
IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022 2755

Safety Embedded Differential Dynamic
Programming Using Discrete Barrier States

Hassan Almubarak , Graduate Student Member, IEEE, Kyle Stachowicz , Nader Sadegh, Member, IEEE,
and Evangelos A. Theodorou , Member, IEEE

Abstract—Certified safe control is a growing challenge in
robotics, especially when performance and safety objectives must
be concurrently achieved. In this work, we extend the barrier state
(BaS) concept, recently proposed for safe stabilization of continu-
ous time systems, to safety embedded trajectory optimization for
discrete time systems using discrete barrier states (DBaS). The
constructed DBaS is embedded into the discrete model of the safety-
critical system integrating safety objectives into the system’s dy-
namics and performance objectives. Thereby, the control policy is
directly supplied by safety-critical information through the b rrier
state. This allows us to employ the DBaS with differential dynamic
programming (DDP) to plan and execute safe optimal trajectories.
The proposed algorithm is leveraged on various safety-critical con-
trol and planning problems including a differential wheeled robot
safe navigation in randomized and complex environments and on
a quadrotor to safely perform reaching and tracking tasks. The
DBaS-based DDP (DBaS-DDP) is shown to consistently outperform
penalty methods commonly used to approximate constrained DDP
problems as well as CBF based safety filters.

Index Terms—Constrained motion planning, optimization and
optimal control, robot safety.

I. INTRODUCTION

SAFETY in robotics, in its various forms - including collision
avoidance, safe collaboration, etc. - is crucial to expanding

the applicability of autonomous robots. With increasing demand
for autonomy in various industries, this task is increasingly
daunting even for known environments. Therefore, there is a

Manuscript received August 8, 2021; accepted December 27, 2021. Date of
publication January 14, 2022; date of current version February 1, 2022. The
work of E. A. Theodorou was supported by the National Science Foundation,
CPS under Grant 1932288. This letter was recommended for publication by
Associate Editor Alan Kuntz and Editor Hanna Kurniawati upon evaluation of
the reviewers’ comments. (Corresponding author: Hassan Almubarak.)

Hassan Almubarak is with the School of Electrical and Computer Engi-
neering, Georgia Institute of Technology, Atlanta, GA 30332 USA, and also
with the Control and Instrumentation Engineering Department, King Fahd
University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia (e-mail:
halmubarak@gatech.edu).

Kyle Stachowicz is with the School of Computer Science, Georgia Institute
of Technology, Atlanta, GA 30332 USA (e-mail: kwstach@gatech.edu).

Nader Sadegh is with the George W. Woodruff School of Mechanical
Engineering, Georgia Institute of Technology, Atlanta, GA USA (e-mail:
sadegh@gatech.edu).

Evangelos A. Theodorou is with the Department of Aerospace Engineering,
Georgia Institute of Technology, Atlanta, GA 30332 USA (e-mail: evangelos.
theodorou@gatech.edu).

This letter has supplementary downloadable material available at
https://doi.org/10.1109/LRA.2022.3143301, provided by the authors.

Digital Object Identifier 10.1109/LRA.2022.3143301

Fig. 1. Two views of the quadrotor reaching problem with many spherical
obstacles in the space. The proposed DBaS-DDP safely performs the reaching
task starting from the initial position (green) to the final position (yellow).

clear need for provably safe controls. Yet, the difficulty in
unifying safety and performance objectives usually calls for the
trade-off between the objectives. To confront such a trade-off,
this letter develops a technique to enforce safety in optimization-
based controllers for discrete time nonlinear systems that guar-
antees safety as long as a solution exists. The letter builds on a
recently proposed safety integrating technique for stabilization
of continuous time systems [1], which enforces safety through
embedding barrier states (BaS) into the model of the dynamical
system. We extend the idea to trajectory optimization for discrete
time nonlinear systems by developing a novel extension we term
discrete barrier states (DBaS).

Safety, which can be verified through set invariance [2], is
an increasingly important property of dynamical systems. The
development of barrier certificates [3], [4] formed an early
approach to verification. Later, inspired by control Lyapunov
functions and barrier certificates, Wieland and Allgöwer [5]
introduced control barrier functions (CBFs) to propose a feed-
back method of enforcing safety in continuous time systems.
In an attempt to develop safe stabilization, Ames et al. [6]
and Romdlony and Jayawardhana [7] proposed spiritually simi-
lar, albeit distinct, CLF-CBF unification techniques. Ames et al.
[6] pioneered the CLF-CBF quadratic program (QP) paradigm
which was further developed in [8]. The CLF-CBF QP and
the developed CBF have attracted researchers attention to be
adopted in various control frameworks and robotic applica-
tions [9]–[12]. For discrete time systems, Agrawal and Sreenath
[9] extended the notion of continuous time CBFs and CLF-CBF
QPs to problems in discrete time. Nonetheless, discrete CBFs,
which use reciprocal barrier functions, tend to be more restrictive
than their continuous counterparts as the optimization problem

2377-3766 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 30,2022 at 23:24:02 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6954-0940
https://orcid.org/0000-0002-9880-7261
https://orcid.org/0000-0002-0834-5738
mailto:halmubarak@gatech.edu
mailto:kwstach@gatech.edu
mailto:sadegh@gatech.edu
mailto:evangelos.theodorou@gatech.edu
mailto:evangelos.theodorou@gatech.edu
https://doi.org/10.1109/LRA.2022.3143301

2756 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

may not be quadratic and is non-convex, which limits its appli-
cability [9]. Therefore, they proposed discrete time exponential
barrier function (DECBFs) that solves the problem, which was
generalized by Ahmadi et al. [13] and called discrete zeroing
CBFs (DZCBFs), in analogy to its continuous time counterpart
ZCBFs in [8].

To use CBFs in multi-objective controls, one must trade off
between safety and performance objectives [8]. Moreover, in the
case of high relative-degree constraints, the problem becomes
more challenging. Several methods have been developed to form
higher-order CBFs, the most popular of these involving defining
a new invariant safe set as the intersection of several invariant
sets [14], [15]. However, these approaches tend to unnecessarily
restrict the allowable state space and are difficult to implement
and tune. To avoid finding a high-order CBF altogether, some
practical implementations [16]–[18] instead apply an ad-hoc
solution by modifying the CBF or the safety constraint to
ensure a relative degree of 1. However, this is likely to affect
performance or safety of the resulting system with respect to the
original objective and safety constraint.

Typically, when multiple safety constraints must be satis-
fied, multiple corresponding CBF inequality constraints are
used [16]–[18] and thus further relaxations could be needed.
Wang et al. [19] proposed compositional barrier functions which
can combine multiple CBFs into a single barrier function. How-
ever, this technique does not easily generalize, for example
to learned or robust CBFs [17], and may create a CBF of
ill-conditioned or high relative degree in some cases.

Constrained trajectory optimization is a challenging problem
that has been revisited repeatedly in the literature. The differ-
ential dynamic programming (DDP) method can efficiently find
optimal trajectories, but it is not straightforward to implement
constraints. Contrarily, direct methods based on general non-
linear solvers can directly incorporate constraints, but at the ex-
pense of computational efficiency. Murray and Yakowitz [20] de-
scribes an early approach to incorporating constraints into DDP,
but only considers control constraints. This was later improved
using active-set QP methods [21], but the state-constrained
case has remained a difficult open problem. One common ap-
proach is an application of the Augmented Lagrangian [22] [23]
technique, which iteratively finds Lagrange multipliers for the
constraint with first-order convergence. Xie et al. [24] proposed
an active-set approach to the constrained DDP problem, which
calculates active-set conditions in the backwards pass and solves
a QP at each stage of the forwards pass. Aoyama et al. [25] pre-
sented a related algorithm that switches online between an Aug-
mented Lagrangian and an active-set method for faster global
convergence. Finally, interior-point methods have been applied
in Pavlov et al. [26] to achieve local second-order convergence in
the presence of nonlinear constraints. However, these algorithms
often have difficulty with highly locally-nonlinear constraints
and require substantial tuning and good-quality warm-starts to
achieve satisfactory results.

A. Contributions and Organization

In this letter, we state the safety constraint formulation in Sec-
tion II. After that, we develop discrete barrier states (DBaS) to

enforce safety for nonlinear discrete time systems in Section III.
Thereafter, a DBaS is embedded in the system’s model forcing
the control search to take place in the set of safe controls, which
avoids compromising the performance or safety objectives. In
addition, we show how to represent multiple constraints using a
single DBaS. Section IV states the constrained optimal control
problem statement. Subsequently, we leverage the safety embed-
ding technique with differential dynamic programming (DDP) to
develop safe trajectory optimization. We show that the generated
trajectories are guaranteed to be safe as long as the standard DDP
convergence conditions are satisfied. We show the generality of
our proposed framework in Section V by applying DBaS-DDP
to several systems including collision-avoidance problems for
omnidirectional and differential wheeled robots, a cart-pole
problem where motion is bounded by a fixed-length rail, and a
variety of quadrotor tasks including safe trajectory tracking and
reaching as in Fig. 1. We compare DBaS-DDP with the penalty
method DDP and with CBF when possible, and demonstrate that
it exhibits improved performance and robustness characteristics
in multiple extensive randomized experiments. Finally, conclud-
ing remarks and future directions are provided in Section VI.

II. SAFETY CONSTRAINT FORMULATION

Consider the discrete time nonlinear safety critical control
system

x(k + 1) = f(x(k), u(k)) (1)

where k ∈ Z+
0 is the time step, x(k) ∈ D ⊂ Rn, u(k) ∈ U ⊂

Rm and f : D × U → D is continuous. Throughout the work,
we will use the subscript formulation to indicate the time step.
For this system, consider the set S defined as the superlevel set
of a smooth function h : D → R such that

S := {xk ∈ D | h(xk) ≥ 0}
S◦ := {xk ∈ D | h(xk) > 0}
∂S := {xk ∈ D | h(xk) = 0} (2)

where S◦ and ∂S are the interior and the boundary of the set S ,
respectively. Let S◦ be the safe set we desire the system’s state
to stay in. To enforce safety, one needs to satisfy the invariance
property given by the following definitions.

Definition 1: The set S◦ ⊂ Rn is said to be forward invari-
ant for the dynamical system x(k + 1) = f(x(k)) if ∀x(0) ∈
S◦, x(k) ∈ S◦ ∀k ∈ Z+. Equivalently,

h(xk) > 0 ∀k ≥ 0; x(0) ∈ S◦ (3)

We refer to this as the safety condition.
Definition 2: The set S◦ ⊂ Rn is said to be controlled in-

variant for the system in (1) if a continuous feedback controller
uk = K(xk) exists such that for the closed-loop system xk+1 =
f(xk,K(xk)), the set S◦ is forward invariant. Accordingly, the
controller uk = K(xk) is said to be safe.

To render S◦ controlled invariant for the discrete control
system (1), we define the barrier function B : S◦ → R [27],
to be a smooth function on the interior of S that goes to infinity
as xk ∈ S◦ approaches a point of ∂S . Mathematically,

xk ∈ S◦, x̃ ≡ lim
k→∞

xk ∈ ∂S ⇒ B(xk) → ∞, k → ∞

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 30,2022 at 23:24:02 UTC from IEEE Xplore. Restrictions apply.

ALMUBARAK et al.: SAFETY EMBEDDED DIFFERENTIAL DYNAMIC PROGRAMMING USING DISCRETE BARRIER STATES 2757

Examples of favored barrier functions with such proper-
ties over the set S defined by h(xk) include logarithmic
barriers such as B(h(xk)) = − log(h(xk)) and B(h(xk)) =

− log(h(xk)
1+h(xk)

) and the Carroll barrier, also called the inverse

barrier, B(h(xk)) =
1

h(xk)
. Clearly, it is sufficient to force B

to be bounded to guarantee safety, i.e. keeping xk ∈ S◦ ∀k. In
light of this, Definition 1, Definition 2 and the properties of the
barrier function B, the following proposition follows.

Proposition 1: A continuous feedback controller uk =
K(xk) is safe, that is it renders S◦ controlled invariant, if and
only if B(h(x0)) < ∞ ⇒ B(h(xk)) < ∞ ∀k ∈ Z+.

Proof: The proof follows directly from the definitions above.
⇒. Suppose there exists a continuous control law uk =

K(xk) such that S◦ is controlled invariant for w.r.t (1). Then, by
Definition 2,S◦ is forward invariant w.r.t. the closed loop system
xk+1 = f(xk,K(xk)) and consequently, by Definition 1 and
the definition of S◦, h(xk) > 0 ∀k ≥ 0 implying B(h(xk)) <
∞ ∀k ≥ 0.

⇐. Assume B(h(x0)) < ∞ ⇒ B(h(xk)) < ∞ ∀k ∈ Z+

under the continuous control action uk = K(xk). By the prop-
erties of the barrier functions, h(xk) > 0 ∀k ≥ 0. Thus, by
Definition 1,S◦ is forward invariant w.r.t. the closed loop system
and hence uk is said to be safe by Definition 2.

A main objective of this letter is to design a safety enforcing
tool that allows us to avoid possible conflicts between control
objectives and safety constraints without any relaxation. To
achieve this goal, the safety constraint is embedded into the
system’s model used to achieve control performance objectives
by means of discrete barrier states (DBaS).

III. DISCRETE TIME BARRIER STATES (DBAS)

Let us define the barrier function to be β(xk) := B(h(xk)),
that is for example for the inverse barrier, β(xk) = B(h(xk)) =

1
h(xk)

. Let xd be the desired state to be tracked. Define wk :=

β(xk)− βd, where βd = β(xd). Without loss of generality, in
the case of stabilization, xd will be a fixed point, e.g. the origin
of the system. Consequently, we derive the discrete barrier state
(DBaS) as

wk+1 = B(h(f(xk, uk))− βd (4)

In some robotic applications, e.g. in obstacle avoidance prob-
lems, it is more suitable to represent the safe region by a
set of functions. In such a problem, increasing the dimension
of the system by including too many barrier states may in-
flate the problem size and complexity. Multiple safety con-
straints can be represented with only one DBaS by combin-
ing the barrier functions. There are some drawbacks to com-
bining barrier states in this way: the process may reduce the
amount of information available to the controller as discussed
in Section IV, and we may lose access to some explicit in-
formation on the safety of the system with respect to cer-
tain constraints or obstacles which would be available with
multiple barrier states. Therefore, representing multiple con-
straints with one barrier state introduces a trade-off between
state dimension and information available to resulting feedback
policies.

In the discrete setting, combining the barrier functions to
create a barrier state for the discrete case is simpler than the
continuous case [1]. For q constraints, the barrier function can
be chosen to be β(x) =

∑q
i=1 B(h(i)(xk)), where h(i)(xk)

describes the ith region of interest. Consequently, a single DBaS
can be constructed as

wk+1 =

q∑
i=1

B ◦ h(i) (f(xk, uk))− βd (5)

where βd =
∑q

i=1 B ◦ h(i)(xd). It must be noted that shifting
the barrier state by βd is not necessary but ensures that the
minimum lies at the desired set point which may be needed for
some applications [28]. Now, we append a vector of p barrier
states w ∈ W ⊂ Rp to the model of the safety critical system
(1) giving the safety embedded model

x̂k+1 = f̂(x̂k, uk) (6)

where x̂k = [xk wk]
T ∈ D̂ ⊂ D ×W and f̂ : D̂ × U → D̂

is a vector field representing the system’s dynamics (1) and
the barrier states’ dynamics (5). It must be noted that f̂ is
continuous due to continuity of f and smoothness of h and
B. As a consequence of the development above, the forward-
invariance of S◦, i.e. safety of the safety-critical system, can
be tied to the performance objectives of the safety embedded
system (6). In other words, boundedness of the DBaS im-
plies the generation of safe trajectories. Next, we use a finite
horizon trajectory optimization technique, namely differential
dynamic programming (DDP), to generate safely optimized
trajectories.

IV. SAFETY EMBEDDED DDP

In this section, we apply the proposed DBaS methodology to
safe trajectory optimization by applying DDP [29]–[31] to the
safety embedded dynamics (6).

A. Problem Statement

We consider the finite horizon optimal control problem

Vk(x) = min
Uk

N−1∑
i=k

l(xi, ui) + Φ(xN) (7)

subject to the dynamical system (1) and the safety condition
(3), where Uk = {uk, uk+1 + · · ·+ uN−1}, l and Φ are the the
running cost and terminal cost respectively.

B. Differential Dynamic Programming

The well-known Bellman equation yields the following re-
currence relation, with boundary condition VN = Φ:

Vk(xk) = min
uk

[l(xk, uk) + Vk+1(f(xk, uk))] (8)

The DDP algorithm iteratively solves the optimal control prob-
lem starting by expanding the value function around a nominal
trajectory (x̄, ū) and solving (8) to find a local feedback policy.
Then, a new nominal trajectory for the system is computed
forwards. The process is repeated until convergence.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 30,2022 at 23:24:02 UTC from IEEE Xplore. Restrictions apply.

2758 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

Using the proposed DBaS technique to render S◦ forward
invariant, the constrained finite horizon optimal control prob-
lem reduces to an unconstrained optimal control problem that
minimizes (7) subject to the safety embedded dynamics (6):

Vk(x̂) = min
Uk

N−1∑
i=k

l(x̂i, ui) + Φ(x̂N) (9)

subject to x̂k+1 = f̂(x̂k, uk). Therefore, the associated Bell-
man equation can be given by Vk(x̂k) = minuk

[l(x̂k, uk) +

Vk+1(f̂(x̂k, uk))]. For the DDP equations used in the algorithm,
define

Hx̂k
= lx̂k

+ V T
x̂k+1

f̂x̂k
, Huk

= luk
+ V T

x̂k+1
f̂uk

Hx̂x̂k
= lx̂x̂k

+ f̂T
x̂k
Vx̂x̂k+1

f̂x̂k
+ Vx̂k+1

f̂x̂x̂k

Huuk
= luuk

+ f̂T
uk
Vx̂x̂k+1

f̂uk
+ Vx̂k+1

f̂uuk

Hx̂uk
= lx̂uk

+ f̂T
x̂k
Vx̂x̂k+1

f̂uk
+ Vx̂k+1

fx̂uk
(10)

Then, the optimal variation may be given by

δu∗
k = −H−1

uuk

(
HT

uk
+Hux̂k

δx̂k

)
= kk +Kkδx̂ (11)

where kk = −H−1
uuk

HT
uk
,Kk = −H−1

uuk
Hux̂k

and δxk = xk −
x̄k, δuk = uk − ūk represent deviations from the nominal state
and control sequences, respectively. Now, as we need to min-
imize the expanded Bellman equation, setting each power of
approximation to zero leads to the Riccati equations for Vk, Vx̂k

and Vx̂x̂k
that are solved to get

Vk = Vk+1 − 1

2
Huk

H−1
uuk

HT
uk

Vx̂k
= Hx̂k

−Hx̂uk
H−1

uuk
Huk

Vx̂x̂k
=

1

2
(Hx̂x̂k

−Hx̂uk
H−1

uuk
Hux̂k

) (12)

which are the equations used for the backward propagation.
Consequently, one can compute Vk and its gradient and Hessian
along the states’ trajectory as well as the optimal variation
δu backwards from k = N − 1 to k = 1 with the initialization
VN (x̂N) = lf (x̂N). Next, the new trajectory is computed for-
wards and the process is repeated until convergence.

Note that for the DDP problem to be well-defined, we must
haveHuuk

 0 [31]. For this to be the case it is sufficient to have
that Vx̂x̂k

 0 for all k. However, in the general case there is a
distinct possibility that lxx is indefinite: it is perfectly reasonable
for the cost function to be locally non-convex and in fact this
is necessarily the case in the obstacle-avoidance problem. In
contrast, the DBaS cost remains a convex function of the states,
meaning that for a cost function l(x̂, u) = lx(x, u) + lw(w) its
hessian lx̂x̂ remains positive.

Theorem 2: Assume the state is of the form x̂ = [xw]T where
x is the real state of the system andw is the barrier state. Further,
let �(x̂, u) be of the form �(x̂, u) = �x(x, u) + �w(w), where

�ww
 0 and

(
�xx �xu
�ux �uu

)

 0, and assume second-order dy-

namics terms fxx are ignored. Then, Vx̂x̂k

 0 ∀k.

Proof: By induction: for the base case, we have by assump-
tion that Vx̂x̂N

is positive-definite, as it is simply Φx̂x̂.

Then, we want to show that if Vx̂x̂k+1
is positive definite we

also have that Vx̂x̂k
is positive definite. Examine the second-

order expansion of the Bellman equation:

δx̂T
k Vx̂x̂k

δx̂k = min
u

(
δxk

δuk

)T(
�xxk

�xuk

�uxk
�uuk

)(
δxk

δuk

)

+ δwT
k �wwk

δwk + δx̂T
k+1V̄x̂x̂k+1

δx̂k+1

≥ δx̂T
k+1Vx̂x̂k+1

δx̂k+1 > 0

δuT
kHuuk

δuk = δuT
k

(
luu + fT

u Vx̂x̂k+1
fu
)
δu

≥ (fuδu)
TVx̂x̂k+1

(fuδuk) ≥ 0

SoVx̂x̂k
is positive definite, and furthermoreHuu is also positive

definite. By induction, this holds for all k.
A natural question is whether it is advantageous to include the

barrier state in the model of the system’s dynamics instead of
simply adding the barrier to the cost function in the optimization
problem as in some constrained DDP approaches, known as
penalty methods. In those methods, the modified optimization
problem given by the cost function l(x, u) = β2(x) + l′(x, u),
where β is a barrier function, appears at the surface level to be
equivalent to the proposed safety embedded DDP formulation,
which we term DBaS-DDP. While any local optimum for the
DBaS based optimal control problem is also an optimum for
the penalty method, the two mechanisms differ substantially
in their interaction with the optimizer. Firstly, in many robotic
applications, this new cost function is highly locally non-convex.
Theorem 2 explains part of the practical improvement seen
when using barrier states over simple penalty methods: it moves
some nonlinear terms from the cost function to the dynam-
ics, removing local non-convexity from the problem. In this
sense, the DBaS-DDP has a regularizing effect on the algorithm
when applied to highly non-convex cost functions. It is worth
mentioning that for the experiments presented in Section V,
the DBaS-DDP did not need any explicit regularization (i.e.
adding a multiple of identity to Huuk

so it is positive definite),
unlike the penalty method. Secondly, in the case of DBaS-DDP
the optimizer has richer information and can better anticipate
the progression of the cost in the forward pass: by embedding the
barrier state in the dynamics, the feedback mechanism present
in the forwards pass has access to the exact value of the barrier
state according to the nonlinear dynamics rather than a quadratic
approximation. In this sense, the optimization process can be
considered a joint optimization over the real state, barrier state,
and controls as decision variables, yielding a smoother cost
landscape.

Under certain conditions, with the incorporation of line
search, standard DDP is able to guarantee that a single iteration
of DDP will improve the trajectory’s cost. Similarly, we show
that in our formulation, a single iteration of DDP-DBaS is able
to find a safe trajectory with improved cost.

Theorem 3 (Improvement of Safe Trajectory): Let (x̄, ū) be
a safe nominal trajectory, and let δu = εk+Kδx̂. If δuk is
nonzero for some k, then there exists some 0 < ε ≤ 1 such
that for the objective function J =

∑N−1
k=1 l(x̂k, uk) + Φ(x̂N),

J(x̄+ δx, ū+ δu) < J(x̄, ū) and x̄+ δx, ū+ δu is a safe tra-
jectory.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 30,2022 at 23:24:02 UTC from IEEE Xplore. Restrictions apply.

ALMUBARAK et al.: SAFETY EMBEDDED DIFFERENTIAL DYNAMIC PROGRAMMING USING DISCRETE BARRIER STATES 2759

TABLE I
COMPARISON OF DBAS-DDP, THE PENALTY METHOD, AND CBF-QP SAFETY

FILTERING

Proof: Because x̄, ū is safe and the safe set is open,
there exists some neighborhood U of safe trajectories
near x̄, ū. Define J(π) as the objective function: J(π) =∑N−1

k=1 l(x̂k, uk) + Φ(x̂N) with the update rule δuk = uk −
ūk = Kkδx̂k + εkk. Find partial derivatives with respect to uk

using Bellman’s principle ΔJ = [l(x̂k, uk) + V (f(x̂k, uk))]−
[l(x̄k, ūk) + V (f(x̄k, ūk))] to get ∂

∂uk
ΔJ = Huk

, ∂2

∂u2
k
ΔJ =

Huuk
.

Rewrite the objective function ΔJ as a function of the param-
eter ε, with Taylor expansion around zero:

ΔJ(ε) =

N−1∑
k=1

[
Huk

∂uk

∂ε
ε+

1

2

∂uk

∂ε

T

Huuk

∂uk

∂ε
ε2
]
+O(ε3)

Finally, because uk = ūk +Kkδx̂k + εkk, we have ∂uk

∂ε =

kk = −Q−1
uu:

ΔJ(ε) =

N−1∑
k=1

[
ε2

2
Huk

H−1
uuk

HT
uk

− εHuk
H−1

uuk
HT

uk

]
+O(ε3)

=

(
1

2
ε2 − ε

)N−1∑
k=1

[
Huk

H−1
uuk

HT
uk

]
+O(ε3)

By Theorem 2, we know that Huuk
is positive definite. Then,

the summation is positive and so for ε ≤ 1 the lower-order terms
are negative. In addition, by making ε small we can reduce
the higher-order terms to be arbitrarily small compared to the
reduction in cost.

Finally, because there is an open neighborhood U of safe
trajectories around the nominal trajectory, by making ε small we
will find a trajectory within the safe set. In particular, because a
trajectory is safe if and only if it has a bounded cost by design,
any ε that leads to a reduction in cost yields a safe trajectory.

V. SAFETY EMBEDDED DDP APPLICATION EXAMPLES

In this section, we conduct qualitative and quantitative com-
parisons between our proposed algorithm and some commonly-
used methods of enforcing safety. Namely, we compare against
the penalty-DDP method, in which a barrier cost is added to the
state cost function (similar to the DBaS-DDP cost) as described
earlier, and the traditional CBF-based method by wrapping DDP
with a CBF filter.

Results from all experiments, including success rates and
mean costs, are recorded in Table I. In this table costs are
normalized to allow for comparison between experiments, by
expressing each cost as a fraction of the cost achieved using

TABLE II
TIMING AND CONVERGENCE INFORMATION. M.I. IS FOR MINIMUM ITERATIONS

NEEDED TO REACH THE GOAL AND C.I. IS THE ITERATIONS NEEDED TO

ACHIEVE CONVERGENCE

1Unconstrained point robot is an LQ problem and completes in one step.
2Cart-pole is a qualitative example, i.e. no randomized experiments.

DBaS-DDP. In each case, DBaS-DDP achieves the lowest cost
and the highest success rate.

Convergence speed is detailed in Table II. M.I. indicates the
average number of iterations needed to solve a problem (i.e. until
the trajectory reaches a threshold of the goal) and C.I. indicates
the number of iterations before the algorithm has converged
(the difference in cost between successive iterations drops below
10−3). Only successfully completed problems are included in
this timing table, as including failures as the maximum iteration
count would artificially inflate the number of iterations for the
penalty-DDP method (which often fails to reach the goal). It can
be seen that DBaS-DDP takes a few more iterations on average
but brings substantially higher success rates and lower costs as
shown in Table I.

In all experiments in this section, we pick a quadratic
cost function J =

∑N−1
i=k xT

kQxk + wT
k qwwk + uT

kRuk +
xT
NSxN + wT

NswwN with Q = 0n×n, R = 0.005I . It is worth
mentioning that tuning for DDP parameters specific to the
safety embedded case is not required; the parameters from the
unconstrained case works well with qw > 0 to ensure safety.
The continuous time systems were discretized using Euler
methods with Δt = 0.02. All problems are initialized with a
steady-state nominal trajectory (hovering for quadrotor and
zero input for other examples). Note that in all experiments,
the relative degree of the safety constraint is higher than 1
and is in some cases ill-conditioned, meaning that CBFs are
either have limited behavior or impossible to apply. Because
of this, we only consider CBFs in the planar double-integrator
and cart-pole examples. To address the possibility of stepping
across a barrier in a single discrete step, the interior of a barrier
is assumed to have infinite cost, ensuring that such trajectories
are rejected by line search. This effect can also be addressed
with a finer discretization.

A. Planar Double-Integrator (Point Robot)

As a simple proof-of-concept we apply DBaS-DDP to the
planar double-integrator problem. In this problem, an omnidi-
rectional robot navigates from an initial position to a goal. The
barrier state was defined, by (5), such that the safe set is the
exterior of several circles each with safe set defined by hi(x) =
‖x− oi‖2 − r2i . We pick S = diag(4000, 4000, 400, 400) for
terminal cost.

Fig. 2 shows a collision-free course planned by DBaS-DDP
starting from the initial point (0,0) to the goal (3,3). The figure
also shows solutions generated by the penalty method and a

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 30,2022 at 23:24:02 UTC from IEEE Xplore. Restrictions apply.

2760 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

Fig. 2. Planar double-integrator navigation with DBaS (left), penalty (center)
and a higher order CBF [14] (right) with different parameters.

Fig. 3. Success rates of DBaS-DDP (blue), penalty method (red), and CBF
(yellow) on planar double integrator example with varying obstacle counts.

higher order CBF [14] QP that is wrapped around the uncon-
strained solution. Two choices of parameter (qw for DDP-based
methods and α for CBF) are shown for each method. Small
barrier penalization qw causes tighter constraint tolerance near
the obstacle, but can cause the penalty method to easily get
stuck in local minima. Large values of α in CBFs cause smaller
nominal deviation from the trajectory but require sharp inputs
when near a barrier.

To empirically test the results of Theorem 2, we compare
the eigenvalues of H−1

uuk
between the naive penalty method

and DBaS-DDP. We find that for the penalty method, we
have a minimum eigenvalue (across an entire run of DDP) of
−0.173, meaning that although the penalty method is able to
find some non-intersecting path in this case, it is despite nu-
merical ill-conditioning. Comparatively, using DBaS-DDP the
minimum eigenvalue is 0.1, meaning that Huuk

is numerically
well-conditioned across the entire sweep.

We also perform robustness testing with randomized obstacle
configurations. In these tests the robot is to safely move from
(0, 0) to (3, 3) while avoiding circular obstacles randomly gen-
erated in the box with corners at (3,−2), (5, 0), (0, 5), (−2, 3).
Success is defined as a trajectory that is able to reach within
0.3 units of the goal. Table I shows the results of penalty-DDP,
DBaS-DDP, and CBF over a uniform distribution of obstacle
count from 1 to 10 and Fig. 3 shows these results broken down
by number of obstacles.

B. Cart-Pole Swing up

We demonstrate the applicability of DBaS-DDP to non-
collision-avoidance problems using the cart-pole system, in

Fig. 4. Cart-pole swing up using unconstrained DDP (red), CBF-QP (yel-
low), penalty-DDP (purple) and DBaS-DDP (blue). DBaS-DDP respects the
constraint on cart position (top left) while reaching the target angle (top right)
with smooth control input (bottom left). The DBaS progression over time is
shown in the bottom right sub-figure.

which the controller must swing up the pole in 3 seconds by
moving the cart while adhering to the safety constraints on the
cart’s position. We use the system dynamics from [16], but with a
tighter constraint in the cart’s position and with no modification
of the safety constraint to obtain a low relative degree. Namely,
we define our safe set by h(x) = x2

lim − x2 where xlim = 1.5.
We pick R = 0.05, qw = 10−3 and S = diag(50, 800, 10, 10).
For the high order CBF, the vector α = [100 200] gave the best
feasible results. Results are shown in Fig. 4. Comparatively, we
conclude that:
� Unconstrained DDP violates the safety constraint.
� The CBF-based method maintains safety but needed a great

deal of tuning to ensure feasibility and complete the task,
and requires high control input.

� Penalty-DDP also yields a safe solution but required a lot
more iterations to find a solution and converge.

Only DBaS-DDP is able to find the optimal solution for the
problem. This is reflected in its comparatively lower cost as
shown in Table I. It also converges in much fewer iterations than
penalty-DDP as shown in Table II.

C. Differential Wheeled Robot Safe Navigation

The system dynamics are given by ẋ = r cos θ(u1 +

u2)/2, ẏ = r sin θ(u1 + u2)/2, θ̇ = r
2d (u1 − u2), where x and

y are the robot’s coordinates, θ is its heading, r = 0.2 is the
wheel radius, d = 0.2 is the wheelbase width, and u1 and u2

are the speeds of the right and left wheels respectively. The
robot is to safely navigate different courses including randomly
generated obstacle courses, a tight course and a course with
different geometric shapes. We used the inverse barrier function
and augmented the system’s dynamics with a single DBaS with
qw = 10−3 and S = 100I3×3.

Fig. 5 shows that DBaS-DDP can handle both simple and
complex obstacles with barriers as defined in Table III, while the

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 30,2022 at 23:24:02 UTC from IEEE Xplore. Restrictions apply.

ALMUBARAK et al.: SAFETY EMBEDDED DIFFERENTIAL DYNAMIC PROGRAMMING USING DISCRETE BARRIER STATES 2761

Fig. 5. Left: traces of DBaS-DDP and penalty-DDP (top) on differential
wheeled robot, and several traces of DBaS-DDP with complex obstacles (bot-
tom). Robots move from start (red) to goal (green). Right: progression of the
associated barrier state over time in which larger values indicate that the robot
is close to some obstacles.

TABLE III
EQUATIONS USED FOR COMPLEX OBSTACLE SHAPES

Fig. 6. Success rates of DBaS-DDP (blue) and the penalty method (red) on the
differential wheeled robot example in randomized obstacle courses with varying
obstacle counts.

naive penalty approach often fails. We also consider randomized
courses. The start and target points are drawn from a uniform
distribution such that the positions are within a 0.5 unit square
around (3,0) and (−3, 0), and with angles up to ±0.5 rad.
Anywhere from 1 to 10 obstacles are created with locations
drawn from a normal distribution N (0, 1) and radii drawn
from U[0, 1]. Success is achieved if the generated trajectory
reaches within 0.1 units of the target. We performed 1000 trials
for each number of obstacles, with results listed by obstacle
count in Fig. 6 and summarized in Table I which show the
DBaS approach consistently and significantly outperforming
the penalty method. Note that because the relative degree is
ill-conditioned for this system, we cannot compare results with
standard CBF-based methods.

Fig. 7. Quadrotor reaching task with tight squeeze using DBaS-DDP (left)
compared to the penalty method (right). Using the DBaS-DDP solver, the
quadrotor was able to reach the goal (dark ball) safely while the penalty based
DDP solver failed to navigate through the obstacles.

D. Quadrotor Safe Reaching and Tracking

1) Reaching Task: We applied the discrete barrier state
based DDP (DBaS-DDP) to a quadrotor model as described
in Sabatino [32] with unity parameters (1 kg, 1kg m2, etc.).
The quadrotor was to perform a reaching problem safely, i.e.
to fly from some initial state to some arbitrary final state in
the presence of some obstacles without collision. The safe set is
again defined as the complement of a set of spherical obstacles. A
solution to the quadrotor reaching problem found by DBaS-DDP
with randomly-generated obstacles is shown in Fig. 1.

DBaS-DDP was compared against penalty-DDP in two fixed
environments: a single-obstacle case where the quadrotor must
navigate around a single large spherical obstacle and a three-
obstacle case (shown in Fig. 7) designed to add a local minimum
and a narrow passage between the obstacles. When testing in
these fixed environments with random initial conditions, we see
that DBaS-DDP successfully finds a path to the goal much more
frequently than penalty-DDP as shown in Table I. Note that
failure in this case indicates failure to reach the goal, rather than
a failure to maintain safety: as described in Proposition 1, the
trajectory and controller found by DBaS-DDP is guaranteed to
be safe in all cases.

DBaS-DDP was also tested in the presence of 40 randomized
obstacles in an environment similar to Fig. 1. In this case, DBaS-
DDP reached the goal 96% of the time while the penalty-based
method only succeeded 59% of the time and found substantially
higher-cost trajectories.

While there exist CBF-based obstacle avoidance methods for
quadrotors, they are tedious to construct for the full 3D model
and comparison is out of the scope of this analysis.

2) Tracking Task: The technique of barrier states can also
generalize to the tracking problem, in which we want to safely
track some (possibly unsafe) reference trajectory. To put the
DBaS-DDP to the test, we attempted to track the trajectory
defined by the parametric equations for a figure eight:

x(s) = sin(2s), y(s) = cos(s), z(s) = 0, s(t) =
(πt/25)2

πt/25 + 1

Then, the squared deviation of the quadrotor’s trajectory from
this path was penalized in the cost function. In addition, we
placed an obstacle at the origin forcing the quadrotor to navigate
around the obstacle to remain safe. Fig. 8 shows an execution
trace from this experiment. The quadrotor was able to success-
fully track the trajectory in a very aggressive maneuver without
losing safety.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 30,2022 at 23:24:02 UTC from IEEE Xplore. Restrictions apply.

2762 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

Fig. 8. Quadrotor tracking a predetermined trajectory (green) while avoiding
a spherical obstacle. Starting from the green ball, the safe trajectory from DBaS-
DDP (black) successfully avoids the obstacle to reach the red ball.

VI. CONCLUSION

In this work, the newly proposed barrier state method for stabi-
lization of continuous time systems was extended to trajectory
optimization of discrete time systems. This extension, named
the discrete barrier state (DBaS) method, provides provable
safety guarantees when combined with DDP for safe trajectory
optimization problems. To show the efficacy of the proposed
safety embedded DDP, we presented several comparisons with
other commonly used methods and successful simulation exam-
ples for a constrained cart-pole swing up, safe holonomic and
non-holonomic robot navigations, and a quadrotor performing
safety-critical planning and execution, demonstrating improve-
ments in comparison to the other methods on each problem.

Our work requires perfect knowledge of the system’s dynam-
ics and, similarly, assumes full knowledge of state and safety
constraints, which may not hold true in real-world applications
where the former may require model identification or leaning
and the latter are recovered from sensor measurements. In-
corporating dynamics, state, and safety constraint uncertainty,
for example using Gaussian Process regression, into the DBaS
framework represents a promising direction for future research.
Furthermore, future work will include improving robustness
by extending the DBaS-DDP to min-max and risk-sensitive
optimal control problems. Additionally, we are currently devel-
oping real-time implementations of DBaS-DDP in a lower-level
language and plan to conduct physical experiments using a
receding-horizon formulation.

REFERENCES

[1] H. Almubarak, N. Sadegh, and E. A. Theodorou, “Safety embedded control
of nonlinear systems via barrier states,” IEEE Control Syst. Lett., vol. 6,
pp. 1328–1333, 2022 doi: 10.1109/LCSYS.2021. 3093255.

[2] F. Blanchini, “Set invariance in control,” Automatica, vol. 35, no. 11,
pp. 1747–1767, 1999.

[3] S. Prajna, “Barrier certificates for nonlinear model validation,” in Proc.
42nd IEEE Int. Conf. Decis. Control (IEEE Cat. No 03CH37475), vol. 3,
2003, pp. 2884–2889.

[4] S. Prajna and A. Jadbabaie, “Safety verification of hybrid systems using
barrier certificates,” in Proc. Int. Workshop Hybrid Syst.: Comput. Control,
2004, pp. 477–492.

[5] P. Wieland and F. Allgöwer, “Constructive safety using control barrier
functions,” IFAC Proc. Volumes, vol. 40, no. 12, pp. 462–467, 2007.

[6] A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function based
quadratic programs with application to adaptive cruise control,” in Proc.
53rd IEEE Conf. Decis. Control, 2014, pp. 6271–6278.

[7] M. Z. Romdlony and B. Jayawardhana, “Uniting control Lyapunov and
control barrier functions,” in Proc. 53rd IEEE Conf. Decis. Control, 2014,
pp. 2293–2298.

[8] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier function
based quadratic programs for safety critical systems,” IEEE Trans. Autom.
Control, vol. 62, no. 8, pp. 3861–3876, Aug. 2017.

[9] A. Agrawal and K. Sreenath, “Discrete control barrier functions for
safety-critical control of discrete systems with application to bipedal robot
navigation,” Robot: Sci. Syst., vol. 13, 2017.

[10] J. Choi, F. Castaneda, C. J. Tomlin, and K.Sreenath, “Reinforcement
learning for safety-critical control under model uncertainty, using control
Lyapunov functions and control barrier functions,” Robotics: Sci. Syst.,
vol. 16, 2020.

[11] A. J. Taylor and A. D. Ames, “Adaptive safety with control barrier
functions,” in Proc. Amer. Control Conf., 2020, pp. 1399–1405.

[12] L. Wang, E. A. Theodorou, and M. Egerstedt, “Safe learning of quadrotor
dynamics using barrier certificates,” in Proc. IEEE Int. Conf. Robot.
Automat., 2018, pp. 2460–2465.

[13] M. Ahmadi, A. Singletary, J. W. Burdick, and A. D. Ames, “Safe policy
synthesis in multi-agent pomdps via discrete-time barrier functions,” in
Proc. IEEE 58th Conf. Decis. Control, 2019, pp. 4797–4803.

[14] Q. Nguyen and K.Sreenath, “Exponential control barrier functions for
enforcing high relative-degree safety-critical constraints,” in Proc. Amer.
Control Conf., 2016, pp. 322–328.

[15] W. Xiao and C. Belta, “Control barrier functions for systems with high
relative degree,” in Proc. IEEE 58th Conf. Decis. Control, 2019, pp. 474–
479.

[16] M. Pereira, Z. Wang, I. Exarchos, and E. Theodorou, “Safe optimal control
using stochastic barrier functions and deep forward-backward SDES,” in
Proc. Conf. Robot Learn., Nov. 2020, vol. 155, pp. 1783–1801.

[17] K. Long, C. Qian, J. Cortés, and N. Atanasov, “Learning barrier functions
with memory for robust safe navigation,” IEEE Robot. Automat. Lett.,
vol. 6, no. 3, pp. 4931–4938, Jul. 2021.

[18] W. Xiao, C. A. Belta, and C. G. Cassandras, “Feasibility-guided learning
for constrained optimal control problems,” in Proc. 59th IEEE Conf. Decis.
Control, 2020, pp. 1896–1901.

[19] L. Wang, A. D. Ames, and M. Egerstedt, “Multi-objective compositions
for collision-free connectivity maintenance in teams of mobile robots,” in
Proc. IEEE 55th Conf. Decis. Control, 2016, pp. 2659–2664.

[20] D. M. Murray and S. J. Yakowitz, “Constrained differential dynamic
programming and its application to multireservoir control,” Water Resour.
Res., vol. 15, no. 5, pp. 1017–1027, 1979.

[21] Y. Tassa, N. Mansard, and E. Todorov, “Control-limited differential dy-
namic programming,” in Proc. IEEE Int. Conf. Robot. Automat., 2014,
pp. 1168–1175.

[22] B. Plancher, Z. Manchester, and S. Kuindersma, “Constrained unscented
dynamic programming,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
2017, pp. 5674–5680.

[23] T. A. Howell, B. E. Jackson, and Z. Manchester, “ALTRO: A. fast solver for
constrained trajectory optimization,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2019, pp. 7674–7679.

[24] Z. Xie, C. K. Liu, and K. Hauser, “Differential dynamic programming
with nonlinear constraints,” in Proc. IEEE Int. Conf. Robot. Automat.,
2017, pp. 695–702.

[25] Y. Aoyama, G. Boutselis, A. Patel, and E. A. Theodorou, “Constrained
differential dynamic programming revisited,” in Proc. IEEE Int. Conf.
Robot. Automat., 2021, pp. 9738–9744. doi: 10.1109/ICRA48506.2021.
9561530.

[26] A. Pavlov, I. Shames, and C. Manzie, “Interior point differential dy-
namic programming,” IEEE Trans. Control Syst. Technol., vol. 29, no. 6,
pp. 2720–2727, Nov. 2021.

[27] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization.
Society for Industrial, 2001. doi: 10.1137/1.9780898718829.

[28] A. G. Wills and W. P. Heath, “Barrier function based model predictive
control,” Automatica, vol. 40, no. 8, pp. 1415–1422, 2004.

[29] D. Mayne, “A second-order gradient method for determining optimal
trajectories of non-linear discrete-time systems,” Int. J. Control, vol. 3,
no. 1, pp. 85–95, 1966.

[30] D. H. Jacobson, “Differential dynamic programming methods for deter-
mining optimal control of non-linear systems,” Ph.D. dissertation, Elect.
Eng., Centre for Comput. and Automat., Imperial College of Sci. and
Technol., Univ. of London, 1967.

[31] D. H. Jacobson and D. Q. Mayne, Differential Dynamic Programming.
American Elsevier Publishing Company North-Holland, 1970. [Online].
Available: https://books.google.com/books?id=tA-oAAAAIAAJ

[32] F. Sabatino, “Quadrotor control: Modeling, nonlinearcontrol design, and
simulation,” Master Thesis, KTH, School Elect. Eng., Automat. Control.,
Sweden2015.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 30,2022 at 23:24:02 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/LCSYS.2021. ignorespaces 3093255
https://dx.doi.org/10.1109/ICRA48506.2021. ignorespaces 9561530
https://dx.doi.org/10.1109/ICRA48506.2021. ignorespaces 9561530
https://dx.doi.org/10.1137/1.9780898718829
https://books.google.com/books{?}id$=$tA-oAAAAIAAJ

