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Abstract

We develop conformal prediction methods for constructing valid predictive confidence sets
in multiclass and multilabel problems without assumptions on the data generating distribu-
tion. A challenge here is that typical conformal prediction methods—which give marginal
validity (coverage) guarantees—provide uneven coverage, in that they address easy exam-
ples at the expense of essentially ignoring difficult examples. By leveraging ideas from
quantile regression, we build methods that always guarantee correct coverage but addi-
tionally provide (asymptotically consistent) conditional coverage for both multiclass and
multilabel prediction problems. To address the potential challenge of exponentially large
confidence sets in multilabel prediction, we build tree-structured classifiers that efficiently
account for interactions between labels. Our methods can be bolted on top of any clas-
sification model—neural network, random forest, boosted tree—to guarantee its validity.
We also provide an empirical evaluation, simultaneously providing new validation methods,
that suggests the more robust coverage of our confidence sets.

Keywords Multilabel and Multiclass Classification, Conformal Inference, Validity,
Quantile Regression, Graphical Models

1. Introduction

The average accuracy of a machine-learned model by itself is insufficient to trust the model’s
application; instead, we should ask for valid confidence in its predictions. Valid here does
not mean “valid under modeling assumptions,” or “trained to predict confidence,” but hon-
est validity, independent of the underlying distribution. In particular, for a supervised
learning task with inputs x ∈ X , targets y ∈ Y, and a given confidence level α ∈ (0, 1), we
seek confidence sets C(x) such that P (Y ∈ C(X)) ≥ 1−α; that is, we cover the true target
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Y with a given probability 1 − α. Given the growing importance of statistical learning in
real-world applications—autonomous vehicles (Kalra and Paddock, 2016), skin lesion identi-
fication (Esteva et al., 2017; Oakden-Rayner et al., 2020), loan repayment prediction (Hardt
et al., 2016)—such validity is essential.

The typical approach in supervised learning is to learn a scoring function s : X ×Y → R

where high scores s(x, y) mean that y is more likely for a given x. Potential examples
include any strictly increasing function of the conditional probability P (Y = y|X = x) in a
classification problem, but also more generally −`(ŷ(x), y), where ŷ : X → Y is a predictor,
and ` : Y × Y → R+ is a loss function measuring the distance between the prediction
and the true response. Conceptually, a “good” score function should rank the elements
of Y by decreasing likelihood conditionally on x, but the coverage validity of the resulting
confidence sets should not depend upon it. Given such a score, a natural goal for prediction
with confidence is to compute a quantile function qα satisfying

P (s(x, Y ) ≥ qα(x) | X = x) ≥ 1− α, (1)

where α > 0 is some a-priori acceptable error level. We could then output conditionally
valid confidence sets for each x ∈ X at level 1− α by returning

{y ∈ Y | s(x, y) ≥ qα(x)} .
Unfortunately, such conditional coverage is impossible without either vacuously loose thresh-
olds (Vovk, 2012) or strong modeling assumptions (Vovk, 2012; Barber et al., 2019), but
this idea forms the basis for our approach.

To address this impossibility, conformal inference (Vovk et al., 2005) resolves instead to
a marginal coverage guarantee: given n observations and a desired confidence level 1 − α,
conformal methods construct confidence sets C(x) such that for a new pair (Xn+1, Yn+1)
from the same distribution, Yn+1 ∈ C(Xn+1) with probability at least 1 − α, where the
probability is jointly over X and Y . Conformal inference algorithms can build upon arbi-
trary predictors, neural networks, random forests, kernel methods and treat them as black
boxes, “conformalizing” them post-hoc.

This distribution-free coverage is only achievable marginally, and standard conformal
predictions for classification achieve it (as we see later) by providing good coverage on easy
examples at the expense of miscoverage on harder instances. We wish to provide more
uniform coverage, and we address this in both multiclass—where each example belongs
to a single class—and multilabel—where each example may belong to several classes—
classification problems. We combine the ideas of conformal prediction (Vovk et al., 2005)
with an approach to fit a quantile function q on the scores s(x, y) of the prediction model,
which Romano et al. (2019) originate for regression problems, and build feature-adaptive
quantile predictors that output sets of labels, allowing us to guarantee valid marginal cov-
erage (independent of the data generating distribution) while better approximating the
conditional coverage (1). A challenge is to evaluate whether we indeed do provide better
than marginal coverage, so we provide new validation methodology to test this as well.

1.1 Conformal inference in classification

For multiclass problems, we propose a method that fits a quantile function on the scores, con-
formalizing it on held-out data. While this immediately provides valid marginal coverage,
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the accuracy of the quantile function—how well it approximates the conditional quantiles—
determines conditional coverage performance. Under certain consistency assumptions on
the learned scoring functions and quantiles as sample size increases, we show in Section 2
that we recover the conditional coverage (1) asymptotically.

The multilabel case poses new statistical and computational challenges, as a K-class
problem entails 2K potential responses. In this case, we seek efficiently representable inner
and outer sets Cin(x) and Cout(x) ⊂ {1, . . . ,K} such that

P(Cin(X) ⊂ Y ⊂ Cout(X)) ≥ 1− α. (2)

We propose two approaches to guarantee the containments (2). The first directly fits inner
and outer sets by solving two separate quantile regression problems. The second begins
by observing that labels are frequently correlated—think, for example, of chairs, which
frequently co-occur with a table—and learns a tree-structured graphical model (Koller and
Friedman, 2009) to efficiently address such correlation. We show how to build these on
top of any predictive model. In an extension when the sets (2) provide too imprecise

confidence sets, we show how to also construct a small number of sets C
(i)
in/out that similarly

satisfy P(∪i{C(i)
in (X) ⊂ Y ⊂ C

(i)
out(X)) ≥ 1 − α while guaranteeing Cin(x) ⊂ ∪iC

(i)
in (x) and

Cout(x) ⊃ ∪iC
(i)
out(x).

1.2 Related work and background

Vovk et al. (2005) introduce (split-)conformal inference, which splits the first n samples of
the exchangeable pairs {(Xi, Yi)}n+1

i=1 into two sets (say, each of size n1 and n2 respectively)
where the first training set (I1) is used to learn a scoring function s : X × Y → R and the
second validation set (I2) to “conformalize” the scoring function and construct a confidence
set over potential labels (or targets) Y of the form

C(x) := {y ∈ Y | s(x, y) ≥ t}

for some threshold t. The basic split-conformal method chooses the (1 + 1/n2)(1 − α)-
empirical quantile Q̂marg

1−α of the negative scores {−s(Xi, Yi)}i∈I2 (on the validation set) and
defines

C(x) := {y ∈ Y | s(x, y) ≥ −Q̂marg
1−α }. (3)

The argument that these sets C provide valid coverage is beautifully simple and is extensible
given any scoring function s: letting Si = −s(Xi, Yi), if Q̂

marg
1−α is the (1 + 1/n2) (1 − α)-

quantile of {Si}i∈I2 and the pairs {(Xi, Yi)}n+1
i=1 are exchangeable, we have

P(Yn+1 ∈ C(Xn+1)) = P(s(Xn+1, Yn+1) ≥ −Q̂marg
1−α )

= P
(
Rank of Sn+1 in {Si}i∈I2∪{n+1} ≤ d(n2 + 1)(1− α)e

)
≥ 1− α.

We refer to the procedure (3) as the Marginal conformal prediction method. Such a “con-
formalization” scheme typically outputs a confidence set by listing all the labels that it
contains, which is feasible in a K-class multiclass problem, but more challenging in a K-
class multilabel one, as the number of configurations (2K) grows exponentially.
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While conformal inference guarantees marginal coverage without assumption on the
distribution generating the data, Vovk (2012) shows it is virtually impossible to attain
distribution-free conditional coverage, and Barber et al. (2019) prove that in regression, one
can only achieve a weaker form of approximately-conditional coverage without conditions
on the underlying distribution. Because of this theoretical limitation, work in conformal
inference often focuses on minimizing confidence set sizes or guaranteeing different types of
coverage. For instance, Sadinle et al. (2019) propose conformal prediction algorithms for
multiclass problems that minimize the expected size of the confidence set and conformal-
ize the scores separately for each class, providing class-wise coverage. In the same vein,
Hechtlinger et al. (2019) use density estimates of p(x | y) as conformal scores to build a
“cautious” predictor, the idea being that it should output an empty set when the new sample
differs too much from the original distribution. A more recent approach—published as we
were completing the original draft of the current paper—are Izbicki et al.’s distribution-split
and conditional distribution-splitting methods (2020), which attempt to achieve conditional
coverage in a regression problem (predicting targets y ∈ R) by using quantiles of a density
estimator of y | x fit on partitions of the feature space X .

Several papers also develop conformal inference methods for multi-label problems, though
their foci are often distinct from ours. Papadopoulos (2014) proposes a method that builds
non-conformity scores that weight interaction terms between labels—as our scoring func-
tions using trees in Section 3.3 do—but uses the implied confidence set only implicitly,
so that actually representing the set appears computationally challenging; Paisios et al.
(2019) develop the method in the context of multi-label text classification. In other work,
Lambrou and Papadopoulos (2016), Wang et al. (2014), and Wang et al. (2015) develop
methods for multi-label classification, which they term the Binary Relevance Multi-Label
Conformal Predictor (MLCP) and the Instance Reproduction MLCP (the latter of which
empirically returns tighter confidence sets), which use a non-conformity score akin to the
minimum score s(x, y) of a positive label. These are similar to our more naive conformalized
inner/outer method (Alg. 3), in that they do not correct for interactions or structure in the
labels, though they return the equivalent of “outer sets” in our framework. In contrast, we
also wish to identify labels that should be present, so that we develop a type of inner/outer
nested confidence sets, and our methods also incorporate interactions between labels in ways
that are both computationally efficient and explicitly representable, which appears to not
be present in current literature. In work building off of the initial post of this paper to the
arXiv, Romano et al. (2020) construct conformal confidence sets for multi-class problems
by leveraging pivotal p-value-like quantities, which provide conditional coverage when mod-
els are well-specified. In regression problems, Romano et al. (2019) conformalize a quantile
predictor, which allows them to build marginally valid confidence sets that are adaptive to
feature heterogeneity and empirically smaller on average than purely marginal confidence
sets. We adapt this regression approach to classification tasks, learning quantile functions
to construct valid—potentially conditionally valid—confidence predictions.

1.3 Notation

P is a set of distributions on X × Y, where Y = {−1, 1}K is a discrete set of labels,
K ≥ 2 is the number of classes, and X ⊂ R

d. We assume that we observe a finite sequence
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{(Xi, Yi)}ni=1
iid∼ P from some distribution P = PX ⊗ PY |X ∈ P, where PX denotes the

marginal distribution over X and PY |X is the Markov kernel describing the conditional
distribution of Y given X. We wish to predict a confidence set for a new example Xn+1 ∼
PX . P stands over the randomness of both the new sample (Xn+1, Yn+1) and the full
procedure. We tacitly identify the vector Y ∈ Y = {−1, 1}K with the subset of [K] =
{1, . . . ,K} it represents, the notation X ⇒ [K] indicates a set-valued mapping between X
and [K], and � is the partial order induced by the nonnegative orthant R

K
+ . We define

‖f‖2L2(P ) :=
∫
f2dP .

2. Conformal multiclass classification

Algorithm 1: Split Conformalized Quantile Classification (CQC).

Input: Sample {(Xi, Yi)}ni=1, index sets I1, I2, I3 ⊂ [n], fitting algorithm A, quan-
tile functions Q, and desired confidence level α

1. Fit scoring function via
ŝ := A ((Xi, Yi)i∈I1) . (4)

2. Fit quantile function via

q̂α ∈ argmin
q∈Q

{
1

|I2|
∑

i∈I2

ρα (ŝ(Xi, Yi)− q(Xi))

}
(5)

3. Calibrate by computing non-conformity scores Si = q̂α(Xi)− ŝ(Xi, Yi), defining

Q1−α(S, I3) := (1 + 1/n3)(1− α) empirical quantile of {Si}i∈I3

and return prediction set function

Ĉn,1−α(x) := {k ∈ [K] | ŝ(x, k) ≥ q̂α(x)−Q1−α(S, I3)} . (6)

We begin with multiclass classification problems, developing Conformalized Quantile
Classification (CQC) to construct finite sample marginally valid confidence sets. CQC is
similar to Romano et al. (2019)’s Conformalized Quantile Regression (CQR): we estimate
a quantile function of the scores, which we use to construct valid confidence sets after
conformalization. We split the data into subsets I1, I2, and I3 with sample sizes n1, n2 and
n3, where I3 is disjoint from I1 ∪I2. Algorithm 1 outlines the basic idea: we use the set I1
for fitting the scoring function with an (arbitrary) learning algorithm A, use I2 for fitting a
quantile function from a family Q ⊂ X → R of possible quantile functions to the resulting
scores, and use I3 for calibration. In the algorithm, we recall the “pinball loss” (Koenker
and Bassett Jr., 1978) ρα(t) = (1−α) [−t]++α [t]+, which satisfies argminq∈R E[ρα(Z−q)] =
inf{q | P(Z ≤ q) ≥ α} for any random variable Z.
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2.1 Finite sample validity of CQC

We begin by showing that Alg. 1 enjoys the coverage guarantees we expect, which is more
or less immediate by the marginal guarantees for the method (3). We include the proof for
completeness and because its cleanness highlights the ease of achieving validity.

None of our guarantees for Alg. 1 explicitly requires that we fit the scoring function and
the quantile function on disjoint subsets I1 and I2.

We assume for simplicity that the full sample {(Xi, Yi)}n+1
i=1 is exchangeable, though we

only require the sample {(Xi, Yi)}i∈I3∪{n+1} be exchangeable conditionally on {(Xi, Yi)}i∈I1∪I2 .
In general, so long as the score ŝ and quantile q̂1−α functions are measurable with respect to
{(Xi, Yi)}i∈I1∪I2 and a σ-field independent of {(Xi, Yi)}i∈I3∪{n+1}, then Theorem 1 remains
valid if the exchangeability assumption holds for the instances in I3 ∪ {n+ 1}.

Theorem 1. Assume that {(Xi, Yi)}n+1
i=1 ∼ P are exchangeable, where P is an arbitrary

distribution. Then the prediction set Ĉn,1−α of the split CQC Algorithm 1 satisfies

P{Yn+1 ∈ Ĉn,1−α(Xn+1)} ≥ 1− α.

Proof The argument is due to Romano et al. (2019, Thm. 1). Observe that Yn+1 ∈
Ĉn,1−α(Xn+1) if and only if Sn+1 ≤ Q1−α(S, I3). Define the σ-field F12 = σ {(Xi, Yi) | i ∈ I1 ∪ I2}.
Then

P(Yn+1 ∈ Ĉn,1−α(Xn+1) | F12) = P(Sn+1 ≤ Q1−α(S, I3) | F12).

We use the following lemma.

Lemma 2 (Lemma 2, Romano et al. (2019)). Let Z1, . . . , Zn+1 be exchangeable random
variables and Q̂n(·) be the empirical quantile function of Z1, . . . Zn. Then for any α ∈ (0, 1),

P
(
Zn+1 ≤ Q̂n((1 + n−1)α)

)
≥ α.

If Z1, . . . , Zn are almost surely distinct, then

P
(
Zn+1 ≤ Q̂n((1 + n−1)α)

)
≤ α+

1

n
.

As the original sample is exchangeable, so are the non-conformity scores Si for i ∈ I3,
conditionally on F12. Lemma 2 implies P(Sn+1 ≤ Q1−α(S, I3) | F12) ≥ 1 − α, and taking
expectations over F12 yields the theorem.

The conditional distribution of scores given X is discrete, so the confidence set may be
conservative: it is possible that for any q such that P (s(X,Y ) ≥ q | X) ≥ 1 − α, we have
P (s(X,Y ) ≥ q | X) ≥ 1−ε for some ε� α. Conversely, as the CQC procedure 1 seeks 1−α
marginal coverage, it may sacrifice a few examples to bring the coverage down to 1 − α.
Moreover, there may be no unique quantile function for the scores. One way to address
these issues is to estimate a quantile function on I2 (recall step (5) of the CQC method) so
that we can guarantee higher coverage (which is more conservative, but is free in the ε� α
case).
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An alternative to achieve exact 1−α asymptotic coverage and a unique quantile, which

we outline here, is to randomize scores without changing the relative order. Let Zi
iid∼ π for

some distribution π with continuous density supported on the entire real line, and let σ > 0
be a noise parameter. Then for any scoring function s : X × Y → R, we define (for a given
x ∈ X , z ∈ R and any y ∈ Y)

sσ(x, y, z) := s(x, y) + σz.

As sσ(x, y, z) − sσ(x, y′, z) = s(x, y) − s(x, y′), this maintains the ordering of label scores,
only giving the score function a conditional density. Further, this mechanism adapts to any
choice of score function, and in particular does not make any assumption on the original
model s. Now, consider replacing the quantile estimator (5) with the randomized estimator

q̂σα ∈ argmin
q∈Q

{
1

n2

∑

i∈I2

ρα(ŝ
σ(Xi, Yi, Zi)− q(Xi))

}
, (7)

and let Sσ
i := q̂σα(Xi)− ŝσ(Xi, Yi, Zi) be the corresponding non-conformity scores. Similarly,

replace the prediction set (6) with

Ĉσ
n,1−α(x, z) := {k ∈ [K] | ŝσ(x, k, z) ≥ q̂σα(x)−Q1−α(S

σ, I3)} . (8)

where Q1−α(S
σ, I3) is the (1 − α)(1 + 1/n3)-th empirical quantile of {Sσ

i }i∈I3 . Then for
a new input Xn+1 ∈ X , we simulate a new independent variable Zn+1 ∼ π, and give the
confidence set Ĉσ

n,1−α(Xn+1, Zn+1).
As the next result shows, this gives nearly perfectly calibrated coverage.

Corollary 3. Assume that {(Xi, Yi)}n+1
i=1 ∼ P are exchangeable, where P is an arbitrary

distribution. Let the estimators (7) and (8) replace the estimators (5) and (6) in the CQC
Algorithm 1, respectively. Then the prediction set Ĉσ

n,1−α satisfies

1− α ≤ P{Yn+1 ∈ Ĉσ
n,1−α(Xn+1, Zn+1)} ≤ 1− α+

1

1 + n3
.

Proof The argument is identical to that for Theorem 1, except that we apply the second
part of Lemma 2 to achieve the upper bound, as the scores are a.s. distinct.

Remark 4. The upper bound in Corollary 3 is tight and unavoidable for any smoothed
conformal predictor and its split counterpart due to finite sample. Exact 1−α coverage can
only be achieved in the limit as we have growing number of samples in the calibration set.

2.2 Asymptotic consistency of CQC method

Under appropriate assumptions typical in proving the consistency of prediction methods,
Conformalized Quantile Classification (CQC) guarantees conditional coverage asymptoti-
cally. To set the stage, assume that as n ↑ ∞, the fit score functions ŝn in Eq. (4) converge
to a fixed s : X × Y → R (cf. Assumption 1). Let

qα(x) := inf {z ∈ R | α ≤ P (s(x, Y ) ≤ z | X = x)}
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be the α-quantile function of the limiting scores s(x, Y ) and for σ > 0 define

qσα(x) := inf {z ∈ R | α ≤ P (sσ(x, Y, Z) ≤ z | X = x)} ,

where Z ∼ π (for a continuous distribution π as in the preceding section) is independent
of x, y, to be the α-quantile function of the noisy scores sσ(x, Y, Z) = s(x, Y ) + σZ. With
these, we can make the following natural definitions of our desired asymptotic confidence
sets.

Definition 5. The randomized-oracle and super-oracle confidence sets are Cσ
1−α(X,Z) :=

{k ∈ [K] | sσ(X, k, Z) ≥ qσα(X)} and C1−α(X) = {k ∈ [K] | s(X, k) ≥ qα(X}, respectively.

Our aim will be to show that the confidence sets of the split CQC method 1 (or its random-
ized variant) converge to these confidence sets under appropriate consistency conditions.

To that end, we consider the following consistency assumption.

Assumption 1 (Consistency of scores and quantile functions). The score functions ŝ and
quantile estimator q̂σα are mean-square consistent, so that as n1, n2, n3 → ∞,

‖ŝ− s‖2L2(PX) :=

∫

X
‖ŝ(x, ·)− s(x, ·)‖2∞dPX(x)

p→ 0

and

‖q̂σα − qσα‖2L2(PX) :=

∫

X
(q̂σα(x)− qσα(x))

2dPX(x)
p→ 0.

Assumption 1 states that the score and quantile estimators converge in mean-squared error
under PX towards the population counterparts . Precisely, ‖ŝ− s‖2L2(PX) and ‖q̂σα − qσα‖2L2(PX)

are random variables that depend on {(Xi, Yi)}ni=1 through the random functions ŝ and q̂,
and measure their distance in L2(PX) to s and q respectively. Note that, for a fixed x ∈ X ,
we have s(x, ·) ∈ R

K , and by convenience we use the `∞-norm to measure the pointwise
distance between ŝ(x, ·) and s(x, ·). With this assumption, we have the following theorem,
whose proof we provide in Appendix A.1.

Theorem 6. Let Assumption 1 hold. Then the confidence sets Ĉσ
n,1−α satisfy

lim
n→∞

P(Ĉσ
n,1−α(Xn+1, Zn+1) 6= Cσ

1−α(Xn+1, Zn+1)) = 0.

Unlike other work (Sadinle et al., 2019; Romano et al., 2020) in conformal inference,
validity of Theorem 6 does not rely on the scores being consistent for the log-conditional
probabilities. Instead, we require the (1 − α)-quantile function to be consistent for the
scoring function at hand, which is weaker (though still a strong assumption). Of course,
the ideal scenario occurs when the limiting score function s is optimal (cf. Bartlett et al.,
2006; Zhang, 2004; Tewari and Bartlett, 2007), so that s(x, y) > s(x, y′) whenever P (Y = y |
X = x) > P (Y = y′ | X = x). Under this additional condition, the super-oracle confidence
set C1−α(X) in Def. 5 is the smallest conditionally valid confidence set at level 1−α, and in
that sense is the optimal 1−α confidence set. Conveniently, our randomization is consistent
as σ ↓ 0: the super oracle confidence set C1−α contains Cσ

1−α (with high probability). We
provide the proof of the following result in Appendix A.2.
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Proposition 7. The confidence sets Cσ
1−α satisfy

lim
σ→0

P(Cσ
1−α(Xn+1, Zn+1) ⊆ C1−α(Xn+1)) = 1.

Because we always have P(Y ∈ Cσ
1−α(X,Z)) ≥ 1−α, Proposition 7 shows that we maintain

validity while potentially shrinking the confidence sets.

Remark 8. Since the confidence sets Cσ
1−α(X,Z) are randomized and thus often smaller

than their deterministic counterparts, there is an increased probability of returning an empty
confidence set, especially for small values of Z. Such situation can be confusing for the
practitioner, but an easy workaround to avoid it is to return instead the singleton {y} ⊂ Y
that maximizes y′ 7→ s(x, y′), which can only improve coverage.

3. The multilabel setting

In multilabel classification, we observe a single feature vector x ∈ X and wish to predict a
vector y ∈ {−1, 1}K where yk = 1 indicates that label k is present and yk = −1 indicates its
absence. For example, in object detection problems (Redmon et al., 2016; Tan et al., 2019;
Lin et al., 2014), we wish to detect several entities in an image, while in text classification
tasks (Lodhi et al., 2002; McCallum and Nigam, 1998; Joulin et al., 2016), a single document
can potentially share multiple topics. To conformalize such predictions, we wish to output
an aggregated set of predictions {ŷ(x)} ⊂ {−1, 1}K—a collection of −1-1-valued vectors—
that contains the true configuration Y = (Y1, . . . , YK) with probability at least 1− α.

The multilabel setting poses statistical and computational challenges. On the statistical
side, multilabel prediction engenders a multiple testing challenge: even if each task has an
individual confidence set Ck(x) such that P (Yk ∈ Ck(X)) ≥ 1 − α, in general we can only
conclude that P (Y ∈ C1(X)× · · · × CK(X)) ≥ 1 −Kα; as all predictions share the same
features x, we wish to leverage correlation through x. Additionally, as we discuss in the
introduction (recall Eq. (3)), we require a scoring function s : X ×Y → R. Given a predictor
ŷ : X → {−1, 1}k, a naive scoring function for multilabel problems is to use s(x, y) =
1{ŷ(x) = y}, but this fails, as the confidence sets contain either all configurations or a
single configuration. On the computational side, the total number of label configurations
(2K) grows exponentially, so a “standard” multiclass-like approach outputting confidence
sets Ĉ(X) ⊂ Y = {−1, 1}K , although feasible for small values of K, is computationally
impractical even for moderate K.

We instead propose using inner and outer set functions Ĉin, Ĉout : X ⇒ [K] to efficiently
describe a confidence set on Y, where we require they satisfy the coverage guarantee

P

(
Ĉin(X) ⊂ Y ⊂ Ĉout(X)

)
≥ 1− α, (9a)

or equivalently, we learn two functions ŷin, ŷout : X → Y = {−1, 1}K such that

P (ŷin(X) � Y � ŷout(X)) ≥ 1− α. (9b)

We thus say that coverage is valid if the inner set exclusively contains positive labels and
the outer set contains at least all positive labels. For example, ŷin(x) = 0 and ŷout(x) = 1
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are always valid, though uninformative, while the smaller the set difference between Ĉin(X)
and Ĉout(X) the more confident we may be in a single prediction. As we mention in the
introduction, we extend the inner/outer coverage guarantees (9) to construct to unions of
such rectangles to allow more nuanced coverage; see Sec. 3.1.1.

In the remainder of this section, we propose methods to conformalize multilabel predic-
tors in varying generality, using tree-structured graphical models to both address correla-
tions among labels and computational efficiency. We begin in Section 3.1 with a general
method for conformalizing an arbitrary scoring function s : X × Y → R on multilabel
vectors, which guarantees validity no matter the score. We then show different strate-
gies to efficiently implement the method, depending on the structure of available scores,
in Section 3.2, showing how “tree-structured” scores allow computational efficiency while
modeling correlations among the task labels y. Finally, in Section 3.3, we show how to build
such a tree-structured score function s from both arbitrary predictive models (e.g. Boutell
et al., 2004; Zhang and Zhou, 2006) and those more common multilabel predictors—in par-
ticular, those based on neural networks—that learn and output per-task scores sk : X → R

for each task (Herrera et al., 2016; Read et al., 2011).

3.1 A generic split-conformal method for multilabel sets

We begin by assuming we have a general score function s : X × Y → R for Y = {−1, 1}K
that evaluates the quality of a given set of labels y ∈ Y for an instance x; in the next
subsection, we describe how to construct such scores from multilabel prediction methods,
presenting our general method first. We consider the variant of the CQC method 1 in Alg. 2.

Algorithm 2: Split Conformalized Inner/Outer method for classification (CQioC)

Input: Sample {(Xi, Yi)}ni=1, disjoint index sets I2, I3 ⊂ [n], quantile functions
Q, desired confidence level α, and score function s : X × Y → R.

1. Fit quantile function q̂α ∈ argminq∈Q{
∑

i∈I2
ρα(s(Xi, Yi)− q(Xi))}, as in (5).

2. Compute non-conformity scores Si = q̂α(Xi) − s(Xi, Yi), define Q̂1−α as (1 +
1/|I3|) · (1 − α) empirical quantile of S = {Si}i∈I3 , and return prediction set
function

Ĉio(x) := {y ∈ Y | ŷin(x) � y � ŷout(x)} , (10)

where ŷin and ŷout satisfy

ŷin(x)k = 1 if and only if max
y∈Y:yk=−1

s(x, y) < q̂α(x)− Q̂1−α

ŷout(x)k = −1 if and only if max
y∈Y:yk=1

s(x, y) < q̂α(x)− Q̂1−α.
(11)

There are two considerations for Algorithm 2: its computational efficiency and its valid-
ity guarantees. Deferring the efficiency questions to the coming subsections, we begin with
the latter. The naive approach is to simply use the “standard” or implicit conformalization
approach, used for regression or classification, by defining

Ĉimp(x) :=
{
y ∈ Y | s(x, y) ≥ q̂α(x)− Q̂1−α

}
, (12)

10
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where q̂α and Q̂1−α are as in the CQioC method 2. This does guarantee validity, as we have
the following corollary of Theorem 1.

Corollary 9. Assume {(Xi, Yi)}n+1
i=1

iid∼ P , where P is an arbitrary distribution. Then for

any confidence set Ĉ : X ⇒ Y satisfying Ĉ(x) ⊃ Ĉimp(x) for all x,

P(Yn+1 ∈ Ĉ(Xn+1)) ≥ 1− α.

Instead of the inner/outer set Ĉio in Eq. (10), we could use any confidence set Ĉ(x) ⊃
Ĉimp(x) and maintain validity. Unfortunately, as we note above, the set Ĉimp may be
exponentially complex to represent and compute, necessitating a simplifying construction,
such as our inner/outer approach. Conveniently, the set (10) we construct via ŷin and
ŷout satisfying the conditions (11) satisfies Corollary 9. Indeed, we have the following
proposition.

Proposition 10. Let ŷin and ŷout satisfy the conditions (11). Then the confidence set
Ĉio(x) in Algorithm 2 is the smallest set containing Ĉimp(x) and admitting the form (10).

Proof The conditions (11) immediately imply

ŷin(x)k = min
y∈Ĉimp(x)

yk and ŷout(x)k = max
y∈Ĉimp(x)

yk,

which shows that Ĉimp(x) ⊂ Ĉio(x). On the other hand, suppose that ỹin(x) and ỹout(x) are

configurations inducing a confidence set C̃(x) that satisfies Ĉimp(x) ⊂ C̃(x). Then for any

label k included in ỹin(x), all configurations y ∈ Ĉimp(x) satisfy yk = 1, as Ĉimp(x) ⊂ C̃(x),
so we must have ỹin(x)k ≤ ŷin(x)k. The argument to prove ỹout(x)k ≥ ŷout(x)k is similar.

The expansion from Ĉimp(x) to Ĉio(x) may increase the size of the confidence set, most

notably in cases when labels repel each other. As a paradoxical worst-case, if Ĉimp(x)

includes only each of the K single-label configurations then Ĉio = {−1, 1}K . In such
cases, refinement of the inner/outer sets may be necessary; we outline an approach that
considers unions of such sets in Sec. 3.1.1 to come. Yet in problems for which we have strong
predictors, we typically do not expect “opposing” configurations y and −y to both belong to
Ĉio(x), which limits the increase in practice; moreover, in the case that the standard implicit
confidence set Ĉimp is a singleton, there is a single y ∈ Y satisfying s(x, y) ≥ q̂α(x)− Q̂1−α

and by definition ŷin(x) = ŷout(x), so that Ĉio = Ĉimp.

3.1.1 Unions of inner and outer sets

As we note above, it can be beneficial to approximate the implicit set (12) more carefully;
here, we consider a union of easily representable sets. The idea is that if two tasks always
have opposing labels, the confidence sets should reflect that, yet it is possible that the
naive condition (11) fails this check. For example, consider a set Ĉimp(x) for which any

configuration y ∈ Ĉimp(x) satisfies y1 = −y2, but which contains labels with both y1 = 1
and y1 = −1. In this case, necessarily ŷin(x)1 = ŷin(x)2 = −1 and ŷout(x)1 = ŷout(x)2 = 1.

If instead we construct two sets of inner and outer vectors ŷ
(i)
in , ŷ

(i)
out for i = 1, 2, where

ŷ
(1)
in (x)1 = −ŷ(1)in (x)2 = 1 and ŷ

(2)
in (x)1 = −ŷ(2)in (x)2 = −1,

11
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then choose the remaining labels k = 3, . . . ,K so that ŷ
(1)
in (x) � y � ŷ

(1)
in (x) for all y ∈

Ĉimp(x) satisfying y1 = −y2 = 1, and vice-versa for ŷ
(2)
in and ŷ

(2)
out, we may evidently reduce

the size of the confidence set Ĉio(x) by half while maintaining validity.
Extending this idea, let I ⊂ [K] denote a set of indices. We consider inner and outer

sets ŷin and ŷout that index all configurations of the labels yI = (yi)i∈I ∈ {±1}m, so that
analogizing the condition (11), we define the 2m inner and outer sets

ŷin(x, yI)k = min{y′k | y′ ∈ Ĉimp(x), y
′
I = yI}

=





−1 if maxy′:y′
k
=−1,y′

I
=yI s(x, y

′) ≥ q̂α(x)− Q̂1−α

1 if maxy′:y′
k
=1,y′

I
=yI s(x, y

′) ≥ q̂α(x)− Q̂1−α and preceding fails

+∞ otherwise,

(13a)

and similarly
ŷout(x, yI)k = max{y′k | y′ ∈ Ĉimp(x), y

′
I = yI}. (13b)

For any I ⊂ [K] with |I| = m, we can then define the index-based inner/outer confidence
set

Ĉio(x, I) := ∪yI∈{±1}m {y ∈ Y | ŷin(x, yI) � y � ŷout(x, yI)} , (14)

which analogizes the function (10). When m is small, this union of rectangles is ef-
ficiently representable, and gives a tighter approximation to Ĉimp than does the sim-
pler representation (10); indeed, if for some pair (i, j) ∈ I we have yi = −yj for all

y ∈ Ĉimp(x), but for which there are vectors y ∈ Ĉimp(x) realizing yi = 1 and yi = −1, then

|Ĉio(x, I)| ≤ |Ĉio(x)|/2. Moreover, no matter the choice I of the index set, we have the
containment Ĉio(x, I) ⊃ Ĉimp(x), so that Corollary 9 holds and Ĉio provides valid marginal
coverage. The sets (13) are efficiently computable for the scoring functions s we consider
(cf. Sec. 3.2).

The choice of the indices I over which to split the rectangles requires some care. A
reasonable heuristic is to obtain the inner/outer vectors ŷin(x) and ŷout(x) in Alg. 2, and
if they provide too large a confidence set, select a pair of variables I = (i, j) for which
ŷin(x)i,j = (−1,−1) while ŷout(x)i,j = (1, 1). To choose the pair, the heuristic is to find
those pairings most likely to yield empty confidence sets in the collections (13), which is
why we suggest (and use in our experiments) the most negatively correlated pair of labels
in the training data that satisfy this joint inclusion;

3.2 Efficient construction of inner and outer confidence sets

With the validity of any inner/outer construction verifying the conditions (11) established,
we turn to two approaches to efficiently satisfy these. The first focuses on the scenario
where a prediction method provides individual scoring functions sk : X → R for each task
k ∈ [K] (as frequent for complex classifiers, such as random forests or deep networks, see
e.g. Herrera et al., 2016; Read et al., 2011), while the second considers the case when we
have a scoring function s : X × Y → R that is tree-structured in a sense we make precise;
in the next section, we will show how to construct such tree-structured scores using any
arbitrary multilabel prediction method.

12
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3.2.1 A direct inner/outer method using individual task scores

We assume here that we observe individual scoring functions sk : X → R for each task. We
can construct inner and outer sets using only these scores while neglecting label correlations
by learning threshold functions tin ≥ tout : X → R, where we would like to have the (true)
labels yk satisfy

sign(sk(x)− tin(x)) ≤ yk ≤ sign(sk(x)− tout(x)). (15)

In Algorithm 3, we accomplish this via quantile threshold functions on the maximal and
minimal values of the scores sk for positive and negative labels, respectively. We produce a
score function s : X × Y that takes higher values for configurations y ∈ Y such that sk(x)
is small when yk = −1 and large when yk = 1, while ensuring that the threshold functions
satisfy Eq. (15) with probability 1− α.

Algorithm 3: Split Conformalized Direct Inner/Outer method for Classification
(CDioC).

Input: Sample {(Xi, Yi)}ni=1, disjoint index sets I2, I3 ⊂ [n], quantile functions
Q, desired confidence level α, and K score functions sk : X → R.

1. Fit threshold functions (noting the sign conventions)

t̂in = − argmin
t∈Q

{∑

i∈I2

ρα/2

(
−max

k
{sk(Xi) | Yi,k = −1} − t(Xi)

)}

t̂out = argmin
t∈Q

{∑

i∈I2

ρα/2

(
min
k

{sk(Xi) | Yi,k = 1} − t(Xi)
)} (16)

2. Define score s(x, y) = min{mink:yk=1 sk(x)− t̂out(x), t̂in(x)−maxk:yk=−1 sk(x)}
and compute conformity scores Si := −s(Xi, Yi).

3. Let Q̂1−α be the (1 + 1/|I3|)(1− α)-empirical quantile of S = {Si}i∈I3 and

tin(x) := t̂in(x) + Q̂1−α and tout(x) := t̂out(x)− Q̂1−α.

4. Define ŷin(x)k = sign(sk(x) − tin(x)) and ŷout(x)k = sign(sk(x) − tout(x)) and
return prediction set Ĉio as in Eq. (10).

The method is a slightly modified instantiation of the CQioC method in Alg. 2 that
allows easier computation. We can also see that it guarantees validity.

Corollary 11. Assume that {(Xi, Yi)}n+1
i=1

iid∼ P , where P is an arbitrary distribution. Then

the confidence set Ĉio in Algorithm 3 satisfies

P(Yn+1 ∈ Ĉio(Xn+1)) ≥ 1− α.

Proof We show that the definitions of ŷin and ŷout in Alg. 3 are special cases of the
condition (11), which then allows us to apply Corollary 9. We focus on the inner set, as
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the outer is similar. Suppose in Alg. 3 that ŷin(x)k = 1. Then sk(x) − t̂in(x) − Q̂1−α ≥ 0,
which implies that t̂in(x)− sk(x) ≤ −Q̂1−α, and for any y ∈ Y satisfying yk = −1, we have

t̂in(x)− max
l:yl=−1

sl(x) ≤ −Q̂1−α.

For the scores s(x, y) in line 2 of Alg. 3, we then immediately obtain s(x, y) ≤ −Q̂1−α for any
y ∈ Y with yk = −1. This is the first condition (11), so that (performing, mutatis-mutandis,
the same argument with ŷout(x)k) Corollary 9 implies the validity of Ĉio in Algorithm 3.

3.2.2 A prediction method for tree-structured scores

We now turn to efficient computation of the inner and outer vectors (11) when the scoring
function s : X×Y → R is tree-structured. By this we mean that there is a tree T = ([K], E),
with nodes [K] and edges E ⊂ [K]2, and an associated set of pairwise and singleton factors
ψe : {−1, 1}2 ×X → R for e ∈ E and ϕk : {−1, 1} × X → R for k ∈ [K] such that

s(x, y) =
K∑

k=1

ϕk(yk, x) +
∑

e=(k,l)∈E

ψe(yk, yl, x). (17)

Such a score allows us to consider interactions between tasks k, l while maintaining computa-
tional efficiency, and we will show how to construct such a score function both from arbitrary
multilabel prediction methods and from those with individual scores as above. When we
have a tree-structured score (17), we can use efficient message-passing algorithms (Dawid,
1992; Koller and Friedman, 2009) to compute the collections (maximum marginals) of scores

S− :=
{

max
y∈Y:yk=−1

s(x, y)
}K

k=1
and S+ :=

{
max

y∈Y:yk=1
s(x, y)

}K

k=1
(18)

in time O(K), from which it is immediate to construct ŷin and ŷout as in the conditions (11).
We outline the approach in Appendix A.3, as it is not the central theme of this paper, though
this efficiency highlights the importance of the tree-structured scores for practicality.

3.3 Building tree-structured scores

With the descriptions of the generic multilabel conformalization method in Alg. 2 and
that we can efficiently compute predictions using tree-structured scoring functions (17), we
now turn to constructing such scoring functions from predictors, which trade between label
dependency structure, computational efficiency, and accuracy of the predictive function.
We begin with a general case of an arbitrary predictor function, then describe a heuristic
graphical model construction when individual label scores are available (as we assume in
Alg. 3).

3.3.1 From arbitrary predictions to scores

We begin with the most general case that we have access only to a predictive function
ŷ : X → R

K . This prediction function is typically the output of some learning algorithm,
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and in the generality here, may either output real-valued scores ŷk(x) ∈ R or simply output
ŷk(x) ∈ {−1, 1}, indicating element k’s presence.

We compute a regularized scoring function based on a tree-structured graphical model (cf.
Koller and Friedman, 2009) as follows. Given a tree T = ([K], E) on the labels [K] and
parameters α ∈ R

K , β ∈ R
E , we define

sT ,α,β(x, y) :=
K∑

k=1

αkykŷk(x) +
∑

e=(k,l)∈E

βeykyl (19)

for all (x, y) ∈ X × {−1, 1}K , where we recall that we allow ŷk(x) ∈ R. We will find the
tree T assigning the highest (regularized) scores to the true data (Xi, Yi)

n
i=1 using efficient

dynamic programs reminiscent of the Chow-Liu algorithm (Chow and Liu, 1968). To that
end, we use Algorithm 4.

Algorithm 4: Method to find optimal tree from arbitrary predictor ŷ.

Input: Sample {(Xi, Yi)}i∈I1 , regularizers r1, r2 : R → R, predictor ŷ : X → R
K .

Set

(T̂ , α̂, β̂) := argmax
T =([K],E),α,β

{ n∑

i=1

sT ,α,β(Xi, Yi)−
K∑

k=1

r1(αk)−
∑

e∈E

r2(βe)

}
. (20)

and return score function s
T̂ ,α̂,β̂

of form (19).

Because the regularizers r1, r2—the squared `2-norm in our experiments—decompose along
the edges and nodes of the tree, we can implement Alg. 4 using a maximum spanning tree
algorithm. Indeed, recall (Boyd and Vandenberghe, 2004) the familiar convex conjugate
r∗(t) := supα{αt− r(α)}. Then immediately

sup
α,β

{ n∑

i=1

sT ,α,β(Xi, Yi)−
K∑

k=1

r1(α1)−
∑

e∈E

r2(βe)

}

=

K∑

k=1

r∗1

(
n∑

i=1

Yi,kŷk(Xi)

)
+

∑

e=(k,l)∈E

r∗2

(
n∑

i=1

Yi,kYi,l

)
,

which decomposes along the edges of the putative tree. As a consequence, we may solve
problem (20) by finding the maximum weight spanning tree in a graph with edge weights
r∗2(
∑n

i=1 Yi,kYi,l) for each edge (k, l), then choosing α, β to maximize the objective (20),
which is a collection of 1-dimensional convex optimization problems.

3.3.2 From single-task scores to a tree-based probabilistic model

While Algorithm 4 will work regardless of the predictor it is given—which may simply
output a vector ŷ ∈ {−1, 1}K , as in Alg. 3 it is frequently the case that multilabel methods
output scores sk : X → R for each task. To that end, a natural strategy is to model
the distribution of Y | X directly via a tree-structured graphical model (Lafferty et al.,
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2001). Similar to the score in Eq. (17), we define interaction factors ψ : {−1, 1}2 → R
4 by

ψ(−1,−1) = e1, ψ(1,−1) = e2, ψ(−1, 1) = e3 and ψ(1, 1) = e4, the standard basis vectors,
and marginal factors ϕk : {−1, 1} × X → R

2 with

ϕk(yk, x) :=
1

2

[
(yk − 1) · sk(x)
(yk + 1) · sk(x)

]
,

incorporating information sk(x) provides on yk. For a tree T = ([K], E), the label model is

pT ,α,β (y | x) ∝ exp

( ∑

e=(k,l)∈E

βTe ψ(yk, yl) +
K∑

k=1

αT
k ϕk(yk, x)

)
, (21)

where (α, β) is a set of parameters such that, for each edge e ∈ E, βe ∈ R
4 and 1Tβe = 0

(for identifiability), while αk ∈ R
2 for each label k ∈ [K]. Because we view this as a “bolt-

on” approach, applicable to any method providing scores sk, we include only pairwise label
interaction factors independent of x, allowing singleton factors to depend on the observed
feature vector x through the scores sk.

The log-likelihood log pT ,α,β is convex in (α, β) for any fixed tree T , and the Chow-Liu
decomposition (Chow and Liu, 1968) of the likelihood of a tree T = ([K], E) gives

log pT ,α,β(y | x) =
K∑

k=1

log pT ,α,β(yk | x) +
∑

e=(k,l)∈E

log
pT ,α,β(yk, yl | x)

pT ,α,β(yk | x)pT ,α,β(yl | x)
, (22)

that is, the sum of the marginal log-likelihoods and pairwise mutual information terms,
conditional on X = x. Given a sample (Xi, Yi)

n
i=1, the goal is to then solve

maximize
T ,α,β

Ln(T , α, β) :=
n∑

i=1

log pT ,α,β (Yi | Xi) . (23)

When there is no conditioning on x, the pairwise mutual information terms log
pT ,α,β(yk,yl)
p(yk)p(yl)

are independent of the tree T (Chow and Liu, 1968). We heuristically compute empirical
conditional mutual informations between each pair (k, l) of tasks, choosing the tree T that
maximizes these values to approximate problem (23) in Algorithm 5, using the selected tree
T̂ to choose α, β maximizing Ln(T̂ , α, β). (In the algorithm we superscript Y to make task
labels versus observations clearer.)
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Algorithm 5: Chow-Liu-type approximate Maximum Likelihood Tree and Scor-
ing Function

Input: Sample {(X(i), Y (i))}i∈I1 , and K score functions sk : X → R.
For each pair e = (k, l) ∈ [K]2

1. Define the single-edge tree Te = ({k, l}, {e})

2. Fit model (22) for tree Te via (α̂, β̂) := argmaxα,β Ln(Te, α, β)

3. Estimate edge empirical mutual information

Îe :=

n∑

i=1

log

(
p
Te,α̂,β̂

(Y
(i)
k , Y

(i)
l | X(i))

p
Te,α̂,β̂

(Y
(i)
k | X(i))p

Te,α̂,β̂
(Y

(i)
l | X(i))

)

Set T̂ = MaxSpanningTree((Îe)e∈[K]2) and (α̂, β̂) = argmaxα,β Ln(T̂ , α, β).
Return scoring function

s
T̂ ,α̂,β̂

(x, y) :=
∑

e=(k,l)∈E

β̂Te ψ(yk, yl) +
K∑

k=1

α̂T
k ϕk(yk, x)

The algorithm takes time roughly O(nK2 +K2 log(K)), as each optimization step 2 solves
an O(1)-dimensional concave maximization problem, which is straightforward via a Newton
method (or gradient descent). The approach does not guarantee recovery of the correct tree
structure even if the model is well-specified, as we neglect information coming from labels
other than k and l in the estimates Îe for edge e = (k, l), although we expect the heuristic
to return sufficiently reasonable tree structures. In any case, the actual scoring function s it
returns still allows efficient conformalization and valid predictions via Alg. 2, regardless of
its accuracy; a more accurate tree will simply allow smaller and more accurate confidence
sets (11).

4. Experiments

Our main motivation is to design methods with more robust conditional coverage than the
“marginal” split-conformal method (3). Accordingly, the methods we propose in Sections 2
and 3 fit conformalization scores that depend on features x and, in some cases, model de-
pendencies among y variables. Our experiments consequently focus on more robust notions
of coverage than the nominal marginal coverage the methods guarantee, and we develop a
new evaluation metric for validation and testing of coverage, looking at connected subsets
of the space X and studying coverage over these. Broadly, we expect our proposed meth-
ods to maintain coverage of (nearly) 1 − α across subsets; the experiments are consistent
with this expectation. We include a few additional plots in supplementary appendices for
completeness.
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4.1 Measures beyond marginal coverage

Except in simulated experiments, we cannot compute conditional coverage of each instance,
necessitating approximations that provide more conditional-like measures of coverage—
where methods providing weaker marginal coverage may fail to uniformly cover—while still
allowing efficient computation. To that end, we consider coverage over slabs

Sv,a,b :=
{
x ∈ R

d | a ≤ vTx ≤ b
}
,

where v ∈ R
d and a < b ∈ R, which satisfy these desiderata. For a direction v and

threshold 0 < δ ≤ 1, we consider the worst coverage over all slabs containing δ mass in
{Xi}ni=1, defining

WSCn(Ĉ, v) := inf
a<b

{
Pn(Y ∈ Ĉ(X) | a ≤ vTX ≤ b) s.t. Pn(a ≤ vTX ≤ b) ≥ δ

}
, (24)

where Pn denotes the empirical distribution on (Xi, Yi)
n
i=1, which is efficiently computable

in O(n) time (min Chung and Lu, 2003). As long as the mapping Ĉ : X ⇒ Y is constructed
independently of Pn, we can show that these quantities concentrate. Indeed, let us tem-
porarily assume that the confidence set has the form Ĉ(x) = {y | s(x, y) ≥ q(x)} for an
arbitrary scoring function s : X ×Y → R and threshold functions q. Let V ⊂ R

d; we abuse
notation to let VC(V ) be the VC-dimension of the set of halfspaces it induces, where we
note that VC(V ) ≤ min{d, log2 |V |}. Then for some numerical constant C, for all t > 0

sup
v∈V,a≤b:Pn(X∈Sv,a,b)≥δ

{
|Pn(Y ∈ Ĉ(X) | X ∈ Sv,a,b)− P (Y ∈ Ĉ(X) | X ∈ Sv,a,b)|

}
(25)

≤ C

√
VC(V ) log n+ t

δn
≤ C

√
min{d, log |V |} log n+ t

δn

with probability at least 1−e−t. (See Appendix A.4 for a brief derivation of inequality (25)
and a few other related inequalities.)

Each of the confidence sets we develop in this paper satisfy Ĉ(x) ⊃ {y | s(x, y) ≥ q(x)}
for some scoring function s and function q. Thus, if Ĉ : X ⇒ Y effectively provides
conditional coverage at level 1− α, we should observe that

inf
v∈V

WSCn(Ĉ, v) ≥ 1− α−O(1)

√
VC(V ) log n

δn
≥ 1− α−O(1)

√
min{d, log |V |} log n

δn
.

In each of our coming experiments, we draw M = 1000 samples vj uniformly on S
d−1,

computing the worst-slab coverage (24) for each vj . In the multiclass case, we expect our
conformal quantile classification (CQC, Alg. 1) method to provide larger worst-slab cover-
age than the standard marginal method (3), while in the multilabel case, we expect that
the combination of tree-based scores (Algorithms 4 or 5) with the conformalized quantile
inner/outer classification (CQioC, Alg. 2) should provide larger worst-slab coverage than
the conformalized direct inner/outer classification (CDioC, Alg. 3). In both cases, we ex-
pect that our more sophisticated methods should provide confidence sets of comparable
size to the marginal methods. In multiclass experiments, for comparison, we additionally
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Figure 3. Results for simulated multilabel experiment with label distribution (27). Methods
are the true oracle confidence set; the conformalized direct inner/outer method (CDioC,

Alg. 3) and tree-based methods with implicit confidence sets Ĉimp or explicit inner/outer

sets Ĉio, labeled ArbiTree and PGM (see Sec. 4.2.2). Left: Marginal coverage probability at
level 1 − α = .8 for different methods and types of confidence sets (CS). Right: confidence
set sizes of methods.

4.2.2 Improved coverage with graphical models

Our second simulation addresses the multilabel setting, where we have a predictive model
outputting scores sk(x) ∈ R for each task k. As a baseline comparison, we compute oracle
confidence sets (the smallest 1 − α-conditionally valid (non-randomized) confidence set in
the implicit case and the smaller inner and outer sets containing it in the explicit case).

We run three methods, First, the direct Inner/Outer method (CDioC), Alg. 3. Second,
we use the graphical model score from the likelihood model in Alg. 5 to choose a scoring
function sT : X×Y → R, which we call the PGM-CQC method; we then either use the CQC
method 1 with this scoring function directly, that is, the implicit confidence set (recall (12))
Ĉimp(x) = {y ∈ Y | sT (x, y) ≥ q̂(x)−Q̂1−α} or the explicit Ĉio set of Eqs. (10)–(11). Finally,
we do the same except that we use the arbitrary predictor method (Alg. 4) to construct
the score sT , where we use the {±1}K assignment ŷ instead of scores as input predictors,
which we term ArbiTree-CQC.

We consider a misspecified logistic regression model, where hidden confounders induce
correlation between labels. Because of the dependency structure, we expect the tree-based
methods to output smaller and more robust confidence sets than the direct CDioC method 3.
Comparing the two score-based methods (CDioC and PGM-CQC) with the scoreless tree
method ArbiTree-CQC is perhaps unfair, as the latter uses less information—only signs
of predicted labels. Yet we expect the ArbiTree-CQC method to leverage the correlation
between labels and mitigate this disadvantage, at least relative to CDioC.
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Figure 8. Pascal-VOC data set (Everingham et al., 2012) results over 20 trials. Methods are
the conformalized direct inner/outer method (CDioC, Alg. 3) and tree-based methods with

implicit confidence sets Ĉimp or explicit inner/outer sets Ĉio, labeled ArbiTree and PGM
(see Sec. 4.2.2). Left: Marginal coverage probability at level 1 − α = .8. Right: confidence
set sizes of methods.

Figure 7 compares the confidence set sizes and probability of coverage given confidence
set size for the marginal, CQC, and GIQ methods. We summarize briefly. The CQC
method gives confidence sets of size at most 2 for 80% of the instances—comparable to the
marginal method and more frequently than the GIQ method (which yields 75% examples
with |Ĉ(X)| ≤ 2). Infrequently, the CQC and GIQ methods yield very large confidence sets,
with |Ĉ(X)| ≥ 200 about 5% of the time for the GIQ method and the completely informative
|Ĉ(X)| = 1000 about 2% of the time for the CQC method. While the average confidence
set size E[|Ĉ(X)|] is smaller for the marginal method (cf. supplementary Fig. 16), this is
evidently a very incomplete story. The bottom plot in Fig. 7 shows the behavior we expect
for a marginal method given a reasonably accurate classifier: it overcovers for examples x
with Ĉ(x) small. GIQ exhibits the opposite behavior, overcovering when Ĉ(x) is large and
undercovering for small Ĉ(x), while GIQ provides nearly 1−α coverage roughly independent
of confidence set size, as one would expect for a method with valid conditional coverage.
(In supplementary Fig. 14, we see similar but less-pronounced behavior on CIFAR-10.)

4.4 A multilabel image recognition data set

Our final set of experiments considers the multilabel image classification problems in the
PASCAL VOC 2007 and VOC 2012 data sets (Everingham et al., 2007, 2012), which consist
of n2012 = 11540 and n2007 = 9963 distinct 224 × 224 images, where the goal is to predict
the presence of entities from K = 20 different classes, (e.g. birds, boats, people). We
compare the direct inner outer method (CDioC) 3 with the split-conformalized inner/outer
method (CQioC) 2, where we use the tree-based score functions that Algorthims 4 and 5
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Figure 9. Worst-slab coverage (24) for Pascal-VOC with δ = .2 over M = 1000 draws

v
iid∼ Uni(Sd−1). For tree-structured methods ArbiTree-CQC and PGM-CQC, we compute

the worst-slab coverage using implicit confidence sets Ĉimp and explicit inner/outer sets Ĉio.
The dotted line is the desired (marginal) coverage. Left: distribution of worst-slab cover-

age. Right: distribution of the coverage difference WSCn(ĈMethod, v) − WSCn(ĈCDioC, v)

for Methodi ∈ {ArbiTree-CQC,PGM-CQC} with implicit Ĉimp or explicit inner/outer Ĉio

confidence sets.

output. For the PGM method, which performs best in practice, we additionally compare
the performance of standard inner and outer sets (see Alg. 2), to the refinement that we
describe in section 3.1.1, where we instead output a confidence set as a union of inner and
outer sets. Here, we choosem = 2, which corresponds to outputting a union of 4 inner/outer
sets in equation 14, and select the indices I according to the heuristics that we describe in
that same section.

In this problem, we use the d = 2048 dimensional output of a ResNet-101 with pretrained
weights on the ImageNet data set (Deng et al., 2009) as our feature vectors X. For each of
the K classes, we fit a binary logistic regression model θ̂k ∈ R

d of Yk ∈ {±1} against X,
then use sk(x) = θ̂Tk x as the scores for the PGM-CQC method (Alg. 5). We use ŷk(x) =
sign(sk(x)) for the ArbiTree-CQC method 4. The fit predictors have F1-score 0.77 on held-
out data, so we do not expect our confidence sets to be uniformly small while maintaining
the required level of coverage, in particular for ArbiTree-CQC. We use a validation set of
nv = 3493 images to fit the quantile functions (5) as above using a one layer fully-connected
neural network with 16 hidden neurons and tree parameters.

The results from Figure 9 are consistent with our hypotheses that the tree-based models
should improve robustness of the coverage. Indeed, while all methods ensure marginal
coverage at level α = .8 (see Fig. 8), Figure 9 shows that worst-case slabs (24) for the tree-
based methods have closer to 1−α coverage. In particular, for most random slab directions v,
the tree-based methods have higher worst-slab coverage than the direct inner/outer method
(CDioC, Alg. 3). At the same time, both the CDioC method and PGM-CQC method (using
Ĉio) provide similarly-sized confidence sets, as the inner set of the PGM-CQC method is
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understanding of what “near” conditional coverage might be possible: Barber et al. (2019)
provide procedures that can guarantee coverage uniformly across subsets of X-space as long
as those subsets are not too complex, but it appears computationally challenging to fit the
models they provide, and our procedures empirically appear to have strong coverage across
slabs of the data as in Eq. (24). Our work, then, is a stepping stone toward more uniform
notions of validity, and we believe exploring approaches to this—perhaps by distributionally
robust optimization (Delage and Ye, 2010; Duchi and Namkoong, 2018), perhaps by uniform
convergence arguments (Barber et al., 2019, Sec. 4)—will be both interesting and essential
for trusting applications of statistical machine learning.
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Appendix A. Technical proofs and appendices

A.1 Proof of Theorem 6

Our proof adapts arguments similar to those that Sesia and Candès (2019) use in the regres-

sion setting, repurposing and modifying them for classification. We have that ‖ŝ− s‖L2(PX)
p→

0 and ‖q̂σα − qσα‖L2(PX)
p→ 0. We additionally have that

Q̂ := Q1−α(E
σ, I3)

p→ 0. (28)

This is item (ii) in the proof of Theorem 1 of Sesia and Candès (2019) (see Appendix A
of their paper), which proves the convergence (28) of the marginal quantile of the error
precisely when q̂σα and ŝ are L2-consistent in probability (when the randomized quantity
s(x, Y ) + σZ has a density), as in our Assumption 1.

Recalling that ŝ, q̂ tacitly depend on the sample size n, let ε > 0 be otherwise arbitrary,
and define the sets

Bn :=
{
x ∈ X | ‖ŝ(x, ·)− s(x, ·)‖∞ > ε2 or |q̂σα(x)− qσα(x)| > ε2

}
.

Then Bn ⊂ X is measurable, and by Markov’s inequality,

PX(Bn) ≤
‖ŝ− s‖L2(PX)

ε
+

‖q̂σα − qσα‖L2(PX)

ε
,

so
P(PX(Bn) ≥ ε) ≤ P(‖ŝ− s‖L2(PX) > ε2) + P(‖q̂σα − qσα‖L2(PX) > ε2) → 0. (29)

Thus, the measure of the sets Bn tends to zero in probability, i.e., PX(Bn)
p→ 0.

Now recall the shorthand (28) that Q̂ = Q1−α(E
σ, I3). Let us consider the event that

Ĉσ
1−α(x, z) 6= Cσ

1−α(x, z). If this is the case, then we must have one of

A1(x, k, z) :=
{
ŝ(x, k) + σz ≥ q̂σα(x)− Q̂ and s(x, k) + σz < qσα(x)

}
or

A2(x, k, z) :=
{
ŝ(x, k) + σz < q̂σα(x)− Q̂ and s(x, k) + σz ≥ qσα(x)

}
.

(30)

We show that the probability of the set A1 is small; showing that the probability of set A2

is small is similar. Using the convergence (28), let us assume that |Q̂| ≤ ε, and suppose
that x 6∈ Bn. Then for A1 to occur, we must have both s(x, k) + ε + σz ≥ qσα(x) − 2ε and
s(x, k) + σz < qσα(x), or

qσα(x)− s(x, k)− 3ε ≤ σz < qσα(x)− s(x, k).

As Z has a bounded density, we have lim supε→0 supa∈R PZ(a ≤ σZ ≤ a+3ε) = 0, or (with
some notational abuse) lim supε→0 supx 6∈Bn

PZ(A1(x, k, Z)) = 0.
Now, let Fn = σ({Xi}ni=1, {Yi}ni=1, {Zi}ni=1) be the σ-field of the observed sample. Then

by the preceding derivation (mutatis mutandis for the set A2 in definition (30)) for any
η > 0, there is an ε > 0 (in the definition of Bn) such that

sup
x∈X

P

(
Ĉσ
1−α(x, Zn+1) 6= Cσ

1−α(x, Zn+1) | Fn

)
1{x 6∈ Bn} 1

{
|Q̂| ≤ ε

}

≤ sup
x 6∈Bn

K∑

k=1

P (A1(x, k, Zn+1) or A2(x, k, Zn+1) | Fn) 1
{
|Q̂| ≤ ε

}
≤ η.
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In particular, by integrating the preceding inequality, we have

P

(
Ĉσ
1−α(Xn+1, Zn+1) 6= Ĉ(Xn+1, Zn+1), Xn+1 6∈ Bn, |Q̂| ≤ ε

)
≤ η.

As P(|Q̂| ≤ ε) → 1 and P(Xn+1 6∈ Bn) → 1 by the convergence guarantees (28) and (29),
we have the theorem.

A.2 Proof of Proposition 7

We wish to show that limσ→0 P
(
Cσ
1−α(X,Z) ⊂ C1−α(X)

)
= 1, which, by a union bound

over k ∈ [K], is equivalent to showing

P (s(X, k) + σZ ≥ qσα(X), s(X, k) < qα(X)) −→
σ→0

0

for all k ∈ [K]. Fix k ∈ [K], and define the events

A := {s(X, k) < qα(X)}

and
Bσ := {s(X, k) + σZ ≥ qσα(X)}.

Now, for any δ > 0, consider Aδ := {s(X, k) ≤ qα(X)− δ}. On the event Aδ ∩Bσ, it must
hold that

δ ≤ qα(X)− qσα(X) + σZ.

The following lemma—whose proof we defer to Section A.2.1—shows that the latter can
only occur with small probability.

Lemma 12. With probability 1 over X, the quantile function satisfies

lim inf
σ→0

qσα(X) ≥ qα(X),

and hence lim supσ→0 {qα(X)− qσα(X) + σZ} ≤ 0 almost surely.

Lemma 12 implies that

P (qα(X)− qσα(X) + σZ ≥ δ) −→
σ→0

0,

which, in turn, shows that, for every fixed δ > 0,

P (Aδ ∩Bσ) −→
σ→0

0.

To conclude the proof, fix ε > 0. The event Aδ increases to A when δ → 0, so there
exists δ > 0 so that

P (A \Aδ) ≤ ε.

Finally,

lim sup
σ→0

P (A ∩Bσ) ≤ P (A \Aδ) + lim sup
σ→0

P (Aδ ∩Bσ) ≤ ε,

as lim supσ→0 P (Aδ ∩Bσ) = 0. We conclude the proof by sending ε→ 0.
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A.2.1 Proof of Lemma 12

Fix x ∈ X . Let Fσ,x and Fx be the respective cumulative distribution functions of sσ(x, Y, Z)
and s(x, Y ) conditionally on X = x, and define the (left-continuous) inverse CDFs

F−1
σ,x(u) = inf{t ∈ R : u ≤ Fσ,x(t)} and F−1

x (u) = inf{t ∈ R : u ≤ Fx(t)}.

We use a standard lemma about the convergence of inverse CDFs, though for lack of a
proper reference, we include a proof in Section A.2.2.

Lemma 13. Let (Fn)n≥1 be a sequence of cumulative distribution functions converging
weakly to F , with inverses F−1

n and F−1. Then for each u ∈ (0, 1),

F−1(u) ≤ lim inf
n→∞

F−1
n (u) ≤ lim sup

n→∞
F−1
n (u) ≤ F−1(u+). (31)

As Fσ,x converges weakly to Fx as σ → 0, Lemma 13 implies that

F−1
x (α) ≤ lim inf

σ→0
F−1
σ,x(α).

But observe that qσα(x) = F−1
σ,x(α) and qα(x) = F−1

x (α), so that we have the desired result
qα(x) ≤ lim infσ→0 q

σ
α(x).

A.2.2 Proof of Lemma 13

We prove only the first inequality, as the last inequality is similar. Fix u ∈ (0, 1) and ε > 0.
F is right-continuous and non-decreasing, so its set of continuity points is dense in R; thus,
there exists a continuity point w of F such that w < F−1(u) ≤ w + ε.

Since w < F−1(u), it must hold that F (w) < u, by definition of F−1. As w is a
continuity point of F , limn→∞ Fn(w) = F (w) < u, which means that Fn(w) < u for large
enough n, or equivalently, that w < F−1

n (u). We can thus conclude that

lim inf F−1
n (u) ≥ w ≥ F−1(u)− ε.

Taking ε→ 0 proves the first inequality.

A.3 Efficient computation of maximal marginals for condition (11)

We describe a more or less standard dynamic programming approach to efficiently com-
pute the maximum marginals (18) (i.e. maximal values of a tree-structured score s : Y =
{−1, 1}K → R), referring to standard references on max-product message passing (Dawid,
1992; Wainwright and Jordan, 2008; Koller and Friedman, 2009) for more. Let T = ([K], E)
be a tree with nodes [K] and undirected edges E, though we also let edges(T ) and nodes(T )
denote the edges and nodes of the tree T . Assume

s(y) =

K∑

k=1

ϕk(yk) +
∑

e=(k,l)∈E

ψe(yk, yl).

To compute the maximum marginals maxy∈Y{s(y) | yk = ŷk}, we perform two message
passing steps on the tree: an upward and downward pass. Choose a node r arbitrarily to
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be the root of T , and let Tdown be the directed tree whose edges are E with r as its root
(which is evidently unique); let Tup be the directed tree with all edges reversed from Tdown.

A maximum marginal message passing algorithm then computes a single downward and
a single upward pass through each tree, each in topological order of the tree. The downard
messages ml→k : {−1, 1} → R are defined for ŷ ∈ {−1, 1} by

ml→k(ŷ) = max
yl∈{−1,1}



ϕl(yl) + ψ(l,k)(yl, ŷ) +

∑

i:(i→l)∈edges(Tdown)

mi→l(yl)



 ,

while the upward pass is defined similarly except that Tup replaces Tdown. After a single
downward and upward pass through the tree, which takes time O(K), the invariant of
message passing on the tree (Koller and Friedman, 2009, Ch. 13.3) then guarantees that for
each k ∈ [K],

max
y∈Y

{s(y) | yk = ŷk} = ϕk(ŷk) +
∑

e=(l,k)∈T

ml→k(ŷk), (32)

where we note that there exists exactly one message to k (whether from the downward or
upward pass) from each node l neighboring k in T .

We can evidently then compute all of these maximal values (the sets S± in Eq. (18))
simultaneously in time of the order of the number of edges in the tree T , or O(K), as each
message ml→k can appear in at most one of the maxima (32), and there are 2K messages.

A.4 Concentration of coverage quantities

We sketch a derivation of inequality (25); see also (Barber et al., 2019, Theorem 5) for
related arguments.

We begin with a technical lemma that is the basis for our result. In the lemma, we abuse
notation briefly, and let F ⊂ Z → {0, 1} be a collection of functions with VC-dimension d.
We define Pf =

∫
f(z)dP (z) and Pnf = 1

n

∑n
i=1 f(Zi), as is standard.

Lemma 14 (Relative concentration bounds, e.g. Boucheron et al. (2005), Theorem 5.1).
Let VC(F) ≤ d. There is a numerical constant C such that for any t > 0, with probability
at least 1− e−t,

sup
f∈F

{
|Pf − Pnf | − C

√
min{Pf, Pnf}

d log n+ t

n

}
≤ C

d log n+ t

n
.

Proof By Boucheron et al. (2005, Thm. 5.1) for t > 0, with probability at least 1− e−t

we have

sup
f∈F

Pf − Pnf√
Pf

≤ C

√
d log n+ t

n
and sup

f∈F

Pnf − Pf√
Pnf

≤ C

√
d log n+ t

n
.

Let εn = C
√

(d log n+ t)/n for shorthand. Then the second inequality is equivalent to the
statement that for all f ∈ F ,

Pnf − Pf ≤ 1

2η
Pnf +

η

2
ε2n for all η > 0.
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Rearranging the preceding display, we have
(
1− 1

2η

)
(Pnf − Pf) ≤ 1

2η
Pf +

η

2
ε2n.

If
√
Pf ≥ εn, we set η =

√
Pf/εn and obtain 1

2(Pnf − Pf) ≤
√
Pfεn, while if

√
Pf < εn,

then setting η = 1 yields 1
2(Pnf − Pf) ≤ 1

2(Pf + ε2n) ≤ 1
2(
√
Pfεn + ε2n). In either case,

Pnf − Pf ≤ C

[√
Pf

d log n+ t

n
+
d log n+ t

n

]
.

A symmetric argument replacing each Pn with P (and vice versa) gives the lemma.

We can now demonstrate inequality (25). Let V ⊂ R
d and V := {{x ∈ R

d | vTx ≤
0}}v∈V the collection of halfspaces it induces. The collection S = {Sv,a,b}v∈V,a<b of slabs
has VC-dimension VC(S) ≤ O(1)VC(V). Let f : X × Y → R and c : S → R be arbitrary
functions. If for S ⊂ X we define S+ := {(x, y) | x ∈ S, f(x, y) ≥ c(S)} and the collection
S+ := {S+ | S ∈ S}, then VC(S+) ≤ VC(S) + 1 (Barber et al., 2019, Lemma 5). As a
consequence, for the conformal sets inequality (25) specifies, for any t > 0 we have with
probability at least 1− e−t that
∣∣∣Pn(Y ∈ Ĉ(X), X ∈ Sv,a,b)− P (Y ∈ Ĉ(X), X ∈ Sv,a,b)

∣∣∣

≤ O(1)

[√
min{P (Y ∈ Ĉ(X), X ∈ Sv,a,b), Pn(Y ∈ Ĉ(X), X ∈ Sv,a,b)}

VC(V) log n+ t

n

]

+O(1)

[
VC(V) log n+ t

n

]

simultaneously for all v ∈ V, a < b ∈ R, and similarly

|Pn(X ∈ Sv,a,b)− P (X ∈ Sv,a,b)|

≤ O(1)

[√
min{P (X ∈ Sv,a,b), Pn(X ∈ Sv,a,b)}

VC(V) log n+ t

n
+

VC(V) log n+ t

n

]
.

Now, we use the following simple observation. For any ε and nonnegative α, β, γ with
α ≤ γ and 2|ε| ≤ γ,

∣∣∣∣
α

γ + ε
− β

γ

∣∣∣∣ ≤
|α− β|
γ

+
|αε|

γ2 + γε
≤ |α− β|

γ
+

2|ε|
γ
.

Thus, as soon as δ ≥ VC(V) logn+t
n , we have with probability at least 1− e−t that

|Pn(Y ∈ Ĉ(X) | X ∈ Sv,a,b)− P (Y ∈ Ĉ(X) | X ∈ Sv,a,b)|

=

∣∣∣∣∣
Pn(Y ∈ Ĉ(X), X ∈ Sv,a,b)

Pn(X ∈ Sv,a,b)
− P (Y ∈ Ĉ(X), X ∈ Sv,a,b)

P (X ∈ Sv,a,b)

∣∣∣∣∣

≤ O(1)

[√
VC(V) log n+ t

δn
+

VC(V) log n+ t

δn

]
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Figure 12. Marginal coverage and distribution of the confidence set size in the multiclass
simulation (26) over M = 20 trials.
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Figure 13. Simulated multilabel experiment with label distribution (27). Methods are the
true oracle confidence set; the conformalized direct inner/outer method (CDioC), Alg. 3;

and tree-based methods with implicit confidence sets Ĉimp or explicit inner/outer sets Ĉio,
labeled ArbiTree and PGM (see description in Sec. 4.2.2). Top: distribution of the inner sets
ŷin sizes. Bottom: distribution of the outer sets ŷout sizes.
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Figure 14. Results for CIFAR-10 data set over M = 20 trials. Methods are the marginal
method (Marginal, procedure 3), the CQC method (Alg. 1), and the GIQ method (Alg.

1, Romano et al. (2020)). Top: Distribution of the confidence set size |Ĉ(X)|. Bottom:
Probability of coverage conditioned on the size of the confidence set.
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Andreas Paisios, Ladislav Lenc, Jǐŕı Mart́ınek, Pavel Král, and Harris Papadopoulos. A deep
neural network conformal predictor for multi-label text classification. In Proceedings of the
Eighth Symposium on Conformal and Probabilistic Prediction and Applications, volume
105 of Proceedings of Machine Learning Research, pages 228–245, 2019.

Harris Papadopoulos. A cross-conformal predictor for multi-label classification. In Lazaros
Iliadis, Ilias Maglogiannis, Harris Papadopoulos, Spyros Sioutas, and Christos Makris,
editors, Proceedings of the IFIP International Conference on Artificial Intelligence Ap-
plications and Innovations, pages 241–250. Springer Berlin Heidelberg, 2014.

Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Eibe Frank. Classifier chains for
multi-label classification. Machine Learning, 85:333–359, 2011.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Uni-
fied, real-time object detection. In Proceedings of the 26th IEEE Conference on Computer
Vision and Pattern Recognition, pages 779–788, 2016.

Yaniv Romano, Evan Patterson, and Emmanuel J. Candès. Conformalized quantile regres-
sion. In Advances in Neural Information Processing Systems 32, 2019.

Yaniv Romano, Matteo Sesia, and Emmanuel J. Candès. Classification with valid and
adaptive coverage. In Advances in Neural Information Processing Systems 33, 2020.

Mauricio Sadinle, Jing Lei, and Larry Wasserman. Least ambiguous set-valued classifiers
with bounded error levels. Journal of the American Statistical Association, 114(525):
223–234, 2019.

Matteo Sesia and Emmanuel J. Candès. A comparison of some conformal quantile regression
methods. arXiv:1909.05433 [stat.ME], 2019.

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A. Alemi. Inception-v4,
Inception-ResNet and the impact of residual connections on learning. In Proceedings of
the Thirty-Third AAAI Conference on Artificial Intelligence, pages 4278—-4284, 2017.

Mingxing Tan, Ruoming Pang, and Quoc V Le. EfficientDet: Scalable and efficient object
detection. arXiv:1911.09070 [cs.CV], 2019.

41



Cauchois, Gupta and Duchi

A. Tewari and P. L. Bartlett. On the consistency of multiclass classification methods.
Journal of Machine Learning Research, 8:1007–1025, 2007.

Vladimir Vovk. Conditional validity of inductive conformal predictors. In Proceedings of the
Asian Conference on Machine Learning, volume 25 of Proceedings of Machine Learning
Research, pages 475–490, 2012.

Vladimir Vovk, Alexander Grammerman, and Glenn Shafer. Algorithmic Learning in a
Random World. Springer, 2005.

Martin J. Wainwright and Michael I. Jordan. Graphical models, exponential families, and
variational inference. Foundations and Trends in Machine Learning, 1(1–2):1–305, 2008.

Huazhen Wang, Xin Liu, Bing Lv, Fan Yang, and Yanzhu Hong. Reliable multi-label
learning via conformal predictor and random forest for syndrome differentiation of chronic
fatigue in traditional chinese medicine. PLOS ONE, 9(6):1–14, 2014.

Huazhen Wang, Xin Liu, Ilia Nouretdinov, and Zhiyuan Luo. A comparison of three im-
plementations of multi-label conformal prediction. In Proceedings of the International
Symposium on Statistical Learning and Data Sciences, pages 241–250. Springer Interna-
tional Publishing, 2015.

Min-Ling Zhang and Zhi-Hua Zhou. Multilabel neural networks with applications to func-
tional genomics and text categorization. IEEE transactions on Knowledge and Data
Engineering, 18(10):1338–1351, 2006.

T. Zhang. Statistical analysis of some multi-category large margin classification methods.
Journal of Machine Learning Research, 5:1225–1251, 2004.

42


	Introduction
	Conformal inference in classification
	Related work and background
	Notation

	Conformal multiclass classification
	Finite sample validity of CQC
	Asymptotic consistency of CQC method

	The multilabel setting
	A generic split-conformal method for multilabel sets
	Unions of inner and outer sets

	Efficient construction of inner and outer confidence sets
	A direct inner/outer method using individual task scores
	A prediction method for tree-structured scores

	Building tree-structured scores
	From arbitrary predictions to scores
	From single-task scores to a tree-based probabilistic model


	Experiments
	Measures beyond marginal coverage
	Simulation
	More uniform coverage on a multiclass example
	Improved coverage with graphical models

	More robust coverage on CIFAR 10 and ImageNet data sets
	A multilabel image recognition data set

	Conclusions
	Technical proofs and appendices
	Proof of Theorem 6
	Proof of Proposition 7
	Proof of Lemma 12
	Proof of Lemma 13

	Efficient computation of maximal marginals for condition (11)
	Concentration of coverage quantities

	Additional Figures

