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Abstract— This paper presents a novel control approach for
autonomous systems operating under uncertainty. We combine
Model Predictive Path Integral (MPPI) control with Covariance
Steering (CS) theory to obtain a robust controller for general
nonlinear systems. The proposed Covariance-Controlled Model
Predictive Path Integral (CC-MPPI) controller addresses the
performance degradation observed in some MPPI implemen-
tations owing to unexpected disturbances and uncertainties.
Namely, in cases where the environment changes too fast
or the simulated dynamics during the MPPI rollouts do not
capture the noise and uncertainty in the actual dynamics, the
baseline MPPI implementation may lead to divergence. The
proposed CC-MPPI controller avoids divergence by controlling
the dispersion of the rollout trajectories at the end of the
prediction horizon. Furthermore, the CC-MPPI has adjustable
trajectory sampling distributions that can be changed according
to the environment to achieve efficient sampling. Numerical
examples using a ground vehicle navigating in challenging
environments demonstrate the proposed approach.

I. INTRODUCTION

As autonomous vehicles and other robots become increas-
ingly popular, one of the major concerns is whether humans
can trust the robots’ ability to complete their assigned tasks
safely. For autonomous vehicles, for example, neglecting or
misinterpreting the disturbances during driving can lead to
serious consequences within milliseconds. The demand for
safety has led many researchers develop robust control and
planning algorithms for autonomous robotic systems. For
example, sampling-based planning algorithms that consider
uncertainty and collision probability in the vertex selection
or evaluation processes have been proposed in [1], [2], [3],
[4], and optimization-based planning algorithms that consider
systematic disturbances and chance constraints explicitly by
solving optimization problems have been developed in [5],
[6], [7], [8].

In this paper, we propose an MPC-based robust trajectory
planning approach that deals with environmental and plant
uncertainty, while providing guarantees on the dispersion of
the closed-loop system future trajectories. Model Predictive
Control (MPC) is an algorithmic, optimization-based control
design [9] that has gained popularity for autonomous ve-
hicle control over the past years [10], [11]. The traditional
deterministic MPC approaches are model-based and generate
trajectories assuming there are no uncertainties in the dynam-
ics. As a result, MPC controllers are typically not robust to
model parameter variations. To improve the performance of
MPC controllers by taking system uncertainty into account,
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Robust MPC (RMPC) controllers have been proposed to
handle deterministic uncertainties residing in a given com-
pact set. RMPC generates control commands by considering
worst-case scenarios, thus the resulting trajectories can be
conservative. Reference [12] provides an extensive review
summarizing all types of RMPC controllers. To achieve more
aggressive planning, Stochastic MPC (SMPC) utilizes the
probabilistic nature of the system uncertainty to account for
the most likely disturbances, instead of considering only
the worst-case disturbance, as with the RMPC [13], [14].
There are two classes of SMPC approaches in the literature.
The first one is based on the analytical solutions of some
optimization problem, such as [15], [16], [17], while the
second approach relies on randomization to solve optimiza-
tion problems, such as [18], [19], [20]. The proposed CC-
MPPI controller is somewhere in-between these two, as it
analytically computes a controlled dynamics by considering
the model uncertainty and then generates the optimal control
using randomized roll-outs of the controlled dynamics. This
is discussed in greater detail in Section IV.

Most of current MPC implementations assume linear sys-
tem dynamics and formulate the resulting MPC task as a
quadratic optimization problem, which helps MPC meet the
strict real-time requirements required for safe control. How-
ever, these approaches depend on simplified linear models
that may not capture accurately the dynamics of the real
system. Model Predictive Path Integral (MPPI) control [21]
is a type of nonlinear MPC algorithm that solves repeatedly
finite-horizon optimal control tasks while utilizing nonlinear
dynamics and general cost functions. Specifically, MPPI
is a simulation-based algorithm that samples thousands of
trajectories around some mean control sequence in real-time,
by taking advantage of the parallel computing capabilities of
modern Graphic Processing Units (GPUs). It then produces
an optimal trajectory along with its corresponding control
sequence by calculating the weighted average of the cost
of the ensuing sampled trajectories, where the weights are
determined by the cost of each trajectory rollout. One of
the advantages of the MPPI approach over more traditional
MPC controllers is that it does not restrict the form of the
cost function of the optimization problem [22], which can
be non-quadratic and even discontinuous.

Despite its appealing characteristics, the MPPI algorithm
may encounter problems when implemented in practice. In
particular, when the mean control sequence lies inside an
infeasible region, all the resulting MPPI sampled trajectories
are concentrated within the same region, as illustrated in Fig-
ure 1, and this may lead to a situation where the trajectories
violate the constraints. Two cases this may happen are: first,
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Fig. 1. MPPI Divergence; from [23].

when the MPPI algorithm diverges because the environment
changes too fast; and, second, when the algorithm fails
because the predicted dynamics do not capture the noise and
uncertainty of the actual dynamics. The reason the MPPI
algorithm may perform poorly under the previous two cases
is because it fails to take into account the disturbances
(either from the dynamics or from the environment) so that
all sampled trajectories end up violating the constraints.
Figure 1 shows the influence of the noise on MPPI sampled
trajectories. In this figure, the gray curves are the MPPI
sampled trajectories, the red curves show the boundaries
of the trajectory sampling distribution, and the green curve
represents the simulated trajectory of the robot following the
optimal control sequence given the current distribution. In
Figure 1(a) the autonomous vehicle has sampling distribution
mostly inside the track initially. In Figure 1(b), the vehicle
ends up in an unexpected pose due to unforeseen distur-
bances after it executes the control command. This further
leads to the situation depicted in Figure 1(c), where the
algorithm diverges because all of the sampled trajectories
violate the constraints.

To mitigate the previous shortcomings of the MPPI algo-
rithm, prior works apply a controller to track the output of
the MPPI controller in order to keep the actual trajectory
as close as possible to the predicted nominal trajectory.
These approaches separate the planning and control tasks
so that MPPI acts similarly to a path planner. For exam-
ple, in [23] an iterative Linear Quadratic Gaussian (iLQG)
controller was used to track the planned trajectory provided
by MPPI. In [24] the authors propose a method that utilizes
a tracking controller with L1 augmentation to compensate
for the mismatch between the nominal dynamics and the
true dynamics. However, these methods do not improve the
performance of the MPPI algorithm if there are significant
changes in the environment within a short interval of time.
The proposed CC-MPPI algorithm tries to address some of
these shortcomings by improving the performance of the
MPPI algorithm under the scenarios mentioned above. This
is achieved by introducing adjustable trajectory sampling dis-
tributions, and by directly controlling the evolution of these
trajectory distributions to avoid an uncontrolled dispersion at
the end of the control horizon.

II. PROBLEM FORMULATION

The goal of the proposed Covariance-Controlled MPPI
(CC-MPPI) controller is to make the distributions of the
sampled trajectories more flexible than the ones generated
by MPPI, such that the CC-MPPI algorithm samples more

efficiently and with a smaller probability to be trapped in
local minima when the optimal trajectory from the previous
time step lies inside some high-cost region, as illustrated in
Figure 1(c). To this end, we introduce a desired terminal
state covariance ⌃f for the states of the dynamics (1b)
at the final time step N as a hyperparameter for the CC-
MPPI controller. The key idea is that the distribution of the
sampled trajectories can be adjusted by a suitable choice
of ⌃f together with the control disturbance variance ⌃✏.
Denoting by v = [v0, . . . , vN�1]

| 2 RnuN , the CC-MPPI
controller solves the following optimization problem,

min
v

J(v) =

E
"
�(xN ) +

N�1X

k=0

✓
q(xk) +

1

2
vkRvk

◆#
,

(1a)

subject to,
xk+1 = F (xk, vk + ✏k), (1b)
x(0) = x0, ✏k ⇠ N (0,⌃✏), (1c)
E [xNxN

|]� E [xN ]E [xN ]| � ⌃f , (1d)

at each iteration, where the state terminal cost �(xN ) and
the state portion of the running cost q(xk) can be arbitrary
functions. The objective function (1a) minimizes the expec-
tation of the state and control costs with xk being a random
vector subject to the dynamics (1b).

III. MPPI ALGORITHM REVIEW

The MPPI controller, as described in [22], minimizes (1a)
subject to (1b) and (1c). As in Problem (1), the terminal cost
�(xN ) and the state portion of the running cost q(xk) of the
MPPI can be arbitrary functions.

As in an MPC setting, the MPPI algorithm samples M
trajectories during each optimization iteration. Let v =
[v0, . . . , vN�1]

| 2 RnuN be the mean control sequence,
u(m) =

h
u(m)
0 , . . . , u(m)

N�1

i|
2 RnuN be the actual control

sequence, and let ✏(m) =
h
✏(m)
0 , . . . , ✏(m)

N�1

i|
2 RnuN ,

✏(m)
k ⇠ N (0,⌃✏), be the control disturbance sequence cor-

responding to the mth sampled trajectory
h
x(m)
0 , . . . , x(m)

N�1

i

at the current iteration, such that u(m) = v + ✏(m), where
m = 1, . . . ,M . The cost for the mth sampled trajectory is
given by [20]

Sm = �(x(m)
N ) +

N�1X

k=0

q̃(x(m)
k , vk, ✏

(m)
k ), (2)

where q̃(x(m)
k , vk, ✏

(m)
k ) is the cost for the mth sampled

trajectory at the kth step, given by

q̃(x(m)
k , v(m)

k , ✏(m)
k ) = q(x(m)

k )+

1� ⌫�1

2
✏(m)
k

|
R✏(m)

k + v(m)
k

|
R✏(m)

k +
1

2
v(m)
k

|
Rv(m)

k ,
(3)

where ⌫ is the ratio between the covariance of the injected
disturbance ✏(m) and the covariance of the disturbance of
the original dynamics. The term 1

2v
(m)
k

|
Rv(m)

k in (3) is the
cost for the disturbance-free portion of the control input, and
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both 1�⌫�1

2 ✏(m)
k

|
R✏(m)

k and v(m)
k

|
R✏(m)

k in (3) penalize large
control disturbances and smooth out the resulting control
signal. The weights !m (m = 1, . . . ,M) of the mth sampled
trajectory are chosen as [25]

!m = exp
✓
� 1

�
(Sm � �)

◆
, (4)

where, � = minm=1,...,M Sm, and where � determines how
selective is the weighted average of the sampled trajectories.
Note that the constant � does not influence the solution,
and it is introduced to prevent numerical instability of the
algorithm. The MPPI algorithm generates the optimal control
sequence and the mean sequence of the next iteration v using
the following equations,

v =
MX

m=1

!mu(m)/
MX

m=1

!m. (5)

In Section IV we discuss how the CC-MPPI controller
satisfies the terminal constraint (1d), and then present the
complete CC-MPPI algorithm.

IV. COVARIANCE-CONTROLLED MPPI

In this section, we introduce the proposed CC-MPPI
controller. Section IV-A discusses the linearization of the
dynamics (1b), and Section IV-B uses this linearization to
achieve the terminal constraint (1d). Section V presents the
proposed CC-MPPI algorithm that solves the optimization
Problem (1).

A. Linearized Model

We start by linearizing system (1b) along some reference
trajectory using the approach outlined in [26]. The refer-
ence trajectory of the first optimization iteration can be an
arbitrary trajectory; starting with the second iteration, the
reference trajectory of the current iteration is the trajectory
generated by the optimal control sequence from the previous
iteration. To this end, let wr =

⇥
wr

0, . . . , w
r
N�1

⇤| be the
reference control sequence at the current iteration, and let
xr = [xr

0, . . . , x
r
N ]| be the corresponding reference state

sequence, such that

xr
k+1 = F (xr

k, w
r
k), k = 0, . . . , N � 1. (6)

The dynamical system in (6) can then be approximated in the
vicinity of (xr,wr) with a discrete-time, linear time-varying
(LTV) system as follows

xk+1 = Akxk +Bkuk + dk, (7)

where xk and uk are the state and control input respectively
to the LTV system at step k, and

Ak =
@F

@xk

���
xk=xr

k,uk=wr
k

, Bk =
@F

@uk

���
xk=xr

k,uk=wr
k

, (8)

dk = F (xr
k, w

r
k)�Akx

r
k �Bkw

r
k, (9)

where Ak and Bk are the system matrices, and dk is the
residual term of the linearization.

B. Covariance-Controlled Trajectory Sampling

As with the baseline MPPI algorithm, the CC-MPPI al-
gorithm simulates M trajectories during each iteration. Let
u = [u0, . . . , uN�1]

| be the control sequence of the mth CC-
MPPI sampled trajectory during the current iteration of the
algorithm where we drop the superscript m for simplicity.
The optimal control sequence from the previous iteration
which is also the reference control sequence of the current
iteration w = [w0 . . . , wN�1]

| is injected with artificial
noise ✏ = [✏0, . . . , ✏N�1]

| and a feedback term Kkyk is
added, such that

uk = wk + ✏k +Kkyk, ✏k ⇠ N (0,⌃✏), (10)

where yk follows the dynamics,

yk+1 = Akyk +Bk✏k, y0 = 0, (11)

where y0 = 0 since we assume perfect observation of the
initial state [17]. Substituting (10) into (7) yields,

xk+1 = Akxk +Bk(wk +Kkyk) + dk +Bk✏k, (12)

where xk is the state of the mth CC-MPPI sampled trajectory
at step k, and dk is the residual term of the linearization at
step k as defined in (9). Let x0 be the state at the beginning
of the current iteration. We can then rewrite the system in
(12) in the compact form,

x = Ax0 + B(w +Ky) + Cd+ B✏, (13)

where x = [x0, . . . , xN ]| 2 Rnx(N+1), w =
[w0, . . . , wN�1] 2 RnuN y = [y0, . . . , yN ]| 2 Rnx(N+1),
d = [d0, . . . , dN�1]

| 2 RnxN , ✏ = [✏0, . . . , ✏N�1]
| 2 RnxN

and the augmented system matrices A, B, C, K are defined
similarly as in [7]. In order to compute K to satisfy the
terminal covariance constraint (1d), the CC-MPPI considers a
constrained LQG problem (14) at each optimization iteration
as follows

min
K

J(x,w,K) =

E
⇥
x|Q̄x+ (w +Ky)|R̄(w +Ky)

⇤
,

(14a)

subject to,
x = Ax0 + B(w +Ky) + Cd+ B✏, (14b)
EN (E [xx|]� E [x]E [x]|)EN

| � ⌃f , (14c)

where EN = [0, . . . , 0, I]| 2 Rnx⇥nx(N+1), the augmented
cost parameter matrices Q̄ = blkdiag(Q, . . . , Q,Qf ) 2
Rnx(N+1)⇥nx(N+1) and R̄ = blkdiag(R, . . . , R) 2
RnuN⇥nuN . Since E [✏] = 0 and y0 = 0, we have
E [w +Ky] = w. It follows from (11) and (13) that

x̄ = E [x] = Ax0 + Bw + Cd, (15)

and,

x̃ = x� E[x] = BKy + B✏ = (I + BK)B✏. (16)

The cost function J(x,w,K) in (14) can then be converted
to the following equivalent form [8]

J(x̄, x̃,w,K) = tr(Q̄E[x̃x̃|])
+ x̄|Q̄x̄+ tr(R̄E [Kyy|K|]) +w|R̄w.

(17)
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The reference control sequence w is fixed and is given by
the optimal control sequence from the previous CC-MPPI
iteration, which implies that x̄ is fixed and is given by (15).
For the optimization problem in (14), we can then drop the
terms representing constant values in (17) and obtain the cost

J⌃(x̃,K) = tr(Q̄E[x̃x̃|]) + tr(R̄E [Kyy|K|]). (18)

Substituting (16) into (18), and using the fact that E[✏✏|] =
⌃✏, yields,

J⌃(K) = tr
��
(I + BK)|Q̄(I + BK) +K|R̄K

�
B⌃̄✏B|� ,

(19)
where ⌃̄✏ = blkdiag(⌃✏, ...,⌃✏) 2 RnuN⇥nuN . Substituting
(13) into (14c), we obtain,

⌃f ⌫ EN (I + BK)B⌃̄✏B|(I + BK)|EN . (20)

Finally, Problem (14) can be converted into the following
convex optimization problem,

min
K

J⌃(K) subject to (20). (21)

The problem (21) can be easily solved by a convex optimiza-
tion solver such as Mosek [27] to obtain K. Note that the last
diagonal term Qf in Q̄ can be viewed as a soft terminal state
constraint that can be tuned to control the terminal covariance
in situations where a hard constraint (20) is not preferred.
It follows from (10) that the control sequence of the mth

sampled trajectory is u = w+ ✏+Ky. We then rollout the
sampled trajectories using u and the dynamical model (1b).
The complete CC-MPPI algorithm is detailed in Section V.

V. THE CC-MPPI ALGORITHM

The CC-MPPI algorithm is given in Algorithm 1. Line 2
obtains the current estimate of the state x0 at the beginning
of the current optimization iteration. Lines 3 to 5 rollout
the reference trajectory x using the discrete-time nonlinear
dynamical model F . Line 6 linearizes the model F along x
and its corresponding control sequence w as described in
(6), (7), (8), (9), and calculates the augmented dynamical
model matrices A, B, C along with the linearization
residual term d. Line 7 computes the feedback gain K
for the closed-loop system in (13) by solving the convex
optimization problem (21). Lines 8 to 23 sample the control
sequences, perform the rollouts and evaluate the sampled
trajectories with the running cost (3). Specifically, lines
12 to 18 introduce sample trajectories of the close-loop
dynamics and sample trajectories of zero-mean input, so
that the algorithm can balance between smoothness of
trajectories and low control cost [22]. Line 24 computes
the optimal control sequence w following (4) and (5).
Line 25 sends the first control command w0 of the optimal
control sequence to the actuators. Line 26 removes w0, and
duplicates wN�1 at the end of the horizon for w.

VI. RESULTS

In this section, we show via a series of numerical ex-
amples that the proposed CC-MPPI algorithm outperforms
the baseline MPPI algorithm in critical situations described

Algorithm 1: CC-MPPI Algorithm
Given: �,�,⌃✏,⌃f ,↵ : CC-MPPI Parameters;
Input : w : Initial control sequence

1 while task not complete do
2 x0  GetStateEstimate();
3 for k  0 to N � 1 do
4 xk+1  F (xk, wk);
5 end
6 A,B, C,d DynamicsLinearization(F,x,w);
7 K = CovarianceControl(⌃f ,⌃✏,B, Q̄, R̄);
8 for m 1 to M do
9 x(m)

0  x0, y(m)
0  0;

10 Sample ✏(m)  
h
✏(m)
0 , . . . , ✏(m)

N�1

i|
;

11 for k  0 to N � 1 do
12 if m < (1� ↵)M then
13 v(m)

k  wk +Kky
(m)
k ;

14 else
15 v(m)

k  0
16 end
17 u(m)

k  v(m)
k + ✏(m)

k ;
18 x(m)

k+1  F (x(m)
k , u(m)

k );
19 y(m)

k+1  Aky
(m)
k +Bk✏

(m)
k ;

20 Sm  Sm + q̃(x(m)
k , v(m)

k , ✏(m)
k );

21 end
22 Sm  Sm + �(x(m)

N );
23 end
24 w = CalculateOptimalControl(Sm,u(m));
25 ExecuteCommand(w0);
26 Initialize(w);
27 end

in Section II. The terminal covariance ⌃f in (20) for the
CC-MPPI should be determined based on the environment.
Please also refer to the accompanied video1 for a demonstra-
tion of more simulation examples.

A. Vehicle Model

We assume that the injected artificial noise ✏(m) in CC-
MPPI and MPPI algorithms is significantly greater than the
inherent noise of the vehicle model, such that the model
noise is negligible. We model the vehicle using a single-track
bicycle model

ẋ = v cos(� + �), ẏ = v sin(� + �), (22a)

�̇ =
v

lr sin�
, v̇ = �T , (22b)

where tan� = lr/(lf + lr) tan �s and the parameters lr, lf
are distances from the CoM to the rear and front wheels,
respectively. The x, y are position coordinates of a fixed
world coordinate frame. The � is the vehicle yaw angle, and
v is velocity at CoM with respect to the world coordinate
frame. The �T and �s are throttle and steering inputs to

1https://www.youtube.com/watch?v=cZq4tnBTIqc
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Fig. 2. Track schematic

the model, respectively. We discretize the system (22) with
the Euler method, xk+1 = F (xk, uk) = xk + f(xk, uk)�t,
where k = 0, . . . , N � 1 and time step �t = 0.02 s.

B. Controller Setup

Assuming that the model noise is much smaller than the
injected noise ✏(m), it follows that ⌫�1 ⇡ 0 in (3). It then
follows from (3) that the running cost q̃(x(m)

k , v(m)
k , ✏(m)

k ) for
the kth step of the mth sampled trajectory takes the form,

q̃(x(m)
k , v(m)

k , ✏(m)
k ) = q(x(m)

k )+
1

2
✏(m)
k

|
R✏(m)

k + v(m)
k

|
R✏(m)

k +
1

2
v(m)
k

|
Rv(m)

k ,
(23)

for k = 0, . . . , N � 1, m = 1, . . . ,M, where we take the
state-dependent cost q(x(m)

k ) as,

q(x) = µbdry(x) + c1µobs(x). (24)

The term µbdry(x) in (24) is the boundary cost which prevents
the vehicle from leaving the track, and it is given by

µbdry(x) =

⇢
0, if WithinBoundary(x),
2000, Otherwise. (25)

The term c1µobs(x) in (24) penalizes collisions with obsta-
cles, where c1 is a weighting coefficient. We choose two
different forms of µobs(x) in our simulations. The first is
discontinuous on the obstacles’ edges,

µobs(x) =

⇢
0, if ri > di(x),
10, Otherwise, (26)

and the second is continuous on the obstacles’ edges,

µobs(x) =
PX

i=1

max(ri � di(x), 0), (27)

where di(x) describes the distance from the vehicle’s CoM to
the center of the ith circular obstacle, and ri is the radius of
the ith obstacle. We take ri = 0.1 m for all of the P circular
obstacles in this section. In our simulations, the terminal
cost �(x(m)

N ) for the MPPI and CC-MPPI controllers has
the form,

�(x) = c2(1� s(x)) + 500e2(x). (28)

The first term in (28) is the progress cost, where c2 is
a weighting coefficient and s(x) represents the distance
between the current vehicle state and the terminal state
of the sample trajectory along the track centerline. The
term e(x) in (28) is the vehicle’s lateral deviation from the
track centerline (see Figure 2). For both the MPPI and the
CC-MPPI controllers, we set the control horizon to N = 15,
the value for � = 1, the number of sampled trajectories to

Fig. 3. Responses of the MPPI and CC-MPPI to an unpredictable
obstacle.The grey curves are the sampled trajectories, the green curves
represent the predicted optimal trajectories generated by the controllers,
and the black points show the actual trajectories taken by the vehicle.

M = 4096, the portion of uncontrolled sampled trajectories
to ↵ = 0.2, and the control cost matrix to R = 0.01I .
The parameter values discussed here are shared by all the
controller setups in the simulations of this section.

C. Planning in Fast-changing Environment: Unpredictable

Obstacles

This experiment tests the CC-MPPI controller’s ability to
respond to emergencies owing to unpredictable appearance
of obstacles. We test the CC-MPPI against a baseline MPPI
controller in an environment where an obstacle suddenly
appears in the traveling direction of an autonomous vehicle.
In this simulation, the CC-MPPI and MPPI controllers were
injected with noises having the same covariance ⌃✏ =
diag(0.0049, 0.0012), and the same weighting coefficients
c1 = 712.5 and c2 = 3.3 in their trajectory costs. Figure 3
demonstrates that the MPPI controller fails to find a feasible
solution and results in a collision with the obstacle. Figure 3
further shows that the CC-MPPI has a more effective trajec-
tory sampling distribution strategy, which leads the vehicle
to take a feasible trajectory that avoids collision.

D. Aggressive Driving in a Cluttered Environment

To further examine the performance of the CC-MPPI con-
troller in more complicated environments, we run simulations
using a CC-MPPI controller and an MPPI controller on a race
track environment with obstacles densely scattered on the
track. The track has a constant width of 0.6 m, the centerline
has a length of 10.9 m and each turn of the centerline has
radius 0.3 m. Each obstacle has radius 0.1 m and uses the
continuous obstacle cost (27). Both controllers are set to
achieve minimum lap time while avoiding collisions with
cluttered obstacles, and have the same covariance ⌃✏ =
diag(0.49, 0.12) for their injected noises. We perform a
grid search by varying the cost weight c1 in (24) which
corresponds to avoiding collisions with obstacles, and the
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TABLE I
CC-MPPI AND MPPI GRID SEARCH PARAMETER VALUES

Cost Parameter Min Max Interval
c1 75 450 37.5
c2 1.65 2.97 0.33

Fig. 4. MPPI and CC-MPPI trajectories on a race track. The trajectories
in red are generated by the CC-MPPI, and the trajectories in green are
generated by the MPPI using the same injected noise covariance as the
CC-MPPI.

cost weight c2 in (28) for optimizing the vehicle velocity
along the track centerline. Table I shows the grid search
parameters. Figure 5 presents the results of the grid search
in a scatter plot showing the distribution of lap times and
average number of collisions. Table II summarizes the grid
search and shows the statistics over all the simulations.

We define a failure to be the situation when the vehicle
comes to a complete stop, or when the vehicle is too far away
from the track centerline (> 1 m). If the vehicle finishes
20 laps without a failure, the simulation is considered a
success. Figure 5 shows that the data points corresponding to
CC-MPPI occupy the bottom part of the scatter plot, which
indicates that the CC-MPPI generates trajectories that are
significantly faster than those by the MPPI controller. Table II
shows that the CC-MPPI achieves 34.78% smaller average
lap time, 6.34% fewer collisions and 218.97% higher success
rate than the MPPI in simulations. Moreover, the two data
points in the red circles in Figure 5 are produced by MPPI
and CC-MPPI with the same set of c1 and c2 values, and
Figure 4 visualizes the trajectories that correspond to these
two data points. We see that the CC-MPPI generates a more
aggressive driving maneuver than the MPPI, which helps
explain why the CC-MPPI achieves a significantly smaller
average lap time.

The performance of CC-MPPI, however, comes with an
increased computational overhead. Using our implementa-
tion, the CC-MPPI controller runs at 13Hz, while the MPPI
controller runs at 97Hz. All simulations were done on a

TABLE II
CC-MPPI VS. MPPI OF DIFFERENT SETTINGS

Controller Avg. laptime(s) No. collision/lap Success rate
CC-MPPI 4.20 2.68 98.18%

MPPI 6.44 2.86 30.78%

Fig. 5. Lap time and number of collisions distribution. Each point in this
figure shows the average lap time and average number of collisions over 20
laps in a simulation using one pair of c1 and c2 from Table I. The orange
points are produced by the MPPI controller and the cyan points are by the
CC-MPPI controller.

desktop computer equipped with an i9 3.5GHz CPU, and an
RTX3090 GPU. The main computational bottleneck of CC-
MPPI is the computation of the feedback gain K at each
iteration. Possible remedies include updating the feedback
gain asynchronously, computing the feedback gains off-
line and storing them in a lookup table, or using a faster,
dedicated convex optimization solver that is more suitable
for real-time implementation [28], [29], [30].

VII. CONCLUSIONS AND FUTURE WORK

We have proposed the Covariance-Controlled Model Pre-
dictive Path Integral (CC-MPPI) algorithm that incorperates
covariance steering within the MPPI algorithm. The CC-
MPPI algorithm has adjustable trajectory sampling distribu-
tions which can be tuned by changing the terminal covariance
constraint ⌃f in (1d) and the covariance of the injected noise
⌃✏ in (1c), which makes it more flexible and robust than
the MPPI algorithm. In the simulations, we showed that the
CC-MPPI explores the environment and samples trajectories
more efficiently than MPPI for the same level of exploration
noise (⌃✏). This results in the vehicle responding faster to
unpredictable obstacles and avoid collisions better in a clut-
tered environment than MPPI. The CC-MPPI performance
can be further improved if ⌃✏ and ⌃f are tuned based on
the information of the surrounding environment.

In the future, we plan to design policies to choose ju-
diciously the terminal covariance constraint ⌃f and the in-
jected noise covariance ⌃✏ on-the-fly. These policies should
evaluate the environment and assign ⌃f , ⌃✏ for the CC-MPPI
controller, such that the trajectory sampling distribution of
the controller can be tailored to carry out informed and
efficient sampling in any environments.
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