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Abstract—Next-generation distributed computing networks (e.g.,
edge and fog computing) enable the efficient delivery of delay-
sensitive, compute-intensive applications by facilitating access to
computation resources in close proximity to end users. Many
of these applications (e.g., augmented/virtual reality) are also
data-intensive: in addition to user-specific (live) data streams,
they require access to shared (static) digital objects (e.g., im-
age database) to complete the required processing tasks. When
required objects are not available at the servers hosting the
associated service functions, they must be fetched from other edge
locations, incurring additional communication cost and latency. In
such settings, overall service delivery performance shall benefit
from jointly optimized decisions around (i) routing paths and
processing locations for live data streams, together with (ii) cache
selection and distribution paths for associated digital objects. In
this paper, we address the problem of dynamic control of data-
intensive services over edge cloud networks. We characterize the
network stability region and design the first throughput-optimal
control policy that coordinates processing and routing decisions for
both live and static data-streams. Numerical results demonstrate
the superior performance (e.g., throughput, delay, and resource
consumption) obtained via the novel multi-pipeline flow control
mechanism of the proposed policy, compared with state-of-the-
art algorithms that lack integrated stream processing and data
distribution control.

I. INTRODUCTION

The class of augmented information (AgI) services encom-
passes to a wide range of services and applications designed
to deliver information of real-time relevance that results from
the online aggregation, processing, and distribution of multiple
data streams. AgI services such as system automation (e.g.,
smart homes/factories/cities, self-driving cars) and Metaverse
experiences (e.g., multiplayer gaming, immersive video, vir-
tual/augmented reality) are driving unprecedented requirements
for communication, computation, and storage resources [1].
To address this need, distributed cloud network architectures
such as multi-access edge computing (MEC) are becoming
a promising paradigm, providing end users with efficient ac-
cess to nearby computation resources. Together with continued
advances in network virtualization and programmability [2],
distributed cloud networks allow flexible and elastic deployment
of disaggregated services composed of multiple software func-
tions that can be dynamically instantiated at distributed network
locations.

The associated problem of service function chain (SFC)
orchestration has received significant attention in the recent

literature. One main line of work studies this problem in a static
setting, where the goal is to allocate multi-dimensional (i.e.,
communication, computation, storage) network resources for
function/data placement and flow routing, in order to optimize
a network-wide objective, e.g., maximizing accepted traffic
[3] or minimizing operational cost [4]. While useful for long
timescale end-to-end service optimization, the corresponding
formulations typically take the form of (NP-Hard) mixed integer
programs that lead to algorithms with either high complexity or
sub-optimal performance, and overlook the dynamic nature of
service demands and network conditions.

To address the problem in a dynamic scenario, [5] introduced
the dynamic cloud network control problem, where one needs
to make online packet processing, routing, and scheduling
decisions in response to stochastic system states (e.g., service
demands and resource capacities). Among existing techniques,
Lyapunov-drift control [6] is a widely-used approach to design
throughput-optimal algorithms, e.g., DCNC [5] and UCNC [7],
by dynamically exploring routing and processing diversity. In
general, centralized routing policies, e.g., UCNC, that exploit
global knowledge to guarantee that packets follow acyclic paths,
can attain better delay performance than their fully distributed
counterparts, e.g., DCNC. We refer the reader to a longer
version of this paper [8] for a more comprehensive literature
review.

An increasingly relevant feature of next-generation AgI ser-
vices is their intensive data requirements: in addition to live
data streams, task (or service function) processing also requires
access to pre-stored static data objects. For example, in an
augmented reality (AR) application, access to pre-stored scene
objects is required to generate augmented/enhanced images or
video streams (see Fig. 1). While the aforementioned studies
on dynamic cloud network control optimize the live data stream
(routing and processing) pipeline without considering the access
to static data, other works in data-centric computing networks
[9] have addressed the static data distribution and processing
problem without considering the live data pipeline.

To close the gap, this paper addresses the problem of “online
delivery of data-intensive AgI services over edge computing
networks”, which require real-time aggregation, processing, and
distribution of live and static data streams. We design a control
policy that jointly decides (i) routing paths and processing
locations for live streams, and (ii) cache selection and distribu-
tion paths for associated static objects, to optimize end-to-end978-1-6654-3540-6/22/$31.00 © 2022 IEEE



service delivery performance. The main challenges come from
the coupling of live and static data routing with the associated
function processing decisions. To the best of our knowledge,
this is the first paper that studies joint processing and routing
control of multiple pipelines for the online delivery of stream-
processing services.

The contributions of this work are summarized as follows:
• We characterize the stability region of distributed cloud

networks supporting data-intensive AgI service delivery.
• We design the first throughput-optimal control policy for

online data-intensive service delivery, termed DI-DCNC,
which coordinates processing and routing decisions for live
and static data streams.

• We conduct illustrative numerical experiments to demon-
strate the superior performance of DI-DCNC.

II. SYSTEM MODEL

A. Cache-Enabled MEC Network Model
Consider a distributed cloud network, modeled by a directed

graph G = (V, E), with V and E denoting the node and
edge sets, respectively. Each vertex i ∈ V represents a node
equipped with computation resources (e.g., edge server) for
service function processing. Each edge (i, j) ∈ E represents
a point-to-point communication link, which can support data
transmission from node i to j. Let δ−(i) and δ+(i) denote the
incoming and outgoing neighbor sets of node i, respectively.

Time is slotted, and the network processing and transmission
capacities are quantified as follows. (i) Ci: the maximum num-
ber of processing instructions (e.g., floating point operations)
that can be executed in one time slot at node i. (ii) Cij : the
maximum number of data units (e.g., packets) that can be
transmitted in one time slot over link (i, j).

We assume that the network nodes are also equipped with
storage resources to cache databases composed of digital objects
whose access may be required for service function processing.
In this paper, we focus on cache selection and routing decisions
with fixed database placement and refer the reader to [8] for ex-
tensions that include database placement/replacement policies.
Let V(k) ⊂ V denote the static sources of database k, i.e., the
set of nodes that cache database k.

B. Data-Intensive Service Model
In this paper, we illustrate the proposed algorithm in the

context of a single-function data-intensive service. The gener-
alization to multiple service functions is briefly described in
Section V and presented in detail in [8].

Each service φ includes one task (or service function) that
must process coupled user-specific data and associated dig-
ital objects – referred to as live packets and static packets,
respectively – for the generation of consumable streams. As
shown in Fig. 1, an example AR application is composed of an
AR processing function that must process the user live data
(source video stream) together with associated static objects
(scene objects) to create the output augmented data (augmented
video stream).

The function of service φ is described by four parameters
(rφ, ζφ, kφ, ξφ), defined as: (i) workload rφ: the amount of
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Fig. 1. Example AR application with one processing function that takes two
inputs (live and static data) to create augmented data.

computation resource (e.g., instructions per time slot) required
to process one input live packet, (ii) merging ratio ζφ: the
number of static packets required to process one input live
packet, (iii) database ID kφ: the ID of the database containing
the required static object, and (iv) scaling factor ξφ: the number
of output packets per input live packet.

C. Client Model

We define a client c by a 3-tuple (s, d, φ), denoting the
source node s (where the live packets arrive to the network),
the destination node d (where the output packets are requested
for consumption), and the requested service φ, respectively.

1) Live Packet Arrival: Let a(c)(t) be the number of live
data packets of client c arriving to the network at time t. For
each client c, we assume the arrival process {a(c)(t) : t ≥ 0}
is i.i.d. over time, with mean arrival rate of λ(c), and bounded
maximum arrival number.

2) Static Packet Provisioning: Upon a live packet arrival, one
static source v ∈ V(kφ) must be selected to produce a copy of
the required static packet.

We refer to a live packet and its associated static packet
required for its processing as belonging to the same packet-
level request.

D. Queuing System

Each packet (live or static) arriving to the network gets
associated with a route for its delivery, and we establish actual
queues to accommodate packets waiting for processing or rout-
ing. For each link (i, j) ∈ E , we create one transmission queue
collecting all packets waiting to cross the link. In addition, a
novel paired-packet queuing system is constructed at each
node i ∈ V , composed of: (i) the processing queue collecting
the paired live and static packets concurrently present at node i,
which are ready for joint processing, and (ii) the waiting queue
collecting the unpaired live or static packets waiting for their
in-transit associates, which are not qualified for processing until
joining the processing queue upon their associates’ arrivals.

III. POLICY SPACE AND NETWORK STABILITY REGION

A. Transformation to an Augmented Layered Graph

We propose an augmented layered graph (ALG) model ex-
tending the layered graph [7], to analyze and optimize the data-
intensive AgI service delivery problem.

1) Topology: The ALG is composed of three pipelines,
referred to as live, static and output pipelines, and each pipeline
has the same topology as the actual network G, except for
the static pipeline that includes an additional node o′1 and its
outgoing edges to all static sources. We note that: (i) The live,
static, and output pipelines accommodate exogenously arriving
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Fig. 2. Illustration of the ALG model for the delivery of an AR service.

live packets, in-network replicated static packets, and processed
output packets, respectively, and represent their associated rout-
ing over the network. (ii) In the static pipeline, we create a super
static source node o′1 connected to all static sources v ∈ V(kφ),
which is equivalent to assuming that o′1 is the only static source
of database kφ.1 (iii) The three pipelines are placed in two
layers, describing packets before (layer 1, henceforth indicated
by subscript 1) and after processing (layer 2), respectively.
There are inter-layer edges connecting corresponding nodes,
which represent processing operations, i.e., the live and static
packets pushed through these edges are processed into the
output packet in the actual network.

In the example in Fig. 2, the live packet and static packet
(which is generated via replication at the static source v)
are routed following the blue and green paths to node p,
respectively. After getting processed at node p, the output packet
is delivered along the red path to destination d.

Mathematically, given the actual network G, the ALG of
service φ is given by Gφ = (V(φ), E(φ)), with V(φ) =

{i1, i′1, i2 : i ∈ V} ∪ {o′1} and E(φ) = E(φ)tr ∪ E(φ)pr ∪ E(φ)st ,
in which E(φ)tr = {(i1, j1), (i′1, j

′
1), (i2, j2) : (i, j) ∈ E}, E(φ)pr =

{(i1, i2), (i′1, i2) : i ∈ V}, and E(φ)st = {(o′1, v′1) : v ∈ V(kφ)}.
2) Flow Constraints: Denote by fı ≥ 0 the flow rate

associated with edge (ı, ) ∈ E(φ), defined as the average rate
of packets (in packets per slot) traversing edge (ı, ) ∈ E(φ).
In particular, for ∀ (i, j) ∈ E , fi1j1 , fi′1j′1 , fi2j2 represent the
transmission rates of the live, static, and output packets over
link (i, j); for ∀ v ∈ V(kφ), fo′1v′1 is the local replication rate
of the static packets at static source v; for ∀ i ∈ V , fi1i2 , fi′1i2
denote the processing rates of live and static packets at node
i, respectively, while ξφfi1i2 denotes the rate of the resulting
output packets at node i.

The flow rates must satisfy the following constraints.
(i) Live and output flow conservation: for ∀ i ∈ V ,∑

j∈δ+(i)
fi1j1 + fi1i2 =

∑
j∈δ−(i)

fj1i1 , (1a)∑
j∈δ+(i)

fi2j2 =
∑

j∈δ−(i)
fj2i2 + ξφfi1i2 , (1b)

i.e., the total outgoing rate of packets that are transmitted and
processed equals the total incoming rate of packets that are

1If node o′1 can provide static packets to i′1 along a path (o′1, v
′
1, · · · , i′1) in

the ALG; then, in the actual network, we can select v to produce the packets
and send them to node i along the rest of the path. And vice versa.

received and generated (via service processing), for both live
(1a) and output (1b) data streams.

(ii) Static flow conservation: for ∀ i ∈ V ,∑
j∈δ+(i)

fi′1j′1 + fi′1i2 =
∑

j∈δ−(i)
fj′1i′1 + fo′1i′11{i∈V(kφ)}, (2)

which can be interpreted analogous to (i), except for that static
packets are generated via replication rather than processing.

(iii) Data merging: for ∀ i ∈ V ,

fi′1i2 = ζφfi1i2 , (3)

i.e., the processing rates of static and live packets are associated
via the “merging ratio” ζφ defined in Section II-B.

B. Policy Space

Next, we define the space of policies for data-intensive
service delivery, encompassing joint packet processing, routing,
and replication decisions. In line with [7] and the increasingly
adopted software defined networking (SDN) paradigm, we focus
on centralized routing and distributed scheduling policies. Upon
a packet-level request and associated live packet arrival at
its source, the policy selects: (i) routing path and processing
location for the live packet, (ii) cache selection (i.e., chosen
static source to replicate the static packet) and distribution path
for the associated static packet, and (iii) routing path for the
resulting output packet. In addition, each node/link needs to
schedule packets for processing/transmission at each time slot.

1) Decision Variables: A policy thus includes two actions.
Route Selection: For each packet-level request, choose a set

of edges in the ALG and associated flow rates satisfying (1) –
(3), based on which: (i) the cache selection decision is specified
by the replication rate fo′1v′1 , (ii) the routing path for each (live
or static) packet is given by the edges with non-zero rates in
the corresponding pipeline, and (iii) the processing location
selection is indicated by the processing rates fi1i2 and fi′1i2 ,
which guarantee that the live and static packets meet at the
same node i due to (3).

Packet Scheduling: At each time slot, for each node i ∈ V
and link (i, j) ∈ E , schedule packets from the local processing
queues (which hold paired packets) and transmission queues,
for operation, such that the incurred resource consumption does
not exceed the corresponding capacities Ci and Cij .

2) Efficient Policy Space: We define the efficient policy
space as that in which policies only select acyclic routing paths,
which can be shown to not compromise the achievable perfor-
mance (e.g., throughput, delay, and resource consumption).

As illustrated in Fig. 2, for each request, we choose a star
route (STAR) σ in the ALG, which includes an internal node p2
and three leaf nodes s1, o′1 and d2 connecting to it via paths σ1∪
(p1, p2), σ′1 ∪ (p′1, p2), and σ2, respectively, where p2 denotes
the processing location, and σ1, σ′1, and σ2 the acyclic routing
paths of the live (from s1 to p1), static (from o′1 to p′1), and
output (from p2 to d2) packets, respectively.

For each client c, the set of all STARs, denoted by Fc, is
finite, and the route selection decision can be expressed by

A(t) =
{
a(c,σ)(t) :

∑
σ∈Fc

a(c,σ)(t) = a(c)(t), ∀ c, σ
}

(4)



where a(c,σ)(t) denotes the number of requests of client c that
arrive at time t and get associated with STAR σ for delivery.

C. Network Stability Region

We define the network stability region Λ as the set of
arrival vectors λ = {λ(c) : ∀ c} under which there exists a
policy that stabilizes the actual queues. The stability region
describes the network capability to support service requests,
and is characterized by the following theorem.

Theorem 1: An arrival vector λ is interior to the stability
region Λ if and only if, for each client c, there exist probability
values

{
Pc(σ) :

∑
σ∈Fc Pc(σ) = 1

}
, such that: for ∀ i, (i, j),∑

c,σ

λ(c)ρ
(c,σ)
i Pc(σ) ≤ Ci,

∑
c,σ

λ(c)ρ
(c,σ)
ij Pc(σ) ≤ Cij (5)

where ρ(c,σ)i and ρ(c,σ)ij denote the processing and transmission
resource loads imposed on node i and link (i, j) if a packet of
client c is delivered via STAR σ, given by:

ρ
(c,σ)
i = rφ1{(i1, i2)∈σ} (6a)

ρ
(c,σ)
ij = 1{(i1, j1)∈σ} + ζφ1{(i′1, j′1)∈σ} + ξφ1{(i2, j2)∈σ}. (6b)

Proof: See [8, Theorem 1].
In (6b) , the three terms denote the resource loads imposed on

link (i, j) if the live, static, and output packets traverse (i1, j1),
(i′1, j

′
1), and (i2, j2) in STAR σ, respectively.

IV. PROPOSED ALGORITHM

Next, we present the proposed data-intensive dynamic cloud
network control (DI-DCNC) policy. We first introduce a single-
hop virtual system (in Section IV-A) to derive packet rout-
ing decisions (in Section IV-B). Then, we present the packet
scheduling policy, and summarize the actions taken in the actual
network (in Section IV-C).

A. Virtual System

1) Precedence Constraint: In line with [7], [10], we create a
virtual network, where the precedence constraint that imposes
that packets must be transmitted hop-by-hop along its route,
is relaxed by allowing a packet upon route selection to be
immediately inserted into the virtual queues associated with
every link in the route.

We emphasize that the virtual system is only used for route
selection and is NOT relevant to packet scheduling.

2) Virtual Queues: We create virtual queues Q̃i(t) for ∀ i ∈
V and Q̃ij(t) for ∀ (i, j) ∈ E , to represent the resource loads of
the nodes and links in the virtual system, which are interpreted
as the anticipated resource loads in the actual network.

The queuing dynamics are given by:

Q̃i(t+ 1) =
[
Q̃i(t)− Ci + ãi(t)

]+
(7a)

Q̃ij(t+ 1) =
[
Q̃ij(t)− Cij + ãij(t)

]+
(7b)

where Ci and Cij are the amount of processing/transmission
resource available at each time slot, and ãi(t) and ãij(t) denote
the “additional” resource loads imposed on the nodes and links
upon newly arriving requests at time t. Recall that each request

gets associated with a route for delivery upon arrival, which
immediately impacts the virtual queuing states of all links in
the route. Hence,

ãi(t) =
∑
c,σ

ρ
(c,σ)
i a(c,σ)(t), ãij(t) =

∑
c,σ

ρ
(c,σ)
ij a(c,σ)(t) (8)

with ρ(c,σ)i and ρ(c,σ)ij given by (6).

B. Optimal Virtual Network Decisions

1) Lyapunov Drift Control: Next, we leverage Lyapunov drift
control theory to derive a policy that stabilizes the normalized
virtual queues Q(t) =

{
Qi(t) , Q̃i(t)/Ci : ∀ i ∈ V

}
∪{

Qij(t) = Q̃ij(t)/Cij : ∀ (i, j) ∈ E
}

, which have equivalent
stability properties as the virtual queues and can be interpreted
as queuing delay in the virtual system.

Consider the Lyapunov function L(t) , ‖Q(t)‖2/2 and its
drift ∆(Q(t)) , L(t+ 1)− L(t). We can derive the following
upper bound of the drift ∆(Q(t)) (see [8, Appendix B.1]):

∆(Q(t)) ≤ B − ‖Q(t)‖1 +
∑

c,σ
O(c,σ)(t) a(c,σ)(t) (9)

where B is a constant, and O(c,σ)(t) is referred to as the weight
of STAR σ, given by:

O(c,σ)(t) =
∑
(i,j)

[
w

(c)
i1j1

(t)1{(i1,j1)∈σ} + w
(c)
i′1j
′
1
(t)1{(i′1,j′1)∈σ}

+ w
(c)
i2j2

(t)1{(i2,j2)∈σ}
]

+
∑
i∈V

w
(c)
i1i2

(t)1{(i1,i2)∈σ} (10)

in which w
(c)
i1j1

(t) = Qij(t)/Cij , w
(c)
i′1j
′
1
(t) = ζφ(Qij(t)/Cij),

w
(c)
i2j2

(t) = ξφ(Qij(t)/Cij), w(c)
i1i2

(t) = rφ(Qi(t)/Ci), and we
define w(c)

i′1i2
(t) = w

(c)
o′1v
′
1
(t) = 0 for ∀ i ∈ V , v ∈ V(kφ).

The proposed algorithm is designed to minimize (9) over the
route selection decision A(t) given by (4), or equivalently,

min
A(t)

∑
c,σ

O(c,σ)(t) a(c,σ)(t), s. t. (4). (11)

2) Route Selection: Given the linear structure of (11), the
optimal route selection decision is given by:

a? (c,σ)(t) = a(c)(t)1{σ=σ?}, σ
? , arg min

σ∈Fc
O(c,σ)(t), (12)

i.e., all requests of client c arriving at time t are delivered via
the min-STAR σ?, i.e., the STAR with the minimum weight.

The remaining problem is to find the min-STAR σ?. To this
end, we create a weighted ALG in which we assign the weight
w

(c)
ı (t) defined in (10) to each edge (ı, ) in the ALG, under

which the weight of STAR σ, O(c,σ)(t), equals the sum of
individual edge weights, given by:

O(c,σ)(t) = |σ1|+ |σ′1|+ w(c)
p1p2(t) + |σ2| (13)

where |σ1|, |σ′1|, and |σ2| denote the weights of the routing
paths of the live, static, and output packets in the weighted
ALG, respectively, and p is the processing location.

Based on (13), we propose to find the min-STAR in two
steps. First, we fix the processing location p, so we can treat
the optimization of path weights for the live, static, and output



packets as separate problems. For example, minimizing |σ1|
is equivalent to finding the shortest path from s1 to p1 in the
weighted ALG, and similarly for |σ′1| (from o′1 to p′1) and |σ2|
(from p2 to d2). Therefore, the minimum weight of all STARs
with node p ∈ V as their processing location is

Wp = SPW(s1, p1) + SPW(o′1, p
′
1)

+w(c)
p1p2(t) + SPW(p2, d2)

(14)

where SPW(ı, ) denotes the weight of the shortest path SP(ı, )
from node ı to  in the weighted ALG (the path of the static
packet is given by SP(o′1, p

′
1) = (o′1, v

′
1(p)) ∪ SP(v′1(p), p′1),

with v(p) denoting the selected static source). Then, in the
second step, we select the processing location p? ∈ V to
minimize the weight (14). The procedure is summarized as
follows:

Route Selection: At each time slot t, all requests of client c
get associated with the STAR specified as:

Processing: p? = arg minp∈V Wp (given by (14)), (15a)

Cache selection: v? = v(p?), (15b)
Transmission: SP(s1, p

?
1)︸ ︷︷ ︸

live packet

, SP(v?1
′, p?1

′)︸ ︷︷ ︸
static packet

, SP(p?2, d2)︸ ︷︷ ︸
output packet

. (15c)

3) Complexity Analysis: The above procedure requires run-
ning Dijkstra’s algorithm to compute the shortest path from s1,
o′1, and d2 to the other nodes in the ALG, for each possible
choice of p, with overall complexity O(|V| · |E| log |V|) [11].

C. Optimal Actual Network Decisions

Next, we present the control decisions in the actual network.
We adopt the route selection decisions made in the virtual
network (15), and the extend the nearest-to-origin (ENTO)
policy [10] for packet scheduling, described as follows.

Packet Scheduling: At each time slot, for each node/link,
give priority to the packets in the corresponding process-
ing/transmission queues that have crossed the smallest number
of edges in the ALG.

To sum up, the proposed DI-DCNC algorithm operates as
follows. At each time slot: (i) assign the STAR (15) to all
requests of client c for delivery, (ii) at each node/link, schedule
packets for processing/transmission by ENTO, and (iii) update
the virtual queues by (7).

D. Performance Analysis

Theorem 2: For any arrival vector λ within the stability region
Λ, the actual queues are rate stable under DI-DCNC.

Proof: See [8, Theorem 2].

V. EXTENSIONS TO GENERAL SERVICE MODEL

In general, a service can perform (i) multi-step processing
(i.e., more than one service function) on (ii) multiple source
streams (i.e., more than one live and static input).

To handle such services, we can incorporate more (i) layers
and (ii) pipelines, into the ALG. The (extended) DI-DCNC
algorithm follows the same rule for route selection, i.e., finding
the min-weight route to deliver each packet-level request, and a
key step is to select a sequence of processing locations, which

transforms the problem into multiple unicast problems. We refer
the reader to [8] for detailed descriptions and derivations.

VI. NUMERICAL RESULTS

In this section, we evaluate DI-DCNC in the 16-node grid
network of Fig. 3. Each cylinder node caches a database, with
the associated digit representing the database ID. The network
resources are summarized in Table I. We consider four clients,
and each service includes 2 functions, specified in Table II.
To recall, client = (source, destination, service), function =
(workload, merging ratio, database ID, scaling factor). The
arrival processes are modeled by independent Poisson processes
with λ Mbps.

TABLE I
AVAILABLE PROCESSING / TRANSMISSION RESOURCES

Processing Ci = 10 GHz for i = A,B,C,D; 5 GHz elsewhere
Transmission Cij = 20 Mbps for ∀ (i, j)

TABLE II
CLIENTS (s, d, φ) AND FUNCTION SPEC (r [GHZ/MBPS], ζ, k, ξ)

Client (E,H, φ1) (F,G, φ2) (G,F, φ3) (H,E, φ4)

Func 1 (.2, 1, 1, 1) (.5, 2, 3, 1) (.1, 1, 5, 1) (1, 5, 7, 1/2)

Func 2 (.2, 1, 2, 2) (.5, 3, 4, 1/2) (.1, 1, 6, 3) (1, 10, 8, 1/3)

We employ two benchmark algorithms: (i) Static-to-live
(S2L), which makes individual routing decisions for live data,
and then brings the static packets to the selected processing
nodes. (ii) Live-to-static (L2S), which brings live data to the
“nearest” (in the weighted ALG) static source for processing.

A. Network Stability Region

First, we study the network stability regions of the algorithm.
Fig. 4 depicts the attained average delay under different arrival
rates (which is set to ∞ if the network is not stable).

As we can observe, the DI-DCNC algorithm attains good
(average) delay performance over a wide range of arrival rates;
when λ crosses a critical point (λ1 ≈ 12.9 Mbps), the network
is no longer stable, which is the boundary of its stability region.
Similar behaviors are observed from the other two algorithms,
and we find that DI-DCNC outperforms them in terms of
the achieved throughput: 12.9 Mbps (DI-DCNC) > 9.9 Mbps
(S2L) > 5.0 Mbps (L2S). Therefore, compared to S2L and
L2S, DI-DCNC can better exploit network resources to improve
total throughput. We also notice that the delay attained by DI-
DCNC is very similar and not lower than both benchmarks
in the low-congestion regimes. This can be explained by the
throughput-oriented design of DI-DCNC, which tries to re-
duce the aggregate queuing delay of both live and static data
pipelines. Such objective, while closely related (especially in
high congestion regimes), is not exactly equivalent to the actual
service delay, which depends on the maximum delay between
the two concurrent pipelines.

B. Resource Occupation

Next, we compare the resource occupation of the algorithms.
Assume that the available processing/transmission capacities
at each node/link are given by α1 and α2 (in percentage) of
corresponding maximum budgets, respectively. We then define
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the feasible region as the collection of (α1, α2) pairs under
which the delay requirement is fulfilled. Assume λ = 4 Mbps
and average delay constraint = 20 time slots.

The border lines of the feasible regions are shown in Fig. 5.
Since a lower latency can be attained with more resources, i.e.,
(α1, α2)→ (1, 1), the feasible regions are to the upper-right of
the border lines. As we can observe, DI-DCNC can save the
most network resources. In particular, if α1 = α2 = α, the
resource saving ratios, i.e., 1 − α, of the algorithms are: 64%
(DI-DCNC) > 50% (S2L) > 20% (L2S). Another observation
is: S2L is transmission-constrained (compared to its sensitivity
to processing resource consumption). To wit: in the horizontal
direction, it can achieve a maximal saving ratio of 80% (when
α2 = 1), which is comparable to DI-DCNC; however, the maxi-
mal ratio is 50% for transmission resources (when α1 = 1), and
there is a large gap to DI-DCNC in that dimension. The reason
is that S2L ignores the transmission load of the static packets,
leading to additional transmission resource consumption. While
L2S is processing-constrained, because it is forced to use the
processing resources at the static sources.

C. Impact of Database Replication

Finally, we study the impact of database replication. We
introduce the notion of replication index to denote the number
of copies of each database cached in the network. We assume
equal replication index for all databases.2 We evaluate the
same metrics of throughput and resource occupation, assuming
λ = 15 Mbps, delay requirement = 20 slots, α1 = α2 = α.

The results are shown in Fig. 6. For each algorithm, as
the replication index grows, we observe increasing throughput
and decreasing resource occupation,3 because with a higher
replication index: for DI-DCNC and S2L, the distance to a
static source reduces, while for L2S, processing resources at
more network locations can be used. When comparing the three
algorithms, we find that: (i) when the replication index hits 16,
the three algorithms become identical, and their performance
converge. (ii) DI-DCNC achieves the best performance in most
of the interval; in addition, it converges to the saturation point

2For example, in Fig. 3, the replication index is 1, as each database is only
cached at one node. If all 16 nodes cache all databases, the replication index
would be 16.

3In general, resource occupation reduces with replication index, but there are
exceptions (see L2S curve in [7, 13]). A possible reason is that the developed
algorithms do not explicitly minimize hop-distance, which can become more
dominant than queuing delay in low congestion regimes (with low arrival rate
or high replication index), making the end-to-end delay non-monotonic.

(the point after which the gain from increasing replication index
becomes marginal) faster than other algorithms.

VII. CONCLUSIONS

In this paper, we designed a cloud network control policy for
online delivery of data-intensive AgI services. We considered a
more general service model, requiring both live and static data-
streams as inputs to a service function. Based on this model,
we characterized the network stability region and proposed
an efficient, throughput-optimal algorithm, DI-DCNC, which
jointly decides (i) routing paths and processing locations for
live data streams, and (ii) cache selection and distribution
paths for associated data objects. Via numerical experiments,
we demonstrated the superior performance of multiple pipeline
coordination for the delivery of next-generation data-intensive
real-time stream-processing services.
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