρn ≤

ZVovk

Θ,n

ZN

Θ,n

≤ exp(PMLip,2 · δ3n) +O(1)ρn. (21)

Finally, we return to computing the densities in the term T1 in Eq. (19). Let ZN
n = ZN

Rd,n
, where

an argument similar to those above shows that ZN
n /Z

N

Θ,n → 1 as n → ∞. Defining the remainder

remn(θ) = Riskn(θ)−Riskn(θ̂n)− 1
2(θ−θ̂n)T∇2Riskn(θ̂n)(θ−θ̂n) and using that ‖remn(θ)‖2 ≤ PMLip,2 ·δ3n

for any θ ∈ Bn as above, the inequalities (21) imply

∣∣∣dµ̂Vovk

n,η (θ)− dπn(θ)
∣∣∣ /dθ = exp

(
−n

2
(θ − θ̂n)

T∇2Riskn(θ̂n)(θ − θ̂n)
) ∣∣∣∣∣

exp(−nrn(θ))
ZVovk

Θ,n

− 1

ZN
n

∣∣∣∣∣

≤ exp(−n
2 (θ − θ̂n)

T∇2Riskn(θ̂n)(θ − θ̂n))

ZN
n

[∣∣∣∣∣exp(−nPMLip,2 · δ3n)
ZN

Θ,n

ZVovk
n

− 1

∣∣∣∣∣+
∣∣∣∣∣
1

ZN
n

− 1

ZN

Θ,n

∣∣∣∣∣

]

Integrating over Bn and invoking inequality (21) then implies

T1 =

∫

Bn

|dµ̂Vovk

n,η − dπn| ≤
∫
Bn

exp(−n
2 (θ − θ̂n)

T∇2Riskn(θ̂n)(θ − θ̂n))

ZN
n

· o(1)→ 0.
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Lastly, we note that the final term T3 in the variation distance (19) satisfies πn(Θ
c)→ 0 as n→∞

as on event En, there is eventually a ball of some (fixed) radius ε > 0 such that θ̂n + εBd
2 ⊂ Θ, and

∇2Riskn(θ̂n) � (λmin/2)I. For Standard normal concentration results then immediately imply that
πn(Θ

c) ≤ πn({θ̂n + εBd
2}) → 0, as the variance of θ ∼ πn satisfies Eπn [‖θ − E[θ]‖22] ≤ C/n for some

problem-dependent C. We conclude that each of T1, T2, T3 → 0 in the variation distance (19).

B.4 Proof of Corollary 7

We again use the event En in Eq. (18) in the proof of Theorem 6 and log logn
n � δ2n � 1√

n
as well. Let

pn = P̂Vovk
n,η and µn = µ̂Vovk

n,η for shorthand, and let p
θ̂n

the the point model. Let Bn = θ̂n + n−1/4
B
d
2 be

a ball of radius n−1/4 around θ̂n, where for all large enough n, on En we have Bn ⊂ B ⊂ Θ, where we
recall that B is the neighborhood of θ? in Assumption 1. Then for the base measure ν on Y , we expand

2
∥∥∥pn(· | x)− p

θ̂n
(· | x)

∥∥∥
TV

=

∫ ∣∣∣∣
∫

Θ

(
pθ(y | x)− p

θ̂n
(y | x)

)
dµn(θ)

∣∣∣∣ dν(y)

≤ µn(Θ \Bn) +

∫ ∣∣∣∣
∫

Bn

(
pθ(y | x)− p

θ̂n
(y | x)

)
dµn(θ)

∣∣∣∣ dν(y).

By Theorem 6, we have µn(Θ \ Bn) → 0 on En. Now, let `θ = log pθ for shorthand, and also define
the shorthands ṗθ = ∇θpθ and ˙̀

θ = ∇θ`θ = ṗθ
pθ

. The Lipschitz condition on log pθ in Assumption 1

guarantees that (for large n) on the set Bn we have | ṗθ(y|x)pθ(y|x) | ≤ Lipp(x, y) for θ ∈ Bn. Writing

pθ(y | x)−pθ̂n(y | x) =
∫ 1

0
ṗ
tθ+(1−t)θ̂n

(y | x)T (θ−θ̂n)dt =
∫ 1

0

˙̀
tθ+(1−t)θ̂n

(y | x)T (θ−θ̂n)ptθ+(1−t)θ̂n
(y | x)dt,

we have

|pθ(y | x)− p
θ̂n
(y | x)| ≤ Lipp(x, y)‖θ − θ̂n‖2

∫ 1

0
p
tθ+(1−t)θ̂n

(y | x)dt.

Thus
∫

Y

∣∣∣∣
∫

Bn

(
pθ(y | x)− p

θ̂n
(y | x)

)
dµn(θ)

∣∣∣∣ dν(y)

≤
∫

Y

∫

Bn

Lipp(x, y)‖θ − θ̂n‖2
∫ 1

0
p
tθ+(1−t)θ̂n

(y | x)dtdµn(θ)dν(y)

=

∫ 1

0

∫

Bn

‖θ − θ̂n‖2
[∫

Y
Lipp(x, y)ptθ+(1−t)θ̂n

(y | x)dν(y)
]
dµn(θ)dt ≤ Lipp(x)n

−1/4

on En, and we have the desired convergence.
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