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Abstract

We provide a general constrained risk inequality that applies to arbitrary non-decreasing
losses, extending a result of Brown and Low [Ann. Stat. 1996 ]. Given two distributions P0

and P1, we find a lower bound for the risk of estimating a parameter »(P1) under P1 given
an upper bound on the risk of estimating the parameter »(P0) under P0. The inequality
is a useful pedagogical tool, as its proof relies only on the Cauchy-Schwartz inequality, it
applies to general losses, and it transparently gives risk lower bounds on super-efficient
and adaptive estimators.

1 Introduction

In the theory of optimality for statistical estimators, we wish to develop the tightest lower
bounds on estimation error possible. With this in mind, three desiderata make a completely
satisfying lower bound: it is distribution specific, in the sense that the lower bound is a
function of the specific distribution P generating the data; the lower bound is uniformly
achievable, in that there exist estimators achieving the lower bound uniformly over P in a
class P of distributions; and there is a super-efficiency result, so that if an estimator »̂ achieves
better risk than that indicated by the lower bound at a particular distribution P0, there exist
other distributions P1 where the estimator has worse risk than the bound. While for problems
of estimating a three or higher-dimensional quantity, the Stein phenomenon [10] shows that
satisfying all three of these desiderata is impossible, in the case of estimation of a real-valued
functional »(P ) of a distribution P , one can often develop such results. It is the purpose
of this pedagogical note to show a transparent proof of such lower bounds via a “hardest
one-dimensional subproblem” argument [11]. Our hope is that this perspective is useful for
explanation of the failures of super-efficient estimators, such as the Hodges’ estimator, which
must achieve inflated error away from points at which they are superefficient, or for researchers
who wish to simply develop lower bounds in functional estimation.

In classical one-parameter families of distributions, such as location families or exponen-
tial families, the Fisher Information governs estimation error in a way satisfying our three
desiderata of locality, achievability, and impossibility of super-efficiency, and in classical para-
metric problems, no estimator can be super-efficient on more than a set of measure zero
points [7, 13, 14]. Similarly satisfying results hold in other problems. In the case of estima-
tion of the value of a convex function f in white noise, for example, Cai and Low [2] provide
precisely such a result, characterizing a local modulus of continuity with properties analogous
to the Fisher information. For stochastic convex optimization problems, Chatterjee, Duchi,
Lafferty, and Zhu [3] give a computational analogue of the Fisher Information that governs
the difficulty of optimizing the function.

Key to many of these results, and to understanding nonparametric functional estimation
more broadly, is the constrained risk inequality of Brown and Low [1]. Brown and Low develop
a two-point inequality that is especially well-suited to providing lower bounds for adaptive
nonparametric function estimation problems, and they also show that it gives quantitative
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bounds on the mean-squared error of super-efficient estimators for one-parameter problems,
such as Gaussian mean estimation. Their work, however, relies strongly on using the squared
error loss—that is, the quality of an estimator »̂ for a parameter » is measured by E[(»̂2 »)2].
In many applications, it is interesting to evaluate the error in other metrics, such as absolute
error or the probability of deviation of the estimator »̂ away from the parameter » by more
than a specified amount. We extend Brown and Low’s work [1] by providing a constrained
risk inequality that applies to general (non-decreasing) losses. Our proof relies only on the
Cauchy–Schwarz inequality, so we can decouple the argument from the particular choice of
loss. There are more general results on lower bounds that demonstrate tradeoffs must exist,
such as Lepskii’s results on adaptivity in Gaussian white noise models [8] or [12, Theorem 6,
App. A1]. While (similar to [1]) our approach does not always provide sharp constants, the
constrained risk inequality allows us to provide finite sample lower bounds for estimation under
general losses, which brings us closer to the celebrated local asymptotic minimax theorem of
Le Cam and Hájek [e.g. 7, 14, Ch. 8.7]. To illustrate our results, we provide a applications
to estimation of a normal mean and certain efficient nonparametric estimation problems,
deferring technical proofs to Section 5.

2 The constrained risk inequality

We begin with our setting. Let P be a distribution on a sample space Z, and let »(P ) * R
k

be a parameter of interest. For predicting a point v * R
k when the distribution is P , the

estimator suffers loss
L(v, P ) := 3(‖v 2 »(P )‖2), (1)

where 3 : R+ ³ R+ is a non-decreasing scalar loss function. For Z > P and an estimator »̂ of
»(P ) based on Z, the risk of »̂ is then

R(»̂, P ) := EP

[
L(»̂, P )

]
= EP

[
3(‖»̂(Z)2 »(P )‖2)

]
.

The result to come relies on the similarity of two distributions to one another, and accordingly,
we define the Ç2-affinity by

Ã (P1||P0) := DÇ2 (P1‖P0) + 1 =

∫
dP 2

1

dP0
= E0

[
dP 2

1

dP 2
0

]
= E1

[
dP1

dP0

]
,

where E0 and E1 denote expectation under P0 and P1, respectively. With these definitions,
we have the following theorem, which gives a lower bound for the risk of the estimator »̂ on
a distribution P1 given an upper bound for its risk under P0.

Theorem 1. Assume 3 : R+ ³ R+ in the loss (1) is convex. Let »0 = »(P0) and »1 = »(P1),
and define the separation ∆ = 23(12 ‖»0 2 »1‖2). If the estimator »̂ satisfies R(»̂, P0) f ·, then

R(»̂, P1) g
[
∆1/2 2 (Ã(P1||P0) · ·)1/2

]2
+
. (2)

A few corollaries are possible. The first applies to more general (non-convex) loss functions.

Corollary 1. Let the conditions of Theorem 1 hold, except that 3 : R+ ³ R+ is an arbitrary

non-decreasing function. Define ∆ = 3(12 ‖»0 2 »1‖2). If the estimator »̂ satisfies R(»̂, P0) f ·,
then

R(»̂, P1) g
[
∆1/2 2 (Ã (P1||P0) ·)

1/2
]2
+
.
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We can also give a corollary with slightly sharper constants, which applies to the case that
we measure error using a power loss.

Corollary 2. In addition to the conditions of Theorem 1, assume 3(t) = tk for some k *
(0,>), and define ∆ = ‖»0 2 »1‖2. If the estimator »̂ satisfies R(»̂, P0) f ·k, then

R(»̂, P1) g
{[

∆k/2 2 (Ã(P1||P0) · ·k)1/2
]2
+

if 0 < k f 2
[
∆2 (Ã(P1||P0) · ·2)1/2

]k
+

if k g 2.
(3)

3 Examples

We provide three examples that apply to estimation of one-dimensional functionals to illus-
trate our results. For the first two, we consider Gaussian mean estimation, where the results
are simplest and cleanest to state, and which immediately demonstrate the failure of the
Hodges’ estimator. For the last set of examples, we consider super-efficient estimation in a
general family of nonparametric models.

3.1 Gaussian mean estimation

We provide two examples that apply to one-dimensional Gaussian mean estimation to illus-
trate our results. For the first, we consider a zero-one loss function indicating whether the
estimated mean is near the true mean. Fix Ã2 > 0 and let X1, . . . ,Xn be i.i.d. P» = N(», Ã2),
and let 3(t) = 1{|t| g Ã/

:
n}, so that

R(»̂, Pn
» ) = Pn

»

(
|»̂(X1, . . . ,Xn)2 »| g Ã:

n

)
,

where Pn
» denotes the n-fold product of Xi

iid> N(», Ã2). Now, let ·n * [0, 1], ·n ³ 0 be an
otherwise arbitrary sequence, and let 0 < c < 1 be a fixed constant. Define the sequence of
local alternative parameter spaces

Θn :=

{
» * R | 2 Ã:

n
f |»| f Ã:

n

√
c log

1

·n

}
.

We then have the following proposition.

Proposition 1. Let »̂n : Rn ³ R be a sequence of estimators satisfying R(»̂n, P
n
0 ) f ·n for

all n. Then

lim inf
n

inf
»*Θn

R(»̂n, P
n
» ) = lim inf

n
inf

»*Θn

Pn
»

(:
n|»̂n(X1, . . . ,Xn)2 »| g Ã

)
= 1.

Remark The Le Cam–Hájek asymptotic minimax theorem (cf. [13, 7]) implies that for
any symmetric, quasiconvex loss 3 : R

k ³ R+, if {P»}»*Θ is a suitably regular family of
distributions with Fisher information matrices I», then for any »0 * intΘ there exist sequences
of prior densities Ãn,c supported on {» * R

k | ‖» 2 »0‖2 f c/
:
n} such that

lim inf
c³>

lim inf
n

inf
»̂n

∫
E»[3(

:
n(»̂n 2 »))]dÃn,c(») g E[3(Z)] where Z > N(0, I21

»0
) (4)

(see [7, Lemma 6.6.5] and also [13, Eq. (9)]). This in turn implies that for Lebesgue-almost-
all », we have lim supn E»[3(

:
n(»̂n 2 »))] g E[3(Z)] for Z > N(0, I21

» ). For the indicator

3



loss 3(t) = 1{|t| g Ã}, these results imply that lim supn P»(|
:
n(»̂n 2 »)| g Ã) g 2Φ(21) for

almost all » in our normal mean setting, where Φ is the standard normal CDF. Proposition 1
strengthens this: if there exists a point of super-efficiency with asymptotic probability of error
0, then there exists a large set of points with asymptotic probability of error 1.

Proof. Assume that n is large enough that c log 1
·n

g 2, and let » * Θn. A calculation then
yields that

Ã(Pn
» ||Pn

0 ) = exp

(
n»2

Ã2

)
f exp

(
cÃ2n log 1

·n

Ã2n

)
= ·2c

n .

We also have that 3(12 |»|) = 1{|»| g 2Ã/
:
n} = 1, and substituting this into Corollary 1, we

obtain R(»̂, Pn
» ) g

[
12 ·12c

n

]2
+
. As c < 1, this quantity tends to 1 as n ³ >.

Let us consider Corollary 2 for our second application. In this case, we consider estimating

a Gaussian mean given Xi
iid> N(», 1), but we use the absolute error L(», P ) = |» 2 »(P )| as

our loss as opposed to the typical mean squared error.

Proposition 2. Let »̂ : Rn ³ R be an estimator such that R(»̂, Pn
0 ) f ë:

n
. Then for all

³ * [0, 1], there exists » such that

R(»̂, Pn
» ) g

√
³

n

[
4

√
log

1

ë
2 4

√
ë222³

³

]2

+

.

In particular, if ë f 1022, then there exists » with R(»̂, Pn
» ) g 1

4

√
log 1

ë

n .

Proof. Let ³ * [0, 1], to be chosen presently. Let » g 0 with »2 =
³ log 1

ë

n . Then we have
Ã(Pn

» ||Pn
0 ) = exp(n»2) = 1

ë³ and that ∆ = |»| in the notation of Corollary 2. The corollary
then implies

R(»̂, Pn
» ) g

[:
» 2

√
ë2³ë/

:
n

]2

+

=

:
³:
n

[
4

√
log

1

ë
2 4

√
ë222³

³

]2

+

.

The second result of the proposition follows by taking ³ = 1/8 and using the numerical fact

that that 4

√
log 1

ë 2
4
:
8ë7/4 g 4

√
log 1

ë/2 for ë f 1022.

As an example consequence of Proposition 2, consider the Hodges’ estimator

»̂Hodges
n :=

{
Xn if |Xn| g n21/4

0 otherwise,

where Xn := 1
n

∑n
i=1 Xi. At » = 0, this estimator satisfies

E[|»̂Hodges
n |] = E[|Xn|1{|Xn| g n21/4}] f

√
1

n
·
√

P0(|Xn| g n21/4) f
√

2

n
exp

(
2
:
n

2

)

by the standard tail bound that P(|Z| g t) f 2 exp(2t2/2Ã2) for Z > N(0, Ã2). In particular,
for all large enough n, there is a » * [0, n21/2] such that

E»[|»̂Hodges
n 2 »|] g 1

8n1/4
k 1:

n
.
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3.2 Super-efficient estimation in nonparametric models

It is often interesting to derive efficiency lower bounds outside of standard parametric models;
it is our experience that students are frequently curious about such quantities, especially
when they have seen only Fisher-information-based lower bounds. Conveniently, we can
also apply our results to estimation of functionals in general non-parametric models. In
this case, we focus on quantities where the classical asymptotic normality results apply, so
that there do indeed exist classically efficient estimators and an analogue of the Le Cam–
Hájek local asymptotic minimax theorems. We first present a general result that applies
to appropriately smooth parameters of the underlying distribution, which we subsequently
specialize to estimation of the mean of an arbitrary distribution with finite variance. We
adapt the classical idea of Stein [11], which constructs hardest one-dimensional subproblems,
following the treatment of van der Vaart [14, Chapter 25].

To set the stage, consider estimation of a parameter »(P0) * R of a distribution P0 on the
space Z. Letting P denote the collection of all distributions on Z, we consider sub-models
P0 ¢ P around P0 defined in terms of local perturbations of P0. In particular, let G ¢ L2(P0)
consist of those functions g : Z ³ R satisfy E0[g(Z)] = 0 and E0[g(Z)2] < >. For bounded
functions g * G, we may consider tilts of the distribution P0 of the form

dP (z) = (1 + tg(z))dP0(z)

for small t; however, as g may be unbounded, we require a bit more care. Following [14,
Example 25.16], we let Ç : R ³ [0, 2] be any C3 function satisfying Ç(1) = 1, Ç2(1) = 1, and
for which both ‖Ç2‖> f K and ‖Ç22‖> f K for a constant K; for example, Ç(t) = 2/(1+e22t)
suffices. For any g * G, define the tilted distribution

dPt,g(z) :=
1

Ct
Ç(tg(z))dP0(z) where Ct =

∫
Ç(tg(z))dP0(z). (5)

The following lemma describes the divergence of Pt,g from P0 (see Section 5.4 for proof).

Lemma 1. Let g * G and P0 and Pt,g be as defined in Eq. (5). Then

DÇ2 (Pt,g‖P0) = 1 + t2E0[g(Z)2] + o(t2) and |Ct 2 1| f K

2
t2E0[g(Z)2].

With this setting, let us assume that our parameter » of interest is smooth in the underlying
perturbation (5), meaning that there exists an influence function »̇0 : Z ³ R, »̇0 * L2(P0),
with E0[»̇0(Z)] = 0 such that

»(Pt,g) = »(P0) + tE0[»̇0(Z)g(Z)] + o(t) (6)

as t ³ 0, that is, »(Pt,g) has a linear first-order expansion in L2 based on »̇0. For example, the
mean »(P ) = EP [Z] has the identity mapping »̇0(Z) = Z 2 EP [Z]. For more on such linear
expansions and their importance and existence, see [14, Chapter 25]. In short, however, the
influence function allows extension of the Fisher Information from classical problems, and by
defining I21

0 := EP0
[»̇0(Z)2], one has the analogue of the local minimax lower bound (4) that

there exist sequences of prior densities Ãn supported on {t * R | |t| f 1/
:
n} such that

sup
g*G

lim inf
n

inf
»̂n

∫
EPn

t,g
[3(

:
n(»̂n 2 »(Pt,g)))]dÃn(t) g E[3(Z)] where Z > N(0, I21

0 ). (7)

The supremum above may be taken to be over only scalar multiples of the function »̇0.
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3.2.1 Non-convergence in probability: the general case

We now come to our super-efficiency result, which we will specialize to the nonparametric mean
presently. Essentially the weakest typical form of convergence of estimators is convergence in
probability, which is of course implied by convergence in mean-square or absolute error. As
our general constrained risk inequality (Corollary 1) handles this case without challenge, and
because lower bounds on the probability of error are strong, we focus on the zero-one error. Let
K < > be an arbitrary constant, and for each n, define the loss function 3(t) = 1{:n|t| g K},
so that

R(»̂, Pn) = Pn
(:

n|»̂(Z1, . . . , Zn)2 »(P )| g K
)
.

Under the assumption that »̂n is a super-efficient sequence of estimators under P0, we will show
that for essentially all non-trivial local alternatives, defined by the tilting (5), the estimators
»̂n have probability of error tending to 1.

Making this more precise, consider the subset

G0 := {g * G | E0[»̇0(Z)g(Z)] 6= 0,E0[g(Z)2] f 1}, (8)

that is, those functions g * G for which the perturbation of »(P0) to »(Pt,g) is non-trivial as

t ³ 0, by the first-order expansion (6). Let us suppose that R(»̂n, P
n
0 ) f ·n for all n, where

·n ³ 0 and 1
n log 1

·n
³ 0 (this last assumption is simply to make our argument simpler).

Now, let B > 2 and c * (0, 1) be otherwise arbitrary constants, and for each g * G0, define
the set of local alternative distributions

Pn,g :=

{
Pt,g * P | K

2

n

B2

E0[»̇0(Z)g(Z)]2
f t2 f c

n
log

1

·n

}
. (9)

We have the following proposition.

Proposition 3. Let »̂n : Zn ³ R be a sequence of estimators satisfying R(»̂n, P
n
0 ) f ·n,

where ën ³ 0. Let ·n g ·n be any sequence satisfying ·n ³ 0 and n21 log ·n ³ 0. Then

inf
g*G0

lim inf
n

inf
P*Pn,g

R(»̂n, P
n) = inf

g*G0

lim inf
n

inf
P*Pn,g

Pn
(:

n|»̂n(Z1, . . . , Zn)2 »(P )| g K
)
= 1.

Remark This result parallels Proposition 1, applying to nonparametric estimators. In
comparison with the local asymptotic minimax result (7), we see the stronger result that
super-efficiency at a single distribution for the zero-one error implies that asymptotically, the
loss is as large as possible for a wide range of alternative distributions.

Proof. Fix g * G0, and let »t = »(Pt,g) and »0 = »(P0) be parameters of interest. For
shorthand, define ∆ = E0[»̇0(Z)g(Z)] 6= 0, so that »t = »0 + (1 + o(1))t∆ as t ³ 0. By
Lemma 1, we have that

Ã(Pn
t,g||Pn

0 ) =
(
1 + (1 + o(1))t2E0[g(Z)2]

)n

as t ³ 0, so that if E0[g(Z)2] f 1,

sup
t

{
Ã(Pn

t,g||Pn
0 ) | t2 f

c

n
log

1

·n

}
f
(
1 + (1 + o(1))

c

n
log

1

·n

)n

f exp

(
(1 + o(1))c log

1

·n

)
= ·2c+o(1)

n (10)

6



as n ³ >. Note that as B > 2, by the definition (6) of an influence function, we have for all

t satisfying BK
|∆| f :

n|t| f
√
c log 1

·n
that

3(|»t 2 »0|/2) = 1
{:

n|»t 2 »0| g 2K
}
= 1

{:
n

∣∣∣∣
BK:
n
(1 + o(1))∆

∣∣∣∣ g 2K

}

= 1{|BK ± o(1)| g 2K} = 1 for large enough n,

where the final equality holds because B > 2. Applying Corollary 1 and inequality (10), we
thus obtain for large enough n, all P * Pn,g satisfy

R(»̂n, P
n) g

[
12

√
·
2c+o(1)
n ·n

]2

+

,

which tends to 1 as n ³ > because ·n ³ 0 and c < 1.

3.2.2 Non-convergence in probability for the mean

Proposition 3 is abstract, so we make it more concrete by considering mean estimation for
distributions with variance 1. Let P0 be a distribution on R with E0[Z] = 0 and Var0(Z) = 1.
In this case, the influence function is the identity mapping »̇0(z) = z. Let 0 < K < > be any
constant. In this case, the family G0 of non-trivial perturbations (8) is precisely those with
non-zero covariance with the random variable Z,

G0 =
{
g : R ³ R | E0[g(Z)] = 0,E0[g(Z)2] f 1, and E0[Zg(Z)] 6= 0

}
.

We thus have the following corollary, which applies to the tilted families Pn,g as above (9).

Corollary 3. Let »̂n : Zn ³ R be any sequence of estimators such that Pn
0 (

:
n|»̂n| g K) f ·n,

where ën ³ 0. Let ·n g ·n be any sequence satisfying ·n ³ 0 and n21 log ·n ³ 0. Then

inf
g*G0

lim inf
n

inf
P*Pn,g

Pn
(:

n|»̂n 2 EP [Z]| g K
)
= 1.

In short, we see the expected result: if any estimator achieves even the in-probability conver-
gence »̂n = oP (1/

:
n) at » = 0, then there must be a large collection of distributions where

the best performance of the estimator across the entire collection must be worse than the
typical

:
n-rate of convergence.

4 Discussion

We have provided an extension of Brown and Low’s constrained risk inequality [1], showing
how to provide risk inequalities for general losses. Our results on efficient non-parametric
estimators in Section 3.2 immediately extend beyond 0-1 losses. For example, consider esti-
mating a parameter »(P0) of a distribution P0 where » has influence function »̇0 : R ³ R, and
assume the estimator sequence »̂n : Rn ³ R satisfies

EPn
0

[
|»̂n 2 »(P0)|

]
f
√

·n
n

7



where ·n ³ 0. Then for the family G0 consisting of g : R ³ R with E0[g(Z)] = 0, E0[g(Z)2] f
1, and E0[»̇0(Z)g(Z)] 6= 0, we can consider an analogue of the tilted family (9) where for
0 < c0 < c1 < 1 we define

Pn,g =

{
Pt,g | c0

log 1
·n

n
f t2 f c1

log 1
·n

n

}
.

Then by Corollary 2 and an argument analogous to that for Proposition 2, there exists a
numerical constant K > 0 such that for all g * G0,

lim inf
n

inf
P*Pn,g

√
n

log 1
·n

EPn

[
|»̂n 2 »(P )|

]
g K|E0[»̇0(Z)g(Z)]| > 0.

The one-dimensional lower bounds we have provided are, we hope, transparent—relying
only on the Cauchy-Schwarz inequality—and easy to apply to a range of estimation settings,
making them well-suited to pedagogical situations. It is possible to follow Brown and Low’s
work [1] to give non-adaptivity results in nonparametric function estimation [4, 8, 9, 1, 12, cf.],
with relatively straightforward derivations (though of course, these results are known). We
hope that our constrained risk inequalities for general losses may lead to easier understanding
of such issues in other areas as well.

5 Proofs

5.1 Proof of Theorem 1

It is no loss of generality to assume that »̂(z) * [»0, »1] = {t»0 + (1 2 t)»1 | t * [0, 1]} for
all z: letting proj(») = argmin»2{‖» 2 »2‖2 | »2 * [»0, »1]} be the projection of » onto the
segment [»0, »1], then ‖proj(»)2 »i‖2 f ‖» 2 »i‖2 for i * {0, 1} by standard properties of
convex projections [6].

For any » * [»0, »1], which must satisfy » = t»0 + (12 t)»1, we have
√
3(‖» 2 »0‖2) +

√
3(‖» 2 »1‖2) =

√
3((1 2 t) ‖»0 2 »1‖2) +

√
3(t ‖»0 2 »1‖2)

g
√

3((1 2 t) ‖»0 2 »1‖2) + 3(t ‖»0 2 »1‖2) g
√

23

(
1

2
‖»0 2 »1‖2

)
(11)

as 3(ta)+3((12t)a) is minimized by t = 1
2 for any a g 0. Using the majorization inequality (11)

and our without loss of generality assumption that »̂(z) * [»0, »1] for all z * Z, we thus have

E1

[
3(‖»̂ 2 »0‖2)1/2

]
+ E1

[
3(‖»̂ 2 »1‖2)1/2

]
g
√

23

(
1

2
‖»0 2 »1‖2

)
= ∆1/2. (12)

Now, using the Cauchy–Schwarz inequality and rearranging inequality (12), we have

R(»̂, P1) g E1

[
3(‖»̂ 2 »1‖2)

]
g E1

[
3(‖»̂ 2 »1‖2)1/2

]2
g
[
∆1/2 2 E1

[
3(‖»̂ 2 »0‖2)1/2

]]2
+
.

Finally, a likelihood ratio change of measure yields that

E1

[
3(‖»̂ 2 »0‖2)1/2

]
= E0

[
dP1

dP0
3(‖»̂ 2 »0‖2)1/2

]

f E0

[
dP 2

1

dP 2
0

]1/2
E0

[
3(‖»̂ 2 »0‖2)

]1/2
=
(
Ã (P1||P0)R(»̂, P0)

)1/2
.

8



This gives the lower bound (2) once we use that R(»̂, P0) f ·.

5.2 Proof of Corollary 1

The proof is nearly identical to that of Theorem 1, with one minor change. Instead of the
majorization inequality (11), we have for all t * [0, 1] that

3(t ‖»0 2 »1‖2) + 3((12 t) ‖»0 2 »1‖2) g 3

(
1

2
‖»0 2 »1‖2

)
.

Substituting this and the definition ∆ = 3(12 ‖»0 2 »1‖2), then following the proof of Theo-
rem 1, mutatis mutandis, gives the corollary.

5.3 Proof of Corollary 2

The proof is again identical to Theorem 1, except that we consider separately the cases k *
(0, 2] and k > 2. In the first case that 0 < k f 2, we replace the majorization inequality (11)
for » = t»0 + (12 t)»1, where t * [0, 1], with the inequality

L(», P0)
1/2 + L(», P1)

1/2 =
[
(12 t)k/2 + tk/2

]
‖»0 2 »1‖k/22 g ‖»0 2 »1‖k/22 .

Using ∆ = ‖»0 2 »1‖2 and tracing the proof of Theorem 1 then gives the first inequality (3).
For the second inequality, the case k * (2,>), we may apply the first case that k f 2 and
Hölder’s inequality. Indeed, by the assumption that R(»̂, P0) f ·k, we have

E0

[
‖»̂ 2 »0‖22

]
f E0

[
‖»̂ 2 »0‖k2

]2/k
f ·2.

Applying the result for k = 2 in the first case of inequality (3) yields

R(»̂, P1) g E1

[
‖»̂ 2 »1‖22

]k/2
g
[
∆2 (Ã(P1||P0)·

2)1/2
]k
+
.

5.4 Proof of Lemma 1

By the boundedness assumptions on Ç2 and Ç22, Taylor’s theorem implies that

|Ç(t)2 1| f
∥∥Ç2∥∥

> |t| f K|t| and |Ç(t) 2 12 t| f 1

2

∥∥Ç22∥∥
> t2 f 1

2
Kt2

for all t * R. Thus we have

Ct =

∫
Ç(tg(z))dP0(z) =

∫
(1 + tg(z))dP0(z)±

K

2

∫
t2g(z)2dP0(z) = 1± Kt2

2
E0[g(Z)2].

Let Ã2 = E0[g(Z)2] for shorthand. Considering the Ç2-divergence, we have DÇ2 (Pt,g‖P0) =∫
(Ç(tg(z))/Ct 2 1)2dP0(z), and the integrand has the bound

(
Ç(tg(z))

Ct
2 1

)2

f
(
1 +K|tg(z)|
12Kt2Ã2

2 1

)2

f 2K2t2

(12Kt2Ã2)2
(g(z)2 + t2Ã4),

and

lim
t³0

1

t2

(
Ç(tg(z))

Ct
2 1

)2

= lim
t³0

1

t2

(
1 + tg(z) +O(t2)

12O(t2)
2 1

)2

= g(z)2.

Lebesgue’s dominated convergence theorem implies that limt³0
1
t2
DÇ2 (Pt,g‖P0) = E0[g(Z)2],

as desired.

9



References

[1] L. D. Brown and M. G. Low. A constrained risk inequality with applications to nonpara-
metric functional estimation. Annals of Statistics, 24(6):2524–2535, 1996.

[2] T. Cai and M. Low. A framework for estimating convex functions. Statistica Sinica, 25:
423–456, 2015.

[3] S. Chatterjee, J. Duchi, J. Lafferty, and Y. Zhu. Local minimax complexity of stochastic
convex optimization. In Advances in Neural Information Processing Systems 29, 2016.

[4] D. L. Donoho and I. M. Johnstone. Adapting to unknown smoothness via wavelet shrink-
age. Journal of the American Statistical Association, 90(432):1200–1224, 1995.

[5] S. Efromovich. Nonparametric Curve Estimation: Methods, Theory, and Applications.
Springer-Verlag, 1999.
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