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Abstract

In adversarial machine learning, new defenses against attacks

on deep learning systems are routinely broken soon after

their release by more powerful attacks. In this context, foren-

sic tools can offer a valuable complement to existing de-

fenses, by tracing back a successful attack to its root cause,

and offering a path forward for mitigation to prevent similar

attacks in the future.

In this paper, we describe our efforts in developing a foren-

sic traceback tool for poison attacks on deep neural networks.

We propose a novel iterative clustering and pruning solu-

tion that trims “innocent” training samples, until all that re-

mains is the set of poisoned data responsible for the attack.

Our method clusters training samples based on their impact

on model parameters, then uses an efficient data unlearning

method to prune innocent clusters. We empirically demon-

strate the efficacy of our system on three types of dirty-label

(backdoor) poison attacks and three types of clean-label poi-

son attacks, across domains of computer vision and malware

classification. Our system achieves over 98.4% precision and

96.8% recall across all attacks. We also show that our system

is robust against four anti-forensics measures specifically de-

signed to attack it.

1 Introduction

For external facing systems in real world settings, few if any

security measures can offer full protection against all attacks.

In practice, digital forensics and incident response (DFIR)

provide a complementary security tool that focuses on us-

ing post-attack evidence to trace back a successful attack to

its root cause. For packet routing on the wide-area Internet,

for example, forensic IP traceback tools can identify the true

source of a Denial of Service (DoS) attack. Not only can

forensic tools help operators identify (and hopefully patch)

vulnerabilities responsible for successful attacks, but strong

forensics can provide a strong deterrent against future attack-

ers by threatening them with post-attack identification.

Such an approach would be particularly attractive in the

context of attacks against deep learning systems, where new

defenses are routinely broken soon after their release by more

powerful attacks [3,11,12,65,80]. Consider for example “poi-

soning attacks,” a threat that arises from the reliance of ML

trainers and operators on external data sources, either pur-

chasing data from or outsourcing data collection to third par-

ties [55]. An attacker can inject manipulated training data

into the training data pipeline, thus causing the resulting

model to produce targeted misclassification on specific in-

puts. Recent advances in poisoning attacks have made them

more powerful [1, 48], more realistic [65, 80, 83], and more

stealthy [4, 45]. In a recent survey, industrial practitioners

ranked data poisoning attacks as the most worrisome threat

to industry machine learning systems [42].

For data poisoning attacks, effective forensics would add a

valuable complement to existing defenses, by helping to iden-

tify which training samples led to the misclassification be-

havior used in the attack. We call this the “poison traceback

problem.” Starting with evidence of the attack (an input sam-

ple that triggers the misclassification), a forensic tool would

seek to identify a particular subset of training data responsi-

ble for corrupting the model with the observed misclassifi-

cation behavior. Combined with metadata or logs that track

the provenance of training data, this enables practitioners to

identify either the source of the poison data, or a vulnerabil-

ity in the data pipeline where the poison data was inserted.

Either result leads to direct mitigation steps (e.g. removing

an unreliable data vendor or securing a breached server on

the training data pipeline) that would patch the pipeline and

improve robustness to similar attacks in the future.

Several factors make the poison traceback problem quite

challenging in practice. First, today’s deep learning models

employ large complex architectures that do not easily lend

themselves to explainability. Specific behaviors do not local-

ize themselves to specific neurons as once speculated. Sec-

ond, the effects of poisoning attacks generally require train-

ing on a group of poisoned data, and a subset of the poisoned

training data is unlikely to produce the same behavior. Thus

a brute force search for the subset of poisoned training data
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would involve testing an exponential number of sample com-

binations from a large training corpus. Finally, a poison trace-

back tool produces evidence that can lead to the identification

of parties responsible for an attack. Thus these tools must

have very high precision, since false positives could lead to

false accusations and negative consequences.

In this paper, we introduce the poison traceback problem,

and propose the first solution that accurately identifies poi-

soned training data responsible for an observed attack. Our

solution utilizes an iterative clustering and pruning algorithm.

At each step, it groups training samples into clusters based

on their impact on model parameters, then identifies benign

clusters using an efficient data unlearning algorithm. As be-

nign clusters are pruned away, the algorithm converges on a

minimal set of training samples responsible for inducing the

observed misclassification behavior. In detailed experiments

covering a variety of tasks/datasets and attacks, our approach

produces highly accurate (high precision and recall) identifi-

cation of poison data for both dirty-label and clean-label poi-

son attacks.

This paper makes the following contributions to the foren-

sics of poison attacks:

• We define forensics in the context of data poisoning attacks

and design a forensics system that effectively traces back

misclassification events to poison training data responsible.

• We empirically demonstrate the effectiveness of our sys-

tem on three types of dirty-label poison attacks and three

types of clean-label poison attacks, across two domains of

computer vision and malware classification. Our system

achieves over 98.4% precision and 96.8% recall on iden-

tifying poison training data,

• We test our system against 4 alternative forensic designs

adapted from prior defenses, and show our system consis-

tently succeeds on attacks where alternatives fall short.

• We consider potential anti-forensics techniques that can be

used to evade our system. We test our system and show that

it is robust against 6 adaptive attacks specifically designed

to overcome this forensic system.

To the best of our knowledge, this is the first work to ex-

plore a forensics approach to address data poisoning attacks

on deep learning systems. This is a significant departure from

existing works that focus entirely on attack prevention. Given

our initial results, we believe poison traceback is a promising

direction worthy of further exploration.

2 Background and Related Work

In this section, we present the background and related work

on data poisoning and digital forensics.

2.1 Data Poisoning

In data poisoning attacks, the attacker gains access to the

training data pipeline of the victim ML system, e.g., via a ma-

licious data provider, and injects a set of poison data into the

training dataset. The poison data causes the victim’s model

to have certain vulnerabilities, i.e., misclassifying certain in-

puts targeted by the attacker.

Data Poisoning Attacks. We can divide existing poi-

son attacks into two categories based on their attack assump-

tions: dirty-label attacks where attacker can modify both

the data and their semantic labels, and clean-label attacks

where attacker can only modify the data. Dirty-labels at-

tacks [29, 48, 80], often called as backdoor attacks, seek to

inject a trigger into the victim model. A trigger is a unique

input signal (e.g., a yellow sticker on an image, a trigger word

in a sentence) that once present can lead the victim model

to misclassify any inputs to a target label selected by the at-

tacker (e.g., the presence of yellow sticker leads the model to

classify stop signs as speed limits [29]).

Clean-label attacks further divide into clean-label back-

door attacks and clean-label triggerless attacks. Clean-label

backdoor attacks [61, 65, 76] are similar to dirty-label back-

door attacks except that attacker cannot modify the label of

the poison data. Clean-label triggerless attack aims to mis-

classify a single unmodified test data. Shafahi et al. [66]

proposed the first clean-label triggerless attack where an at-

tacker injects poison data to disrupt the feature region of

the targeted data. Several proposals [1, 87] significantly im-

prove the performance of clean-label attacks by positioning

poison data on a convex polytope around the target data.

These clean-label attacks only perform well when the vic-

tim model’s feature space is known, i.e., assuming the victim

uses transfer learning and the attacker has white-box access

to the pretrained model’s parameters. A recent attack, Witch-

Brew [26], targets the from-scratch training scenario leverag-

ing gradient alignment of poison and target data.

Data Poisoning Defenses. A large body of research seeks

to defend against poison attacks. Robust training defenses

modify the training of neural networks to be resilient against

data poisoning. Existing robust training defenses leverage en-

semble training [36], kNN majority voting [35], adversarial

training [27], random smoothing [78], and data augmenta-

tion [7]. Other defenses try to diagnose and patch an already

poisoned model. Neural Cleanse [79] assumes backdoor trig-

gers are small input signals and reverse engineers the injected

backdoor trigger. Fine-Pruning and STRIP assume neurons

related to poison are not activated by benign data, and thus

remove unused neurons [24, 47]. SPECTRE [31] assumes a

Gaussian distribution of benign feature representations, and

filters out anomalous inference queries.

Still, defending against poison attacks remains a challeng-

ing problem, mainly because the injected vulnerability is hid-

den and has not been activated at defense time. Thus, exist-

ing defenses examine the training data or various behaviors

of the model to identify anomalous signals that might be ma-

licious. While existing defenses have shown promising signs

by preventing many poison attacks, stronger and adaptive at-

tackers are able to bypass existing defenses [4,63,65,80,83].
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Figure 1: The general scenario for our trackback system. a) the attacker poisoned the training data to inject vulnerability into the

model; b) at run-time, the attacker submits an attack input to cause a misclassification event; c) our traceback system inspects

the misclassification event to identify its root cause.

2.2 Background on Digital Forensics

First introduced in the 1970s, digital forensics has been a ma-

jor and growing area of cybersecurity. Digital forensics seeks

to trace the source of a cyberattack that has already happened

leveraging traces that the attacker left in the victim system.

“Attack incidents” trigger the forensic analysis, i.e., when

the system administrator discovers a cyberattack after some

catastrophic events have happened (e.g., web servers over-

loaded with dummy requests, machine takeover, or sensitive

data appearing in the dark web). Then, a forensics system

is assigned to investigate the source of the attack. Forensic

analysis often starts with evidence collection from the logs

of the victim system. Then the system connects these pieces

of evidence using their casual links to form a causal graph,

and identifies the root cause of the attack by tracing through

the casual graph starting from the attack incident.

Benefits of Forensics. Successful forensics can lead to

prosecution of the perpetrator, stopping the attack from the

source, and offering insights to build more secure systems.

Forensics can even break the arms race between attackers

and defenders, since an attacker faces a much higher cost

of iterating with a forensics system, i.e., the attacker is held

accountable as long as the forensics system succeeds once.

Consequently, the risk of being caught acts as a strong deter-

rent to discourage any attackers from launching the attack in

the first place.

Forensics vs. Defenses. Forensics is a complementary ap-

proach to defenses (or security through prevention). While

there is a significant amount of prior works focusing on de-

fenses against adversarial attacks, history (in both machine

learning security and multiple other security areas) shows

that no defense is perfect in practice, and attackers will

find ways to circumvent even strong defenses. Forensics ad-

dresses the incident response of successful attacks by tracing

back to the root causes. Modern security systems leverage

both defenses and forensics to achieve maximum security.

The same dynamic holds true in the context of poison at-

tacks on neural networks. For example, a defense against

backdoors that identifies poison training data can be circum-

vented by an attacker who breaches the server after the de-

fense has been applied, but prior to model training.

Existing Digital Forensics Research. Forensics has been

widely studied in security community to solve a wide vari-

ety of security problems, e.g., tracing the source IP of DDoS

attacks [17, 62, 72], origins of intrusion [39, 84], and the

cause of advance persistent threats (APTs) [23, 82, 85]. Ex-

isting research addresses many technical challenges of foren-

sics. [6, 21, 38, 43] seek to secure the integrity of traces left

by the attacker against potential tampering. [19, 44, 50, 81]

reduce the large storage overhead of logging while preserv-

ing enough information. [39,51,85] address the dependency-

explosion problem where a forensics system cannot narrow

down the true cause of the attack. Another line of research

focuses on post-forensics, i.e., after the root cause is identi-

fied. The post-forensics system can prosecute the attacker in

court by generating causal proof [20, 25] and fingerprint the

attack to prevent similar attacks in the future [37, 54, 58].

3 Traceback on Data Poisoning Attacks

In this paper, we consider the task of applying forensics to

uncover the presence of data poisoning attacks on deep neu-

ral network (DNN) models. Given a misclassification event

at test time, we seek to identify the set of poisoned training

data that resulted in the misclassification.

Example Scenario. Figure 1 illustrates the general sce-

nario for post-attack forensic analysis. One or more attack-

ers find a way to access the training data pipeline1, and inject

poison training data to introduce a specific vulnerability into

the DNN model (Figure 1(a)). Once the corrupted model is

deployed, the attacker submits a carefully crafted input that

exploits the vulnerability to produce a misclassified result.

When the administrator discovers this misclassification event

(possibly after downstream events), they want to identify the

root cause or entity responsible (Figure 1(b)). Information is

sent to the traceback system, including the input that caused

the misclassification, the DNN model, and its training data.

The traceback system then identifies the poison training data

responsible for the misclassification event (Figure 1(c)).

Here, we define our threat model, identify key goals and

challenges of a forensic traceback system for poisoning at-

1The training data pipeline often includes multiple layers of data collec-

tors, labelers, and brokers.
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tacks, and highlight our key intuition for our solution. We

describe the details of our traceback system in §4.

Terminology. We use the following terminology:

• Data poisoning attack: the injection of poisoned training

data that embeds vulnerability into the victim model.

• Misclassification event: an input (xa) that the model mis-

classified, and the corresponding misclassified label (ya).

3.1 Threat Model

We first describe our threat model and assumptions of the

attacker and the traceback system.

Data Poisoning Attacker. We adopt common assump-

tions made by existing work on poisoning attacks and de-

fenses. We assume the attacker:

• can modify any portion of their controlled training data;

• can poison at most half of the entire training dataset;

• has no access to other parts of the model training pipeline,

including the final model parameters of the trained model2;

• is aware of the existence of a potential traceback system

and can adopt anti-forensics techniques to evade traceback

(more details in §9);

• at inference time, submits an attack input that utilizes the

injected vulnerability to cause model misclassification.

Traceback System. We assume the traceback system is

deployed by the model owner or a trusted third party, and

thus has full access to the following resources:

• the DNN model (its parameters and architecture), the model

training pipeline and the training data;

• information on the misclassification event, i.e., the exact at-

tack input xa and misclassification output ya.

We do not assume the traceback system has any access to

information on other attacks (beyond the current misclassi-

fication event), and make no assumption about types or pa-

rameters of the poisoning attacks. Note that the traceback

system has full access to the training dataset, unlike assump-

tions made by some existing defenses, which prevent poison

attacks without leveraging the full training dataset [79].

We note that in practice, a misclassification event may

also arise from low model accuracy or from an evasion

attack. Either can cause misclassification without poison-

ing/modifying training data. In §10, we discuss how our

forensic tool can also be used to determine if a misclassifi-

cation was caused by a poisoning attack. A comprehensive

study of robust recognition of non-poison misclassification

events is beyond the scope of this paper. In the rest of the

paper, we only limit ourselves to data poisoning attacks.

2There exists a few parameter-space poison attack [33, 70] and we con-

sider them outside of our threat model since these attacks require additional

access to the victim’s training pipeline.

3.2 Design Requirements and Challenges

To identify what/who is responsible for the misclassification

event, a practical DNN traceback system should meet the fol-

lowing requirements:

• High precision – In forensics, false positives can lead to

false accusations, and thus must be minimized. Under our

problem context, this means that for any misclassification

event caused by a specific poisoning attack A, traceback

should identify only those poisoned training data injected

to implement A but not others.

• High recall – Recall measures the percentage of poison

training data responsible for the misclassification event that

are identified by the traceback system. Achieving a high re-

call rate is crucial for identifying all the attack parties, espe-

cially when multiple parties worked together to inject poi-

son data in order to train a vulnerability into the model.

• Generalizability – An effective traceback system should

address a wide range of poisoning attacks against DNN

models, without requiring knowledge of the attack type or

parameters (e.g., the amount of poison training data).

We further note two non-goals of our system. The first is

attack scope. The goal of the traceback system is to respond

to a specific, observed attack. In a scenario where one or

more attackers have performed multiple, independent poison-

ing attacks on the same model, the traceback system focuses

on identifying the poison data that caused the observed mis-

classification event. The second is on computational latency.

Unlike real-time attack detection tools, forensic traceback is

a post-attack operation and does not face strict latency re-

quirements. This is a common assumption for digital foren-

sics [14, 28].

Potential Solutions and Key Challenges. Traditional dig-

ital forensics traces the root cause of an attack by building

causal graphs using causal links among system events [39,

51, 85]. In our problem context, DNN model training allows

each individual training sample to potentially contribute to

the final model parameters, and by extension, the misclas-

sification result. This is commonly known in forensics as

the dependency explosion problem, and combined with the

large size of training data (e.g., millions of training samples)

makes conventional causal graph analysis intractable.

The key challenge facing any DNN forensic system is

how to efficiently connect a (mis)classification result to spe-

cific samples in the training data. For non-DNN, linear ML

models, existing works use the well-known influence func-

tion [40] to estimate the contribution of each training data

point towards a classification result, leveraging the first-order

Taylor’s approximation. However, recent work [5] showed

that when applied to DNNs, the influence function produces

poor performance and requires costly computation of second-

order derivatives. We confirmed these observations exper-

imentally. Using the influence function to traceback Bad-

Net poisoning attacks on a CIFAR10 model (details in §6)
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achieved less than 69% precision and recall. When testing

it on models trained on the larger ImageNet, our influence

function computation timed out after running 15 days on 4

NVidia TitanX GPUs.

Another alternative is to adapt existing poison defenses

into forensic tools for use after an attack has been de-

tected. While adapting defense techniques as forensics is

itself slightly paradoxical (waterproof defenses would obvi-

ate the very need for forensics), we can nonetheless test to

see if such techniques can be effective after an attack. Later

in §8, we adapt four defenses (Spectral Signature, Neural

Cleanse, Deep K-NN, and L2-Norm) into potential forensic

tools, and compare them with our traceback system. Some of

the adapted systems have success against simple attacks, but

all of them fail on stronger poison attacks.

Poisoning as a group effect. In current work on poisoning

attacks, attack success relies on a critical mass of poison sam-

ples in the training set [29, 65, 69]. While a sufficiently large

set of poison training data can shape model behavior and in-

ject vulnerabilities, the contribution of each individual data

sample is less and much harder to quantify. This explains the

poor performance of the influence function when applied to

smaller models such as CIFAR10 (see above). It motivates

us to design a solution to search for groups of poison train-

ing data, not single samples.

3.3 Design Intuition

Instead of designing the traceback system to explicitly target

individual training data samples, our intuition is to inspect

training data in groups, and map the traceback problem to a

set searching problem.

Set searching by iterative clustering and pruning. We

propose to search for sets of training samples responsible for

an observed misclassification event, by iteratively pruning

groups of training data we can identify as innocent to the at-

tack. Starting with the full training data set, we progressively

identify and prune clusters of innocent training samples until

only those responsible for the misclassification event are left.

In each iteration, we only need to identify clusters of train-

ing data that do not contain any poison training data required

to make the misclassification event successful. As such, our

traceback design only needs a “binary” measure of event re-

sponsibility, which is much easier to compute than the actual

contribution of any training data samples to the attack.

A binary measure of event responsibility. We propose a

binary measure of event responsibility, which connects a mis-

classification event with the model training data. Here our hy-

pothesis is that since data poisoning attacks focus on making

the model learn new behavior that is different from those of-

fered by the benign (or innocent) data, the attack confidence

level should not degrade if some portion of the innocent data

is not used for model training. In this work, we propose to

use this condition to determine whether a cluster of training

data contains only innocent data not responsible for the mis-

classification.

We formally define this condition as follows. Let the

model’s full training dataset D be divided into two distinct

subsets: D1 and D \D1. Let F be the DNN model trained

on D and F − be the model trained on D \D1. Let (xa,ya)
represent the misclassification event. We use ℓ(F (xa),ya)
and ℓ(F −(xa),ya) to indirectly compare the confidence level

of (xa,ya) on the two DNN models, where ℓ(.) is the cross-

entropy loss function. Specifically, if removing D1 from the

model training data does not increase the attack confidence

level, i.e.,

ℓ(F (xa),ya)≥ ℓ(F −(xa),ya), (1)

then D1 is less responsible for the misclassification event

(xa,ya) than D\D1. This is in the sense that D\D1 has a ratio

of benign to poison data that is more skewed towards poison

than D, allowing us to use this measure of event responsibil-

ity to iteratively determine the subset of poison data. We note

that in practice, we are able to use clustering to find splits

such that D1 does not contain any poison data. Our proposed

measure only examines the attack confidence level, and does

not consider the model’s normal classification accuracy.

The proposed binary measure of event responsibility (Eq.

1) is supported by our theoretical analysis on how removing

a portion of the training data affects attack performance. For

brevity, we present the analysis in Appendix A.1.

4 Detailed Poison Traceback Design

This section presents the detailed design of our traceback sys-

tem. We start from a high-level overview, followed by the de-

tailed description of the two key components (clustering and

pruning), which run iteratively to identify the set of poison

training data responsible for the misclassification event.

4.1 High-level Overview

In a nutshell, our traceback system implements an iterative

clustering and pruning process, which progressively identi-

fies sets of innocent training data that are not responsible for

the observed misclassification event. This ends when only

the poison data responsible for the misclassification event is

left and thus identified. Doing so requires two key operations:

clustering and pruning.

(1) Clustering unmarked training data. The clustering

component divides the unmarked training data into clusters,

based on how they affect the model parameters (details in

§4.2). Here the goal is to progressively separate innocent data

from poison data, so that we can identify, mark and prune an

innocent cluster (using the pruning component).

(2) Identifying and pruning innocent clusters. This prun-

ing component examines the unmarked data clusters, applies

the binary metric defined by Eq. (1) to identify an innocent

USENIX Association 31st USENIX Security Symposium    3579



cluster, if any, that is not responsible for the misclassifica-

tion event. The identified cluster is marked and thus excluded

from the next clustering operation, i.e., pruned out. We note

that pruning does not affect the computation of Eq. (1), where

D is always the original full training dataset and D1 is a clus-

ter to be examined. The detailed pruning design is in §4.3.

An illustrative example. Figure 2 shows an example trace-

back process that completes in two iterations, visualized in a

simplified 2D projection of the training data. The traceback

starts from the full set of training data as unmarked, includ-

ing both innocent (blue) and poison (red) data. In each iter-

ation, the left figure shows the collection of unmarked train-

ing data to be clustered and the resulting cluster boundary

that divides them into two clusters; the right figure shows the

result of pruning where the innocent cluster is removed. At

the end of iteration 2, only the set of poison data responsible

for the attack is left as unmarked. Upon detecting that the un-

marked data cannot be further divided or pruned, the process

ends and the unmarked data are declared as the training data

responsible for the misclassification event.

x
1

x
2

Cluster Boundary
Poison data 
Benign data 

x
1

x
2

x
1

x
2

x
1

x
2

Clustering Pruning

Iteration 1

Iteration 2

Figure 2: An illustration of our poison traceback process that

completes in two iterations, visualized on a simplified 2D

space representing the training data.

4.2 Clustering Unmarked Training Data

We now describe the detailed clustering design, which seeks

to progressively separate benign and poison training data into

different clusters. The key challenge here is that while inno-

cent and poison data are different by design (in order to inject

different behaviors into the model), it is highly challenging to

accurately characterize and measure such differences. This is

also why it has been hard to design defense mechanisms that

can effectively identify and remove poison training data.

Instead, our clustering design first maps these training data

into a new space, focusing on “amplifying” the separation be-

tween innocent and poison data rather than identifying them.

Operating on this new space, each clustering operation will

produce two clusters, ideally one containing only innocent

data and the other containing a mixture of innocent and poi-

son data. Given these two clusters, our pruning component

(§4.3) will replay the misclassification event to identify the

innocent cluster. In the next iteration, we will run clustering

only on the mixed cluster to “extract” more innocent data.

After a few iterations, the innocent and poison data become

fully separated.

Therefore, our clustering design includes 1) data mapping

to “amplify” the distance between innocent and poison data,

and 2) a high performance clustering method to generate the

clusters, which we discuss below.

Data mapping. We map the data by estimating how a

training sample x affects the final model parameters. This is

measured by the change of model parameters when x is ab-

sent from the training dataset, i.e., comparing the final model

parameters when trained on D and D\ x, where D is the full

training dataset. Unlearning benign or poison data results in

different effect on model parameters. Unlearning of poison

samples shifts the model closer to an optimal location in pa-

rameter space, where poisoning is ineffective, while unlearn-

ing benign samples shifts the model towards its initial ran-

domly initialized state, since if all benign samples are effec-

tively unlearned, the model will have no predictive power. A

naive implementation would retrain the model on D\x, lead-

ing to unnecessary computational overhead and stochasticity

from training. Instead, inspired by the concept of unlearning,

we propose estimating the parameter change using a gradi-

ent computation. The gradient of the parameters with respect

to a given data point with a specified loss function is a well-

known method to characterize its impact on the model [40].

Intuitively, data with similar gradients will have a similar im-

pact on the model. Thus, our data mapping for training data

point x is:

∇θ ℓ(F (x),NULL) (2)

where F is the original model (trained on D), θ is the pa-

rameter set of F ’s classification layer, ℓ is the cross-entropy

loss, and NULL is a new “no knowledge learned” label to rep-

resent the effect of not learning from x. We implement NULL

as an equal probability output, which has been used by exist-

ing works to label out-of-distribution (OOD) samples [77].

We note that our data mapping method is one of the many

ways to represent data for analysis in poison setting. Other

mapping methods exist in the literature [10, 15]. We leave

a systematic study of the optimaility of data mappings and

designing better performing mapping to future work.

Clustering heuristics. To handle large training data sets,

we use Mini-Batch K-means [64], a scalable variant of the

K-means clustering algorithm. As the name suggests, it first

runs K-means on multiple smaller batches of the dataset and

then aggregates their results. This allows us to distribute

the computation across multiple servers, achieving orders of

magnitude speedup without degrading the clustering qual-

ity [64]. As discussed earlier, we configure the clustering sys-

tem to produce two clusters per iteration.
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4.3 Pruning the Innocent Cluster

Given the two clusters, the pruning component will identify

which of the two clusters is less responsible, if any, for the

misclassification event (xa,ya). This is done by using (xa,ya)
to evaluate each cluster’s responsibility to the event – if a

cluster meets the condition in Eq. (1), it is marked as inno-

cent and excluded in the next clustering iteration. In practice,

we find that the less responsible cluster always contains only

benign data, due to the clear separation induced by our map-

ping in §4.2, resulting in rapid identification of the poison

data.

The design challenge facing this component is how to

efficiently evaluate the condition defined by Eq. (1), espe-

cially ℓ(F −(xa),ya). Given a cluster (D1), F − refers to the

DNN model trained on D \D1. One can certainly compute

ℓ(F −(xa),ya) by training F − from scratch, which is often

expensive in practice. Again, inspired by the concept of ‘un-

learning’, we propose producing F − by unlearning D1 from

the original model F .

Existing unlearning for provable privacy protection.

Unlearning has been explored in the context of privacy (e.g.,

[8, 30, 53]) where a person protected by privacy laws can re-

quest their data be removed from a trained ML model. Thus,

existing unlearning methods focus on achieving a strong,

provable privacy guarantee at the cost of high computation

complexity. Furthermore, their performance degrades rapidly

as the number of data points to be unlearned increases [8,30],

making them unsuitable for our traceback system.

Proposed: functional unlearning for traceback. Instead,

we propose approximating F − by functionally unlearning a

cluster D1 from the original model F . Specifically, we fine-

tune F to minimize the cross-entropy loss between D1 and

the NULL label (i.e., no knowledge learned) discussed in

§4.2 while maintaining a low cross-entropy loss on the rest

of the training data (D \D1) like the original model. This

fine-tuning operation is guided by

min
θ

(

∑
(x,y)∈D1

ℓ(F (x),NULL)+ ∑
(x,y)∈D\D1

ℓ(F (x),y)

)

(3)

where (x,y) ∈ D\D1 represents the training data instance

(input x and its label y). We solve the above optimization us-

ing stochastic gradient descent (SGD) with the same hyper-

parameters as the original model training, and use the fine-

tuned version of F as F −. We then compute ℓ(F −(xa),ya)
using the misclassification event (xa,ya) and verify the con-

dition defined by Eq. (1).

5 Overview of Evaluation

Using a variety of tasks/datasets, we evaluate our traceback

system against 6 different poison attacks (3 dirty-label and 3

clean-label attacks) and 4 anti-forensic countermeasures. We

outline these experiments and a preview of our findings.

Dataset Dimensionality # Classes # Training Data Architecture

CIFAR10 [41] 32× 32 10 50,000 WideResNet-28 [86]

ImageNet [18] 299× 299 1,000 1,281,167 Inception ResNet [73]

VGGFace [56] 224× 224 2,622 2,622,000 VGG-16 [71]

Wenger Face [80] 224× 224 10 762 ResNet-50 [32]

EMBER Malware [2] 2351 2 600,000 EmberNN [65]

Table 1: Datasets & DNN architectures for our evaluation.

I. Traceback of dirty-label poison attacks (§6). Using

4 image classification datasets, we test against 3 state-of-the-

art dirty-label attacks, including an attack without any known

effective defense. Our traceback system achieves ≥ 98.9%

precision and ≥ 97.1% recall in identifying poison data.

II. Traceback of clean-label poison attack (§7). For both

image classification and malware classification datasets, we

test against 3 state-of-the-art clean-label attacks, including an

attack without any known effective defense. Our traceback

system achieves ≥ 98.4% precision and ≥ 96.8% recall.

III. Robustness against anti-forensic countermeasures

(§9). We consider 4 potential countermeasures that a re-

sourceful attacker can deploy to bypass the traceback. Re-

sults show that our system is robust against all four. Across

all the experiments, the most effective countermeasure re-

duces the traceback precision and recall by less than 4%.

6 Evaluation on Dirty-label Attacks

Our evaluation of the traceback system starts from testing it

against dirty-label poisoning attacks. We consider three state-

of-the-art dirty-label attacks: BadNet [29], Trojan [48], and

Physical Backdoor [80]. We follow the original papers to im-

plement these attacks and vary their attack parameters to pro-

duce a rich collection of poisoning attacks and their misclas-

sification events. Overall, our results show that the proposed

traceback system can accurately identify the root cause of

dirty-label attacks (≥ 98.9% precision and ≥ 97.1% recall)

while maintaining a reasonable traceback time per attack.

6.1 Experiment Setup

We first summarize the configuration of the attacks and our

traceback system, and discuss the evaluation metrics.

Attack Setup. Using 4 image classification datasets listed

in Table 1, we implement the above mentioned three attacks

(Table 15 in Appendix). Their attack success rate and normal

classification accuracy match those reported by the original

papers. We briefly summarize them below. Further details

on the DNN models, datasets, and attacks can be found in

Appendix A.2.

• BadNet (CIFAR10, ImageNet): The BadNet [29] attack

builds poison training data by adding a pre-selected back-

door trigger to benign inputs and labeling them with the

target label. We run BadNets on image classification tasks

trained on CIFAR10 and ImageNet, respectively. The de-

fault attack configuration is identical to [29]: 10% injection
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Attack Type Attack Name Dataset
Traceback Performance

Precision Recall Runtime (mins)

Dirty-label

(§6)

BadNet CIFAR10 99.5± 0.0% 98.9± 0.0% 11.2± 0.4

BadNet ImageNet 99.1± 0.0% 99.1± 0.0% 142.5± 4.1

Trojan VGGFace 99.8± 0.0% 99.9± 0.0% 208.9± 9.2

Physical Backdoor Wenger Face 99.5± 0.1% 97.1± 0.2% 2.1± 0.0

Clean-label

(§7)

BP CIFAR10 98.4± 0.1% 96.8± 0.2% 19.2± 1.2

BP ImageNet 99.3± 0.0% 97.4± 0.1% 202.0± 7.1

WitchBrew CIFAR10 99.7± 0.0% 96.8± 0.1% 21.4± 2.1

WitchBrew ImageNet 99.1± 0.1% 97.9± 0.1% 194.3± 5.9

Malware Backdoor Ember Malware 99.2± 0.0% 98.2± 0.1% 57.7± 3.0

Table 2: Precision, recall, and runtime of the traceback system for each of the four dirty-label poisoning attack tasks and the

five clean-label poisoning attack tasks (averaged over 1000 runs per attack task).

rate (i.e., 10% of the training data is poison data) and a ‘yel-

low square’ as the trigger.

• Trojan (VGGFace): The Trojan [48] attack improves upon

BadNet by using an optimized trigger to increase attack suc-

cess. Like the original paper [48], we implement this at-

tack on a face recognition model trained on VGGFace. The

default attack configuration uses 10% injection rate and a

59× 59 pixel trigger.

• Physical Backdoor (WengerFace): Wenger et al. [80]

recently proposed a physical backdoor attack against fa-

cial recognition models, using everyday physical objects

such as eyeglasses and headbands as the trigger. They col-

lected a custom dataset of face images (hereby referred to

as WengerFace) of users wearing these accessories. We use

the same dataset3 to implement the attack. Following the

original paper, we implement the attack with the default con-

figuration of 10% injection rate and a pair of eyeglasses as

the trigger (since it offers the highest success rate among

the triggers tested). Note that this backdoor attack is able

to bypass 4 state-of-the-art defenses [15, 24, 75, 79]. To the

best of our knowledge, there is no known effective defense

against this attack.

In the rest of the paper, we often use attack-dataset (e.g.,

BadNet-CIFAR10) to succinctly identify each attack task.

Given an attack configuration (i.e., attack-dataset, injection

rate, trigger), we generate 1000 successful attack instances

(xa,ya) as the misclassification events to test our traceback

system. Specifically, we randomly choose 10 target labels to

implement 10 versions of the given poisoning attack. Then

for each attack version, we randomly select 100 successful

attack instances as the misclassification events, producing a

total of 10× 100= 1000 events.

Traceback Setup. Configuring the traceback system is

simple as it does not assume prior knowledge of the attacks.

The majority of computation comes from the data projection

used by the clustering component, i.e., computing eq. (2) for

each training sample. For large models (like those trained on

ImageNet), we speed up the computation of Eq. (2) by ran-

domly selecting ρ% of the model weights in the final classifi-

3We contacted the authors of [80] to obtain the dataset and the required

user consent and authorization to use this dataset for our study.

cation layer. We empirically find that reducing ρ from 10 to

1 does not lead to visible changes to the traceback accuracy

(see Table 12 in the Appendix), and thus set ρ = 1.

Evaluation Metrics. We evaluate the proposed traceback

system using three metrics: 1) precision of identifying poi-

son training data, 2) recall of identifying poison training data,

and 3) runtime latency of a successful traceback. We report

the average and standard deviation values over 1000 misclas-

sification events per attack configuration.

6.2 Traceback Performance

Precision and Recall. We first report the precision and

recall of our traceback system, when tested against dirty-

label attacks under the default attack configuration (i.e., those

used by the original papers). The top section of Table 2

shows the traceback precision and recall for each attack-

dataset. Across all these experiments, our system consis-

tently achieves a high precision (99.1− 99.8%) and a high

recall (97.1− 99.9%).

An interesting observation is that the recall for Physical

Backdoor is lower (97.1%) than the other attacks (> 98.9%).

That is, our traceback detects less portion of the poison train-

ing data samples used by Physical Backdoor compared to the

other attacks. We wonder whether this is because those data

samples contributed very little to the injected vulnerability,

especially since real photos of physical objects often lead

to less precise triggers than those injected digitally. We vali-

date this hypothesis by removing the exact set of poison data

missed by our traceback and re-launching the poison attack,

and the attack success rate drops by only 0.08% on average.

But when removing a random set of poison training data of

the same size, the attack success rate drops by 1.02% on av-

erage. This confirms our hypothesis.

Detailed Analysis of Clustering. To obtain a deeper un-

derstanding of the traceback performance, we perform a de-

tailed analysis of the clustering component. Intuitively, clus-

tering is most effective if the data projection makes the be-

nign and poison data well-separated from each other. Along

this line, our analysis starts from visualizing the project re-

sult of the model training data (benign and poison), for three

poisoning attacks (BadNet-CIFAR10, Trojan-VGGFace, and
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(c) Physical-Wenger

Figure 3: A simplified, 2-D PCA visualization of the projected training data, where poison and benign data are well-separated.

Physical-Wenger). Figure 3 shows the simplified 2D version

generated using 2-dimensional Principal Component Analy-

sis (PCA) [57] on the projected data. In this visualization, the

benign and poison data appear to be well-separated.

Next, we study the L2 distance among the projected train-

ing data, focusing on measuring the normalized L2 distance

between each poison data sample to the centroid of all the

benign data (i.e., the benign centroid), and the centroid of all

the poison data (i.e., the poison centroid). Table 17 lists the

average results for four attacks. We calculate the normalized

L2 distances to allow a fair comparison across attacks.

Results in Table 17 confirm that the poison and benign

data are reasonably separated. The poison data in Physical-

Wenger are more spread out while those in Trojan-VGGFace

are densely packed. These observations align with those of

Figure 3). Overall, our proposed data projection achieves suf-

ficient separation between the benign and poison data, al-

lowing the subsequent clustering and pruning operation to

quickly identify all the benign data. Across all four attacks,

the traceback takes no more than 4 clustering/pruning itera-

tions to complete.

Detailed Analysis of Pruning. Our pruning operation is

based on the condition defined by eq. (1) that compares the

cross-entropy loss of the misclassification event on the orig-

inal model F and the new model F − after removing a clus-

ter D1 from the training dataset. Using BadNet-CIFAR10 as

an example, Table 3 lists the mean and standard deviation

of ℓ(F (xa),ya) for the original model, ℓ(F −(xa),ya) when

removing an “innocent” cluster, and ℓ(F −(xa),ya) when re-

moving a poison cluster. The latter two display distinct differ-

ence when compared to the first term (ℓ(F (xa),ya)), confirm-

ing that our proposed binary condition offers a clear signal to

accurately identify innocent clusters not responsible for the

misclassification.

ℓ(F (xa),ya)
ℓ(F −(xa),ya) when removing

an innocent cluster a poison cluster

0.09± 0.02 0.02± 0.00 6.91± 0.6

Table 3: The cross-entropy loss of the misclassification event

on the original and modified models, for BadNet-CIFAR10.

6.3 Traceback Overhead

Finally, we report in Table 2 (the last column) the runtime of

traceback against different attack tasks. We run a prototype

of our traceback system on a machine with one Nvidia Ti-

tan X GPU and 12 Intel Xeon CPUs. The computation time

linearly increases with the dimension of the data projection

and the number of training data samples. For models with a

large training dataset, the bulk of the traceback computation

comes from the clustering of training data, which takes up

83% of the computation time for Trojan-VGGFace, the most

computational expensive task. On the other hand, simple data

parallelism enabled by the use of mini-batch K-mean cluster-

ing can significantly speed up the runtime. For example, par-

allelizing using 5 machines reduces the runtime for Trojan-

VGGFace to 49.5± 3.2 minutes, a 4.1x speed up.

7 Evaluation on Clean-label Attacks

We now evaluate our traceback system against clean-label

poisoning attacks, and contrast its performance to that on

dirty-label attacks. Compared to dirty-label attacks, clean-

label attacks follow a different attack methodology,use fewer

poison training samples, and these samples appear less sepa-

rated from the benign data even after data projection. These

factors make the clustering and pruning process more chal-

lenging. Nevertheless, our traceback system still achieves

good performance across all attack tasks (≥ 98.4% precision

and ≥ 96.8% recall). In the following, we present the experi-

ment setup of the five clean-label attacks used by our evalua-

tion, and how our traceback system responds to these attacks.

7.1 Experiment Setup

Attack Setup. We consider two state-of-the-art triggerless

clean-label attacks on image classification, and a backdoor-

based clean-label attack on malware classification (Table 16

in Appendix). Our implementation of these attacks match

the original papers in both attack success rate and benign

classification rate. Further implementation details are in Ap-

pendix A.2.

• Bullseye Polytope (BP) (CIFAR10 & ImageNet): The BP

attack [1] aims to make the model classify a single attack

sample xa to a target class ya at test time without modify-

ing the sample (hence, triggerless). This is done by adding
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imperceptible perturbations to the poison training data so

their representations in the feature space form a fixed-radius

polytope around the chosen attack sample xa. The classifier

then associates the region around the attack sample with the

label of the poison data, which is the desired target label ya.

This leads to misclassification of xa to ya at test time.

It is known that BP only works well when the attacker has

access to a pretrained feature extractor used by the victim

model, i.e., it is effective in the transfer learning setting. We

follow this setup and use a feature extractor pretrained on

the benign data as the victim. We use the attack parameters

of the BP-5x attack (the strongest variant) from the original

paper and test the attack on CIFAR10 and ImageNet.

• Witches’ Brew (CIFAR10 & ImageNet): Witches’

Brew [26] is a clean-label triggerless attack that. It works

by adding imperceptible perturbations to the poison data to

align its gradient with that of the attack sample. This makes

the model misclassify the attack sample to the target class

of the poison data. We test the attack on CIFAR10 and Ima-

geNet datasets.

• Malware Backdoor (Ember Malware): This is a clean-

label, backdoor attack on malware classifiers [65]. The at-

tacker uses influence functions to find 128 most impor-

tant features defining ‘goodware’ and uses these as a trig-

ger. These features are then modified for poison malware

samples, with the target class being ‘goodware’. The au-

thors of [65] found all three of the state-of-the-art de-

fenses [15, 46, 75] are ineffective against this attack. Like

the original paper, we use the publicly-available Ember mal-

ware classification dataset. Since attackers are mostly in-

terested in disguising malware as ‘goodware’, we only use

‘goodware’ as the target label of the attack.

Traceback System Setup & Evaluation Metrics. We use

the same system setup and evaluation metrics as §6.

7.2 Traceback Performance

The bottom section of Table 2 shows that our traceback sys-

tem achieves > 98.4% precision and > 96.8% recall when

going against the five clean-label poisoning attacks. In the

following, we discuss these results in detail by contrasting

the trackback performance on clean-label attacks to that on

dirty-label attacks (discussed in § 6.2).

Lower traceback recall due to ineffective poison data.

First, we see that the traceback precision remains high even

as compared to dirty-label attacks, but the recall is consis-

tently lower and the runtime is higher. In particular, Table 2

shows that the lowest traceback recall happens on the two

triggerless attacks, BP and Witches’ Brew. We hypothesize

that it is because these two attacks failed to move the rep-

resentations of some poison training data to the desired lo-

cation in the feature space. These “ineffective” poison train-

ing data made very little contribution to the misclassification

event, and are hard to detect during traceback.

ℓ(F (xa),ya)
ℓ(F −(xa),ya) when removing

an innocent cluster a poison cluster

0.61± 0.07 0.39± 0.04 8.81± 0.81

Table 4: The cross-entropy loss of the misclassification event

on the original and modified models, for BP-CIFAR10.

We test and validate this hypothesis by gradually increas-

ing the attack perturbation budget (to increase the effective-

ness of the poison training data) and observing the attack

success rate. The budget for the BP and WitchBrew attacks

determines the magnitude of perturbation the attacker can

add to each poison data point (the default budget is set to

Lin f = 0.03). A higher perturbation budget allows the at-

tacker to position the poison training data “closer” to their de-

sired locations, making these data more “effective” and lead-

ing to a stronger attack success rate. Table 14 confirms that

the attack success rate increases with the perturbation budget.

We also list the traceback precision and recall. While preci-

sion remains high, the recall also increases from 94.9% to

99.4% as we increase the budget, confirming our hypothesis

that the presence of ineffective poison samples is the reason

for a lower recall value.

Less distinct clusters lead to more pruning iterations.

We also study the performance of clustering and pruning on

the five clean-label attacks. Like Figure 3 for dirty-label at-

tacks, we visualize the projected training data using 2-D PAC

for clean-label attacks. The visualization for BP-CIFAR10 is

shown in Figure 5. Compared to the wide separation seen on

the dirty-label poison data (Figure 3), the BP poison data ap-

pear much less separated from the benign training data. In

fact, they reside in the gap between different benign clusters.

This is not surprising, because clean-label attacks work by

moving the representation of the poison data close to that of

benign data in the target class, so these poison data are inher-

ently closer to the benign data.

We also analyze the pruning operation when tracing back

clean-label attacks. Table 4 shows the cross-entropy loss

caused by training data removal, which is used to determine

whether a cluster is benign or not. Again, we observe a clear

pattern that separates benign clusters from poison (or mixed)

clusters, i.e., ℓ(F −(xa),ya) for removing an innocent cluster

is smaller than ℓ(F (xa), and ℓ(F −(xa),ya) for removing a

poison cluster is significantly larger. As such, pruning can

effectively identify benign clusters.

Despite the reduced separation, our traceback system can

still accurately identify the benign (and thus poison) data

clusters while using more clustering/pruning iterations. For

example, an average of 10.7 iterations are needed for BP-

CIFAR10 compared to 3.2 iterations for the dirty-label attack

on the same model (BadNet-CIFAR10).
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Attack-Dataset
Traceback Method

Spectral Signature Neural Cleanse Ours

BadNet-CIFAR10 95.3% / 92.4% 98.7% / 96.6% 99.5% / 98.9%

BadNet-ImageNet 96.0% / 93.7% 91.1% / 97.2% 99.1% / 99.1%

Trojan-VGGFace 93.1% / 89.8% 94.8% / 97.4% 99.8% / 99.9%

Physical-Wenger 43.2% / 67.4% 0% / 0% 99.5% / 97.1%

Malware Backdoor 2.1% / 15.1% 0% / 0% 99.2% / 98.2%

Table 5: Comparing our traceback system against forensic

tools adapted from existing backdoor defenses. We present

the results as “Precision / Recall”.

Attack-Dataset
Traceback Method

Deep K-NN L2-Norm Ours

BP-CIFAR10 36.1% / 74.3% 34.5% / 78.0% 98.4% / 96.8%

BP-ImageNet 57.9% / 79.6% 53.4% / 72.4% 99.3% / 97.4%

WitchBrew-CIFAR10 49.3% / 53.9% 52.1% / 42.8% 99.7% / 96.8%

WitchBrew-ImageNet 53.5% / 47.2% 51.3% / 44.3% 99.1% / 97.9%

Table 6: Comparing our traceback system against forensic

tools adapted from existing clean-label defenses. We present

the results as “Precision / Recall”.

8 Comparing against Adapted Defenses

While forensics tools are solving a different problem as

defenses, it is reasonable to ask, can existing defenses be

adapted to become tools in forensic analysis. Here, we adapt

four state-of-the-art poison defenses (two backdoor and two

triggerless defenses) to perform post-attack traceback anal-

ysis. We compare our system against adapted backdoor de-

fenses (Spectral Signature [75] and Neural Cleanse [79]) in

Table 5, and our system against triggerless defenses (Deep

K-NN and L2-Norm Outliers [59]) in Table 6.

Spectral Signature. Spectral signature [75] extracts sig-

natures for backdoor training data using the spectrum of the

covariance of the feature representation. Spectral signature

identifies the malicious training samples post-training (be-

fore attack). We adapt spectral signature simply by using it

to identify the malicious training data post-attack.

Table 5 shows that spectral signature performs well on

BadNet and Trojan attacks, but performs quite poorly when

tracing back attacks for physical backdoors and malware

backdoors. The poor performance against Malware Back-

doors is consistent with the malware paper itself [65], where

the authors showed that spectral signature defense is ineffec-

tive against their proposed malware attack.

Neural Cleanse (NC). NC [79] recovers backdoor trig-

gers in a poisoned model by reverse-engineering the back-

door trigger. For traceback, we apply NC and search for the

recovered trigger in the training dataset to identify poison

data. Since NC does not recover the exact input trigger, we

perform the matching in neuron activation space, i.e., flag-

ging the training data if its neuron activation is close to that

of the recovered trigger. We use cosine similarity to measure

the activation distance and use a small set of benign data to

calculate a cutoff threshold.

In our tests, NC performs well on BadNet and Trojan

backdoors, where it successfully recovers backdoor triggers.

Against physical and malware backdoor attack, however, NC

fails to identify any triggers, and thus traceback fails.

Deep K-NN and L2-Norm Outliers. Both defenses are

proposed by [59], where clean-label poison data are detected

using anomaly detection in the feature space. In our tests,

both defenses perform poorly on all four clean-label attack

tasks (Table 6), achieving similar performance as random

guessing. This result is also consistent with results from the

BP and WitchBrew attack papers, where they show existing

defenses are not effective [1, 26].

9 Anti-Forensic Countermeasures

As with other security mechanisms, we expect attackers with

knowledge of our system to deploy adaptive countermea-

sures. In this section, we explore potential anti-forensics tech-

niques and evaluate them for their impact on our system.

Our experiments make the strongest possible assumption

about the attacker: that they know full details of the target

model’s training pipeline, including read access to all train-

ing data, model architecture, and training hyperparameters.

They also know details of the traceback system, including

the function to calculate the data projection. We assume that

attacker can add additional perturbations to its poison data in

order to evade traceback, and we assume a generous pertur-

bation budget of Lin f = 0.1 (attacker can change each input

value by 10%). For trigger-based attacks, we further allow

the attacker to arbitrarily change the location and value of

the triggers.

We consider five different countermeasures, each leverag-

ing in different ways the attacker’s ability to inject manip-

ulated training data into the data pipeline. The countermea-

sures are shown in Figure 4, and include: a) disguising poison

data as benign, b) injecting perturbed benign data, c) bifurcat-

ing poison data, and d) multiple overlapping poison attacks.

We evaluate the countermeasures on a total of 7 attacks, all of

our attacks except for physical backdoors (cannot easily mod-

ify physical triggers) and malware backdoors (fixed triggers

based on heuristic). We also test the scenarios where attacker

increases the attack’s cost in order to evade traceback.

Disguising Poison as Benign. The first countermeasure

tries to confuse the clustering algorithm, by perturbing the

poison data and pushing it closer to benign data in the

data projection space (Figure 4b). If the clustering heuris-

tic groups poison data into different benign clusters, it will

terminate the pruning and either reduce recall or confuse the

system into identifying it as a non-poison misclassification.

We test the case where an attacker minimizes the distance

between each poison data and a benign data point closest to it

in the data projection space, while optimizing for the original

attack objectives, using a λ parameter to balance the two ob-

jectives. The attacker leverages a bi-level optimization [34]

to optimize the attack objective, since the modifications of
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Figure 4: An illustration of four countermeasures where attacker can manipulate the data layout in data projection space in

order to disrupt traceback.

L2 Distance
Attack

Success Rate
Precision Recall

434.5± 8.2 99.5± 0.0% 99.5± 0.0% 98.9± 0.0%

290.4± 8.9 89.5± 0.6% 98.4± 0.1% 98.1± 0.1%

184.8± 5.7 64.3± 1.7% 96.9± 0.3% 97.2± 0.1%

110.3± 3.1 28.3± 3.2% 95.9± 0.3% 96.7± 0.2%

59.0± 1.9 0.0± 0.0% N/A N/A

31.4± 1.2 0.0± 0.0% N/A N/A

Table 7: For disguising Trojan-VGGFace, attack success rate

drops as the L2 distance between poison and benign pro-

jections decreases, while traceback precision and recall drop

slightly.

L2 Distance
Attack

Success Rate
Precision Recall

28.2± 0.9 86.1± 1.4% 98.4± 0.1% 96.8± 0.2%

25.4± 1.3 59.4± 3.4% 97.2± 0.2% 95.0± 0.3%

19.0± 1.2 19.7± 2.0% 96.1± 0.2% 94.8± 0.3%

12.8± 0.8 8.7± 0.4% 95.9± 0.1% 95.1± 0.3%

9.4± 0.5 0.0± 0.0% N/A N/A

4.4± 0.3 0.0± 0.0% N/A N/A

Table 8: For disguising BP-CIFAR10, attack success rate de-

creases as L2 distance between poison and benign projections

decreases, while traceback precision and recall drop slightly.

poison data also change the result model and thus, the pro-

jection calculation.

Results are consistent across all 7 attack tasks. For brevity,

we show detailed results for Trojan-VGGFace (Table 7) and

BP-CIFAR10 (Table 8). As the L2 distances between poison

and benign data decrease, it becomes harder for the model to

learn the attack, and attack success rate drops to zero. Impact

on traceback is minimal: precision and recall drop less than

3.6% across all tasks.

Targeted Contamination Attack (TaCT). Another

method to disguise poison data is the TaCT attack [74].

TaCT is designed to obscures the difference between poi-

son and benign representations in order to evade existing de-

fenses. TaCT leverages source-specific backdoors, triggers

only work when applied to specific images. The authors

found that TaCT causes poison and benign data to be insepa-

rable in neuron representation space.

We test our traceback system against TaCT. We find that

while poison and benign data are inseparable in neuron rep-

resentation space, we can still separate them in our data pro-

jection space. We believe the separation is likely because our

data projections measure each data’s impact on model param-

eters, which better characterize training data than neurons ac-

tivation values in poison settings. We test TaCT attack on all

4 backdoor attack tasks from §6. Overall, TaCT attack is inef-

fective against our traceback system, reducing precision and

recall by less than 4% across the five backdoor attacks.

Injecting Perturbed Benign Data. Next, we consider the

countermeasure where the attacker seeks to confuse the clus-

tering algorithm by injecting benign data whose projection

fills in the space between benign and poison data. We refer

to this additional set of modified data as “helper data”. We

note that the helper data do not directly contribute to the suc-

cess of the misclassification event.

As shown in Figure 4(c), an attacker positions helper data

between poison and benign data to mislead the clustering

heuristic. The attacker first identifies the last set of benign

data pruned out by the traceback system. Using the cluster-

ing algorithm, the attacker separates the benign cluster into

two clusters, and the poison data into two groups based on

proximity to each benign cluster’s centroid. The attacker op-

timizes helper data to uniformly position them in between

each benign cluster and its closeby poison cluster. The at-

tacker uses a similar bi-level optimization (§9) to optimize

the attack objective.

We apply this countermeasure on the 7 attack tasks. For

brevity, we show detailed results for Trojan-VGGFace in Ta-

ble 9. As the number of helper data samples increases to

10000 (25% of training data), attack success rate reduces

gradually to zero, while traceback precision drops to 94.1%

and recall remains the high (> 98.7%). Table 10 shows re-

sults for BP-CIFAR10, where the attack success rate drops

much faster when injecting merely 25 helper data. The faster

drop in attack success is likely due to the fewer clean-label

poison samples and their proximity to benign data. When

Trojan and BP attacks reach zero attack success rate (15000

and 20 helper data respectively), our traceback can still sepa-

rate poison data with > 91.4% precision and recall.

Bifurcating Poison Data. Next, we explore techniques to

separate poison data into multiple (two) separate distribu-

tions both of which contribute to the attack incident while

residing in different parts of data projection space, in order

to evade clustering (Figure 4(d)). The attacker first identifies

the two strongest clusters in the poison data, then maximize
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Number of

Helper Data

Attack

Success Rate
Precision Recall

0 99.8± 0.0% 99.8± 0.0% 99.9± 0.0%

1000 64.3± 3.8% 96.3± 0.2% 99.1± 0.0%

10000 21.0± 3.9% 94.1± 0.3% 98.7± 0.0%

15000 0.0± 0.0% N/A N/A

Table 9: For adding helper data to Trojan-VGGFace, the at-

tack success rate decreases as the number of helper data in-

creases, while the precision and recall of the traceback sys-

tem drop slightly.

Number of

Helper Data

Attack

Success Rate
Precision Recall

0 86.1± 1.4% 98.4± 0.1% 96.8± 0.2%

5 35.5± 3.4% 96.6± 0.3% 96.6± 0.1%

10 13.1± 1.1% 94.3± 0.5% 96.6± 0.2%

20 0.0± 0.0% N/A N/A

Table 10: For adding helper data to BP-CIFAR10, the attack

success rate decreases as the number of helper data increases,

while the recall of the traceback system remains the same and

precision drops slightly.

the distance between the cluster centroids to separate them.

We follow the same bi-level optimization process to optimize

the poison data and use a λ term to balance the objective of

cluster distance and the original attack objective.

We apply this countermeasure to all 7 attack tasks. For BP

attacks and WitchBrew attacks, attack success drops quickly

because the two triggerless attacks rely on clever positioning

of the poison data (e.g., a fixed radius polytope around target

data). For BP and Witches’ Brew, this countermeasure has

no impact on traceback performance (> 97.0% precision and

recall). For trigger-based attacks, we show results on Trojan-

VGGFace in Table 11. We found that as we increase λ to push

for better separation between the two clusters, the centroid

distances fail to increase beyond a certain value. We believe

the failure to separate poison data is because these poison

samples have the same attack objective and trigger, and nat-

urally cluster together in the data projection space. Overall,

the traceback system achieves ≤ 96.7% precision and recall

across all 7 attack tasks.

Multiple Overlapping Poison Attacks. Finally, an at-

tacker can try to combine two dirty-label attacks in one mis-

classification event, by training two different triggers with

the same misclassification label into the model, then includ-

ing both triggers into a single attack input. This attack does

not work for triggerless attacks, since each attack has its own

specific target data.

Our experiments show this countermeasure is ineffective

against our traceback system. We achieve > 98.4% precision

and recall across all attack tasks. While the two poison at-

tacks leverage different triggers, they have the same objec-

tive of misclassifying any inputs to the same target label, and

our data projection directly correlates to the objective of each

L2 Distance
Attack

Success Rate
Precision Recall

2.2± 0.2 99.8± 0.0% 99.8± 0.0% 99.9± 0.0%

17.9± 2.7 98.3± 0.2% 98.2± 0.0% 97.9± 0.1%

25.3± 4.1 97.1± 3.7% 97.3± 0.2% 96.9± 0.2%

23.6± 5.8 97.4± 0.0% 97.5± 0.1% 97.3± 0.1%

24.0± 6.1 98.1± 0.0% 97.6± 0.2% 97.0± 0.2%

Table 11: For separate one Trojan attack into two, the attack

success rate decreases as the L2 distance between centroids

decreases, while the precision of the traceback system re-

mains the same and recall drops slightly.

training data. Thus poison data from two separate attacks ap-

pear in the same region in projection space, enabling us to

cluster them together as part of the same attack.

Higher Cost Attacks. So far, we have focused on attacks

with a similar cost, i.e., same number of poison data. Now, we

explore the impact of attacks with higher cost on our trace-

back system. We allow an adaptive attacker to poison an

increasing number of poison data and test our traceback ef-

fectiveness against these higher cost attacks. We found that

increasing injection rate has an surprisingly low impact on

our traceback system. As attacker increases injection rate to

50%, our traceback system maintains > 95% precision and

> 92% recall, across all 5 countermeasures discussed in this

section and all 9 attack tasks.

We believe the weak impact of increasing injection rate is

because our traceback system views poison as a group effect

(§3.3), and poison data with the same attack objective are

clustered together regardless of the number of poison data.

As a result, increasing injection rate has limited effectiveness

against our traceback system.

10 Discussion: Identifying Non-poison Events

Our work addresses the question of post-attack analysis for

poison attacks on neural networks. In practice, however, a

system administrator must first identify if a misclassification

event was caused by a poisoning attack, or from an evasion

attack or benign misclassification. The former are test-time

attacks that leverage existing vulnerabilities in trained mod-

els to cause misclassification with perturbed data, while the

latter simply arise since models do not classify perfectly.

Attack Identification. We note that our system can dou-

ble as a tool for the first step towards attack identification.

Given a model and a misclassification event (misclassified

input and output), one iteration of our forensic system would

be able to identify if the attack was a poison attack or caused

by other means. Once we separate training data into clusters,

and apply the same unlearning techniques, we can observe if

removal of either subset of training data will alter misclassi-

fication behavior.

Intuitively, both evasion by adversarial perturbation and

benign misclassification rely on specifics of the model’s loss
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landscape. In either case, removal or “unlearning” of any sig-

nificant portion of training data will change the loss land-

scape and should alter the misclassification behavior. In our

system, we would observe that unlearning either of the clus-

ters would alter the misclassification event. So if the first iter-

ation fails to prune away either cluster, then we consider the

misclassification event as non-poison and end traceback.

Limitation. Our attack identification system can be vul-

nerable to “false flag” attack [60] where an attacker carefully

crafts a misclassification event that triggers our traceback sys-

tem to blame an innocent data provider. This is a threat that

the deployer of traceback system needs to keep in mind when

perform any forms of prosecution based on traceback results.

In practice, a system like ours must be understood in context:

the assignment of blame to any parties involved will only be

possible with the availability of an effective data provenance

tool, and there should be a human-in-the-loop confirmation

before any lasting decisions are made.

Further, any attacker trying to carry out an inference time

attack that also has a false flag component will have to solve

a more challenging optimization problem needing access to

the training data. The exploration of techniques to do this

effectively is beyond the scope of this paper but is an inter-

esting direction for future work.

Empirical Results. We test four representative evasion at-

tacks, including two white-box evasion attacks (PGD [52],

CW [13]) and two black-box evasion attacks (Boundary [9]

and HSJA [16]) against all 5 of our evaluation datasets. We

follow the default attack parameters [68] (Appendix 13). We

test 100 evasion attack samples for each attack and classifi-

cation task pair. For benign misclassification, we randomly

select 100 misclassified benign test data as the misclassifi-

cation events for each task. For all these misclassification

events, our forensic tool correctly determined that they were

not caused by data poisoning attacks, i.e., our tool produced

no false positives.

Future Work

We believe the study of post-attack forensic techniques re-

mains an open area with numerous open questions. First,

while our method is effective in our tests, more effort is

needed to understand its robustness when extended to addi-

tional types of attacks and application domains. Second, in

order to assign responsibility to a provider for the poisoned

data, the model administrator must be confident that meta-

data associated with training data is accurate and tamper-

resistant. The study of data provenance [22, 49] in this con-

text remains an open problem.
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A Appendix

A.1 Theoretical Analysis of Training Data

Removal

As discussed in §3.3, our binary measure of event responsi-

bility is inspired by a theoretical analysis on how removing

a portion of the training data affects the poisoning attack per-

formance. We now present this theoretical analysis in detail.

To examine the impact of removing a subset of training

data (D1) on the poisoning attack, we seek to analytically

quantify its impact on the model loss over the true distri-

bution of the poison test data, which indicates the contribu-

tion of D1 to successful misclassification at test time. Fur-

thermore, our analysis considers the general case where D1

may contain both benign and poison training data, i.e., D1 is

drawn from a mixed distribution. We note that while our the-

oretical analysis is driven by the expected value of the loss

over the distribution of the poison test data, in practice the

traceback system can only measure the impact on a single

misclassification event (usually just one data sample). Yet

this is empirically sufficient to label and prune clusters (as

shown by our experimental results in §6 and 7). Finally, since

our clustering is able to find clusters that only contain benign

data, the pruning component used by our traceback focuses

on picking this cluster (D1). This is a special case under our

theorems, which show that clusters can be differentiated even

if they are mixed.

Definitions: Let the full training data D be drawn from a

distribution D comprised of the benign distribution Db and

the poison distribution Dp in the ratio α, i.e., D = αDb +
(1−α)Dp. Let F denote the original model trained on D, us-

ing the loss function ℓ. To measure the impact of removing a

group of data D1 from the training dataset, we consider a new

model F − trained on D \D1, effectively drawn from a dis-

tribution D− = α−Db +(1−α−)Dp. Finally, the expected
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loss over the true distribution for a classifier F is LD(F )=
E(x,y)∼D [ℓ(F (x),y)].

Key Results: If removing D1 from the model training pro-

cess either reduces or maintains the loss of the resulting clas-

sifier on the poison test data, e.g., LDp
(F )≥ LDp

(F −), this

action has skewed the ratio towards poison data in the train-

ing dataset, implying that D\D1 is more responsible for the

success of poison attacks at test time.

Next, we prove this result in two cases: i) learning from

the entire distribution and ii) learning from the empirical dis-

tribution. We note that the former is not possible in practice

but is useful pedagogically.

Theorem 1. [Learning from true distribution] Consider

classifiers F∗ and F−
∗ that are trained directly from the true

distributions D and D−, respectively. We can show that if

LDp
(F∗)≥ LDp

(F−
∗ ), (4)

then α− ≤ α.

Proof. By definition,

F∗ = argmin
F

LD(F)

= argmin
F

αLDb
(F)+ (1−α)LDp

(F)

and

F−
∗ = argmin

F

LD−(F)

= argmin
F

α−LDb
(F)+ (1−α−)LDp

(F).

The first implies that

∀F, αLDb
(F∗)+ (1−α)LDp

(F∗)

≤ αLDb
(F)+ (1−α)LDp

(F) (5)

⇒ αLDb
(F∗)+ (1−α)LDp

(F∗)

≤ αLDb
(F−

∗ )+ (1−α)LDp
(F−

∗ ), (6)

and the second

∀F, α−LDb
(F−

∗ )+ (1−α−)LDp
(F−

∗ )

≤ α−LDb
(F)+ (1−α−)LDp

(F) (7)

⇒ α−LDb
(F−

∗ )+ (1−α−)LDp
(F−

∗ )

≤ α−LDb
(F∗)+ (1−α−)LDp

(F∗). (8)

We multiply Eq. 6 by α− and Eq. 8 by α, which gives us

αα−LDb
(F−

∗ )+α(1−α−)LDp
(F−

∗ )−α(1−α−)LDp
(F∗)

≤αα−LDb
(F−

∗ )+α−(1−α)LDp
(F−

∗ )−α−(1−α)LDp
(F∗)

⇒(α−α−)(LDp
(F∗)−LDp

(F−
∗ ))≥ 0 (9)

From Eq. 9, it is clear that if LDp
(F∗) ≥ LDp

(F−
∗ ), α ≥ α−,

proving our claim.

Our proof did not make any assumptions about the con-

vexity of the loss function or the type of learning algorithm

used. This is due to the assumption that we are able to find

classifiers that minimize the loss on the true distribution.

This assumption does not hold in practice, and we typically

use gradient descent algorithms over sampled data for train-

ing [67]. The next theorem deals with this case, but makes

the additional assumptions that the set of possible classifiers

is convex and that the loss function is convex, Lipschitz and

bounded. The learning algorithm used is Stochastic Gradient

Descent (SGD).

Theorem 2. [Learning from empirical distribution] Con-

sider datasets D and D2 defined as above such that D2 ⊂ D.

The corresponding models F and F− are defined over a B-

bounded convex set and trained using SGD over a convex, ρ-

Lipschitz loss function ℓ. D is drawn from D = αDb +(1−
α)Dp, and D2 from D ′ = α−Db+(1−α−)Dp. Then, we can

show that if

LDp
(F )−LDp

(F −)≥
−(αε−+α−ε)

α−α−
(10)

then α− < α.

Proof. In the learning setting of interest, we have, from

Corollary 14.12 in Shalev-Shwartz and Ben-David [67],

LD(F )≤ LD(F∗)+ ε, (11)

where ε ≥ B2ρ2

|D| . Similarly, for learning from D−, we have

LD−(F −)≤ LD−(F−
∗ )+ ε−, (12)

where ε− ≥ B2ρ2

|D− |
.

Now we can i) substitute F − in the right hand side of Eq.

5 and F in the right hand side of Eq. 7, ii) use Eqs. 11 and

and iii) perform the appropriate scaling and rearrangement to

get

(α−α−)(LDp
(F )−LDp

(F −))≥−(αε−+α−ε). (13)

If the condition from Eq. 10 is true, then we have α > α−.

We can then determine that D1 was less responsible than

the remaining data D\D1 if the difference of losses satisfies

the condition from Theorem 2. In other words, this implies

that the remaining data D \D1 is more skewed towards the

poison distribution Dp, guiding our search for the set of poi-

soned data. The implication of the theorem above is that set

searching is viable since for any identified set, its relative im-

pact on the attack incident can be quantitatively determined.

We note that the case when the removed set of data D1 con-

tains only benign data is a special case in the theorem above.
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A.2 Further experimental details

Evaluation Dataset. We discuss in details of training

datasets we used for the evaluation.

• Image Recognition (CIFAR10) - The task is to recognize 10

different objects. The dataset contains 50,000 training im-

ages and 10,000 testing images [41]. The model is an Wide

Residual Neural Network (RNN) with 50 residual blocks

and 1 dense layer [86]. We use this task because of its preva-

lence in general image classification and security literature.

• Image Recognition (ImageNet) - The task is to recognize

1000 different objects. The dataset contains 1,281,167 train-

ing images [18]. We include this task because it has been

used as a general benchmark for computer vision and the

large number of training data poses a challenge for our trace-

back system.

• Face Recognition (VGGFace) – This task is to recognize

faces of 2,622 different people drawn from the Internet. We

include this task because it simulates a more complex fa-

cial recognition-based security screening scenario. Tracing

back poison attack in this setting is important. Furthermore,

the large set of labels and training data in this task allows

us to explore the scalability of our system.

• Malware Detection (EMBER Malware) – Ember is a repre-

sentative public dataset of malware and goodware samples.

The dataset consists of 2,351-dimensional feature vectors

extracted from Portable Executable (PE) files for the Mi-

crosoft Windows OS. We include the dataset to test trace-

back performance on malware detection.

Percentage of

Weights Kept
Precision Recall

0.1% 98.9± 0.0% 98.0± 0.0%

1% 99.1± 0.0% 97.9± 0.1%

5% 99.2± 0.0% 97.9± 0.1%

Table 12: Precision and recall of traceback system remain

the same as the precentage of weights kept for clustering in-

creases for ImageNet-BadNet.

Attack Method Attack Configuration

PGD ε = 0.05, step size = 9, max iterations = 1000, learning rate = 0.05

CW ε = 0.05, # of iteration = 100, epsilon of each iteration = 0.005

Boundary ε = 0.05, num_iterations = 10000, δ = 0.1

HSJA ε = 0.05, num_iterations = 10000, γ = 1.0

Table 13: Detailed information on evasion attacks.

Perturbation

Budget (L_in f )

Attack

Success Rate
Precision Recall

0.01 29.2% 99.4% 94.9%

0.03 86.1% 98.4% 96.8%

0.05 93.7% 99.2% 99.2%

0.09 97.6% 99.1% 99.4%

Table 14: For BP-CIFAR10, both attack success rate and trace-

back recall increase with the attack perturbation budget, be-

cause the poison training data becomes more effective.

Attack Name Dataset
Injection

Rate

Benign

Classification Accuracy

BadNet CIFAR10 10% 92.9± 0.3%

BadNet ImageNet 10% 78.9± 1.7%

Trojan VGGFace 10% 76.1± 0.8%

Physical Backdoor Wenger Face 10% 99.9± 0.0%

Table 15: The default setup of dirty-label poisoning attacks.

Attack Name Dataset
Injection

Rate

Benign

Classification Accuracy

BP CIFAR10 0.01% 93.0± 0.2%

BP ImageNet 0.01% 79.1± 0.9%

WitchBrew CIFAR10 1% 92.2± 0.3%

WitchBrew ImageNet 1% 79.3± 0.7%

Malware Backdoor EMBER Malware 1% 99.2± 0.1%

Table 16: The default setup of the five clean-label poisoning

attacks used in our evaluation.

Attack-Dataset
Avg L2 distance of poison data to Avg # of

iterationsbenign centroid poison centroid

BadNet-CIFAR10 0.65 0.19 3.2

BadNet-ImageNet 0.76 0.24 3.4

Trojan-VGGFace 0.69 0.09 3.1

Physical-Wenger 0.62 0.39 4.0

Table 17: The average L2 distance between individual poi-

son data and the benign (poison) centroid, and the number of

pruning iterations needed to complete the traceback.
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Figure 5: 2-D PCA visualization of the projection of training

data (sampled from BP-CIFAR10). Orange circles are inno-

cent data and red crosses are poison data.

3592    31st USENIX Security Symposium USENIX Association


	Introduction
	Background and Related Work
	Data Poisoning
	Background on Digital Forensics

	Traceback on Data Poisoning Attacks
	Threat Model
	Design Requirements and Challenges
	Design Intuition

	Detailed Poison Traceback Design
	High-level Overview
	Clustering Unmarked Training Data
	Pruning the Innocent Cluster

	Overview of Evaluation
	Evaluation on Dirty-label Attacks
	Experiment Setup
	Traceback Performance
	Traceback Overhead

	Evaluation on Clean-label Attacks
	Experiment Setup
	Traceback Performance

	Comparing against Adapted Defenses
	Anti-Forensic Countermeasures
	Discussion: Identifying Non-poison Events
	Appendix
	Theoretical Analysis of Training Data  Removal
	Further experimental details


