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Abstract

In adversarial machine learning, new defenses against attacks
on deep learning systems are routinely broken soon after
their release by more powerful attacks. In this context, foren-
sic tools can offer a valuable complement to existing de-
fenses, by tracing back a successful attack to its root cause,
and offering a path forward for mitigation to prevent similar
attacks in the future.

In this paper, we describe our efforts in developing a foren-
sic traceback tool for poison attacks on deep neural networks.
We propose a novel iterative clustering and pruning solu-
tion that trims “innocent” training samples, until all that re-
mains is the set of poisoned data responsible for the attack.
Our method clusters training samples based on their impact
on model parameters, then uses an efficient data unlearning
method to prune innocent clusters. We empirically demon-
strate the efficacy of our system on three types of dirty-label
(backdoor) poison attacks and three types of clean-label poi-
son attacks, across domains of computer vision and malware
classification. Our system achieves over 98.4% precision and
96.8% recall across all attacks. We also show that our system
is robust against four anti-forensics measures specifically de-
signed to attack it.

1 Introduction

For external facing systems in real world settings, few if any
security measures can offer full protection against all attacks.
In practice, digital forensics and incident response (DFIR)
provide a complementary security tool that focuses on us-
ing post-attack evidence to trace back a successful attack to
its root cause. For packet routing on the wide-area Internet,
for example, forensic IP traceback tools can identify the true
source of a Denial of Service (DoS) attack. Not only can
forensic tools help operators identify (and hopefully patch)
vulnerabilities responsible for successful attacks, but strong
forensics can provide a strong deterrent against future attack-
ers by threatening them with post-attack identification.

Such an approach would be particularly attractive in the

context of attacks against deep learning systems, where new
defenses are routinely broken soon after their release by more
powerful attacks [3,11,12,65,80]. Consider for example “poi-
soning attacks,” a threat that arises from the reliance of ML
trainers and operators on external data sources, either pur-
chasing data from or outsourcing data collection to third par-
ties [55]. An attacker can inject manipulated training data
into the training data pipeline, thus causing the resulting
model to produce targeted misclassification on specific in-
puts. Recent advances in poisoning attacks have made them
more powerful [1, 48], more realistic [65, 80, 83], and more
stealthy [4, 45]. In a recent survey, industrial practitioners
ranked data poisoning attacks as the most worrisome threat
to industry machine learning systems [42].

For data poisoning attacks, effective forensics would add a
valuable complement to existing defenses, by helping to iden-
tify which training samples led to the misclassification be-
havior used in the attack. We call this the “poison traceback
problem.” Starting with evidence of the attack (an input sam-
ple that triggers the misclassification), a forensic tool would
seek to identify a particular subset of training data responsi-
ble for corrupting the model with the observed misclassifi-
cation behavior. Combined with metadata or logs that track
the provenance of training data, this enables practitioners to
identify either the source of the poison data, or a vulnerabil-
ity in the data pipeline where the poison data was inserted.
Either result leads to direct mitigation steps (e.g. removing
an unreliable data vendor or securing a breached server on
the training data pipeline) that would patch the pipeline and
improve robustness to similar attacks in the future.

Several factors make the poison traceback problem quite
challenging in practice. First, today’s deep learning models
employ large complex architectures that do not easily lend
themselves to explainability. Specific behaviors do not local-
ize themselves to specific neurons as once speculated. Sec-
ond, the effects of poisoning attacks generally require train-
ing on a group of poisoned data, and a subset of the poisoned
training data is unlikely to produce the same behavior. Thus
a brute force search for the subset of poisoned training data
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would involve testing an exponential number of sample com-
binations from a large training corpus. Finally, a poison trace-
back tool produces evidence that can lead to the identification
of parties responsible for an attack. Thus these tools must
have very high precision, since false positives could lead to
false accusations and negative consequences.

In this paper, we introduce the poison traceback problem,
and propose the first solution that accurately identifies poi-
soned training data responsible for an observed attack. Our
solution utilizes an iterative clustering and pruning algorithm.
At each step, it groups training samples into clusters based
on their impact on model parameters, then identifies benign
clusters using an efficient data unlearning algorithm. As be-
nign clusters are pruned away, the algorithm converges on a
minimal set of training samples responsible for inducing the
observed misclassification behavior. In detailed experiments
covering a variety of tasks/datasets and attacks, our approach
produces highly accurate (high precision and recall) identifi-
cation of poison data for both dirty-label and clean-label poi-
son attacks.

This paper makes the following contributions to the foren-
sics of poison attacks:

* We define forensics in the context of data poisoning attacks
and design a forensics system that effectively traces back
misclassification events to poison training data responsible.

* We empirically demonstrate the effectiveness of our sys-
tem on three types of dirty-label poison attacks and three
types of clean-label poison attacks, across two domains of
computer vision and malware classification. Our system
achieves over 98.4% precision and 96.8% recall on iden-
tifying poison training data,

* We test our system against 4 alternative forensic designs
adapted from prior defenses, and show our system consis-
tently succeeds on attacks where alternatives fall short.

* We consider potential anti-forensics techniques that can be
used to evade our system. We test our system and show that
it is robust against 6 adaptive attacks specifically designed
to overcome this forensic system.

To the best of our knowledge, this is the first work to ex-
plore a forensics approach to address data poisoning attacks
on deep learning systems. This is a significant departure from
existing works that focus entirely on attack prevention. Given
our initial results, we believe poison traceback is a promising
direction worthy of further exploration.

2 Background and Related Work

In this section, we present the background and related work
on data poisoning and digital forensics.

2.1 Data Poisoning

In data poisoning attacks, the attacker gains access to the
training data pipeline of the victim ML system, e.g., via a ma-
licious data provider, and injects a set of poison data into the

training dataset. The poison data causes the victim’s model
to have certain vulnerabilities, i.e., misclassifying certain in-
puts targeted by the attacker.

Data Poisoning Attacks. We can divide existing poi-
son attacks into two categories based on their attack assump-
tions: dirty-label attacks where attacker can modify both
the data and their semantic labels, and clean-label attacks
where attacker can only modify the data. Dirty-labels at-
tacks [29, 48, 80], often called as backdoor attacks, seek to
inject a trigger into the victim model. A trigger is a unique
input signal (e.g., a yellow sticker on an image, a trigger word
in a sentence) that once present can lead the victim model
to misclassify any inputs to a target label selected by the at-
tacker (e.g., the presence of yellow sticker leads the model to
classify stop signs as speed limits [29]).

Clean-label attacks further divide into clean-label back-
door attacks and clean-label triggerless attacks. Clean-label
backdoor attacks [61,65,76] are similar to dirty-label back-
door attacks except that attacker cannot modify the label of
the poison data. Clean-label triggerless attack aims to mis-
classify a single unmodified test data. Shafahi et al. [66]
proposed the first clean-label triggerless attack where an at-
tacker injects poison data to disrupt the feature region of
the targeted data. Several proposals [1, 87] significantly im-
prove the performance of clean-label attacks by positioning
poison data on a convex polytope around the target data.
These clean-label attacks only perform well when the vic-
tim model’s feature space is known, i.e., assuming the victim
uses transfer learning and the attacker has white-box access
to the pretrained model’s parameters. A recent attack, Witch-
Brew [26], targets the from-scratch training scenario leverag-
ing gradient alignment of poison and target data.

Data Poisoning Defenses. A large body of research seeks
to defend against poison attacks. Robust training defenses
modify the training of neural networks to be resilient against
data poisoning. Existing robust training defenses leverage en-
semble training [36], KNN majority voting [35], adversarial
training [27], random smoothing [78], and data augmenta-
tion [7]. Other defenses try to diagnose and patch an already
poisoned model. Neural Cleanse [79] assumes backdoor trig-
gers are small input signals and reverse engineers the injected
backdoor trigger. Fine-Pruning and STRIP assume neurons
related to poison are not activated by benign data, and thus
remove unused neurons [24,47]. SPECTRE [31] assumes a
Gaussian distribution of benign feature representations, and
filters out anomalous inference queries.

Still, defending against poison attacks remains a challeng-
ing problem, mainly because the injected vulnerability is hid-
den and has not been activated at defense time. Thus, exist-
ing defenses examine the training data or various behaviors
of the model to identify anomalous signals that might be ma-
licious. While existing defenses have shown promising signs
by preventing many poison attacks, stronger and adaptive at-
tackers are able to bypass existing defenses [4,63,65, 80, 83].
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Figure 1: The general scenario for our trackback system. a) the attacker poisoned the training data to inject vulnerability into the
model; b) at run-time, the attacker submits an attack input to cause a misclassification event; c) our traceback system inspects

the misclassification event to identify its root cause.

2.2 Background on Digital Forensics

First introduced in the 1970s, digital forensics has been a ma-
jor and growing area of cybersecurity. Digital forensics seeks
to trace the source of a cyberattack that has already happened
leveraging traces that the attacker left in the victim system.

“Attack incidents” trigger the forensic analysis, i.e., when
the system administrator discovers a cyberattack after some
catastrophic events have happened (e.g., web servers over-
loaded with dummy requests, machine takeover, or sensitive
data appearing in the dark web). Then, a forensics system
is assigned to investigate the source of the attack. Forensic
analysis often starts with evidence collection from the logs
of the victim system. Then the system connects these pieces
of evidence using their casual links to form a causal graph,
and identifies the root cause of the attack by tracing through
the casual graph starting from the attack incident.

Benefits of Forensics.  Successful forensics can lead to
prosecution of the perpetrator, stopping the attack from the
source, and offering insights to build more secure systems.
Forensics can even break the arms race between attackers
and defenders, since an attacker faces a much higher cost
of iterating with a forensics system, i.e., the attacker is held
accountable as long as the forensics system succeeds once.
Consequently, the risk of being caught acts as a strong deter-
rent to discourage any attackers from launching the attack in
the first place.

Forensics vs. Defenses. Forensics is a complementary ap-
proach to defenses (or security through prevention). While
there is a significant amount of prior works focusing on de-
fenses against adversarial attacks, history (in both machine
learning security and multiple other security areas) shows
that no defense is perfect in practice, and attackers will
find ways to circumvent even strong defenses. Forensics ad-
dresses the incident response of successful attacks by tracing
back to the root causes. Modern security systems leverage
both defenses and forensics to achieve maximum security.

The same dynamic holds true in the context of poison at-
tacks on neural networks. For example, a defense against
backdoors that identifies poison training data can be circum-
vented by an attacker who breaches the server after the de-
fense has been applied, but prior to model training.

Existing Digital Forensics Research.  Forensics has been
widely studied in security community to solve a wide vari-
ety of security problems, e.g., tracing the source IP of DDoS
attacks [17, 62, 72], origins of intrusion [39, 84], and the
cause of advance persistent threats (APTs) [23, 82, 85]. Ex-
isting research addresses many technical challenges of foren-
sics. [6,21,38,43] seek to secure the integrity of traces left
by the attacker against potential tampering. [19, 44, 50, 81]
reduce the large storage overhead of logging while preserv-
ing enough information. [39,51,85] address the dependency-
explosion problem where a forensics system cannot narrow
down the true cause of the attack. Another line of research
focuses on post-forensics, i.e., after the root cause is identi-
fied. The post-forensics system can prosecute the attacker in
court by generating causal proof [20,25] and fingerprint the
attack to prevent similar attacks in the future [37, 54, 58].

3 Traceback on Data Poisoning Attacks

In this paper, we consider the task of applying forensics to
uncover the presence of data poisoning attacks on deep neu-
ral network (DNN) models. Given a misclassification event
at test time, we seek to identify the set of poisoned training
data that resulted in the misclassification.

Example Scenario. Figure | illustrates the general sce-
nario for post-attack forensic analysis. One or more attack-
ers find a way to access the training data pipeline', and inject
poison training data to introduce a specific vulnerability into
the DNN model (Figure 1(a)). Once the corrupted model is
deployed, the attacker submits a carefully crafted input that
exploits the vulnerability to produce a misclassified result.
When the administrator discovers this misclassification event
(possibly after downstream events), they want to identify the
root cause or entity responsible (Figure 1(b)). Information is
sent to the traceback system, including the input that caused
the misclassification, the DNN model, and its training data.
The traceback system then identifies the poison training data
responsible for the misclassification event (Figure 1(c)).
Here, we define our threat model, identify key goals and
challenges of a forensic traceback system for poisoning at-

IThe training data pipeline often includes multiple layers of data collec-
tors, labelers, and brokers.
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tacks, and highlight our key intuition for our solution. We
describe the details of our traceback system in §4.

Terminology. We use the following terminology:

* Data poisoning attack: the injection of poisoned training
data that embeds vulnerability into the victim model.

¢ Misclassification event: an input (x,) that the model mis-
classified, and the corresponding misclassified label (y,).

3.1 Threat Model

We first describe our threat model and assumptions of the
attacker and the traceback system.

Data Poisoning Attacker. = We adopt common assump-
tions made by existing work on poisoning attacks and de-
fenses. We assume the attacker:

* can modify any portion of their controlled training data;

* can poison at most half of the entire training dataset;

* has no access to other parts of the model training pipeline,
including the final model parameters of the trained model”;

* is aware of the existence of a potential traceback system
and can adopt anti-forensics techniques to evade traceback
(more details in §9);

* at inference time, submits an attack input that utilizes the
injected vulnerability to cause model misclassification.

Traceback System.  We assume the traceback system is
deployed by the model owner or a trusted third party, and
thus has full access to the following resources:

 the DNN model (its parameters and architecture), the model
training pipeline and the training data;

¢ information on the misclassification event, i.e., the exact at-
tack input x,, and misclassification output y,.

We do not assume the traceback system has any access to
information on other attacks (beyond the current misclassi-
fication event), and make no assumption about types or pa-
rameters of the poisoning attacks. Note that the traceback
system has full access to the training dataset, unlike assump-
tions made by some existing defenses, which prevent poison
attacks without leveraging the full training dataset [79].

We note that in practice, a misclassification event may
also arise from low model accuracy or from an evasion
attack. Either can cause misclassification without poison-
ing/modifying training data. In §10, we discuss how our
forensic tool can also be used to determine if a misclassifi-
cation was caused by a poisoning attack. A comprehensive
study of robust recognition of non-poison misclassification
events is beyond the scope of this paper. In the rest of the
paper, we only limit ourselves to data poisoning attacks.

2There exists a few parameter-space poison attack [33,70] and we con-
sider them outside of our threat model since these attacks require additional
access to the victim’s training pipeline.

3.2 Design Requirements and Challenges

To identify what/who is responsible for the misclassification
event, a practical DNN traceback system should meet the fol-
lowing requirements:

» High precision — In forensics, false positives can lead to
false accusations, and thus must be minimized. Under our
problem context, this means that for any misclassification
event caused by a specific poisoning attack A, traceback
should identify only those poisoned training data injected
to implement A but not others.

» High recall — Recall measures the percentage of poison
training data responsible for the misclassification event that
are identified by the traceback system. Achieving a high re-
call rate is crucial for identifying all the attack parties, espe-
cially when multiple parties worked together to inject poi-
son data in order to train a vulnerability into the model.

* Generalizability — An effective traceback system should
address a wide range of poisoning attacks against DNN
models, without requiring knowledge of the attack type or
parameters (e.g., the amount of poison training data).

We further note two non-goals of our system. The first is

attack scope. The goal of the traceback system is to respond
to a specific, observed attack. In a scenario where one or
more attackers have performed multiple, independent poison-
ing attacks on the same model, the traceback system focuses
on identifying the poison data that caused the observed mis-
classification event. The second is on computational latency.
Unlike real-time attack detection tools, forensic traceback is
a post-attack operation and does not face strict latency re-
quirements. This is a common assumption for digital foren-
sics [14,28].
Potential Solutions and Key Challenges. Traditional dig-
ital forensics traces the root cause of an attack by building
causal graphs using causal links among system events [39,
51, 85]. In our problem context, DNN model training allows
each individual training sample to potentially contribute to
the final model parameters, and by extension, the misclas-
sification result. This is commonly known in forensics as
the dependency explosion problem, and combined with the
large size of training data (e.g., millions of training samples)
makes conventional causal graph analysis intractable.

The key challenge facing any DNN forensic system is
how to efficiently connect a (mis)classification result to spe-
cific samples in the training data. For non-DNN, linear ML
models, existing works use the well-known influence func-
tion [40] to estimate the contribution of each training data
point towards a classification result, leveraging the first-order
Taylor’s approximation. However, recent work [5] showed
that when applied to DNNGs, the influence function produces
poor performance and requires costly computation of second-
order derivatives. We confirmed these observations exper-
imentally. Using the influence function to traceback Bad-
Net poisoning attacks on a CIFAR10 model (details in §6)
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achieved less than 69% precision and recall. When testing
it on models trained on the larger ImageNet, our influence
function computation timed out after running 15 days on 4
NVidia TitanX GPUs.

Another alternative is to adapt existing poison defenses
into forensic tools for use after an attack has been de-
tected. While adapting defense techniques as forensics is
itself slightly paradoxical (waterproof defenses would obvi-
ate the very need for forensics), we can nonetheless test to
see if such techniques can be effective after an attack. Later
in §8, we adapt four defenses (Spectral Signature, Neural
Cleanse, Deep K-NN, and L,-Norm) into potential forensic
tools, and compare them with our traceback system. Some of
the adapted systems have success against simple attacks, but
all of them fail on stronger poison attacks.

Poisoning as a group effect. In current work on poisoning
attacks, attack success relies on a critical mass of poison sam-
ples in the training set [29, 65, 69]. While a sufficiently large
set of poison training data can shape model behavior and in-
ject vulnerabilities, the contribution of each individual data
sample is less and much harder to quantify. This explains the
poor performance of the influence function when applied to
smaller models such as CIFAR10 (see above). It motivates
us to design a solution to search for groups of poison train-
ing data, not single samples.

3.3 Design Intuition

Instead of designing the traceback system to explicitly target
individual training data samples, our intuition is to inspect
training data in groups, and map the traceback problem to a
set searching problem.

Set searching by iterative clustering and pruning. We
propose to search for sets of training samples responsible for
an observed misclassification event, by iteratively pruning
groups of training data we can identify as innocent to the at-
tack. Starting with the full training data set, we progressively
identify and prune clusters of innocent training samples until
only those responsible for the misclassification event are left.
In each iteration, we only need to identify clusters of train-
ing data that do not contain any poison training data required
to make the misclassification event successful. As such, our
traceback design only needs a “binary” measure of event re-
sponsibility, which is much easier to compute than the actual
contribution of any training data samples to the attack.

A binary measure of event responsibility. We propose a
binary measure of event responsibility, which connects a mis-
classification event with the model training data. Here our hy-
pothesis is that since data poisoning attacks focus on making
the model learn new behavior that is different from those of-
fered by the benign (or innocent) data, the attack confidence
level should not degrade if some portion of the innocent data
is not used for model training. In this work, we propose to
use this condition to determine whether a cluster of training

data contains only innocent data not responsible for the mis-
classification.

We formally define this condition as follows. Let the
model’s full training dataset D be divided into two distinct
subsets: Dy and D\ D. Let ¥ be the DNN model trained
on D and ¥~ be the model trained on D\ D;. Let (x4,v,)
represent the misclassification event. We use £(F (x4),Yq)
and £(F ~ (x4),ya) to indirectly compare the confidence level
of (x4,y4) on the two DNN models, where £(.) is the cross-
entropy loss function. Specifically, if removing D from the
model training data does not increase the attack confidence
level, i.e.,

U(F (xa)sYa) = U(F~ (Xa),Ya), (D

then D; is less responsible for the misclassification event
(x4, Yq) than D\ Dy. This is in the sense that D\ D has a ratio
of benign to poison data that is more skewed towards poison
than D, allowing us to use this measure of event responsibil-
ity to iteratively determine the subset of poison data. We note
that in practice, we are able to use clustering to find splits
such that D; does not contain any poison data. Our proposed
measure only examines the attack confidence level, and does
not consider the model’s normal classification accuracy.

The proposed binary measure of event responsibility (Eq.
1) is supported by our theoretical analysis on how removing
a portion of the training data affects attack performance. For
brevity, we present the analysis in Appendix A.1.

4 Detailed Poison Traceback Design

This section presents the detailed design of our traceback sys-
tem. We start from a high-level overview, followed by the de-
tailed description of the two key components (clustering and
pruning), which run iteratively to identify the set of poison
training data responsible for the misclassification event.

4.1 High-level Overview

In a nutshell, our traceback system implements an iterative
clustering and pruning process, which progressively identi-
fies sets of innocent training data that are not responsible for
the observed misclassification event. This ends when only
the poison data responsible for the misclassification event is
left and thus identified. Doing so requires two key operations:
clustering and pruning.

(1) Clustering unmarked training data. The clustering
component divides the unmarked training data into clusters,
based on how they affect the model parameters (details in
§4.2). Here the goal is to progressively separate innocent data
from poison data, so that we can identify, mark and prune an
innocent cluster (using the pruning component).

(2) Identifying and pruning innocent clusters. This prun-
ing component examines the unmarked data clusters, applies
the binary metric defined by Eq. (1) to identify an innocent
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cluster, if any, that is not responsible for the misclassifica-
tion event. The identified cluster is marked and thus excluded
from the next clustering operation, i.e., pruned out. We note
that pruning does not affect the computation of Eq. (1), where
D is always the original full training dataset and D is a clus-
ter to be examined. The detailed pruning design is in §4.3.

An illustrative example. Figure 2 shows an example trace-
back process that completes in two iterations, visualized in a
simplified 2D projection of the training data. The traceback
starts from the full set of training data as unmarked, includ-
ing both innocent (blue) and poison (red) data. In each iter-
ation, the left figure shows the collection of unmarked train-
ing data to be clustered and the resulting cluster boundary
that divides them into two clusters; the right figure shows the
result of pruning where the innocent cluster is removed. At
the end of iteration 2, only the set of poison data responsible
for the attack is left as unmarked. Upon detecting that the un-
marked data cannot be further divided or pruned, the process
ends and the unmarked data are declared as the training data
responsible for the misclassification event.

Clustering Pruning
X I' | X |
| m [ ] , | u 2 | u
) gh ENE L
Iteration 1 - - II A A
! AA = AA
' X X,
X, m N X,
, ___ mmun
Iteration 2 - = -; -—-— A
AA AA
X, A Poisondatal %

Figure 2: An illustration of our poison traceback process that
completes in two iterations, visualized on a simplified 2D
space representing the training data.

4.2 Clustering Unmarked Training Data

We now describe the detailed clustering design, which seeks
to progressively separate benign and poison training data into
different clusters. The key challenge here is that while inno-
cent and poison data are different by design (in order to inject
different behaviors into the model), it is highly challenging to
accurately characterize and measure such differences. This is
also why it has been hard to design defense mechanisms that
can effectively identify and remove poison training data.
Instead, our clustering design first maps these training data
into a new space, focusing on “amplifying” the separation be-
tween innocent and poison data rather than identifying them.
Operating on this new space, each clustering operation will
produce two clusters, ideally one containing only innocent
data and the other containing a mixture of innocent and poi-
son data. Given these two clusters, our pruning component
(§4.3) will replay the misclassification event to identify the

innocent cluster. In the next iteration, we will run clustering
only on the mixed cluster to “extract” more innocent data.
After a few iterations, the innocent and poison data become
fully separated.

Therefore, our clustering design includes 1) data mapping
to “amplify” the distance between innocent and poison data,
and 2) a high performance clustering method to generate the
clusters, which we discuss below.

Data mapping. = We map the data by estimating how a
training sample x affects the final model parameters. This is
measured by the change of model parameters when x is ab-
sent from the training dataset, i.e., comparing the final model
parameters when trained on D and D \ x, where D is the full
training dataset. Unlearning benign or poison data results in
different effect on model parameters. Unlearning of poison
samples shifts the model closer to an optimal location in pa-
rameter space, where poisoning is ineffective, while unlearn-
ing benign samples shifts the model towards its initial ran-
domly initialized state, since if all benign samples are effec-
tively unlearned, the model will have no predictive power. A
naive implementation would retrain the model on D\ x, lead-
ing to unnecessary computational overhead and stochasticity
from training. Instead, inspired by the concept of unlearning,
we propose estimating the parameter change using a gradi-
ent computation. The gradient of the parameters with respect
to a given data point with a specified loss function is a well-
known method to characterize its impact on the model [40].
Intuitively, data with similar gradients will have a similar im-
pact on the model. Thus, our data mapping for training data
point x is:

Vo ((F (x),NULL) )

where ¥ is the original model (trained on D), 0 is the pa-
rameter set of F’s classification layer, £ is the cross-entropy
loss, and NULL is anew “no knowledge learned” label to rep-
resent the effect of not learning from x. We implement NULL
as an equal probability output, which has been used by exist-
ing works to label out-of-distribution (OOD) samples [77].

We note that our data mapping method is one of the many
ways to represent data for analysis in poison setting. Other
mapping methods exist in the literature [10, 15]. We leave
a systematic study of the optimaility of data mappings and
designing better performing mapping to future work.

Clustering heuristics.  To handle large training data sets,
we use Mini-Batch K-means [64], a scalable variant of the
K-means clustering algorithm. As the name suggests, it first
runs K-means on multiple smaller batches of the dataset and
then aggregates their results. This allows us to distribute
the computation across multiple servers, achieving orders of
magnitude speedup without degrading the clustering qual-
ity [64]. As discussed earlier, we configure the clustering sys-
tem to produce two clusters per iteration.
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4.3 Pruning the Innocent Cluster

Given the two clusters, the pruning component will identify
which of the two clusters is less responsible, if any, for the
misclassification event (x,,y,). This is done by using (x4,y,)
to evaluate each cluster’s responsibility to the event — if a
cluster meets the condition in Eq. (1), it is marked as inno-
cent and excluded in the next clustering iteration. In practice,
we find that the less responsible cluster always contains only
benign data, due to the clear separation induced by our map-
ping in §4.2, resulting in rapid identification of the poison
data.

The design challenge facing this component is how to

efficiently evaluate the condition defined by Eq. (1), espe-
cially £(F ~(x4),ya). Given a cluster (D;), F~ refers to the
DNN model trained on D\ D;. One can certainly compute
0(F ~(xq4),yq) by training ¥~ from scratch, which is often
expensive in practice. Again, inspired by the concept of ‘un-
learning’, we propose producing ¥~ by unlearning D; from
the original model .
Existing unlearning for provable privacy protection.
Unlearning has been explored in the context of privacy (e.g.,
[8,30,53]) where a person protected by privacy laws can re-
quest their data be removed from a trained ML model. Thus,
existing unlearning methods focus on achieving a strong,
provable privacy guarantee at the cost of high computation
complexity. Furthermore, their performance degrades rapidly
as the number of data points to be unlearned increases [8,30],
making them unsuitable for our traceback system.

Proposed: functional unlearning for traceback. Instead,
we propose approximating ¥~ by functionally unlearning a
cluster Dy from the original model . Specifically, we fine-
tune F to minimize the cross-entropy loss between D; and
the NULL label (i.e., no knowledge learned) discussed in
§4.2 while maintaining a low cross-entropy loss on the rest
of the training data (D \ D) like the original model. This
fine-tuning operation is guided by

min < Y «F@x.NULL)+ Y] é(?(x),y)) 3)
(x.y)eDy (x.y)eD\Dy

where (x,y) € D\ D; represents the training data instance
(input x and its label y). We solve the above optimization us-
ing stochastic gradient descent (SGD) with the same hyper-
parameters as the original model training, and use the fine-
tuned version of ¥ as ¥ . We then compute ¢(F ~ (x4),Va)
using the misclassification event (x,,y,) and verify the con-

dition defined by Eq. (1).
5 Opverview of Evaluation

Using a variety of tasks/datasets, we evaluate our traceback
system against 6 different poison attacks (3 dirty-label and 3
clean-label attacks) and 4 anti-forensic countermeasures. We
outline these experiments and a preview of our findings.

Dataset Dimensionality # Classes # Training Data Architecture

CIFARIO [41] 32x32 10 50,000 WideResNet-28 [86]
ImageNet [18] 299 x 299 1,000 1,281,167 Inception ResNet [73]
VGGFace [56] 224 x 224 2,622 2,622,000 VGG-16 [71]
Wenger Face [80] 224 x 224 10 762 ResNet-50 [32]
EMBER Malware [2] 2351 2 600,000 EmberNN [65]

Table 1: Datasets & DNN architectures for our evaluation.

I. Traceback of dirty-label poison attacks (§6). Using
4 image classification datasets, we test against 3 state-of-the-
art dirty-label attacks, including an attack without any known
effective defense. Our traceback system achieves > 98.9%
precision and > 97.1% recall in identifying poison data.

I1. Traceback of clean-label poison attack (§7). For both
image classification and malware classification datasets, we
test against 3 state-of-the-art clean-label attacks, including an
attack without any known effective defense. Our traceback
system achieves > 98.4% precision and > 96.8% recall.

III. Robustness against anti-forensic countermeasures
(§89). We consider 4 potential countermeasures that a re-
sourceful attacker can deploy to bypass the traceback. Re-
sults show that our system is robust against all four. Across
all the experiments, the most effective countermeasure re-
duces the traceback precision and recall by less than 4%.

6 Evaluation on Dirty-label Attacks

Our evaluation of the traceback system starts from testing it
against dirty-label poisoning attacks. We consider three state-
of-the-art dirty-label attacks: BadNet [29], Trojan [48], and
Physical Backdoor [80]. We follow the original papers to im-
plement these attacks and vary their attack parameters to pro-
duce a rich collection of poisoning attacks and their misclas-
sification events. Overall, our results show that the proposed
traceback system can accurately identify the root cause of
dirty-label attacks (> 98.9% precision and > 97.1% recall)
while maintaining a reasonable traceback time per attack.

6.1 Experiment Setup

We first summarize the configuration of the attacks and our
traceback system, and discuss the evaluation metrics.

Attack Setup. Using 4 image classification datasets listed
in Table 1, we implement the above mentioned three attacks
(Table 15 in Appendix). Their attack success rate and normal
classification accuracy match those reported by the original
papers. We briefly summarize them below. Further details
on the DNN models, datasets, and attacks can be found in
Appendix A.2.

* BadNet (CIFAR10, ImageNet): The BadNet [29] attack
builds poison training data by adding a pre-selected back-
door trigger to benign inputs and labeling them with the
target label. We run BadNets on image classification tasks
trained on CIFAR10 and ImageNet, respectively. The de-
fault attack configuration is identical to [29]: 10% injection
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Attack Type Attack Name Dataset

Traceback Performance

Precision Recall Runtime (mins)

BadNet CIFARI10 99.5£0.0% 98.9+£0.0% 11.2+04

Dirty-label BadNet ImageNet 99.1+0.0% 99.1+0.0% 142.5+4.1

(§6) Trojan VGGFace 99.8£0.0% 99.9£0.0% 208.9+9.2
Physical Backdoor Wenger Face 99.5+0.1% 97.1+£0.2% 2.1+0.0

BP CIFARI10 984£0.1% 96.8+£0.2% 192+1.2

Clean-label . BP ImageNet 99.3+0.0% 97.4+0.1% 202.0+£7.1
(87 WitchBrew CIFARI10 99.7£0.0% 96.8+0.1% 214+2.1

WitchBrew ImageNet 99.1£0.1% 97.9+0.1% 194.3+5.9

Malware Backdoor Ember Malware 99.2+£0.0% 98.2+0.1% 57.7+£3.0

Table 2: Precision, recall, and runtime of the traceback system for each of the four dirty-label poisoning attack tasks and the
five clean-label poisoning attack tasks (averaged over 1000 runs per attack task).

rate (i.e., 10% of the training data is poison data) and a ‘yel-
low square’ as the trigger.

¢ Trojan (VGGFace): The Trojan [48] attack improves upon
BadNet by using an optimized trigger to increase attack suc-
cess. Like the original paper [48], we implement this at-
tack on a face recognition model trained on VGGFace. The
default attack configuration uses 10% injection rate and a
59 x 59 pixel trigger.

* Physical Backdoor (WengerFace): Wenger ef al. [80]
recently proposed a physical backdoor attack against fa-
cial recognition models, using everyday physical objects
such as eyeglasses and headbands as the trigger. They col-
lected a custom dataset of face images (hereby referred to
as WengerFace) of users wearing these accessories. We use
the same dataset’ to implement the attack. Following the
original paper, we implement the attack with the default con-
figuration of 10% injection rate and a pair of eyeglasses as
the trigger (since it offers the highest success rate among
the triggers tested). Note that this backdoor attack is able
to bypass 4 state-of-the-art defenses [15, 24,75, 79]. To the
best of our knowledge, there is no known effective defense
against this attack.

In the rest of the paper, we often use attack-dataset (e.g.,
BadNet-CIFAR10) to succinctly identify each attack task.
Given an attack configuration (i.e., attack-dataset, injection
rate, trigger), we generate 1000 successful attack instances
(x4,v4) as the misclassification events to test our traceback
system. Specifically, we randomly choose 10 target labels to
implement 10 versions of the given poisoning attack. Then
for each attack version, we randomly select 100 successful
attack instances as the misclassification events, producing a
total of 10 x 100 = 1000 events.

Traceback Setup. Configuring the traceback system is
simple as it does not assume prior knowledge of the attacks.
The majority of computation comes from the data projection
used by the clustering component, i.e., computing eq. (2) for
each training sample. For large models (like those trained on
ImageNet), we speed up the computation of Eq. (2) by ran-
domly selecting p% of the model weights in the final classifi-

3We contacted the authors of [80] to obtain the dataset and the required
user consent and authorization to use this dataset for our study.

cation layer. We empirically find that reducing p from 10 to
1 does not lead to visible changes to the traceback accuracy
(see Table 12 in the Appendix), and thus set p = 1.

Evaluation Metrics. We evaluate the proposed traceback
system using three metrics: 1) precision of identifying poi-
son training data, 2) recall of identifying poison training data,
and 3) runtime latency of a successful traceback. We report
the average and standard deviation values over 1000 misclas-
sification events per attack configuration.

6.2 Traceback Performance

Precision and Recall. We first report the precision and
recall of our traceback system, when tested against dirty-
label attacks under the default attack configuration (i.e., those
used by the original papers). The top section of Table 2
shows the traceback precision and recall for each attack-
dataset. Across all these experiments, our system consis-
tently achieves a high precision (99.1 —99.8%) and a high
recall (97.1 —99.9%).

An interesting observation is that the recall for Physical
Backdoor is lower (97.1%) than the other attacks (> 98.9%).
That is, our traceback detects less portion of the poison train-
ing data samples used by Physical Backdoor compared to the
other attacks. We wonder whether this is because those data
samples contributed very little to the injected vulnerability,
especially since real photos of physical objects often lead
to less precise triggers than those injected digitally. We vali-
date this hypothesis by removing the exact set of poison data
missed by our traceback and re-launching the poison attack,
and the attack success rate drops by only 0.08% on average.
But when removing a random set of poison training data of
the same size, the attack success rate drops by 1.02% on av-
erage. This confirms our hypothesis.

Detailed Analysis of Clustering. To obtain a deeper un-
derstanding of the traceback performance, we perform a de-
tailed analysis of the clustering component. Intuitively, clus-
tering is most effective if the data projection makes the be-
nign and poison data well-separated from each other. Along
this line, our analysis starts from visualizing the project re-
sult of the model training data (benign and poison), for three
poisoning attacks (BadNet-CIFAR10, Trojan-VGGFace, and
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Figure 3: A simplified, 2-D PCA visualization of the projected training data, where poison and benign data are well-separated.

Physical-Wenger). Figure 3 shows the simplified 2D version
generated using 2-dimensional Principal Component Analy-
sis (PCA) [57] on the projected data. In this visualization, the
benign and poison data appear to be well-separated.

Next, we study the L, distance among the projected train-
ing data, focusing on measuring the normalized L, distance
between each poison data sample to the centroid of all the
benign data (i.e., the benign centroid), and the centroid of all
the poison data (i.e., the poison centroid). Table 17 lists the
average results for four attacks. We calculate the normalized
L, distances to allow a fair comparison across attacks.

Results in Table 17 confirm that the poison and benign
data are reasonably separated. The poison data in Physical-
Wenger are more spread out while those in Trojan-VGGFace
are densely packed. These observations align with those of
Figure 3). Overall, our proposed data projection achieves suf-
ficient separation between the benign and poison data, al-
lowing the subsequent clustering and pruning operation to
quickly identify all the benign data. Across all four attacks,
the traceback takes no more than 4 clustering/pruning itera-
tions to complete.

Detailed Analysis of Pruning. Our pruning operation is
based on the condition defined by eq. (1) that compares the
cross-entropy loss of the misclassification event on the orig-
inal model ¥ and the new model ¥~ after removing a clus-
ter D; from the training dataset. Using BadNet-CIFAR10 as
an example, Table 3 lists the mean and standard deviation
of £(F (x4),ya) for the original model, £(F ~(x4),y,) when
removing an “innocent” cluster, and ¢(F ~(x,),y,) when re-
moving a poison cluster. The latter two display distinct differ-
ence when compared to the first term (¢(F (x4),Y4)), confirm-
ing that our proposed binary condition offers a clear signal to
accurately identify innocent clusters not responsible for the
misclassification.

L(F~(x4),ya) when removing
an innocent cluster a poison cluster
0.024+0.00 6.91+0.6

U(F (xa),¥a)
0.09£0.02

Table 3: The cross-entropy loss of the misclassification event
on the original and modified models, for BadNet-CIFAR10.

6.3 Traceback Overhead

Finally, we report in Table 2 (the last column) the runtime of
traceback against different attack tasks. We run a prototype
of our traceback system on a machine with one Nvidia Ti-
tan X GPU and 12 Intel Xeon CPUs. The computation time
linearly increases with the dimension of the data projection
and the number of training data samples. For models with a
large training dataset, the bulk of the traceback computation
comes from the clustering of training data, which takes up
83% of the computation time for Trojan-VGGFace, the most
computational expensive task. On the other hand, simple data
parallelism enabled by the use of mini-batch K-mean cluster-
ing can significantly speed up the runtime. For example, par-
allelizing using 5 machines reduces the runtime for Trojan-
VGGFace to 49.5 + 3.2 minutes, a 4.1x speed up.

7 Evaluation on Clean-label Attacks

We now evaluate our traceback system against clean-label
poisoning attacks, and contrast its performance to that on
dirty-label attacks. Compared to dirty-label attacks, clean-
label attacks follow a different attack methodology, use fewer
poison training samples, and these samples appear less sepa-
rated from the benign data even after data projection. These
factors make the clustering and pruning process more chal-
lenging. Nevertheless, our traceback system still achieves
good performance across all attack tasks (> 98.4% precision
and > 96.8% recall). In the following, we present the experi-
ment setup of the five clean-label attacks used by our evalua-
tion, and how our traceback system responds to these attacks.

7.1 Experiment Setup

Attack Setup. We consider two state-of-the-art triggerless
clean-label attacks on image classification, and a backdoor-
based clean-label attack on malware classification (Table 16
in Appendix). Our implementation of these attacks match
the original papers in both attack success rate and benign
classification rate. Further implementation details are in Ap-
pendix A.2.

* Bullseye Polytope (BP) (CIFAR10 & ImageNet): The BP
attack [1] aims to make the model classify a single attack
sample x, to a target class y, at test time without modify-
ing the sample (hence, triggerless). This is done by adding
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imperceptible perturbations to the poison training data so
their representations in the feature space form a fixed-radius
polytope around the chosen attack sample x,. The classifier
then associates the region around the attack sample with the
label of the poison data, which is the desired target label y,.
This leads to misclassification of x, to y, at test time.

It is known that BP only works well when the attacker has
access to a pretrained feature extractor used by the victim
model, i.e., it is effective in the transfer learning setting. We
follow this setup and use a feature extractor pretrained on
the benign data as the victim. We use the attack parameters
of the BP-5x attack (the strongest variant) from the original
paper and test the attack on CIFAR10 and ImageNet.
Witches’ Brew (CIFAR10 & ImageNet): Witches’
Brew [26] is a clean-label triggerless attack that. It works
by adding imperceptible perturbations to the poison data to
align its gradient with that of the attack sample. This makes
the model misclassify the attack sample to the target class
of the poison data. We test the attack on CIFAR10 and Ima-
geNet datasets.

Malware Backdoor (Ember Malware): This is a clean-
label, backdoor attack on malware classifiers [65]. The at-
tacker uses influence functions to find 128 most impor-
tant features defining ‘goodware’ and uses these as a trig-
ger. These features are then modified for poison malware
samples, with the target class being ‘goodware’. The au-
thors of [65] found all three of the state-of-the-art de-
fenses [15, 46, 75] are ineffective against this attack. Like
the original paper, we use the publicly-available Ember mal-
ware classification dataset. Since attackers are mostly in-
terested in disguising malware as ‘goodware’, we only use
‘goodware’ as the target label of the attack.

Traceback System Setup & Evaluation Metrics. We use

the same system setup and evaluation metrics as §6.

7.2 Traceback Performance

The bottom section of Table 2 shows that our traceback sys-
tem achieves > 98.4% precision and > 96.8% recall when
going against the five clean-label poisoning attacks. In the
following, we discuss these results in detail by contrasting
the trackback performance on clean-label attacks to that on
dirty-label attacks (discussed in § 6.2).

Lower traceback recall due to ineffective poison data.
First, we see that the traceback precision remains high even
as compared to dirty-label attacks, but the recall is consis-
tently lower and the runtime is higher. In particular, Table 2
shows that the lowest traceback recall happens on the two
triggerless attacks, BP and Witches’ Brew. We hypothesize
that it is because these two attacks failed to move the rep-
resentations of some poison training data to the desired lo-
cation in the feature space. These “ineffective” poison train-
ing data made very little contribution to the misclassification
event, and are hard to detect during traceback.

U(F ~(x4),yqa) when removing
an innocent cluster a poison cluster
0.39+0.04 8.814+0.81

U F (Xa),Ya)
0.61+0.07

Table 4: The cross-entropy loss of the misclassification event
on the original and modified models, for BP-CIFAR10.

We test and validate this hypothesis by gradually increas-
ing the attack perturbation budget (to increase the effective-
ness of the poison training data) and observing the attack
success rate. The budget for the BP and WitchBrew attacks
determines the magnitude of perturbation the attacker can
add to each poison data point (the default budget is set to
Liny = 0.03). A higher perturbation budget allows the at-
tacker to position the poison training data “closer” to their de-
sired locations, making these data more “effective” and lead-
ing to a stronger attack success rate. Table 14 confirms that
the attack success rate increases with the perturbation budget.
We also list the traceback precision and recall. While preci-
sion remains high, the recall also increases from 94.9% to
99.4% as we increase the budget, confirming our hypothesis
that the presence of ineffective poison samples is the reason
for a lower recall value.

Less distinct clusters lead to more pruning iterations.
We also study the performance of clustering and pruning on
the five clean-label attacks. Like Figure 3 for dirty-label at-
tacks, we visualize the projected training data using 2-D PAC
for clean-label attacks. The visualization for BP-CIFAR10 is
shown in Figure 5. Compared to the wide separation seen on
the dirty-label poison data (Figure 3), the BP poison data ap-
pear much less separated from the benign training data. In
fact, they reside in the gap between different benign clusters.
This is not surprising, because clean-label attacks work by
moving the representation of the poison data close to that of
benign data in the target class, so these poison data are inher-
ently closer to the benign data.

We also analyze the pruning operation when tracing back
clean-label attacks. Table 4 shows the cross-entropy loss
caused by training data removal, which is used to determine
whether a cluster is benign or not. Again, we observe a clear
pattern that separates benign clusters from poison (or mixed)
clusters, i.e., £(F ~ (x4),yq) for removing an innocent cluster
is smaller than ¢(F (x4), and £(F ~(x4),ys) for removing a
poison cluster is significantly larger. As such, pruning can
effectively identify benign clusters.

Despite the reduced separation, our traceback system can
still accurately identify the benign (and thus poison) data
clusters while using more clustering/pruning iterations. For
example, an average of 10.7 iterations are needed for BP-
CIFAR10 compared to 3.2 iterations for the dirty-label attack
on the same model (BadNet-CIFAR10).
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Traceback Method
Spectral Signature  Neural Cleanse Ours
95.3%/92.4% 98.7%196.6%  99.5% 1 98.9%
96.0% / 93.7% 91.1%/972%  99.1% / 99.1%
93.1%/ 89.8% 94.8%197.4%  99.8% /99.9 %
43.2% 1 67.4% 0% / 0% 99.5% / 97.1%
2.1%/15.1% 0% / 0% 99.2% /98.2%

Attack-Dataset

BadNet-CIFAR10
BadNet-ImageNet
Trojan-VGGFace
Physical-Wenger
Malware Backdoor

Table 5: Comparing our traceback system against forensic
tools adapted from existing backdoor defenses. We present
the results as “Precision / Recall”.

Traceback Method
Deep K-NN L,-Norm Ours
BP-CIFAR10 36.1%174.3% 34.5%178.0% 98.4% /96.8%
BP-ImageNet 57.9%179.6% 53.4%172.4% 99.3% /97.4%
WitchBrew-CIFAR10  49.3%/539% 52.1%/42.8% 99.7% / 96.8%
WitchBrew-ImageNet  53.5%/47.2% 51.3%/443% 99.1% /97.9%

Attack-Dataset

Table 6: Comparing our traceback system against forensic
tools adapted from existing clean-label defenses. We present
the results as “Precision / Recall”.

8 Comparing against Adapted Defenses

While forensics tools are solving a different problem as
defenses, it is reasonable to ask, can existing defenses be
adapted to become tools in forensic analysis. Here, we adapt
four state-of-the-art poison defenses (two backdoor and two
triggerless defenses) to perform post-attack traceback anal-
ysis. We compare our system against adapted backdoor de-
fenses (Spectral Signature [75] and Neural Cleanse [79]) in
Table 5, and our system against triggerless defenses (Deep
K-NN and L,-Norm Outliers [59]) in Table 6.

Spectral Signature. Spectral signature [75] extracts sig-
natures for backdoor training data using the spectrum of the
covariance of the feature representation. Spectral signature
identifies the malicious training samples post-training (be-
fore attack). We adapt spectral signature simply by using it
to identify the malicious training data post-attack.

Table 5 shows that spectral signature performs well on
BadNet and Trojan attacks, but performs quite poorly when
tracing back attacks for physical backdoors and malware
backdoors. The poor performance against Malware Back-
doors is consistent with the malware paper itself [65], where
the authors showed that spectral signature defense is ineffec-
tive against their proposed malware attack.

Neural Cleanse (NC).  NC [79] recovers backdoor trig-
gers in a poisoned model by reverse-engineering the back-
door trigger. For traceback, we apply NC and search for the
recovered trigger in the training dataset to identify poison
data. Since NC does not recover the exact input trigger, we
perform the matching in neuron activation space, i.e., flag-
ging the training data if its neuron activation is close to that
of the recovered trigger. We use cosine similarity to measure
the activation distance and use a small set of benign data to
calculate a cutoff threshold.

In our tests, NC performs well on BadNet and Trojan
backdoors, where it successfully recovers backdoor triggers.

Against physical and malware backdoor attack, however, NC
fails to identify any triggers, and thus traceback fails.

Deep K-NN and L;-Norm Outliers. Both defenses are
proposed by [59], where clean-label poison data are detected
using anomaly detection in the feature space. In our tests,
both defenses perform poorly on all four clean-label attack
tasks (Table 6), achieving similar performance as random
guessing. This result is also consistent with results from the
BP and WitchBrew attack papers, where they show existing
defenses are not effective [1,26].

9 Anti-Forensic Countermeasures

As with other security mechanisms, we expect attackers with
knowledge of our system to deploy adaptive countermea-
sures. In this section, we explore potential anti-forensics tech-
niques and evaluate them for their impact on our system.

Our experiments make the strongest possible assumption
about the attacker: that they know full details of the target
model’s training pipeline, including read access to all train-
ing data, model architecture, and training hyperparameters.
They also know details of the traceback system, including
the function to calculate the data projection. We assume that
attacker can add additional perturbations to its poison data in
order to evade traceback, and we assume a generous pertur-
bation budget of L,y = 0.1 (attacker can change each input
value by 10%). For trigger-based attacks, we further allow
the attacker to arbitrarily change the location and value of
the triggers.

We consider five different countermeasures, each leverag-
ing in different ways the attacker’s ability to inject manip-
ulated training data into the data pipeline. The countermea-
sures are shown in Figure 4, and include: a) disguising poison
data as benign, b) injecting perturbed benign data, c) bifurcat-
ing poison data, and d) multiple overlapping poison attacks.
We evaluate the countermeasures on a total of 7 attacks, all of
our attacks except for physical backdoors (cannot easily mod-
ify physical triggers) and malware backdoors (fixed triggers
based on heuristic). We also test the scenarios where attacker
increases the attack’s cost in order to evade traceback.

Disguising Poison as Benign. The first countermeasure
tries to confuse the clustering algorithm, by perturbing the
poison data and pushing it closer to benign data in the
data projection space (Figure 4b). If the clustering heuris-
tic groups poison data into different benign clusters, it will
terminate the pruning and either reduce recall or confuse the
system into identifying it as a non-poison misclassification.
We test the case where an attacker minimizes the distance
between each poison data and a benign data point closest to it
in the data projection space, while optimizing for the original
attack objectives, using a A parameter to balance the two ob-
jectives. The attacker leverages a bi-level optimization [34]
to optimize the attack objective, since the modifications of
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Figure 4: An illustration of four countermeasures where attacker can manipulate the data layout in data projection space in

order to disrupt traceback.

L, Distance Sucltztszcga te Precision Recall
4345482 99.5+0.0% 99.5+0.0% 98.9+0.0%
290.4+89 89.5+0.6% 98.4+0.1% 98.1+0.1%
184.8+57 643+1.7% 96.9+03% 97.2+0.1%
110.3+3.1  283+32% 959+03% 96.7+0.2%
59.0+1.9 0.0+0.0% N/A N/A
314+1.2 0.0+0.0% N/A N/A

Table 7: For disguising Trojan-VGGFace, attack success rate
drops as the L, distance between poison and benign pro-
jections decreases, while traceback precision and recall drop
slightly.

L, Distance Suclt::tszc;ate Precision Recall
28.24+0.9 86.1+14% 984+0.1% 96.8+0.2%
254+1.3 5944+34% 97.24+02% 95.0+£0.3%
19.0+£1.2 19.7+£2.0% 96.1+02% 94.84+0.3%
12.8+0.8 874+04% 959+0.1% 95.1+0.3%
9.4+0.5 0.0+0.0% N/A N/A
44403 0.0+0.0% N/A N/A

Table 8: For disguising BP-CIFAR10, attack success rate de-
creases as L, distance between poison and benign projections
decreases, while traceback precision and recall drop slightly.

poison data also change the result model and thus, the pro-
jection calculation.

Results are consistent across all 7 attack tasks. For brevity,
we show detailed results for Trojan-VGGFace (Table 7) and
BP-CIFAR10 (Table 8). As the L, distances between poison
and benign data decrease, it becomes harder for the model to
learn the attack, and attack success rate drops to zero. Impact
on traceback is minimal: precision and recall drop less than
3.6% across all tasks.

Targeted Contamination Attack (TaCT). Another
method to disguise poison data is the TaCT attack [74].
TaCT is designed to obscures the difference between poi-
son and benign representations in order to evade existing de-
fenses. TaCT leverages source-specific backdoors, triggers
only work when applied to specific images. The authors
found that TaCT causes poison and benign data to be insepa-
rable in neuron representation space.

We test our traceback system against TaCT. We find that
while poison and benign data are inseparable in neuron rep-
resentation space, we can still separate them in our data pro-

jection space. We believe the separation is likely because our
data projections measure each data’s impact on model param-
eters, which better characterize training data than neurons ac-
tivation values in poison settings. We test TaCT attack on all
4 backdoor attack tasks from §6. Overall, TaCT attack is inef-
fective against our traceback system, reducing precision and
recall by less than 4% across the five backdoor attacks.

Injecting Perturbed Benign Data. Next, we consider the
countermeasure where the attacker seeks to confuse the clus-
tering algorithm by injecting benign data whose projection
fills in the space between benign and poison data. We refer
to this additional set of modified data as “helper data”. We
note that the helper data do not directly contribute to the suc-
cess of the misclassification event.

As shown in Figure 4(c), an attacker positions helper data
between poison and benign data to mislead the clustering
heuristic. The attacker first identifies the last set of benign
data pruned out by the traceback system. Using the cluster-
ing algorithm, the attacker separates the benign cluster into
two clusters, and the poison data into two groups based on
proximity to each benign cluster’s centroid. The attacker op-
timizes helper data to uniformly position them in between
each benign cluster and its closeby poison cluster. The at-
tacker uses a similar bi-level optimization (§9) to optimize
the attack objective.

We apply this countermeasure on the 7 attack tasks. For
brevity, we show detailed results for Trojan-VGGFace in Ta-
ble 9. As the number of helper data samples increases to
10000 (25% of training data), attack success rate reduces
gradually to zero, while traceback precision drops to 94.1%
and recall remains the high (> 98.7%). Table 10 shows re-
sults for BP-CIFAR10, where the attack success rate drops
much faster when injecting merely 25 helper data. The faster
drop in attack success is likely due to the fewer clean-label
poison samples and their proximity to benign data. When
Trojan and BP attacks reach zero attack success rate (15000
and 20 helper data respectively), our traceback can still sepa-
rate poison data with > 91.4% precision and recall.

Bifurcating Poison Data. Next, we explore techniques to
separate poison data into multiple (two) separate distribu-
tions both of which contribute to the attack incident while
residing in different parts of data projection space, in order
to evade clustering (Figure 4(d)). The attacker first identifies
the two strongest clusters in the poison data, then maximize
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Number of Attack
Helper Data  Success Rate
0 99.8+0.0%

Precision Recall

99.8+£0.0% 99.9+0.0%
1000 643+3.8% 963+02% 99.1+0.0%

10000  21.0£39% 94.1+£03% 98.7+0.0%

15000  0.04+0.0% N/A N/A

Table 9: For adding helper data to Trojan-VGGFace, the at-
tack success rate decreases as the number of helper data in-
creases, while the precision and recall of the traceback sys-
tem drop slightly.

Number of Attack
Helper Data  Success Rate
0 86.1£1.4%

Precision Recall

98.4+£0.1% 96.8+0.2%
5 355+34% 96.6+03% 96.6+0.1%
10 13.1£1.1% 943+£05% 96.6+0.2%
20 0.0+0.0% N/A N/A

Table 10: For adding helper data to BP-CIFAR10, the attack
success rate decreases as the number of helper data increases,
while the recall of the traceback system remains the same and
precision drops slightly.

the distance between the cluster centroids to separate them.
We follow the same bi-level optimization process to optimize
the poison data and use a A term to balance the objective of
cluster distance and the original attack objective.

We apply this countermeasure to all 7 attack tasks. For BP
attacks and WitchBrew attacks, attack success drops quickly
because the two triggerless attacks rely on clever positioning
of the poison data (e.g., a fixed radius polytope around target
data). For BP and Witches’ Brew, this countermeasure has
no impact on traceback performance (> 97.0% precision and
recall). For trigger-based attacks, we show results on Trojan-
VGGFace in Table 1 1. We found that as we increase A to push
for better separation between the two clusters, the centroid
distances fail to increase beyond a certain value. We believe
the failure to separate poison data is because these poison
samples have the same attack objective and trigger, and nat-
urally cluster together in the data projection space. Overall,
the traceback system achieves < 96.7% precision and recall
across all 7 attack tasks.

Multiple Overlapping Poison Attacks. Finally, an at-
tacker can try to combine two dirty-label attacks in one mis-
classification event, by training two different triggers with
the same misclassification label into the model, then includ-
ing both triggers into a single attack input. This attack does
not work for triggerless attacks, since each attack has its own
specific target data.

Our experiments show this countermeasure is ineffective
against our traceback system. We achieve > 98.4% precision
and recall across all attack tasks. While the two poison at-
tacks leverage different triggers, they have the same objec-
tive of misclassifying any inputs to the same target label, and
our data projection directly correlates to the objective of each

Attack

L, Distance Precision Recall
Success Rate
2.240.2 99.8+0.0% 99.8+0.0% 99.9+0.0%
17.9+2.7 98.3+02% 982+0.0% 97.9+0.1%
25.3+4.1 97.1+£3.7% 973+02% 96.9+0.2%
23.6+5.8 97.4+0.0% 97.5+0.1% 97.3+0.1%
24.0+£6.1 98.1£0.0% 97.6+0.2% 97.0+0.2%

Table 11: For separate one Trojan attack into two, the attack
success rate decreases as the L, distance between centroids
decreases, while the precision of the traceback system re-
mains the same and recall drops slightly.

training data. Thus poison data from two separate attacks ap-
pear in the same region in projection space, enabling us to
cluster them together as part of the same attack.

Higher Cost Attacks. So far, we have focused on attacks
with a similar cost, i.e., same number of poison data. Now, we
explore the impact of attacks with higher cost on our trace-
back system. We allow an adaptive attacker to poison an
increasing number of poison data and test our traceback ef-
fectiveness against these higher cost attacks. We found that
increasing injection rate has an surprisingly low impact on
our traceback system. As attacker increases injection rate to
50%, our traceback system maintains > 95% precision and
> 92% recall, across all 5 countermeasures discussed in this
section and all 9 attack tasks.

We believe the weak impact of increasing injection rate is
because our traceback system views poison as a group effect
(§3.3), and poison data with the same attack objective are
clustered together regardless of the number of poison data.
As aresult, increasing injection rate has limited effectiveness
against our traceback system.

10 Discussion: Identifying Non-poison Events

Our work addresses the question of post-attack analysis for
poison attacks on neural networks. In practice, however, a
system administrator must first identify if a misclassification
event was caused by a poisoning attack, or from an evasion
attack or benign misclassification. The former are test-time
attacks that leverage existing vulnerabilities in trained mod-
els to cause misclassification with perturbed data, while the
latter simply arise since models do not classify perfectly.

Attack Identification. We note that our system can dou-
ble as a tool for the first step towards attack identification.
Given a model and a misclassification event (misclassified
input and output), one iteration of our forensic system would
be able to identify if the attack was a poison attack or caused
by other means. Once we separate training data into clusters,
and apply the same unlearning techniques, we can observe if
removal of either subset of training data will alter misclassi-
fication behavior.

Intuitively, both evasion by adversarial perturbation and
benign misclassification rely on specifics of the model’s loss
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landscape. In either case, removal or “unlearning” of any sig-
nificant portion of training data will change the loss land-
scape and should alter the misclassification behavior. In our
system, we would observe that unlearning either of the clus-
ters would alter the misclassification event. So if the first iter-
ation fails to prune away either cluster, then we consider the
misclassification event as non-poison and end traceback.

Limitation.  Our attack identification system can be vul-
nerable to “false flag” attack [60] where an attacker carefully
crafts a misclassification event that triggers our traceback sys-
tem to blame an innocent data provider. This is a threat that
the deployer of traceback system needs to keep in mind when
perform any forms of prosecution based on traceback results.
In practice, a system like ours must be understood in context:
the assignment of blame to any parties involved will only be
possible with the availability of an effective data provenance
tool, and there should be a human-in-the-loop confirmation
before any lasting decisions are made.

Further, any attacker trying to carry out an inference time
attack that also has a false flag component will have to solve
a more challenging optimization problem needing access to
the training data. The exploration of techniques to do this
effectively is beyond the scope of this paper but is an inter-
esting direction for future work.

Empirical Results. We test four representative evasion at-
tacks, including two white-box evasion attacks (PGD [52],
CW [13]) and two black-box evasion attacks (Boundary [9]
and HSJA [16]) against all 5 of our evaluation datasets. We
follow the default attack parameters [68] (Appendix 13). We
test 100 evasion attack samples for each attack and classifi-
cation task pair. For benign misclassification, we randomly
select 100 misclassified benign test data as the misclassifi-
cation events for each task. For all these misclassification
events, our forensic tool correctly determined that they were
not caused by data poisoning attacks, i.e., our tool produced
no false positives.

Future Work

We believe the study of post-attack forensic techniques re-
mains an open area with numerous open questions. First,
while our method is effective in our tests, more effort is
needed to understand its robustness when extended to addi-
tional types of attacks and application domains. Second, in
order to assign responsibility to a provider for the poisoned
data, the model administrator must be confident that meta-
data associated with training data is accurate and tamper-
resistant. The study of data provenance [22,49] in this con-
text remains an open problem.
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A Appendix

A.1 Theoretical Analysis of Training Data
Removal

As discussed in §3.3, our binary measure of event responsi-
bility is inspired by a theoretical analysis on how removing
a portion of the training data affects the poisoning attack per-
formance. We now present this theoretical analysis in detail.

To examine the impact of removing a subset of training
data (Dp) on the poisoning attack, we seek to analytically
quantify its impact on the model loss over the true distri-
bution of the poison test data, which indicates the contribu-
tion of D to successful misclassification at test time. Fur-
thermore, our analysis considers the general case where D
may contain both benign and poison training data, i.e., Dy is
drawn from a mixed distribution. We note that while our the-
oretical analysis is driven by the expected value of the loss
over the distribution of the poison test data, in practice the
traceback system can only measure the impact on a single
misclassification event (usually just one data sample). Yet
this is empirically sufficient to label and prune clusters (as
shown by our experimental results in §6 and 7). Finally, since
our clustering is able to find clusters that only contain benign
data, the pruning component used by our traceback focuses
on picking this cluster (D1). This is a special case under our
theorems, which show that clusters can be differentiated even
if they are mixed.

Definitions: Let the full training data D be drawn from a
distribution D comprised of the benign distribution D), and
the poison distribution D, in the ratio o, i.e., D = oD, +
(1— Oc)ﬂ)p. Let # denote the original model trained on D, us-
ing the loss function ¢. To measure the impact of removing a
group of data D from the training dataset, we consider a new
model ¥~ trained on D\ Dy, effectively drawn from a dis-
tribution D~ = o~ D, + (1 — o )D,. Finally, the expected
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loss over the true distribution for a classifier ¥ is Lp(F )=
E(x,y)~@ [Z(?(x)vy)] .

Key Results: If removing D from the model training pro-
cess either reduces or maintains the loss of the resulting clas-
sifier on the poison test data, e.g., Ly, () > Ly, (F ), this
action has skewed the ratio towards poison data in the train-
ing dataset, implying that D\ D; is more responsible for the
success of poison attacks at test time.

Next, we prove this result in two cases: i) learning from
the entire distribution and ii) learning from the empirical dis-
tribution. We note that the former is not possible in practice
but is useful pedagogically.

Theorem 1. [Learning from true distribution] Consider
classifiers §. and §, that are trained directly from the true
distributions D and D™, respectively. We can show that if

Lp,(3.) > Lo, (3.), @)
then o~ < Q.

Proof. By definition,

s« = argminLyp (F)
§

= argénin oLp, (§) + (1 =)Ly, (F)

and

5, =argminLp-(F)

g

= argénin o L, (§)+ (1 -0 )Lp, ().

The first implies that

VE, oLy, (§)+ (1 — )Lo, ()
<alLg, () + (1 - )Ly, (T) (5)

= 0Lp, (§+) + (1 = )Ly, (§+)
< aLo,(3)+ (1 - @)L, G0), (6

and the second

VS, 0 Ly, (§.) + (1 - )Ly, (3.,)
<o Ly, (3)+ (1 -0 )Ly, (T) (N
=0 Ly, (§,) + (1 - )Ly, (§,)
<o Ly, () + (1 —07) Ly, (F)- (8)
We multiply Eq. 6 by o~ and Eq. 8 by a, which gives us

oo Ly, (§,) + ol — o) Lo, (§,) — ol — o)L, (§x)
<o Ly, (§, )+ (1 =o)Ly, (F,) —o (1 - )Ly, (5x)

= (a—0")(Lyp, (§+) —Lp,(8.)) =0 ©)
From Eq. 9, it is clear that if Ly, (Fs) > Ly, F),a>o,
proving our claim. o

Our proof did not make any assumptions about the con-
vexity of the loss function or the type of learning algorithm
used. This is due to the assumption that we are able to find
classifiers that minimize the loss on the true distribution.
This assumption does not hold in practice, and we typically
use gradient descent algorithms over sampled data for train-
ing [67]. The next theorem deals with this case, but makes
the additional assumptions that the set of possible classifiers
is convex and that the loss function is convex, Lipschitz and
bounded. The learning algorithm used is Stochastic Gradient
Descent (SGD).

Theorem 2. [Learning from empirical distribution] Con-
sider datasets D and D, defined as above such that D, C D.
The corresponding models § and §~ are defined over a B-
bounded convex set and trained using SGD over a convex, p-
Lipschitz loss function £. D is drawn from D = oD, + (1 —
o) Dy, and D from D' = o~ Dy + (1 — &) Dy,. Then, we can
show that if

—(oe™ +ag)

Ly, (F)~ L, (F ) 2 o2

P

(10)

then o~ < O

Proof. In the learning setting of interest, we have, from
Corollary 14.12 in Shalev-Shwartz and Ben-David [67],

Lp(F) <Lp(§:) +e, 1)

22
where € > B‘Tp‘. Similarly, for learning from D™, we have

Lp- () <Lp-(3,)+e, (12)

where €~ > %.

Now we can i) substitute F ~ in the right hand side of Eq.
5 and ¥ in the right hand side of Eq. 7, ii) use Eqs. 11 and
and iii) perform the appropriate scaling and rearrangement to

get
(oc—oc*)(L@p(f) —L@p(?*)) >—(ae” +oe). (13)

If the condition from Eq. 10 is true, then we have o0 > ™.
O

We can then determine that Dy was less responsible than
the remaining data D\ D if the difference of losses satisfies
the condition from Theorem 2. In other words, this implies
that the remaining data D\ D is more skewed towards the
poison distribution D,, guiding our search for the set of poi-
soned data. The implication of the theorem above is that set
searching is viable since for any identified set, its relative im-
pact on the attack incident can be quantitatively determined.
We note that the case when the removed set of data D con-
tains only benign data is a special case in the theorem above.
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A.2 Further experimental details

Evaluation Dataset. We discuss in details of training
datasets we used for the evaluation.

» Image Recognition (CIFARI0) - The task is to recognize 10
different objects. The dataset contains 50,000 training im-
ages and 10,000 testing images [41]. The model is an Wide
Residual Neural Network (RNN) with 50 residual blocks
and 1 dense layer [86]. We use this task because of its preva-
lence in general image classification and security literature.

» Image Recognition (ImageNet) - The task is to recognize
1000 different objects. The dataset contains 1,281,167 train-
ing images [18]. We include this task because it has been
used as a general benchmark for computer vision and the
large number of training data poses a challenge for our trace-
back system.

» Face Recognition (VGGFace) — This task is to recognize
faces of 2,622 different people drawn from the Internet. We
include this task because it simulates a more complex fa-
cial recognition-based security screening scenario. Tracing
back poison attack in this setting is important. Furthermore,
the large set of labels and training data in this task allows
us to explore the scalability of our system.

* Malware Detection (EMBER Malware) — Ember is a repre-
sentative public dataset of malware and goodware samples.
The dataset consists of 2,351-dimensional feature vectors
extracted from Portable Executable (PE) files for the Mi-
crosoft Windows OS. We include the dataset to test trace-
back performance on malware detection.

Percentage of

Weights Kept Precision Recall
0.1% 98.9+0.0% 98.0+0.0%
1% 99.1+£0.0% 97.94+0.1%
5% 99.24+0.0% 97.9+0.1%

Table 12: Precision and recall of traceback system remain
the same as the precentage of weights kept for clustering in-
creases for ImageNet-BadNet.

Attack Method Attack Configuration
PGD € =0.05, step size = 9, max iterations = 1000, learning rate = 0.05
CW € =0.05, # of iteration = 100, epsilon of each iteration = 0.005
Boundary € = 0.05, num_iterations = 10000, = 0.1
HSJA € = 0.05, num_iterations = 10000, y= 1.0

Table 13: Detailed information on evasion attacks.

Perturbation Attack Precision  Recall
Budget (L_inf) Success Rate

0.01 29.2% 99.4% 94.9 %

0.03 86.1% 98.4% 96.8%

0.05 93.7% 99.2% 99.2%

0.09 97.6% 99.1% 99.4%

Table 14: For BP-CIFAR10, both attack success rate and trace-
back recall increase with the attack perturbation budget, be-
cause the poison training data becomes more effective.

Injection Benign
Attack Name Dataset Rate Classification Accuracy
BadNet CIFAR10 10% 92.9+0.3%
BadNet ImageNet 10% 789+1.7%
Trojan VGGFace 10% 76.1+0.8%

Physical Backdoor Wenger Face 10% 99.9+0.0%

Table 15: The default setup of dirty-label poisoning attacks.

Injection Benign
Attack Name Dataset Rate Classification Accuracy
BP CIFARI10 0.01% 93.0£0.2%
BP ImageNet 0.01% 79.1+£0.9%
WitchBrew CIFAR10 1% 92.2+0.3%
WitchBrew ImageNet 1% 79.3£0.7%
Malware Backdoor EMBER Malware 1% 99.2+0.1%

Table 16: The default setup of the five clean-label poisoning
attacks used in our evaluation.

Avg L, distance of poison data to  Avg # of

Attack-Dataset benign centroid poison centroid iterations

BadNet-CIFAR10 0.65 0.19 32
BadNet-ImageNet 0.76 0.24 34
Trojan-VGGFace 0.69 0.09 3.1
Physical-Wenger 0.62 0.39 4.0

Table 17: The average L, distance between individual poi-
son data and the benign (poison) centroid, and the number of
pruning iterations needed to complete the traceback.

0.8
0.6 -
04 r
0.2 r
0 L
-0.2 -
04
-0.6 | Benign Training Data
08 . . . __Poison Training Data 4
-08 -06 -04 -02 0 02 04 06 08 1
Dimension 1

Dimension 2

Figure 5: 2-D PCA visualization of the projection of training
data (sampled from BP-CIFAR10). Orange circles are inno-
cent data and red crosses are poison data.
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