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Abstract

We examine the necessity of interpolation in overparameterized models, that is, when

achieving optimal predictive risk in machine learning problems requires (nearly) interpolating
the training data. In particular, we consider simple overparameterized linear regression
y = X0 + w with random design X € R™*? under the proportional asymptotics d/n —
v € (1,00). We precisely characterize how prediction (test) error necessarily scales with
training error in this setting. An implication of this characterization is that as the label
noise variance ¢? — 0, any estimator that incurs at least co* training error for some
constant ¢ is necessarily suboptimal and will suffer growth in excess prediction error at
least linear in the training error. Thus, optimal performance requires fitting training data
to substantially higher accuracy than the inherent noise floor of the problem.

1 Introduction

Conventional machine learning wisdom [e.g. 25] posits that the size of a model’s training
data must be large relative to its effective capacity—for which parameter count often serves
as a proxy—in order for the model to have good generalization. Yet despite the fact that
many common families of modern machine learning models (e.g., deep neural networks)
are overparameterized in the sense that they are demonstrably able to interpolate arbitrary
relabelings of their training data, they tend to generalize remarkably well in practice even
after optimizing the empirical risk to zero [26].

This benign overfitting phenomenon has spurred considerable recent interest and effort
within the learning theory community toward understanding learning in the overparameterized
regime, where the empirical risk minimizer is underdetermined [6, 7, 8, 17, 21, 5, 9, 19, 20].
Yet while overparameterized interpolating models evidently generalize well, both in theory
and practice, there nonetheless remains at least some reason to be skeptical of the notion
that interpolation is necessarily “benign.” Indeed, numerous desiderata beyond prediction
risk—for example, privacy and security concerns—motivate an explicit preference for models
that do not interpolate, or in particular, memorize, their training data. An alternative and
perhaps less auspicious explanation for benign overfitting is that many of the crowdsourced
benchmarks the machine learning community uses to evaluate models, such as ImageNet [13],
have limited label uncertainty: examples with high annotator disagreement are in many cases
explicitly withheld [13, 22], mitigating the danger of overfitting to label noise.

Thus, while interpolation may suffice to learn models with strong generalization, it is
natural to wonder whether interpolation—or more evocatively, memorization—is necessary
for learning in the overparameterized regime. Here we take a phenomenological approach,
developing a simple model to explicate and predict behavior of statistical learning procedures,
and motivated by the question of the necessity of memorization, we precisely characterize how
prediction risk must scale with empirical risk. Considering a simple linear model y = z "6 4w,



we define memorization in terms of the empirical risk, and formulate the cost of not fitting
the training data as an optimization problem over a class of estimators H,

minimize Pred <§> = E[(:ET§— y)? | X]
OcH (1)
subject to Train (é\) = %E [HX@— YH; | X] > e,

where the expectations in Pred and Train are taken conditional on the over the training data
Y defining # conditional on X, as well as the future data point (z,y), so that Pred(-) and
Train (+) denote the expected prediction and training error given a prior over the true model
parameter 0 (respectively).

We take as inspiration the recent line of work [14, 11], which gives scenarios in which
certain formal notions of memorization are necessary for a model to generalize well. We build
on this by studying the extent to which memorization remains necessary even in the simplest
settings: random design linear regression with independent noise. For our initial analysis,
we assume the estimator # is linear in y, which includes least-norm interpolants and ridge
regression as special cases. Here, we obtain a tight asymptotic characterization of the optimal
solution to the problem (1) (see Theorems 1 and 3). Key to our analysis is to show that, even
though problem (1) is non-convex, strong duality obtains, and then leverage tools from random
matrix theory to obtain analytic formulae for the optimal prediction risk by integrating over
the spectrum of the empirical data covariance. We find that memorization of label noise is
in fact necessary for generalization even in the simple case of linear regression; in particular,
the threshold €? above which the optimal prediction risk is no longer achievable tends to zero
asymptotically faster than the variance of the label noise—so we must fit linear regression
models to (training) accuracy substantially better than the intrinsic noise floor of the problem.
Beyond this threshold the excess prediction risk grows linearly with the empirical risk. Finally,
assuming Gaussian noise w and a Gaussian prior over ¢ in problem (1), we extend our analysis
to hold not only for linear estimators, but for general H comprised of all square-integrable
estimators (see Theorem 4), meaning that our characterization holds for (essentially) any
estimator.

1.1 Related work

Neither interpolation nor memorization of training data is a new phenomenon in machine
learning. Classical algorithms, such as k-nearest neighbors and (kernel) support vector
machines, explicitly encode the training data into the learned model. Some explicitly interpolate
training data and still enjoy performance guarantees; for example, the 1-nearest neighbor
algorithm interpolates its training data and has classification risk at most twice the Bayes’
error [12].

Nonetheless, the success of deep learning has spurred renewed interest in interpolating
models. Recent work has sought to develop an understanding of “implicit regularization”:
whereas most minimizers of the empirical risk may generalize poorly, standard learning
algorithms used in practice such as (stochastic) gradient descent tend to converge to solutions
that do generalize well, even in the absence of explicit regularization terms in the training
objective [15, 24, 16, 2, 3, 18]. In the particular case of overparameterized linear regression,
gradient descent initialized at the origin trivially recovers the ordinary least-squares (OLS)
estimator, which in overparameterized settings is the minimum norm interpolant. Most
relevant to our work, Hastie et al. [17] give formulae for the asymptotic error of ridge-
type estimators, including the minimum norm interpolant, as the number of features d and



training observations n tend to infinity in the proportional regime where d/n — ~ > 1 for both
isotropic and anisotropic features. Muthukumar et al. [21] give corresponding non-asymptotic
lower bounds, with matching upper bounds for certain particular feature distributions, on
the minimal error achievable among all interpolating solutions. Bartlett et al. [5] consider
regression over general Hilbert spaces, showing that the minimum norm interpolant achieves
optimal error assuming certain conditions on the effective rank of the feature covariance. Our
results complement this line of work: not only can overparameterized interpolating models
generalize well, but in fact interpolation is necessary to achieve good generalization.

Our work pursues a line of inquiry Feldman [14] originates, which studies memorization in
the setting of multi-class classification, where the data distribution is a heavy-tailed mixture
over a finite set of subpopulations. He defines memorization in terms of the sensitivity of a
model’s predictions to the inclusion or exclusion of a particular observation in its training data,
and under the assumption that the class labelings of distinct subpopulations are essentially
independent—i.e., an observation drawn from one subpopulation yields limited to no information
about the labels of the other subpopulations—proves that memorization is necessary to
achieve optimal generalization. Brown et al. [11] extend these results, which are specific
to label memorization, to incorporate an information-theoretic notion of memorizing the
input observations in carefully constructed combinatorial settings, including next-symbol
prediction and clustering on the hypercube. In contrast, we attempt a simpler tack: ordinary
linear regression with standard distributional assumptions, construing memorization strictly
in terms of training error.

2 Problem formulation

Given a design matrix X = R" ¢ (d > n), an unknown signal § € R? and a noise vector w
such that E[w] = 0 and Var(w) = oI, consider the standard linear model

y= X0+ w.
We assume that X has i.i.d. mean zero rows xlT, S ,x,TL with covariance ¥ € R%*¢  The

training error of an estimator 0 = §(X, y), a function of X and the responses y whose
dependence on both we typically leave implicit, is Trainy () = 1E,[|X0 — y|3 | X, 6],
while the prediction (generalization) error is Pred X,g(é\) =Epow[(xT6 - $T§)2 | X, 0], where
x is an independent copy from the input distribution. We consider a Bayesian formulation
where the ground truth € has a prior distribution independent of the data and the noise,

~ ~

and the posterior training and generalization errors are Trainy(f) = Egy[Trainy ¢(#)] and
Predx (0) = Eg[Predx ¢(0)].

Given a constraint on the training error € € [0,00), we can then formalize the cost of not
fitting the training data via the following optimization problem over a hypothesis class of
estimators H. .

minimize Predx (9)
0eH (2)
subject to Trainy <§> > €2
Here, the constraint is on the average training error (over y); any estimator that on each input

y has prescribed error €2 immediately satisfies the constraints (2). We mainly study the cost
of not fitting

Costx(€) := min Predy (@\) — min Predx (5) , 3)
0t (e) o€ (0)



where for a given H we define the set H(e) := {# € H | Trainx (8) > €2} C H.

Noting that H(t) is a decreasing set in ¢, we always have Costx (€) > 0. Of course, the best
estimator need not necessarily memorize the entire dataset—as we shall see, some amount of
regularization can help—and so we also specifically consider the cost of not interpolating with
respect to the minimum norm interpolating solution §o|s = X (XX )"y, defining

A

Costx(€) := é\rer;i](ag) Pred x (9) — Predx <§o|s) . (4)

We study problem (2), in particular through the lens of the quantities (3) and (4), under
the following assumptions.

Assumption A1l (Proportional asymptotics and spherical prior). The dimension d := d(n)
satisfies d/n — v € (1,00). The data matrix X = [v; x5 -+ ]| € R™9 where X :=
X (n) = (%ij(n))iem),je|q) forms a triangular array of random variables with independent rows.
There is a deterministic sequence of symmetric positive definite matrices ¥ := %(n) € R?*4
such that X = ZE%, where Z = (2ij)icin] jejq) and z;; are ii.d. random variables with
distribution independent of n such that E[z;;] = 0, Var(z;) = 1, and E[zfj] < M for a
universal constant M. In addition, we assume 6 has prior independent of the data X,y, with
zero mean and variance Var(0) = I;/d.

Under Assumption Al, for each n, z1(n),- - ,z,(n) are i.i.d. random vectors such that
E[xz;(n)] =0, Var (z;(n)) = X(n).

Meanwhile, examples of priors satisfying the assumption include the uniform prior on the
unit sphere S*~! and the Gaussian prior N(0, I;/d), where note that E[[|0[3] = 1. We assume
v > 1, and hence, as the model is overparameterized, zero training error is attainable.

While at first blush appearing restrictive, our main results characterize the cost of not
fitting for linear estimators.

Assumption A2 (Linear estimators). The hypothesis class consists of all linear estimators,
ie.,

H = {é(X,y) — Ay, A= AX) € RdX”} ,

where A may depend on the features X but not the labels y.

Notably, the hypothesis class of linear estimators contains the popular ridge estimator §>\ =
(XTX + A)~'X Ty and minimum norm interpolant fqs := (X' X)'XTy. Because we seek
exact optimality results for more general estimators, we follow standard practice in minimax
and asymptotic statistics to choose a prior on the “true” parameter #. In classical linear
regression, the prior of choice is a Gaussian, so that Anderson’s theorem (1955) guarantees
the posterior mean is minimax for any symmetric loss, and so the optimal estimator is
linear. In our case, a similar result holds, though it is more subtle because of the nonconvex
constraint (2) on training error; Theorem 4 to come guarantees that when the prior and
noise are both Gaussian, the optimal estimator solving problem (2) belongs to the collection
of linear estimators. Thus, our main results extend immediately to the general class of all
square integrable estimators:



Assumption A2’ (Estimators with Gaussian prior). The parameter § ~ N(0,I;/d) and
the noise w ~ N(0,021I,). The hypothesis class consists of measurable, square integrable
g : Rexd+n 5 R e

H={0=80x,y) | E,II0X,9)3 | X] < oo}

We return to more discussion in Section 3.3.

3 Main results

3.1 The isotropic case

We first consider the isotropic setting where ¥ = I for all n, and thus z;; are i.i.d. random
variables with zero mean and unit variance. Before stating the main theorem regarding
the quantity Costx(e), we first characterize the optimal solution to the cost of not fitting
problem (2) via strong duality, illustrating the role random matrix theory plays in computing
the optimal solution value. We postpone most of the technical details to Section 4. R

When H consists of linear estimators § = Ay, we define the shorthand P(A) := Predx(6)

-~

and T (A) := Trainx(6), with which we express the cost of not fitting problem (2) as

. 1 2 211 4112
minimize  P(A) = 2 [|AX — Iy + o7 [| 4]

S
: 1 2 0 2 2 )
subject to 'T(A):%HXAX—XHF—F;HXA—IHFEG .

The problem—while nonconvex—has quadratic objective and a single quadratic constraint.
Thus we may leverage strong duality [10, Appendix B.1], writing a Lagrangian and solving,
to conclude that for some p, := p,(€) such that I — 22X TX > 0, the optimal A for the
problem (2) is

-1
Alpn) = (I ~ pno” (I - p—;XTX) ) (XTX +do’D)7'XT,

where p,, is the dual optimal value of the Lagrange multiplier associated with the constraint
T(A) > €. When p, = 0, the constraint is inactive, so A(0) is the global minimizer of
the unconstrained problem and evidently corresponds to a ridge regression estimate; we have
Costx (€) = P(A(pn)) — P(A(0)) and T (A(p,)) = €. Substituting A = A(p) into P(A) and
T(A), we obtain

P(A(p)) — PAD) = L0 7r <(1 oxTx) A <XTX N w) _1> |

d d d

4

T(A(p) = Z-Tr ((I - SXTX> - (X;X + 02I>_1> .

We may now leverage high-dimensional random matrix theory and asymptotics. Let X
have singular values \;y > Ao > --- > \,. Denoting the empirical spectral distribution of
LXXT viaits c.d.f. Hy(s) =13, 1)2/4<,, we equivalently have

271 0'43
P(A(p) ~ PAO) = 55 [ =S —a (s).

5



ot

(1—ps)* (s +0?)

T(A(p)) = / A, (s).

By standard results in random matrix theory (see Lemma A.1), H,, converges weakly to the
Marchenko-Pastur c.d.f. H, which has support [A_, \;] ro Ay := (1 + 1/ﬂ)2, and density

dH(S) _ l \/()‘-i- B S)(S B )‘—)

= o 5 Loeirag1ds - (6)
Therefore for any fixed 0 < p < ﬁﬁ’
. 4 0> ots
Jm (PAG) = PAO) = L [ T (s),
4
. o
i T(Ap) = / (1—ps)?(s+ Jz)dH(s) '

Setting p = 0 corresponds to making the constraint (5) inactive, so we therefore define the

memorization threshold .
2 o

= dH 7

€ / s+ o2 (3)7 ( )

and observe that for any €2 > €2, there exists a p > 0 such that lim,, o, 7 (A(p)) = €. Given
that 7 (A(p,)) = €2, we expect that lim,_,o pn = p and therefore should have

2 0'48
Jim Costx(e) = lim (P(A() = P(AO) = & | o—E—sani(s).

We can make each of these steps rigorous (see Section 4), yielding the following theorem.
Theorem 1. Let Assumption Al and either Assumption A2 or A2 hold. Then as n — oo,

(i) (threshold value) for ¢, defined in Eq. (7), ¢ -

= T + o(co?).

(ii) (no cost below threshold) if € < ¢, then with probability one lim,,, Costx (€) = 0. In
addition, for the ridge estimator 04,2 = (X T X + do?I)™' X Ty, we have

nh_)rrgo <§IEI££?5) Pred x (5) — Predx (@lﬂ)) =0.

(iii) (cost of not fitting) if € > €,, there exists a scalar p := p(e) € [O,)\Il) that uniquely

solves
4
o
dH(s) = € 8
| T = ®
and with probability one
2 4
. p o's
lim Cost =— dH (s). 9
For the constants ¢ := )\2—1'2 and C := %, we have lim,, ., Costx(e) > Cée?
- T

whenever €2 > co*.



Part (i) of Theorem 1 characterizes the threshold for the constraint on training error above
which no linear estimator can achieve optimal generalization; from part (ii), so long as the
constraint is below this threshold, optimal generalization remains attainable. Together, parts
(i) and (iii) of the theorem imply that for an estimator to achieve optimal generalization, the
estimator must incur O(o?) training error as the label noise variance o tends to zero. When
o2 is small, this is quadratically smaller than the inherent noise floor in the problem. Moreover,
part (iii) implies eventually for sufﬁmently large € that Costx (€) grows linearly in terms of the
constraint on training error Train X(H) = €2 by not memorizing, we are essentially paying the
same additional amount of error in generalization in terms of training error up to a constant
factor. We conclude that memorization for high dimensional linear regression—training to
accuracy quadratically smaller than the inherent noise floor in the problem—is necessary, and
with the “necessity” increasing as the signal-to-noise ratio grows.

We now turn to look specifically at the cost of exact interpolation; instead of comparing
against the best linear estimator, we characterize Cost x(€) (see Eq. (4)), the prediction error
of € H(e) to the minimum norm interpolant 00|s We provide a proof of the following
theorem in Appendix C.

Theorem 2. Let Assumption Al and either Assumption A2 or A2 hold. Then

-~

(i) (interpolation cost) for any ¢ > 0, Costx(¢) — Costx(e) = Predx(00|s) Predx (6(0)),
and with probability one

. ~ ~ ot 1 ot
T (Predx(fys) — Predx (9(0))) = z / e ) = s el

(i1) (interpolation threshold) for any o > 0, there exists a p = pois € (0, )\J_rl) that uniquely

solves
* / i dH (s) = / b aHs) (10)
(1—ps)?(s+02?) s(s + 0?) ’
where for the threshold ea os =/ WdH( s) we have

<0 if e <eégpols
lim Costx(€) ¢ =0 if €= €,0ls
n—o0o ’

>0 if €> €0l

In comparison to the threshold e, in Eq. (7) and Theorem 1, we have €5 < €4 0ls < 2;‘—feo.

Part (i) shows that the minimum norm interpolant is nearly optimal, at least as o — 0:
its prediction error over the best (linear) estimator scales asymptotically as O(a?/7), and as
the aspect ratio v increases it becomes closer and closer to optimal. Part (ii) complements
this result, showing that if the constraint € on the training error of an estimator is at most

2 < ¢ ools = = O(o*), there are better estimators than the minimum norm interpolant; one

concrete example here is the optimal ridge estimator §d02, which has asymptotic training
error, as we see from Theorem 1.



3.2 Features with general covariance

In this section, we develop analogous results to those for the identity covariance in Sec. 3.1,
showing that the results are not merely some fragile and magical consequences of isotropy.
Here, we make the following assumption about the covariance matrix X.

Assumption A3. The population covariance X has eigenvalues t1 > to > --- > tg > 0,
where t; = 1 and there exists k < oo such that t; > 1/k. The empirical spectral distribution
Th(s) = 52?:1 14,<s of ¥ converges weakly to a c.d.f. T

Under this assumption, the empirical distribution for the eigenvalues of éX X T converges
weakly to a distribution with deformed Marchenko-Pastur c.d.f. G. (See Lemma A.3 for
the precise definition.) With the limit G and recalling the Marchenko-Pastur c.d.f. H, we
may characterize Costx (€) for general covariances . The result is analogous to Theorem 1,
modulo the condition number x and the alternative limit G. To that end, define the deformed
threshold

0.4
2 pop = / T dG(s), (11)

s+ o2

comparing to the definition (7) of ¢, = [ Sf:%dH (s). We then have the following theorem,
whose proof we provide in Appendix D.

Theorem 3. Let Assumptions A1 and A3 hold, o > 0, and let G be the deformed Marchenko-
Pastur c.d.f. in Lemma A.3. If either Assumption A2 or A2 holds, then as n — oo,

(i) (threshold value) for €, e defined in Eq. (11), eidef < Gf/go//i = #ﬁl/v + o(o?).

(it) (no cost below threshold) if € < €, gef, then with probability one lim,,_, Costx (e) = 0.
In addition, define the ridge estimator 04,2 = (X' X 4+ do?I)™' X Ty, we have

™ (% predx (3) — Predsx (%)) o

(111) (cost of not fitting) If € > €, qer, there exists paer = paet(€) € [0,1/A4) that uniquely
solves

kot < / 5 _ps)zl(s_i_/w%dH(s) - / s+1m2 dH(s)) oy (12)

where H is the Marchenko-Pastur c.d.f. (6). Further, with probability one

Pet o's
lim inf Cost > g dH (s).
it Cosx) > 28 [ o)
For the constants ¢ := /\,ilfw and C = %, we have liminf,_, Costx (€) > Ce?

whenever €2 > co?.



3.3 Optimality of general estimators in Gaussian case

While, as we discuss before Assumption A2, the lower bounds in Theorems 1, 2, and 3 apply
over the class of linear estimators, which allows our exact predictive risk characterizations,
these results hold for all estimators satisfying mild regularity conditions under a Gaussianity
assumption on the data distribution. Our main insight here is that when the prior and noise
distributions are Gaussian, for all ¢ > 0, the linear estimator class contains the optimal
estimator among the broader class of all square integrable estimators with training error at
least €2. Of course, this is trivial when € = 0, as given (X, y) in such a model, the posterior
on 6 is Gaussian. That the result holds for ¢ > 0 is a bit more subtle. Specifically, we have
the following theorem, whose proof we provide in Appendix E.

Theorem 4. Let Assumptions A1 and A2 hold. Let Hyy and Hsq denote the classes of linear
and square integrable estimators in Assumptions A2 and A2, respectively. Then for all € > 0,

inf Predx (f) = min; Predx (f).

0€Hsq(e) 0 H in(e)
Observing in the Gaussian case that the posterior over 6 | y is has mean linear in y and
covariance independent of y, the main idea underlying the proof is to factor the prediction

and training error over the marginal distribution of y, as
- —~ 2
Predy (9) ~E, [Em [Hz% <9(X, y) — 9)”2 ‘y] (X]
_ R ~ 2
Trainy (9) ~E, [HX@(X, y) — yH2 (X] :

Thus the cost of not fitting problem (2) is a functional (infinite-dimensional) optimization
problem over Hyy, with a quadratic objective and a single quadratic constraint, for which
we show that strong duality still obtains. Applying the appropriate Karush-Kuhn-Tucker
conditions, we can then recover that the optimal estimator is linear, and in particular is

> (¢) -
0(X,y) = <I — ple)o? (2 - %XU{) ) (XTX +do?T)~ ' X Ty.

Here p(e) is the dual optimal value of the Lagrange multiplier for the constraint on training
error, and it is identical to that in Theorems 1 and 3. See Section 4.1 for the details.

4 Proof of Theorem 1

4.1 Reduction by strong duality

We first provide some technical lemmas to reduce the nonconvex problem (2). The lemmas
will be useful in both the isotropic case and the general covariance case, and in particular the
key ingredient that allows for this reduction is strong duality in quadratic optimization.

The first lemma gives an equivalent formulation of the cost of not fitting problem (2) using

~

the closed forms of Pred X(é) and Trainx (6). We defer the proof to Appendix B.1.

Lemma 4.1. Let Assumption A2 hold and assume X = Z¥3. Then for any 9 € H the
following is an equivalent formulation of problem (2):

e P00 = 5 ax - off o5 .

1 2
subject to T(4;%) = — IXAX — XH% + % | XA — IH% > €2

9



As strong duality holds for this problem [cf. 10, Appendix B.1], we derive in Lemma 4.2
the optimality criteria via studying the dual. We postpone the proof details to Appendix B.2.

Lemma 4.2. There ezists a p, := pn(e,X) > 0 such that ¥ — 22X "X > 0 and the optimal
solution of problem (13) is Ay, := A(pp,X), where
-1
A(p, %) = <1 — po? (z: - §XTX) > XT(XXT +do?D)~! (14a)

-1
- <I — po? (2 - SXTX) ) (XTX +do?D)1XT. (14b)

A(p,X) is defined for p € D, where D is the interval for all p > 0 such that ¥ — gXTX > 0.

We suppress the dependence of A, p on the data matrix X for simplicity.
In the next lemma we derive the exact forms of the constraint 7 (A(p,>);X) and the
growth of the objective P(A(p, X);X) — P(A(0,X); X). We defer the proof to Appendix B.3.

Lemma 4.3. Let the conditions of Lemma 4.2 hold, and assume XX " is non-singular. Then
for any p € D we have

P(A(p,%); ¥) — P(A(0,%); %)

_ % : <(2 — ngX)_1 5 (2 - §XTX)_1 xTx (XTX n da21)_1> :

and
T(A(p,%); %)

_ d%‘[lTr (2 (2 — g)g'U()_1 xXTx (2 - ngX)_1 5 (XTX>T (XTX + da2I)_1> .

4.2 Main proof of Theorem 1

By Theorem 4, we only need to prove under Assumption A2 with the linear hypothesis class

H=1{0:0=AX)y}.

Part I: Memorization threshold. From Eq. (7), we can directly write out

4
€& = / s i —dH(s) = ot yl_i>%1+ mp(—0® +iy), (15)

where mp : C4 — Cy is the Stieltjes transform (cf. (18)) of the Marchenko-Pastur law.

Lemma 4.4. For any o2 > 0,

2 2

. . + o(0”)
lim —0? =7 .
yi>0+mH( o+ i) 02 (1—=1/v+0?)

We defer the proof to Appendix B.4. We conclude the proof of (i) by applying Lemma 4.4
to Eq. (15),

2 2 4
o+ o(o o
62 0,4 . ( )

7 02 (1—=1/v+0?) 02—1—1—1/’y+

o(a).

10



Part II: No cost below threshold. Invoke Lemma 4.2 and set p = 0 (when the constraint
is not active) to obtain the global minimizer for the unconstrained problem

A0, =X"(XXT +do’ ) = (XX +do’1)7IX T,

so the ridge estimator §d02 is optimal in 7 (0). Thus we must prove that §d02 € H(e) eventually,
for which it suffices to show

lim inf Trainy (édC,Q) — liminf T(A(0, I); 1) > ¢2,

n—o0 n—o0

where T(A;Y) is defined in Eq. (13). When ¥ = I, we can compute the exact limits in
Lemma 4.3 when n — oo.

Lemma 4.5. Fiz 0 < p < )\jrl. Then with probability one

2 0'43
Jim (P(AG D) = PO D) = £ [ G—Er—san(s),
0.4
lim T(A(p, I):1) = / T e )

Invoke Lemma 4.5 above for p = 0 to conclude that with probability one

4 4
lim T(A0,1);1) = lim | —2—dH,(s) = / T _dH(s) =€ > €.

n—00 n—00 S + o2 s+ o2

Part III: Cost of not-fitting above threshold. First we show for any € > ¢, there exists
a unique p = p(e) € [0, )\4__1) that solves the fixed point (8), i.e.

o
/ (1—ps)?(s+ az)dH(s) =<

As the left hand side is increasing in p and when p | 0, the integral approaches €2 =
S SJ‘:%dH(s). On the other hand, by substituting in the exact formula of dH (s) in Eq. (6),
we see as s T Ay,

ot ot/ Ay — A 3
0 s (st 02)dH(s) =(1+ 0(1))7);; (}\+/\:U2))\ Ay —8) 2ds, (16)
+

so that the improper integral diverges when p = )\jrl. Monotone convergence then implies
that the integral approaches co as p T )\4__1.

It remains to show the limiting statement (9) in part (iii) of the theorem and the growth
lower bounds. To do so, we leverage the duality calculations in Lemma 4.2 to transfer between
the training error € and the Lagrange multiplier p, using that to construct upper and lower
bounds on Costx(€). By Lemma 4.2, the estimator

~

0(p) = Alp, I)y
is the optimal solution to problem (13) when €2 = T (A(p, I); I), that is, A(p,I) solves

H}L‘ing&glize P(A;I) subject to T(A;I) > T(Ap,I);1).
c Xn
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Thus, whenever T (A(p,I);I) < €2 it holds that

Cost(€) > P(A(p, I); T) — P(A(0, ;T (172)
while when T (A(p, I);I) > €2, it holds that
Costx(€) < P(A(p,I);I) — P(A(0,I);1). (17b)

We will give matching upper and lower bounds to the quantities (17) to show the limit (9).

Let p(e) € (0, \]") be the p satisfying the fixed point (8), where p(e) > 0 as € > ¢, by
assumption (as otherwise lim,, Costx (¢) = 0 by part (ii) of the theorem). For any p € [0, )\J_rl),
Lemma 4.5 implies

n—o0

ot
lim T(A(p,I);I) = / (1 —ps)z(s—l—az)dH(s)'

Then p > p(e) implies that lim,, T(A(p, I); I) > €2, while p < p(e) implies that lim,, T (A(p, I); I) <
2. In particular, the inequalities (17) and these hmlts on 7 combine to give that
) <

lim sup Cost x (e 1m loléf [P(A(p,I);I) — P(A(0,I);1)]

n—o0

whenever p > p(e), while if p < p(e) we have

)
lim inf Costx (€) > limsup [P(A(p,I); 1) — P(A(0,1);I)].

n—00 n—o00

We can now apply the limiting expansion of P(A(p)) — P(A(0)) in Lemma 4.5, which yields
that for any 0 < pg < p(€) < p1 < )\jrl, we have

2 4
o o°s )
TP (o o2y M) =l [P(Alpo, D ) = (A, 1 D)
< lim inf Cost x (¢) < lim sup Cost x (€)
n—0o0 n—00

A A i o’'s
< i I);1)— 0,1);1)] =—
< lim (PG DD = PAODD) =2 [
Take p1 | p(e) and py T p(€) to obtain the limit (9).

We complete the proof of part (iii) of the theorem via the following final lemma, which
provides a linear lower bound for lim,,_,, Costx (€).

dH (s)

Lemma 4.6. Let c= A%icﬁ' If €2 > co?, then
1-1/vV2? A
nh_)ngo Costx (€) > )\2 5 - €.

Proof. Taking p to solve the fixed point (8), the limit (9) yields

. (9) p204/ S PP / ot ®) PPA_ 5
| = H(s) > H =
e = [ e Y 2 T T Y T

Thus it suffices to show that p > ﬁ(l —1/4/2). To see this, we leverage the following
inequalities:

1 Z/ﬁdﬂ(s)z/( A tol dH(S):M€2>2,

(Wl g = ps)2(s + o) A
the last inequality holding for €2 > _W Rearranging (1 — pAy)? < % yields p > ﬁ(l —
1/4/2), which implies the claimed result. O
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5 Discussion

By characterizing the excess prediction error in linear regression models as a function of
constraints on training error, this paper gives insights into the necessity—in achieving optimal
prediction risk—of memorization for learning. Our results support the natural conclusion that
interpolation is particularly beneficial in settings with low label noise, which as we note earlier,
may include some of the most widely-used existing benchmarks for deep learning. Even more,
they suggest that—at least when the noise is low—memorization may simply be necessary, so
that a deeper understanding of the generalization of modern machine learning algorithms may
require a careful look at more precise noise properties of the prediction problems at hand.

In the anisotropic setting, our lower bounds on prediction error depend on the condition
number of the data covariance, and thus our bounds not apply, i.e., are vacuous, in settings
such as sparse covariance or kernel regression. Extending our results to these settings is an
interesting direction for future work. Furthermore, our analysis relies heavily on the fact that
both the prediction and empirical risk are quadratic in the case of least-squares regression,
and thus strong duality obtains. Proving similar results in settings such as linear binary
classification, where the optimal unconstrained estimator, i.e., margin maximizing solution,
is nonlinear and the risk no longer quadratic, is an exciting open problem.
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A Asymptotics of random matrices

In this appendix, we review the classical results regarding singular values of random matrices
we require. Consider a triangular array of independent and identically distributed random
variables (zi;(1))ign) jefq for n = 1,2,--- and d := d(n). We write Z := Z(n) = (z;;(n)) €
R™*4_ Throughout we assume the proportional asymptotics d /n — v € (1,00), so the matrices
Z have rank at most n. We assume throughout that the entries z;; satisfy E[z;;] = 0 and
E[zfj] = 1. We have the following standard Marchenko-Pastur and Bai-Yin laws.

Lemma A.1 (Marchenko-Pastur law, Bai and Silverstein [4], Thm. 3.4). Let Z have singular
values Ay > Ay > -+ > Ay > 0, and let éZZT have spectral distribution with c.d.f.

1 n
Hy(s) = - > Ty2j4<s-
i=1

Then with probability one H,, converges weakly to the c.d.f. H supported on [A_, Ai], with

Ay = <1+\%>2 and A= (1—\%)2,

Ay — — A
dH(S):l\/( + S)(S )
2w s
Lemma A.2 (Bai-Yin law, Bai and Silverstein [4], Thm. 5.10). Let the conditions of Lemma A.1

hold, and assume additionally that sup;; E[zf‘j] < oo. Then the largest and smallest singular
values \y = M\ (Z) and N, = \(Z) of Z satisfy

and H has density

]]-se[)\,,)\+}ds'

A2 o ( 1 >2 A2 o 12
— 3 =(14— S FA_=(1-—) .
d NaV d Nal
We also consider random matrices whose rows have non-identity covariance. In these cases,
we assume a deterministic sequence of symmetric positive definite matrices ¥ := X(n) € R4,

We let t; > to > --- > tg > 0 denote the eigenvalues of ¥ and let T}, denote the associated
c.d.f.

d
1
Tn(s) := p E 14, <,
i=1

assuming that T, converges weakly to some c.d.f. T on R. With this, we can state a limiting
law for the spectral distribution of éZ »ZT. In the statement of the lemma, we require the
Stieltjes transform of a measure. Letting C; := {z € C | Im(z) > 0} be those elements of
C with positive imaginary part, recall that for a measure on R with c.d.f. F', the Stieltjes
transform of mp : Cy — C4 of F'is

mp(z) ::/ ! dF(s). (18)

s —Z

Then we have the following
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Lemma A.3 (Deformed Marchenko-Pastur law, Silverstein [23]). Let the conditions of Lemma A.1
and those on the spectral distribution T,, of ¥ above hold. Let éZEZT have spectral distribution
with c.d.f.

1 n
Gn(s) = - > Ty2ja<s
i=1

Then with probability one, G,, converges weakly to the c.d.f. G whose Stieltjes transform mg
satisfies the fixed point equation

ma(z) = — <z - / de(7)>_l.

Lemma A.3 is slightly different from the result of Silverstein [23, Thm. 1.1], whose original
theorem holds for the empirical spectral distributions of %Z ¥Z". Lemma A.3 follows from
the change of variables n = %(1 +0(1)).

B Proofs of identities in Theorem 1

B.1 Proof of Lemma 4.1

This is essentially trivial: by definition, we can write

-~

Predx(8) = E |Predx (8)| = B, [(AX = 1)0 + Awll}, | X|
—Tr (Eg,w [((AX DO+ Aw)T S (AX — 1) + Aw) | XD
— Tr <E9 [E(AX —D)00T(AX — D)7 | X]) + 02Ty (ATzA)
- st o staf
where in the last line we use E[00 7] = I;/d. Similarly
Trainx (8) = Ey [Trainxﬂ(é)] - %an [||(XA — 1) (X0 +w)|? | X}
_ %Tr (Bow [(X0+w)T (XA - DT (XA 1) (X0 +w) | X])
- %Tr ((xa-nxee™xXT(xA-1)7)+ %2Tr ((xa-nxa-nT)

_ L xax x4+ 2 xa— 1|2
= nd — Al — 1 -

B.2 Proof of Lemma 4.2

While problem (13) is non-convex, it consists of a quadratic objective and quadratic constraint,
and taking A — oo shows that there certainly exist feasible points in the interior of the set
of A satisfying T(A;X¥) > €. Thus, strong duality holds [10, Appendix B.1]. We therefore
consider the Lagrangian dual problem, introducing the dual multplier A > 0 for the constraint
and writing the Lagrangian

L(AN) =P(AD) + A€ - T(4;%)
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_ é HE% (AX — I)Hi g HE%AH; A (% IXAX — X2 + %2 XA - IH%) el

Using L, we begin by demonstrating the first claim of the lemma, that is, that if ¥ —
%XTX # 0, then we have infq £(A,\) = —oo. To see this, first let V € R¥™" be an
orthogonal basis for X’s row space and V= its orthogonal complement. Then XV+ = 0 and
- %X TX failing to be positive definite is equivalent to

T AT
v VL]T<E—%XTX> [V Vi) = [V (2 SX X)v (VL)QEVJ

failing to be positive definite. Then as (VL)TZ‘,Vl > 0 by assumption that ¥ > 0, it must
thus be the case that V' (X — %X TX)V #£ 0. We leverage this indefiniteness to observe that,
as V spans the row space of X, there exists a unit vector v € R?, ||v| = 1, and vector u € R®
satisfying v = X " € R? and

a=uv' (2 — %XTX> v <0. (19)

To show that the non-positivity (19) entails inf4 £(A, \) = —oo requires a few additional
steps. We detour by taking the gradient of the Lagrangian with respect to A (this will be
useful later),

(A7 A)
1 SAXXT — EXT) Lotya 2L <XTXAXXT _ XTXXT) 102 <XTXA _ XT)
d n|ld
2
_1 Z‘,——XTX AXXT 1 o2 2—§XTX 4t A AO™ N T
d d n
== (2 - iXTX> A (XXT +do 2[) - (2 - 5XTX - ﬂf) xT. (20)
n

Using the p defining v = X "y in Eq. (19), let ¢ € R be unspecified and take A = tvu'.
Define the function L(t) = L(tvu', \), for which we have

%L(t) =Tr <a(1£(ty,u Awp”) >

2
— ézﬂ (2 — %XTX> v’ (XXT + da2l> o— ézﬂ <2 — % Ai" > XTu
@t 1 A do?
- Ea-<||uu§+do2 ) - 307 (52 1)y
@) ¢ 2 2) — @ Aﬁ
= (1 do? ully) - 5 +

where step (i) substitutes the definition (19) of o and that X "y = v, while step (ii) similarly
uses the definition of @ and that |||, = 1 by assumption. We consider two cases: if o < 0,
then taking ¢t — oo yields L'(t) — —o0, so that L(t) — —oo and inf4 L(A,\) = —o0. If a = 0,
then L'(t) = Lr‘f > 0, and so taking ¢ — —oo yields £(A,\) — —oo as well. As such, the
optimal A > 0 must satisfy > — %X TX =0, as we desired to show.
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Having verified that ¥ — %X TX = 0, we can use the derivative (20) and solve for the A
satisfying the stationary condition a%E(A, A) = 0, obtaining

2
Le-2x7x A(XXT+d02[)—1 noAxTx - M7 xT
d n d n n

Solving this equation yields

A= <2 _ )\XTX> <2 AyTy Mo I> xT (XXT n da2I>

n n n

2 —1
— <1 _ Ao <2 — 5XTX> ) XT(XXT +do?1)~?
n n
2 —1
:<I_)\da <E—5XTX> >(XTX+do—2[)_1XT.
n n

In the last equation we use the matrix identity X (XX " +do?I)~! = (X T X +do?1)71X T,

An

which follows directly via the SVD of X. We complete the proof by identifying p,, := <

B.3 Proof of Lemma 4.3
The proof is essentially pure calculations. For reference, we divide the proof into three parts.

I. We compute formulas for A(p; X)X — I and X A(p; %) — I.
II. Derive the expansion for P(A(p, X);¥) — P(A(0,X); X).
III. Derive the expansion for for T (A(p,X); %).
Throughout we write A(p) = A(p; ¥) for simplicity.
Part I: Computing A(p)X —I and X A(p) —I.  We first substitute expression (14a) for
A(p) into the difference A(p)X — I to obtain
Alp)X —1

-1
- (I ~ po? (2 - gXTX> > (XTX +do?) XX — T

-1
= —po? (2 - SXTX> (XTX +do* 1) ' XX + (XX + doI)"! (XTX ~XTx - da21)
-1
2 —po? (n- ngX) XTX(XTX 1 do?D) " — do*(XT X + do? 1)~
__2_£T_1T_2_£T_1 P T T 2 \—1
_{ po (2 £x X> XX —do (2 £x X> (2 £x X)}(X X + do®I)
2y PxTx\ 7 T _PT T 2 7\—1
S (z: £x X) {pX X+d(2 £x X)}(X X + doI)
-1
= —do? (2 - gXTX> (XX +do1)7 (21)

where in step (i) we use that X T X and (X " X 4do?I)~! commute. Similarly, we can compute
X A(p) — I by using the alternative formulation (14b) for A(p), substituting to obtain

XA(p) —1
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-1
=X <1 — po? (2 - SXTX> > XXX +do®D) " =T

-1
= —po’X (2 - gXTX> XT(XXT +do?D)~! + (XXT —xxT - dc;?[) (XX + do?I)~!
-1
— po’X (2 - §XTX> XT(XXT +do®)™! — do*(XX T + do?I)~?

— _do? {gx (z: - ngX)_1 xT 4 I} (XXT + d021>_1

As X is wide and XX " is non-singular by assumption, limy 10 X (X TX+A)'XT =T and
therefore

XA(p) —1
1 —1
= —do?{lx (2 - BXTX> XT 4 lmX(X X + D) x T (XXT + da21)
d d AL0
d -1 -1 -1
= _limdo?X { <—2 - XTX> + (XTX + )\I) } X7 (XXT + d021>
ALO p

d -1 d -1 -1
— _limdo?X - { <—2 _ XTX> <)\I n —2) (XTX n )\I) } xT. (XXT + d021>
A0 p p

—~

9 imdo?X - { <§2 . XTX> o <)\I n 5Z2> xT (XXT + )\I>_1} : (XXT + d021>_1
A0 p p
= —do*X (2 - ngX)_l bl (XXT>_1 (xx7+ d021>_1 : (22)

where in step (i) we use that (XX +)\I)_1 XT=Xx"(xxT —i—)\I)_l.

Part II: Computing P(A(p,X);X) — P(A(0,X);X). As
P(A(p, %); ) — P(A(0,X); %) (23)

= a2 ox - ol v o2 a5 = aox -, -2 [2Rao,

F
= 3 (1= ool - =t wox -l v ([staw], - [=ao]],)

@ (1

we compute terms (I) and (II) separately. For (I) we substitute in the explicit form (21) of
A(p)X — I to obtain

(1) = do*Tr <2 (2 - §XTX)_1 > (XTX + da2l> > (2 - §XTX)_1> — do*Tr <2 (XTX + da2I) _2> .
We then use the identity

(z: _ ngX)_1 N=1+ (2 - gXTX>_1 : gXTX

to obtain further that

(I) = do*Tr <2 <I + (2 - gXTX>_1 : SXTX> (XTX + da2l>_2 (I + SXTX : (2 - gXTX>_1>>
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T <2 (XTX n da21) _2>

— do'Tr <2 (2 - SXTX) - §XTX (XTX + da2I> _2>

+ dotTr <2 (XTX + da2I) - gXTX : (2 — gXTX>_1>

+ dotTr <2 (z: - §XTX)_1 : §XTX (XTX + d02l> - §XTX : (z: - §XTX)_1>
— o Tr <2 (2 - SXTX) TxTx (XTX + da2l>_2> (24)
+ potTr <2 (XTX + da2I) xTx (2 - gXTX>_1>

+ 2 2;4 Tr (2 (2 - gXTX>_1 XTX (XTX n da21)_2 XTx (2 - ngx>_l> .

For term (IT), we substitute in formula (14b) for A(p) and use that X ' X and (X " X +do?1)~!
commute, yielding that

—1 -1

(I1) = oTr <2 <I — po? (2 - §XTX) ) XTX(XTX +do?I)2 (I — po? (2 - gXTX> >>

2Ty (EXTX(XTX + da21)—2>

—1 -2
— oty <2 (2 - BXTX) xTx (XTX + d02[> >
d
) —1
_ 4 T 2 T _PyT
o0 Tr(E(X X +do I> X X(E b x X) >
2 6 P Ty) T T 27\ 2y PyTy )t

+p%0 Tr<E<E £x X) X X<X X +do I) (z: £x X) )
Substituting the equality (24) for term (I) and the above identity for term (II) back into the
expansion (23) of P(A(p,X);X) — P(A(0,%); X), we get our desired expansion:
P(A(p, X); ) — P(A(0,X); X)

2

_r ;4 Tr (z: (2 _ SXTX>_1 xTx (XTX + da21) T XTx (2 - SXTX>_1>

+ 05Ty <E (E— gXTX)—lXTX (XTX—i—dg?[)—? (2— gXTX)_1>

=2 254 Tr (2 (2 - §XTX)_1 XX (XTX + da21)_2 (XTX n da21) (z: - ngx)_1>

_ p2§4 Tr ((2 - ngX)_1 5 (2 . §XTX>_1 xTx (XTX n da2I)_1> .

Part ITI: Computing 7 (A(p,X);X). Leveraging the expansion

1 2
T(A(p, 2 %) = — IXA()X = X|[5 + 2= | X A(p) ~ |17
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1 52
= %Tr ((XA(/)) - I)XXT(XA(p) — I)T) + ;Tr ((XA(p) _ [)(XA(p) _ I)T>

_ %Tr ((XA(p) — 1) (XXT +doT) (X A(p) - 1)) ,

we can substitute the expression (22) for X A(p) — I to obtain
T(A(p,%); ¥) =

do* [ T ™\ ! T 27\ ! T\ ! PyvTy\ L T
Lo (X (2-2x7x) mxT(xx7)  (xxT+do?r) (xxT) xz(z-ExTx) xT).
Leveraging the identity X " (XX " +do?I)™' = (X" X +do?I)~'X T and that (XX ")~! and
(XX T + AI)~! commute, we have

XTXXDH)IXXT +de’ D) HXX )X = X T (XX ) 2X(XTX 4 do?I) 7!
= (X"X)"(XTX +do?1)7 L.

Substituting this into the preceding display gives

T(A(p, 2); %)
= d%ﬂTr <X (E - gXTX) -1 DX TX)NXTX +do?D) 'y (E _ SXTX) -1 XT>
- (E (5-2x7x) xTx (2 LxTx) 2 (x7x) (X Tx dg21)_1>

by the cyclic property of the trace, as desired.

B.4 Proof of Lemma 4.4

By Bai and Silverstein [4, Lemma 3.11] we can exactly compute

L= 1/y+02 = \/(L+1/7+02)? — 4/

lim mpy(—o? +iy) =

y—0+ —202 /5
VU= 17409 +402/y = (L= 1/7+ 0%
B 202/
202 /v +o0(0?/7)

T 207y (1= 1/y+02)’

completing the proof.

B.5 Proof of Lemma 4.5

As the Bai-Yin law (Lemma A.2) guarantees the convergence of the smallest eigenvalue of
%X X T and XX is eventually non-singular, we can invoke the identities on the prediction
and training error in Lemma 4.3. Therefore

P(A(p.1): 1) — P(A. )i 1) = L0 <(1 S OxTx) XX (XX + o) ‘1>
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~d/n n < (1_/))‘@2/61)2 d M/d+o?
2 4
p o*s
N H,,(s).
d/n/ = p9)2(s 07 in(®)

By the assumption that p < )Jrl, the Bai-Yin law (Lemma A.2) guarantees that I — XX T

is eventually positive definite and with probability one A\3/d — A.. The function s ~
4

T=p2(s707)

Pastur law, we deduce

is thus eventually bounded on the support of H,. Applying the Marchenko-

2 0'43
Jm (PG D) = PAO.DD) = & [ oS —an(s).

For the second limit in Lemma 4.5, we can again leverage > = I in Lemma 4.3 to compute

T(A(p, I); 1) = d%lTr ((I - BXTX> T xTx ([ - BXTX) - (XTX)T (XTX + d021> _1>

d d
4 -1 XTX 1 /xTx\" /xTx -1
:%Tr(([—gXTX> - (I—%XTX) ( y > < y +a2f>
n 2
204.12 1 5t 1 1
n L—pX2/d d 1—p)2/d N2/d M2/d+ o2

i=1

0.4
- | T

Applying the Marchenko-Pastur law gives the desired limit.

C Proof of Theorem 2

We only need to prove under Assumption A2 thanks to Theorem 4. First, we recall our
standard notation that X has singular values Ay > Ay > --- > X\, > 0 and empirical spectral
cdf Hy(s) =237, 1y2/4<s- We first prove (most of) part (i) of the theorem, which we

state as a lemma. It is immediate by the definitions (3) and (4) of Cost and Cost that

~ ~

Costx (e) — Costx (e) = Predx (0o1s) — Predx (6(0)), so we focus on the latter quantity.

Lemma C.1. With probability 1
2

Tim (PredX (§O|S) — Predy (5(0))) - % </ édH(s) . / - +102 dH(s)) .

Proof. By the Bai-Yin law (Lemma A.2) we may assume that XX T > 0, as this eventually
holds with probability 1. Let 6(0) = A(0, I)y for A(0,1) = (X" X+do?I)"'X " be the optimal
unconstrained estimator (recall Lemma 4.2) and fys = Agsy for Ags = X (XX )71 = X1,
Then

Predy (%Ls) — Predy (5(0)) — P(Age; 1) — P(A(0, ): ). (25)

We expand each of the prediction errors above in turn.
For the first, we have the identity

1
P(Aols§ [) = a HAoIsX - IH?«“ + 02 ”AoISH??
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- éTr ((XT(XXT)—IX —]d)2> 4 2Ty (XT(XXT)—2X) _ d_Tn o2 ((XXT)—1> |

where we have used that X T (XX ")7'X — I; is a projection matrix of rank d — n. For the
second,

P, 1) 1) = 2 A0, DX — 113+ 0 40, 1)}

_ éTr <<XT(XXT +do’1) 7' X — I)2> + 02T (XT (xx7+ d021>_2 X>
D1 g 27 ((XXTPXT 40?1 = 2XXT(XXT +do? D)) 4+ 07 Tr (XXT(XXT +do’1)2)
—14 %Tr <XXT (XXT = 2(XXT +do?1) +do®T) (XX + do?1) _2>

=1+ éTr <XXT (XXT + da2I>_1> :

where in step (i) we use that XX | and (XX + do?I)~! commute and the cyclic property
of the trace. Substituting these equalities into expression (25) yields

Predy (%Ls) ~ Predy (5(0)) = —g + 02Ty ((XXT)—l) + éTr (XXT (XXT + da2l>_1> .

From this point, we expand the traces in terms of the empirical spectral distributions H,,
so multiplying and dividing XX " by d and normalizing the traces by n, we obtain

n

~ ~ o’n [1 n s

We may apply the Bai-Yin law (Lemma A.2) and the Marchenko-Pastur law (Lemma A.1),
S0 Amin(X X T /d) converges with probability 1, and thus almost surely

lim (PredX (%Ls) ~ Predy (5(0))) - —% + %2 / %dH(s) + %/ *_dH(s).

n—o00 s+ 0'2
An algebraic manipulation gives the lemma. O
Noting that %— . +10_2 = #202) gives the first equality of part (i) of the theorem. We divide

the remainder of the proof into two parts. In the first, we perform an asymptotic expansion
of the integral in Lemma C.1 to finalize part (i). In the second, we prove part (ii), including
the existence of the threshold p and the limiting values of Costx (e).

Finalizing Theorem 2 (i): The cost of minimum norm interpolation. As in our
derivation of Eq. (15), we can apply Bai and Silverstein [4, Lemma 3.11] to the integral form
of Lemma C.1. Recalling Bai and Silverstein’s result, we have

1 1—1/y+02— /(1 —1/y+402)* +402/y
[ i) - \/_202 - . (26)
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As

1 1 2 4o2 1 1 2 yp2
(i) (3o 5 |05 e g -
7y 7y ¥ ¥ ¥ ¥

we then use that H has support bounded away from zero to immediately obtain

| L= 1y +0% = /(L= 1y + 0 + 402y

/—dH(S) = lim
al0 —202 /v

2 1

ol0 2)2 2 9y 1—1/v
(1—-1/y+02)"+402/v+ (1 —1/y+0c?)

As #202) = % — #, we then again use identity (26) and Lemma C.1 to see that

% < % 8—1—102dH(S)>

o? 2

v ( — 17402’ +do?/y + (1= 1/v+0?)
B o? 2
Ty (11/7 1—1/7—1—02)4—%—|—(1—1/7—|—o*2)+0(0'2)

o? 1
R <1—1/7 1= 1/v+ 22 + o(o? ))

ot

IR

where we use the Taylor expansions vz? + ¢t = z + 5& + o(t?) and x+t =1_ £ 4+ o(t?), valid
for any fixed z > 0.

Proving Theorem 2 (ii): interpolation threshold. To obtain the threshold value pys,
we derive the limit lim,,_,o, Costx (¢) for any € > 0. As Lemma C.1 shows,

lim (Costx () — Costx (€)) = & / %dﬂ(s).

n—00 y S(s + 02)
Applying Theorem 1 for the limiting value of Costx (€), we recall the definition (7) of €2 =
fs+ sdH(s). Choose p = p(e) to be p(e) = 0if € < ¢, and to satisfy ¢ = fde( s)
when € > €,, as in Eq. (8) in Theorem 1, which decreases continuously to p(e;) = 0. The
theorem then implies

2 ots
nli_)noloCostX(e) p_/ (1—ps)2(s+02)dH(s)'

Adding and subtracting Costx (¢), we therefore have with probability 1 that

lim Costx(e) = nh_)ngo Costx (€) — nh_)ngo (Costx (€) — Costx (€))

n—o0
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_7 os s LAY S S s
oy /(1—ps 2(S+J2)dH() Y /S(S+J2)dH() (27)
)

)
(compare with Eq. (10)). Notably, p = p(e€) satisfies p = 0 whenever € < €,, so that

4
— o 1
lim Cost =—— [ ———dH(s) <0
o x(€) v /s(s+a2) (5)
for € < €,.

Now, consider the ps solving identity (10) and the associated value €, s, Where it is
evident that pgs > 0. Then the preceding calculations yield immediately that

S ot s 1
lim Costx (€y05) = — - | p? dH(s)— | ———dH =0.
i (o) = 5 (s [ a1 - [ syl =€

Because the value p = p(e) solving the identity (8) is increasing in € > ¢€,, we conclude that
p(€) > pois for € > €, 015 and €, 15 > €,. Combining everything to this point and the limit (27),
we see that

lim Costx ()
n—oo

>0 if € > €501
<0 if € < €500

Lastly, we provide the concrete claimed bounds on €, )5 in terms of €,. We have already

seen that €, .1 > €,, and so the claimed upper bound revolves around lower bounding p,15 so
. 4
that we may provide an upper bound on ;s = f mmy)dfl (s). To that end, note

that identity (10) gives a lower bound for pgs: as

/(%”)'mﬂf@:o,

2 .2
s
sup __Pois® 5
SE[A, 4] (1 — PolsS)

we must have
1
—-1>0 > .
= U, 80 pPols = 2)\+

Invoking the lower bound pgjs - 2A4+ > 1 and that s/A_ > 1 on the support of H, we have

2 04 d
= H
60’,015 / (1 — 00158)2 (S + 0_2) (S)

2, s )2 o 1
i o dH(s) = —* dH
<ot 0= pons)? (s + 02 ) = =5 / S+ o2y ),

where we used the identity (10). Noting that 1 < 51 and using the definition (7) of €, =

2
o' dH(s) gives the final bound that €2 , < 4>\—2+e2 as desired.
J g A

s+o0? o,0ls = o

D Proof of Theorem 3

The proof follows a similar approach to that we use in the proof of Theorem 1 in Section 4:
we compute formulae for the training and prediction errors conditional on the data matrices
X, then use these to provide the bounds on the memorization threshold and costs for fitting
to accuracy worse than that threshold. While in the proof of Theorem 1, we could develop
explicit spectral limits for the error measures of interest, here exact forms are difficult, but we

26



can obtain tight enough bounds (mitigated by the condition number « of the covariance ¥ of
the data vectors ) to give the desired results. With that in mind, we note that Lemmas 4.1,
4.2, and 4.3 all continue to hold, so that the reduction via strong duality applies. In particular,
the optimal linear estimator A in the form 6§ = Ay continues to take the form A(p,¥) in (14).

Throughout the proof, we let Ay > Ay > --- > A\, > 0 denote the singular values of X and
B1 > po > - >y > 0 those of Z, and so the empirical spectral c.d.f.s of éXXT and éZZT
are (respectively)

Gn(s) Zﬂ)\Q/d<8 and Hp( Z]l 2 /d<s-
i=1

By the Marchenko-Pastur and deformed Marchenko-Pastur laws (Lemmas A.1 and A.3), G,
and H,, converge weakly (almost surely) to c.d.f.s G and H, respectively. Again, we only need
to prove under Assumption A2 by applying Theorem 4.

Part I: Memorization threshold. We begin with the expansion of €, gof and the bound
eidef < E%/Eo‘ /K. Rewriting €, and €, e in terms of the limits arising from their respective
Marchenko-Pastur laws, we have

2 o' . ot do* T 2 7\—1
6U,def:/ dG( )_ lim —dGn(S) = lim —TI’ ((XX + do I) ) s

s+o0? n—oo | s+ 02 n—oo M

s+ ko? n>oo | §-+ Ko? n=oo n

4 4 d 4
62‘@,/5:/ N _dH(s) = lim | —2—dH,(s) = lim “Tr ((ZZT/Hda?I)—l) .

As XX =2%2" = ZZ" /K, we have To(ZZ" [k + do®I)™! > Tr(X X T + do?I)~! and thus
c2rdef fa/’f

Part II: No cost below threshold. It is immediate via Lemma 4.2 that the global
minimizer for the unconstrained problem (2) (with e = 0) is A(0,X), that is, p = 0 as
the constraint is inactive and

A0,2) =X (XX +do?T) P = (XX +do’T)71X T,

Then as usual inf3; 0) Pred X(@\) = Pred X(5d02)7 where we recall 2 is the ridge estimator.

0cH
To prove that lim,, o Costx(€) = 0 when € < €, qet, it is thus sufficient to show that 04,2 is
contained in H(e) eventually, which amounts to proving

lim inf Trainx <§d02> = liminf 7 (A(0,X); 2) > €2.

n—oo n—oo

Invoking the expansion of T (A(p,X);Y) in Lemma 4.3 and setting p = 0, we obtain

Sy do’ T T\ (vT 27\ _ o
T(A0,2);%) = —Tr <X X(X X) (X X + do I) >_/S+U2dGn(s).

By weak convergence,

. . ot ol
nh_{go T(A0,%); %) = nh_EI;O s+ o2 dGn(s) = / s+ 02 dG(s) = eg,dof > €,
so indeed we have 0,2 € H(e) as desired.

27



Part III: Cost of not-fitting above threshold. Our starting point is to demonstrate the
existence and uniqueness of pger € [0, )\4__1) solving the identity (12). For this, we note that

the difference
1 1

Arlp) = / [(1 —ps)2(s + Ko?)  s+o02 dH(s)

is monotone increasing in p, and Ay (0) = 0. That Ag(p) — oo as p T A\;' is then an
immediate consequence of the expansion (16) of the left integrand above.

We turn to the second claim in part (iii): the lower bound on Costy(e). We (roughly)
reduce the general covariance case to the isotropic case, then apply our previous results and
techniques. To do so, we require the following lemma, which upper-bounds the training
error growth and lower-bounds the prediction error growth. The proof is essentially tedious
algebraic manipulations, so we defer it to Appendix D.1.

Lemma D.1. Let the same conditions of Lemma 4.3 hold and assume p)\%/d < 1. Then

P(A(p,2);T) — P(A(0,X); %) > p2;4Tr ((I— gZZT>_2 ZjT : <Z§T +021>_1> :
T(A(p,2);2) — T(A(0,2); %) < %Tr [((I - SZZT) o 1> (ézzT + m%) _1] .

We use the upper and lower bounds in Lemma D.1, coupled with the strong duality
guarantees in Lemma 4.2 (and the identities (14)), to prove the desired growth of the Costx (¢).
Consider any 0 < p < pgef, Where pqer satisfies the identity (12). By construction and duality,
A(p,X) is the optimal solution to the problem

minimize P(A;3)
AeRdxn
subject to T(A(p,X);X) — T(4; %) <0.

Thus, whenever 7 (A(p, X); ¥) < €2 it holds that
Costx(e) > P(A(p,X);2) — P(A(0,X); X0). (28)

Therefore, to prove that Costx (¢) grows it is sufficient to show that eventually T (A(p,X); ¥) <
e for our chosen p and provide lower bounds on the difference P(A(p, X); X) — P(A(0,X); X).
To that end, let us take limits of 7. Applying the upper bound in Lemma D.1, we have

limsup 7 (A(p, X); )

n—oo

4 9 1
< lim sup T(A(0, £); £) + lim sup “%Tr [((1 - gzzT> - 1) <EZZT + /-;021) ]

n—oo n—oo d

| p3(2— ps)
= € et + lim sup ot / (0= p)2 (s + o) in(®)

with probability 1. As p < pger < A;l, the quantity % is eventually bounded on
the support [A_, Ay] + o(1) of H,, by the Bai-Yin law (Lemma A.2), and so with probability

one

1 ps(2 — ps) 1 ps(2 — ps)
0! [y Hnle) ot [ G P
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N %04/ ((1 - ps)21(s +ko2) s —1—1/40’2> dH(s)

= /104/ <(1 - Pdef3)12 (s +ro?) s —|—1/€O'2> dH(s)

_ 2 2
=€ = €5 defs

where the last line follows from the definition (12) of pger. In particular, with probability 1
we have

limsup 7 (A(p,X); 3) < eidef + €2 — Eg,def =,

n—o0

and therefore inequality (28) implies that with probability 1,
lini)inf Costx (€) > lirginf [P(A(p,X);2) — P(A(0,X); X)].

We now apply Lemma D.1 again, invoking the lower bound on the prediction errors to
obtain

n—oo n—yoo d d d

2 4 ) ZZT ZZT -1
lim inf Costx (¢) > lim p; Tr <(I— BZZT) . < +02[>

= lim 20'4-@- i dH, (s
noo!’ d (1—ps)?(s+02) (s)

0> ols
YA )

Taking p T pget yields the second claim of part (iii).
Our last step is to prove a concrete lower bound showing that Costx (€) grows linearly in e

2

provided that €2 > %, in parallel to the result in Lemma 4.6. We state a small integral
inequality:

Lemma D.2. Let p = pger solve the fixed point (12). Then

kol
/ A= /£02)dH(S) > 2.

Proof. The identity (12) shows that the integral in the statement of the lemma equals [ ro’ dH (s)+

s+ro?

€2 — 6(27,def' Recall that by part (i) of Theorem 3, we have eidef < Ef/gg/li = Lzlde(s). O

S+KO

Taking p = pqef to solve the fixed point (12), we apply the second claim in part (iii) to see
that

2 4 2 4
.. 0 o*s PoA_ o
1 f Cost > — dH(s) > dH
it Cost()> & [ Gttt 2 25 [ Gyt
2 4 2
pPEA_ Ko PEAZ
> dH(s) > —— 29
> 20 | e 0 e 29
by Lemma D.2. It remains to lower bound p = pger < )\jrl. For this, we observe that
1 1 A+ Ko? kol Ao+ ro?
— > | ———=dH(s) > dH(s) > ————.
T > ] G102 S50 [ 2 S5

again applying Lemma D.2. In particular, whenever %62 > 2, we obtain (1—pA; )72 > 2,
OT Pdef > ﬁ (1-1/+/2). Substituting in inequality (29) gives the lower bound on lim inf,, Cost x (¢).
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D.1 Proof of Lemma D.1

We prove each claim of the lemma in turn. For the first, we use the shorthand Ap(p) :=
P(A(p,X); %) — P(A(0,%);X). Then applying Lemma 4.3, we have

((2 _ EXTX) 'y (2 _ §XTX>_1 xT (XXT + da21) - X> ,

and making the substitution X = 7 2 immediately yields

p)
- 204Tr ((2 - 5252%2%)_1 5 (2 - SE%Zszé)_l EyAl (ZZZT n da21> - ZE%>
_ p2d o (Z (1 _ ngZ) T <ZEZT n d021>_1> .

As Z(I— §ZTZ)_2ZT =0and ZXZ " +do?l < ZZT +do?Tas ¥ < I by assumption, we can
leverage that the mapping A — Tr(AC) is increasing in the positive definite order for C' = 0

to obtain that
7 Tr <Z (1 -z )_ (ZZT + da21)_1>

where in the last line we used the identity Z(I — 527 Z)™' = (I —5ZZ")~'Z. This gives the
first claim of Lemma D.1.

We turn to the upper bound on the training error, for which we use the shorthand A+ (p) :=
T(A(p,X);X) — T(A(0,%);X). Beginning from the expansion of 7 in Lemma 4.3, we have

%AT(P) = Tr [2 (z: - EXTX) XTX (2 - §XTX>_1 > (XTX)T (XTX + d021>_1}
T [XTX(XTX)T (XTX + d021)_1} : (30)

Leveraging the identities X = Z Y3 and that
X"TX)(XTX +do?D) ' = X (XXT) XXX +do’I)'X
= 237122222227 + do*T) 1 Zx s,

the right hand side of the expansion (30) becomes

—1
( pZTZ) AN (I - ngz> I E%ZTZE%> XT(XXT)2(XXT + dcr?[)—lx}

1 -1
Tr [2% <<I ZZTZ> 277 (1~ gZTZ) - ZTZ> »27(z527) 22527 + d021)_1Z2%}
—9 -1
—Tr [2% <<I - ngz> - I> 2T (z527)" (ZEZT + da21) Zzé} ,
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where we have used that (I — §ZTZ )~! and ZTZ commute and eliminated one inverse of
ZXZT. The singular value decomposition gives the equality (I — §ZTZ)_2ZT =Z'(I -
§Z Z T)_2, where [ is an identity matrix of appropriate size. The cyclic property of the trace
and that (ZXZ7)7! and (ZXZ7 + do?I)~' comute then allows us to substitute into the
identity (30) to obtain

Ar(p) = d%LlTr K(I - gzzT)_2 _ 1> (2527 + do—21)_1} .

Lastly, we again use the monotonicity of A + Tr(AC) for C = 0 and that ZXZ " + do?I =
ZZ" [k 4 do®I to get claimed upper bound in the lemma.

E Proof of Theorem 4

We provide the proof conditional on X, implicitly conditioning throughout. As Hiy,(e) C
Hsq(€), we only need to show

56712£<e> red @ 2 et Predx (5) '

First we note that in the Gaussian setting that 6 ~ N(0, é[), we have y = X60+¢ ~ N(0, X*;(T +
o2I). By a standard calculation, the conditional distribution of 6 given y is

6]y~N <<XTX + da21)_1 XTy, 02 (XTX n d02l>_1> :

~

and therefore for any 0(X,y) € Hq,

Predx (9) = E, [Eey {HZ% (6- ">H§ | y”

~ -1
~E, ‘2% (9 — (XTX +do?1) XTy>

2 -1
o+ o2Tr <2 (XTX + da21) )] .

Notably, the posterior mean E[f | y] always minimizes the prediction risk. By Lemma 4.2 we

~

know there is a p such that 6(p) := A(p,X)y is optimal for problem (2) where

-1
A(p, %) = <I — po? (2 - SXTX) ) (XTX +do?D)1XT.

We consider two cases, depending on whether the value of the dual variable p =0 or p > 0.

~

Case I: p = 0. In this case 6(0) = (XX + dazl)_1 X Ty € Hiin(€) C Hsql€). But this is

the posterior mean, that is, 8(0) = E[f | y], which is thus optimal.

~

Case II: p > 0. As Predx(0(p)) is continuous in p, if we can prove for any g c Hsq(€) and
any 0 <p < p that

Predx (5) > Predx (5@)) , (31)
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taking p 1 p completes the proof. (Note that p is the optimal dual variable for problem (2),
and so 0(p) € F(e).)
To show claim (31), let = N(0, 2 XX T + 62I) be the marginal distribution over y. We

. iid .
construct a sequence of random measures pq, to, -+ , by sampling y; ~ p and constructing
the empirical measure

In this case the optimization problem

~ -1
_ minimize / Hzé (9 — (XTX +do?1) XTy>

~ 2 ~ 2
subject to /HXH—szdumz/HXH(ﬁ)—szd,um

2
dpim
2

is a finite dimensional optimization problem with (strongly convex) quadratic objective and a
single quadratic constraint. Then strong duality obtains [10, Appendix B.1], so we can write
the stationary condition that for some A > 0,

~ -1 ~
5 <9(X, vi) = (XTX +do’1) X%) S AXT(XO(X,yi) —yi) =0
simultaneously for ¢ = 1,...,m. Rewriting gives
~ -1
(2 - AXTX> 0(X,y;) = <2 (XTX n dJ2I) - )J) XTy, fori=1,...,m.

By an identical argument to that we use to prove Lemma 4.2 in Appendix B.2, it must be
the case that ¥ — AX T X > 0 and thus for each i = 1,...,m,

~

0(X,y;) = (z: - AXTX>_1 (2 SAXTX - Adc;?[) (XTX + da21) T xTy,
_ (1 — \do? (2 - )\XTX>_1> (XTX + da21)_1 X Ty,

By inspection, this estimator is linear in y, and for the choice A = Z takes identical values at

~

Y1,---,Ym as 0(p). The constraints of the problem (32) are satisfied and the KKT conditions
hold, so (an) optimal solution is 6(p).
For any 6 € Hgq(€), whenever the training errors satisfy

~ 2 ~ 2
[0 =o]sdun= [ |x00) o] i,
we must have
1 [/~ 2 1/~ 2
15 N 1 .
=2 (-0 1) dun = [||5* 00~ Bl 101) |, din (32)
By the law of large numbers, if 0 is square integrable, then with probability one

IR R T ) O

m—ro0 m—ro0

where inequality (%) holds by the assumption that 5 < p = p(e), yielding the difference in
training errors. Thus Eq. (32) holds eventually for all large m. Again applying the law of
large numbers and taking m — oo, we establish the desired prediction error gap (31).
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