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Abstract

We examine the necessity of interpolation in overparameterized models, that is, when
achieving optimal predictive risk in machine learning problems requires (nearly) interpolating
the training data. In particular, we consider simple overparameterized linear regression
y = X» + w with random design X * Rn×d under the proportional asymptotics d/n ³
³ * (1,>). We precisely characterize how prediction (test) error necessarily scales with
training error in this setting. An implication of this characterization is that as the label
noise variance Ã2 ³ 0, any estimator that incurs at least cÃ4 training error for some
constant c is necessarily suboptimal and will suffer growth in excess prediction error at
least linear in the training error. Thus, optimal performance requires fitting training data
to substantially higher accuracy than the inherent noise floor of the problem.

1 Introduction

Conventional machine learning wisdom [e.g. 25] posits that the size of a model’s training
data must be large relative to its effective capacity—for which parameter count often serves
as a proxy—in order for the model to have good generalization. Yet despite the fact that
many common families of modern machine learning models (e.g., deep neural networks)
are overparameterized in the sense that they are demonstrably able to interpolate arbitrary
relabelings of their training data, they tend to generalize remarkably well in practice even
after optimizing the empirical risk to zero [26].

This benign overfitting phenomenon has spurred considerable recent interest and effort
within the learning theory community toward understanding learning in the overparameterized
regime, where the empirical risk minimizer is underdetermined [6, 7, 8, 17, 21, 5, 9, 19, 20].
Yet while overparameterized interpolating models evidently generalize well, both in theory
and practice, there nonetheless remains at least some reason to be skeptical of the notion
that interpolation is necessarily “benign.” Indeed, numerous desiderata beyond prediction
risk—for example, privacy and security concerns—motivate an explicit preference for models
that do not interpolate, or in particular, memorize, their training data. An alternative and
perhaps less auspicious explanation for benign overfitting is that many of the crowdsourced
benchmarks the machine learning community uses to evaluate models, such as ImageNet [13],
have limited label uncertainty: examples with high annotator disagreement are in many cases
explicitly withheld [13, 22], mitigating the danger of overfitting to label noise.

Thus, while interpolation may suffice to learn models with strong generalization, it is
natural to wonder whether interpolation—or more evocatively, memorization—is necessary
for learning in the overparameterized regime. Here we take a phenomenological approach,
developing a simple model to explicate and predict behavior of statistical learning procedures,
and motivated by the question of the necessity of memorization, we precisely characterize how
prediction risk must scale with empirical risk. Considering a simple linear model y = x¦»+w,
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we define memorization in terms of the empirical risk, and formulate the cost of not fitting
the training data as an optimization problem over a class of estimators H,

minimize
»̂*H

Pred

(
»̂
)
:= E

[
(x¦»̂ 2 y)2 | X

]

subject to Train

(
»̂
)
:=

1

n
E

[∥∥X»̂ 2 Y
∥∥2
2
| X
]
g ë2 ,

(1)

where the expectations in Pred and Train are taken conditional on the over the training data
Y defining »̂ conditional on X, as well as the future data point (x, y), so that Pred (·) and
Train (·) denote the expected prediction and training error given a prior over the true model
parameter » (respectively).

We take as inspiration the recent line of work [14, 11], which gives scenarios in which
certain formal notions of memorization are necessary for a model to generalize well. We build
on this by studying the extent to which memorization remains necessary even in the simplest
settings: random design linear regression with independent noise. For our initial analysis,
we assume the estimator »̂ is linear in y, which includes least-norm interpolants and ridge
regression as special cases. Here, we obtain a tight asymptotic characterization of the optimal
solution to the problem (1) (see Theorems 1 and 3). Key to our analysis is to show that, even
though problem (1) is non-convex, strong duality obtains, and then leverage tools from random
matrix theory to obtain analytic formulae for the optimal prediction risk by integrating over
the spectrum of the empirical data covariance. We find that memorization of label noise is
in fact necessary for generalization even in the simple case of linear regression; in particular,
the threshold ë2 above which the optimal prediction risk is no longer achievable tends to zero
asymptotically faster than the variance of the label noise—so we must fit linear regression
models to (training) accuracy substantially better than the intrinsic noise floor of the problem.
Beyond this threshold the excess prediction risk grows linearly with the empirical risk. Finally,
assuming Gaussian noise w and a Gaussian prior over » in problem (1), we extend our analysis
to hold not only for linear estimators, but for general H comprised of all square-integrable
estimators (see Theorem 4), meaning that our characterization holds for (essentially) any
estimator.

1.1 Related work

Neither interpolation nor memorization of training data is a new phenomenon in machine
learning. Classical algorithms, such as k-nearest neighbors and (kernel) support vector
machines, explicitly encode the training data into the learned model. Some explicitly interpolate
training data and still enjoy performance guarantees; for example, the 1-nearest neighbor
algorithm interpolates its training data and has classification risk at most twice the Bayes’
error [12].

Nonetheless, the success of deep learning has spurred renewed interest in interpolating
models. Recent work has sought to develop an understanding of “implicit regularization”:
whereas most minimizers of the empirical risk may generalize poorly, standard learning
algorithms used in practice such as (stochastic) gradient descent tend to converge to solutions
that do generalize well, even in the absence of explicit regularization terms in the training
objective [15, 24, 16, 2, 3, 18]. In the particular case of overparameterized linear regression,
gradient descent initialized at the origin trivially recovers the ordinary least-squares (OLS)
estimator, which in overparameterized settings is the minimum norm interpolant. Most
relevant to our work, Hastie et al. [17] give formulae for the asymptotic error of ridge-
type estimators, including the minimum norm interpolant, as the number of features d and
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training observations n tend to infinity in the proportional regime where d/n ³ ³ > 1 for both
isotropic and anisotropic features. Muthukumar et al. [21] give corresponding non-asymptotic
lower bounds, with matching upper bounds for certain particular feature distributions, on
the minimal error achievable among all interpolating solutions. Bartlett et al. [5] consider
regression over general Hilbert spaces, showing that the minimum norm interpolant achieves
optimal error assuming certain conditions on the effective rank of the feature covariance. Our
results complement this line of work: not only can overparameterized interpolating models
generalize well, but in fact interpolation is necessary to achieve good generalization.

Our work pursues a line of inquiry Feldman [14] originates, which studies memorization in
the setting of multi-class classification, where the data distribution is a heavy-tailed mixture
over a finite set of subpopulations. He defines memorization in terms of the sensitivity of a
model’s predictions to the inclusion or exclusion of a particular observation in its training data,
and under the assumption that the class labelings of distinct subpopulations are essentially
independent—i.e., an observation drawn from one subpopulation yields limited to no information
about the labels of the other subpopulations—proves that memorization is necessary to
achieve optimal generalization. Brown et al. [11] extend these results, which are specific
to label memorization, to incorporate an information-theoretic notion of memorizing the
input observations in carefully constructed combinatorial settings, including next-symbol
prediction and clustering on the hypercube. In contrast, we attempt a simpler tack: ordinary
linear regression with standard distributional assumptions, construing memorization strictly
in terms of training error.

2 Problem formulation

Given a design matrix X = R
n×d (d g n), an unknown signal » * R

d and a noise vector w
such that E[w] = 0 and Var(w) = Ã2In, consider the standard linear model

y = X» + w.

We assume that X has i.i.d. mean zero rows x¦
1 , · · · , x¦

n with covariance Σ * R
d×d. The

training error of an estimator »̂ = »̂(X, y), a function of X and the responses y whose
dependence on both we typically leave implicit, is TrainX,»(»̂) = 1

nEw[‖X»̂ 2 y‖22 | X, »],

while the prediction (generalization) error is PredX,»(»̂) = Ex,w[(x
¦» 2 x¦»̂)2 | X, »], where

x is an independent copy from the input distribution. We consider a Bayesian formulation
where the ground truth » has a prior distribution independent of the data and the noise,
and the posterior training and generalization errors are TrainX(»̂) = E»[TrainX,»(»̂)] and

PredX(»̂) = E»[PredX,»(»̂)].
Given a constraint on the training error ë * [0,>), we can then formalize the cost of not

fitting the training data via the following optimization problem over a hypothesis class of
estimators H.

minimize
»̂*H

PredX

(
»̂
)

subject to TrainX

(
»̂
)
g ë2

(2)

Here, the constraint is on the average training error (over y); any estimator that on each input
y has prescribed error ë2 immediately satisfies the constraints (2). We mainly study the cost
of not fitting

CostX(ë) := min
»̂*H(ë)

PredX

(
»̂
)
2 min

»̂*H(0)
PredX

(
»̂
)
, (3)
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where for a given H we define the set H(ë) := {»̂ * H | TrainX(»̂) g ë2} ¢ H.
Noting that H(t) is a decreasing set in t, we always have CostX(ë) g 0. Of course, the best

estimator need not necessarily memorize the entire dataset—as we shall see, some amount of
regularization can help—and so we also specifically consider the cost of not interpolating with
respect to the minimum norm interpolating solution »̂ols := X¦(XX¦)21y, defining

CostX(ë) := min
»̂*H(ë)

PredX

(
»̂
)
2 PredX

(
»̂ols

)
. (4)

We study problem (2), in particular through the lens of the quantities (3) and (4), under
the following assumptions.

Assumption A1 (Proportional asymptotics and spherical prior). The dimension d := d(n)
satisfies d/n ³ ³ * (1,>). The data matrix X = [x1 x2 · · · xn]

¦ * R
n×d, where X :=

X(n) = (xij(n))i*[n],j*[d] forms a triangular array of random variables with independent rows.

There is a deterministic sequence of symmetric positive definite matrices Σ := Σ(n) * R
d×d

such that X = ZΣ
1
2 , where Z = (zij)i*[n],j*[d] and zij are i.i.d. random variables with

distribution independent of n such that E[zij] = 0, Var(zij) = 1, and E[z4ij] f M for a
universal constant M . In addition, we assume » has prior independent of the data X, y, with
zero mean and variance Var(») = Id/d.

Under Assumption A1, for each n, x1(n), · · · , xn(n) are i.i.d. random vectors such that

E[xi(n)] = 0, Var (xi(n)) = Σ(n).

Meanwhile, examples of priors satisfying the assumption include the uniform prior on the
unit sphere Sd21 and the Gaussian prior N(0, Id/d), where note that E[‖»‖22] = 1. We assume
³ > 1, and hence, as the model is overparameterized, zero training error is attainable.

While at first blush appearing restrictive, our main results characterize the cost of not
fitting for linear estimators.

Assumption A2 (Linear estimators). The hypothesis class consists of all linear estimators,
i.e.,

H =
{
»̂(X, y) = Ay ,A := A(X) * R

d×n
}
,

where A may depend on the features X but not the labels y.

Notably, the hypothesis class of linear estimators contains the popular ridge estimator »̂» :=
(X¦X + »I)21X¦y and minimum norm interpolant »̂ols := (X¦X) X¦y. Because we seek
exact optimality results for more general estimators, we follow standard practice in minimax
and asymptotic statistics to choose a prior on the “true” parameter ». In classical linear
regression, the prior of choice is a Gaussian, so that Anderson’s theorem (1955) guarantees
the posterior mean is minimax for any symmetric loss, and so the optimal estimator is
linear. In our case, a similar result holds, though it is more subtle because of the nonconvex
constraint (2) on training error; Theorem 4 to come guarantees that when the prior and
noise are both Gaussian, the optimal estimator solving problem (2) belongs to the collection
of linear estimators. Thus, our main results extend immediately to the general class of all
square integrable estimators:
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Assumption A22 (Estimators with Gaussian prior). The parameter » > N(0, Id/d) and
the noise w > N(0, Ã2In). The hypothesis class consists of measurable, square integrable
»̂ : Rn×d+n ³ R

d, i.e.,

H =
{
»̂ = »̂(X, y) | Ey[‖»̂(X, y)‖22 | X] < >

}
.

We return to more discussion in Section 3.3.

3 Main results

3.1 The isotropic case

We first consider the isotropic setting where Σ = I for all n, and thus xij are i.i.d. random
variables with zero mean and unit variance. Before stating the main theorem regarding
the quantity CostX(ë), we first characterize the optimal solution to the cost of not fitting
problem (2) via strong duality, illustrating the role random matrix theory plays in computing
the optimal solution value. We postpone most of the technical details to Section 4.

When H consists of linear estimators »̂ = Ay, we define the shorthand P(A) := PredX(»̂)
and T (A) := TrainX(»̂), with which we express the cost of not fitting problem (2) as

minimize
A*Rd×n

P(A) =
1

d
‖AX 2 I‖2F + Ã2 ‖A‖2F

subject to T (A) =
1

nd
‖XAX 2X‖2F +

Ã2

n
‖XA2 I‖2F g ë2 .

(5)

The problem—while nonconvex—has quadratic objective and a single quadratic constraint.
Thus we may leverage strong duality [10, Appendix B.1], writing a Lagrangian and solving,
to conclude that for some Ãn := Ãn(ë) such that I 2 Ãn

d X¦X { 0, the optimal A for the
problem (2) is

A(Ãn) =

(
I 2 ÃnÃ

2
(
I 2 Ãn

d
X¦X

)21
)
(X¦X + dÃ2I)21X¦,

where Ãn is the dual optimal value of the Lagrange multiplier associated with the constraint
T (A) g ë2. When Ãn = 0, the constraint is inactive, so A(0) is the global minimizer of
the unconstrained problem and evidently corresponds to a ridge regression estimate; we have
CostX(ë) = P(A(Ãn)) 2 P(A(0)) and T (A(Ãn)) = ë2. Substituting A = A(Ã) into P(A) and
T (A), we obtain

P(A(Ã)) 2 P(A(0)) =
Ã2Ã4

d
Tr

((
I 2 Ã

d
X¦X

)22 X¦X
d

(
X¦X
d

+ Ã2I

)21
)

,

T (A(Ã)) =
Ã4

n
Tr

((
I 2 Ã

d
X¦X

)22
(
X¦X
d

+ Ã2I

)21
)

.

We may now leverage high-dimensional random matrix theory and asymptotics. Let X
have singular values »1 g »2 g · · · g »n. Denoting the empirical spectral distribution of
1
dXX¦ via its c.d.f. Hn(s) :=

1
n

∑n
i=1 1»2

i
/dfs, we equivalently have

P(A(Ã)) 2 P(A(0)) =
Ã2n

d

∫
Ã4s

(12 Ãs)2(s+ Ã2)
dHn(s) ,
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T (A(Ã)) =

∫
Ã4

(12 Ãs)2 (s+ Ã2)
dHn(s) .

By standard results in random matrix theory (see Lemma A.1), Hn converges weakly to the

Marchenko-Pastur c.d.f. H, which has support [»2, »+] ro »± :=
(
1± 1/

:
³
)2
, and density

dH(s) =
³

2Ã

√
(»+ 2 s)(s2 »2)

s
1s*[»2,»+]ds . (6)

Therefore for any fixed 0 f Ã < 1
1+

:
³ ,

lim
n³>

(P(A(Ã)) 2 P(A(0))) =
Ã2

³

∫
Ã4s

(12 Ãs)2(s+ Ã2)
dH(s) ,

lim
n³>

T (A(Ã)) =

∫
Ã4

(12 Ãs)2 (s+ Ã2)
dH(s) .

Setting Ã = 0 corresponds to making the constraint (5) inactive, so we therefore define the
memorization threshold

ë2Ã :=

∫
Ã4

s+ Ã2
dH(s), (7)

and observe that for any ë2 g ë2Ã, there exists a Ã g 0 such that limn³> T (A(Ã)) = ë2. Given
that T (A(Ãn)) = ë2, we expect that limn³> Ãn = Ã and therefore should have

lim
n³>

CostX(ë) = lim
n³>

(P(A(Ã)) 2 P(A(0))) =
Ã2

³

∫
Ã4s

(12 Ãs)2(s+ Ã2)
dH(s).

We can make each of these steps rigorous (see Section 4), yielding the following theorem.

Theorem 1. Let Assumption A1 and either Assumption A2 or A22 hold. Then as n ³ >,

(i) (threshold value) for ëÃ defined in Eq. (7), ë2Ã = Ã4

Ã2+121/³
+ o(Ã4).

(ii) (no cost below threshold) if ë < ëÃ, then with probability one limn³> CostX(ë) = 0. In
addition, for the ridge estimator »̂dÃ2 = (X¦X + dÃ2I)21X¦y, we have

lim
n³>

(
min

»̂*H(ë)
PredX

(
»̂
)
2 PredX

(
»̂dÃ2

))
= 0 .

(iii) (cost of not fitting) if ë g ëÃ, there exists a scalar Ã := Ã(ë) *
[
0, »21

+

)
that uniquely

solves
∫

Ã4

(12 Ãs)2 (s+ Ã2)
dH(s) = ë2, (8)

and with probability one

lim
n³>

CostX(ë) =
Ã2

³

∫
Ã4s

(12 Ãs)2(s+ Ã2)
dH(s). (9)

For the constants c := 2
»2
2
+Ã2 and C := (121/

:
2)2»2

»2
+³

, we have limn³> CostX(ë) g Cë2

whenever ë2 g cÃ4.
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Part (i) of Theorem 1 characterizes the threshold for the constraint on training error above
which no linear estimator can achieve optimal generalization; from part (ii), so long as the
constraint is below this threshold, optimal generalization remains attainable. Together, parts
(i) and (iii) of the theorem imply that for an estimator to achieve optimal generalization, the
estimator must incur O(Ã4) training error as the label noise variance Ã2 tends to zero. When
Ã2 is small, this is quadratically smaller than the inherent noise floor in the problem. Moreover,
part (iii) implies eventually for sufficiently large ë that CostX(ë) grows linearly in terms of the
constraint on training error TrainX(»̂) = ë2—by not memorizing, we are essentially paying the
same additional amount of error in generalization in terms of training error up to a constant
factor. We conclude that memorization for high dimensional linear regression—training to
accuracy quadratically smaller than the inherent noise floor in the problem—is necessary, and
with the “necessity” increasing as the signal-to-noise ratio grows.

We now turn to look specifically at the cost of exact interpolation; instead of comparing
against the best linear estimator, we characterize CostX(ë) (see Eq. (4)), the prediction error
of »̂ * H(ë) to the minimum norm interpolant »̂ols. We provide a proof of the following
theorem in Appendix C.

Theorem 2. Let Assumption A1 and either Assumption A2 or A22 hold. Then

(i) (interpolation cost) for any ë g 0, CostX(ë) 2 CostX(ë) = PredX(»̂ols) 2 PredX(»̂(0)),
and with probability one

lim
n³>

(
PredX(»̂ols)2 PredX(»̂(0))

)
=

Ã4

³

∫
1

s(s+ Ã2)
dH(s) =

Ã4

³ (12 1/³)3
+ o(Ã4).

(ii) (interpolation threshold) for any Ã > 0, there exists a Ã = Ãols * (0, »21
+ ) that uniquely

solves

Ã2
∫

s

(12 Ãs)2 (s+ Ã2)
dH(s) =

∫
1

s(s+ Ã2)
dH(s), (10)

where for the threshold ë2Ã,ols :=
∫

Ã4

(12Ãolss)2(s+Ã2)dH(s) we have

lim
n³>

CostX(ë)

ù
üú
üû

< 0 if ë < ëÃ,ols

= 0 if ë = ëÃ,ols

> 0 if ë > ëÃ,ols.

In comparison to the threshold ëÃ in Eq. (7) and Theorem 1, we have ëÃ < ëÃ,ols f 2»+

»2
ëÃ.

Part (i) shows that the minimum norm interpolant is nearly optimal, at least as Ã2 ³ 0:
its prediction error over the best (linear) estimator scales asymptotically as O(Ã4/³), and as
the aspect ratio ³ increases it becomes closer and closer to optimal. Part (ii) complements
this result, showing that if the constraint ë on the training error of an estimator is at most
ë2 f ë2Ã,ols = O(Ã4), there are better estimators than the minimum norm interpolant; one

concrete example here is the optimal ridge estimator »̂dÃ2 , which has asymptotic training
error, as we see from Theorem 1.
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3.2 Features with general covariance

In this section, we develop analogous results to those for the identity covariance in Sec. 3.1,
showing that the results are not merely some fragile and magical consequences of isotropy.
Here, we make the following assumption about the covariance matrix Σ.

Assumption A3. The population covariance Σ has eigenvalues t1 g t2 g · · · g td g 0,
where t1 = 1 and there exists » < > such that td g 1/». The empirical spectral distribution
Tn(s) :=

1
d

∑d
i=1 1tifs of Σ converges weakly to a c.d.f. T .

Under this assumption, the empirical distribution for the eigenvalues of 1
dXX¦ converges

weakly to a distribution with deformed Marchenko-Pastur c.d.f. G. (See Lemma A.3 for
the precise definition.) With the limit G and recalling the Marchenko-Pastur c.d.f. H, we
may characterize CostX(ë) for general covariances Σ. The result is analogous to Theorem 1,
modulo the condition number » and the alternative limit G. To that end, define the deformed
threshold

ë2Ã,def :=

∫
Ã4

s+ Ã2
dG(s), (11)

comparing to the definition (7) of ëÃ =
∫

Ã4

s+Ã2 dH(s). We then have the following theorem,
whose proof we provide in Appendix D.

Theorem 3. Let Assumptions A1 and A3 hold, Ã > 0, and let G be the deformed Marchenko-
Pastur c.d.f. in Lemma A.3. If either Assumption A2 or A22 holds, then as n ³ >,

(i) (threshold value) for ëÃ,def defined in Eq. (11), ë2Ã,def f ë2:
»Ã
/» = »Ã4

»Ã2+121/³
+ o(Ã4).

(ii) (no cost below threshold) if ë < ëÃ,def, then with probability one limn³> CostX(ë) = 0.

In addition, define the ridge estimator »̂dÃ2 = (X¦X + dÃ2I)21X¦y, we have

lim
n³>

(
min

»̂*H(ë)
PredX

(
»̂
)
2 PredX

(
»̂dÃ2

))
= 0.

(iii) (cost of not fitting) If ë g ëÃ,def, there exists Ãdef = Ãdef(ë) * [0, 1/»+) that uniquely
solves

»Ã4 ·
(∫

1

(12 Ãs)2 (s+ »Ã2)
dH(s)2

∫
1

s+ »Ã2
dH(s)

)
= ë2 2 ë2Ã,def, (12)

where H is the Marchenko-Pastur c.d.f. (6). Further, with probability one

lim inf
n³>

CostX(ë) g Ã2def
³

∫
Ã4s

(12 Ãdefs)2(s+ Ã2)
dH(s).

For the constants c := 2»
»2+»Ã2 and C = »2(121/

:
2)2

»»2
+³

, we have lim infn³> CostX(ë) g Cë2

whenever ë2 g cÃ4.
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3.3 Optimality of general estimators in Gaussian case

While, as we discuss before Assumption A22, the lower bounds in Theorems 1, 2, and 3 apply
over the class of linear estimators, which allows our exact predictive risk characterizations,
these results hold for all estimators satisfying mild regularity conditions under a Gaussianity
assumption on the data distribution. Our main insight here is that when the prior and noise
distributions are Gaussian, for all ë g 0, the linear estimator class contains the optimal
estimator among the broader class of all square integrable estimators with training error at
least ë2. Of course, this is trivial when ë = 0, as given (X, y) in such a model, the posterior
on » is Gaussian. That the result holds for ë > 0 is a bit more subtle. Specifically, we have
the following theorem, whose proof we provide in Appendix E.

Theorem 4. Let Assumptions A1 and A22 hold. Let Hlin and Hsq denote the classes of linear
and square integrable estimators in Assumptions A2 and A22, respectively. Then for all ë g 0,
inf

»̂*Hsq(ë)
PredX(»̂) = min

»̂*Hlin(ë)
PredX(»̂).

Observing in the Gaussian case that the posterior over » | y is has mean linear in y and
covariance independent of y, the main idea underlying the proof is to factor the prediction
and training error over the marginal distribution of y, as

PredX

(
»̂
)
= Ey

[
E»|y

[∥∥∥Σ
1
2

(
»̂(X, y) 2 »

)∥∥∥
2

2

∣∣∣ y
] ∣∣∣X

]

TrainX

(
»̂
)
= Ey

[∥∥∥X»̂(X, y)2 y
∥∥∥
2

2

∣∣∣X
]
.

Thus the cost of not fitting problem (2) is a functional (infinite-dimensional) optimization
problem over Hsq, with a quadratic objective and a single quadratic constraint, for which
we show that strong duality still obtains. Applying the appropriate Karush-Kuhn-Tucker
conditions, we can then recover that the optimal estimator is linear, and in particular is

»̂(X, y) =

(
I 2 Ã(ë)Ã2

(
Σ2 Ã(ë)

d
X¦X

)21
)
(X¦X + dÃ2I)21X¦y.

Here Ã(ë) is the dual optimal value of the Lagrange multiplier for the constraint on training
error, and it is identical to that in Theorems 1 and 3. See Section 4.1 for the details.

4 Proof of Theorem 1

4.1 Reduction by strong duality

We first provide some technical lemmas to reduce the nonconvex problem (2). The lemmas
will be useful in both the isotropic case and the general covariance case, and in particular the
key ingredient that allows for this reduction is strong duality in quadratic optimization.

The first lemma gives an equivalent formulation of the cost of not fitting problem (2) using
the closed forms of PredX(»̂) and TrainX(»̂). We defer the proof to Appendix B.1.

Lemma 4.1. Let Assumption A2 hold and assume X = ZΣ
1
2 . Then for any »̂ * H the

following is an equivalent formulation of problem (2):

minimize
A*Rd×n

P(A; Σ) :=
1

d

∥∥∥Σ
1
2 (AX 2 I)

∥∥∥
2

F
+ Ã2

∥∥∥Σ
1
2A
∥∥∥
2

F

subject to T (A; Σ) :=
1

nd
‖XAX 2X‖2F +

Ã2

n
‖XA2 I‖2F g ë2.

(13)
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As strong duality holds for this problem [cf. 10, Appendix B.1], we derive in Lemma 4.2
the optimality criteria via studying the dual. We postpone the proof details to Appendix B.2.

Lemma 4.2. There exists a Ãn := Ãn(ë,Σ) g 0 such that Σ 2 Ãn
d X¦X { 0 and the optimal

solution of problem (13) is An := A(Ãn,Σ), where

A(Ã,Σ) =

(
I 2 ÃÃ2

(
Σ2 Ã

d
X¦X

)21
)
X¦(XX¦ + dÃ2I)21 (14a)

=

(
I 2 ÃÃ2

(
Σ2 Ã

d
X¦X

)21
)
(X¦X + dÃ2I)21X¦. (14b)

A(Ã,Σ) is defined for Ã * D, where D is the interval for all Ã g 0 such that Σ2 Ã
dX

¦X { 0.

We suppress the dependence of A, Ã on the data matrix X for simplicity.
In the next lemma we derive the exact forms of the constraint T (A(Ã,Σ);Σ) and the

growth of the objective P(A(Ã,Σ);Σ) 2P(A(0,Σ);Σ). We defer the proof to Appendix B.3.

Lemma 4.3. Let the conditions of Lemma 4.2 hold, and assume XX¦ is non-singular. Then
for any Ã * D we have

P(A(Ã,Σ);Σ) 2 P(A(0,Σ);Σ)

=
Ã2Ã4

d
Tr

((
Σ2 Ã

d
X¦X

)21
Σ
(
Σ2 Ã

d
X¦X

)21
X¦X

(
X¦X + dÃ2I

)21
)
,

and

T (A(Ã,Σ);Σ)

=
dÃ4

n
Tr

(
Σ
(
Σ2 Ã

d
X¦X

)21
X¦X

(
Σ2 Ã

d
X¦X

)21
Σ
(
X¦X

) (
X¦X + dÃ2I

)21
)
.

4.2 Main proof of Theorem 1

By Theorem 4, we only need to prove under Assumption A2 with the linear hypothesis class
H = {»̂ : »̂ = A(X)y}.

Part I: Memorization threshold. From Eq. (7), we can directly write out

ë2Ã =

∫
Ã4

s+ Ã2
dH(s) = Ã4 · lim

y³0+
mH(2Ã2 + iy) , (15)

where mH : C+ ³ C+ is the Stieltjes transform (cf. (18)) of the Marchenko-Pastur law.

Lemma 4.4. For any Ã2 > 0,

lim
y³0+

mH(2Ã2 + iy) =
Ã2 + o(Ã2)

Ã2 · (12 1/³ + Ã2)
.

We defer the proof to Appendix B.4. We conclude the proof of (i) by applying Lemma 4.4
to Eq. (15),

ë2Ã = Ã4 · Ã2 + o(Ã2)

Ã2 · (12 1/³ + Ã2)
=

Ã4

Ã2 + 12 1/³
+ o(Ã4) .

10



Part II: No cost below threshold. Invoke Lemma 4.2 and set Ã = 0 (when the constraint
is not active) to obtain the global minimizer for the unconstrained problem

A(0, I) = X¦(XX¦ + dÃ2I)21 = (X¦X + dÃ2I)21X¦,

so the ridge estimator »̂dÃ2 is optimal inH(0). Thus we must prove that »̂dÃ2 * H(ë) eventually,
for which it suffices to show

lim inf
n³>

TrainX

(
»̂dÃ2

)
= lim inf

n³>
T (A(0, I); I) > ë2 ,

where T (A; Σ) is defined in Eq. (13). When Σ = I, we can compute the exact limits in
Lemma 4.3 when n ³ >.

Lemma 4.5. Fix 0 f Ã < »21
+ . Then with probability one

lim
n³>

(P(A(Ã, I); I) 2 P(A(0, I); I)) =
Ã2

³

∫
Ã4s

(12 Ãs)2(s+ Ã2)
dH(s),

lim
n³>

T (A(Ã, I); I) =

∫
Ã4

(12 Ãs)2(s+ Ã2)
dH(s).

Invoke Lemma 4.5 above for Ã = 0 to conclude that with probability one

lim
n³>

T (A(0, I); I) = lim
n³>

∫
Ã4

s+ Ã2
dHn(s) =

∫
Ã4

s+ Ã2
dH(s) = ë2Ã > ë2.

Part III: Cost of not-fitting above threshold. First we show for any ë g ëÃ there exists
a unique Ã = Ã(ë) *

[
0, »21

+

)
that solves the fixed point (8), i.e.

∫
Ã4

(12 Ãs)2 (s+ Ã2)
dH(s) = ë2.

As the left hand side is increasing in Ã and when Ã ³ 0, the integral approaches ë2Ã =∫
Ã4

s+Ã2 dH(s). On the other hand, by substituting in the exact formula of dH(s) in Eq. (6),
we see as s ± »+,

Ã4

(12 »21
+ s)2 (s+ Ã2)

dH(s) = (1 + o(1))
³»+Ã

4
√

»+ 2 »2
2Ã (»+ + Ã2)

· (»+ 2 s)2
3
2 ds, (16)

so that the improper integral diverges when Ã = »21
+ . Monotone convergence then implies

that the integral approaches > as Ã ± »21
+ .

It remains to show the limiting statement (9) in part (iii) of the theorem and the growth
lower bounds. To do so, we leverage the duality calculations in Lemma 4.2 to transfer between
the training error ë and the Lagrange multiplier Ã, using that to construct upper and lower
bounds on CostX(ë). By Lemma 4.2, the estimator

»̂(Ã) := A(Ã, I)y

is the optimal solution to problem (13) when ë2 = T (A(Ã, I); I), that is, A(Ã, I) solves

minimize
A*Rd×n

P(A; I) subject to T (A; I) g T (A(Ã, I); I).

11



Thus, whenever T (A(Ã, I); I) < ë2 it holds that

CostX(ë) g P(A(Ã, I); I) 2 P(A(0, I); I) (17a)

while when T (A(Ã, I); I) > ë2, it holds that

CostX(ë) f P(A(Ã, I); I) 2 P(A(0, I); I). (17b)

We will give matching upper and lower bounds to the quantities (17) to show the limit (9).
Let Ã(ë) * (0, »21

+ ) be the Ã satisfying the fixed point (8), where Ã(ë) > 0 as ë2 > ëÃ by
assumption (as otherwise limn CostX(ë) = 0 by part (ii) of the theorem). For any Ã *

[
0, »21

+

)
,

Lemma 4.5 implies

lim
n³>

T (A(Ã, I); I) =

∫
Ã4

(12 Ãs)2(s+ Ã2)
dH(s).

Then Ã > Ã(ë) implies that limn T (A(Ã, I); I) > ë2, while Ã < Ã(ë) implies that limn T (A(Ã, I); I) <
ë2. In particular, the inequalities (17) and these limits on T combine to give that

lim sup
n³>

CostX(ë) f lim inf
n³>

[P(A(Ã, I); I) 2 P(A(0, I); I)]

whenever Ã > Ã(ë), while if Ã < Ã(ë) we have

lim inf
n³>

CostX(ë) g lim sup
n³>

[P(A(Ã, I); I) 2 P(A(0, I); I)] .

We can now apply the limiting expansion of P(A(Ã)) 2 P(A(0)) in Lemma 4.5, which yields
that for any 0 f Ã0 < Ã(ë) < Ã1 < »21

+ , we have

Ã20
³

∫
Ã4s

(12 Ã0s)2(s+ Ã2)
dH(s) = lim

n³>
[P(A(Ã0, I); I) 2 P(A(0, I); I)]

f lim inf
n³>

CostX(ë) f lim sup
n³>

CostX(ë)

f lim
n³>

[P(A(Ã1, I); I) 2 P(A(0, I); I)] =
Ã21
³

∫
Ã4s

(12 Ã1s)2(s+ Ã2)
dH(s)

Take Ã1 ³ Ã(ë) and Ã0 ± Ã(ë) to obtain the limit (9).
We complete the proof of part (iii) of the theorem via the following final lemma, which

provides a linear lower bound for limn³> CostX(ë).

Lemma 4.6. Let c = 2
»2
2
+Ã2 . If ë2 g cÃ4, then

lim
n³>

CostX(ë) g (12 1/
:
2)2

»2
+

»2
³

· ë2.

Proof. Taking Ã to solve the fixed point (8), the limit (9) yields

lim
n

CostX(ë)
(9)
=

Ã2Ã4

³

∫
s

(12 Ãs)2(s + Ã2)
dH(s) g Ã2»2

³

∫
Ã4

(12 Ãs)2(s+ Ã2)
dH(s)

(8)
=

Ã2»2
³

ë2,

Thus it suffices to show that Ã g 1
»+

(1 2 1/
:
2). To see this, we leverage the following

inequalities:

1

(12 Ã»+)2
g
∫

1

(12 Ãs)2
dH(s) g

∫
»2 + Ã2

(12 Ãs)2(s+ Ã2)
dH(s) =

»2 + Ã2

Ã4
ë2 g 2,

the last inequality holding for ë2 g 2Ã4

Ã2+»2
. Rearranging (1 2 Ã»+)

2 f 1
2 yields Ã g 1

»+
(1 2

1/
:
2), which implies the claimed result.
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5 Discussion

By characterizing the excess prediction error in linear regression models as a function of
constraints on training error, this paper gives insights into the necessity—in achieving optimal
prediction risk—of memorization for learning. Our results support the natural conclusion that
interpolation is particularly beneficial in settings with low label noise, which as we note earlier,
may include some of the most widely-used existing benchmarks for deep learning. Even more,
they suggest that—at least when the noise is low—memorization may simply be necessary, so
that a deeper understanding of the generalization of modern machine learning algorithms may
require a careful look at more precise noise properties of the prediction problems at hand.

In the anisotropic setting, our lower bounds on prediction error depend on the condition
number of the data covariance, and thus our bounds not apply, i.e., are vacuous, in settings
such as sparse covariance or kernel regression. Extending our results to these settings is an
interesting direction for future work. Furthermore, our analysis relies heavily on the fact that
both the prediction and empirical risk are quadratic in the case of least-squares regression,
and thus strong duality obtains. Proving similar results in settings such as linear binary
classification, where the optimal unconstrained estimator, i.e., margin maximizing solution,
is nonlinear and the risk no longer quadratic, is an exciting open problem.
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A Asymptotics of random matrices

In this appendix, we review the classical results regarding singular values of random matrices
we require. Consider a triangular array of independent and identically distributed random
variables (zij(n))i*[n],j*[d] for n = 1, 2, · · · and d := d(n). We write Z := Z(n) = (zij(n)) *
R
n×d. Throughout we assume the proportional asymptotics d/n ³ ³ * (1,>), so the matrices

Z have rank at most n. We assume throughout that the entries zij satisfy E[zij ] = 0 and
E[z2ij] = 1. We have the following standard Marchenko-Pastur and Bai-Yin laws.

Lemma A.1 (Marchenko-Pastur law, Bai and Silverstein [4], Thm. 3.4). Let Z have singular
values »1 g »2 g · · · g »n g 0, and let 1

dZZ¦ have spectral distribution with c.d.f.

Hn(s) :=
1

n

n∑

i=1

1»2
i
/dfs.

Then with probability one Hn converges weakly to the c.d.f. H supported on [»2, »+], with

»+ :=

(
1 +

1:
³

)2

and »2 :=

(
12 1:

³

)2

,

and H has density

dH(s) =
³

2Ã

√
(»+ 2 s)(s2 »2)

s
1s*[»2,»+]ds.

Lemma A.2 (Bai-Yin law, Bai and Silverstein [4], Thm. 5.10). Let the conditions of Lemma A.1
hold, and assume additionally that supij E[z

4
ij] < >. Then the largest and smallest singular

values »1 = »1(Z) and »n = »n(Z) of Z satisfy

»2
1

d

a.s.³ »+ =

(
1 +

1:
³

)2

,
»2
n

d

a.s.³ »2 =

(
12 1:

³

)2

.

We also consider random matrices whose rows have non-identity covariance. In these cases,
we assume a deterministic sequence of symmetric positive definite matrices Σ := Σ(n) * R

d×d.
We let t1 g t2 g · · · g td > 0 denote the eigenvalues of Σ and let Tn denote the associated
c.d.f.

Tn(s) :=
1

d

d∑

i=1

1tifs,

assuming that Tn converges weakly to some c.d.f. T on R+. With this, we can state a limiting
law for the spectral distribution of 1

dZΣZ¦. In the statement of the lemma, we require the
Stieltjes transform of a measure. Letting C+ := {z * C | Im(z) > 0} be those elements of
C with positive imaginary part, recall that for a measure on R with c.d.f. F , the Stieltjes
transform of mF : C+ ³ C+ of F is

mF (z) :=

∫
1

s2 z
dF (s). (18)

Then we have the following
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Lemma A.3 (Deformed Marchenko-Pastur law, Silverstein [23]). Let the conditions of Lemma A.1
and those on the spectral distribution Tn of Σ above hold. Let 1

dZΣZ¦ have spectral distribution
with c.d.f.

Gn(s) :=
1

n

n∑

i=1

1»2
i
/dfs.

Then with probability one, Gn converges weakly to the c.d.f. G whose Stieltjes transform mG

satisfies the fixed point equation

mG(z) = 2
(
z 2

∫
Ç

1 + ÇmG(z)/³
dT (Ç)

)21

.

Lemma A.3 is slightly different from the result of Silverstein [23, Thm. 1.1], whose original
theorem holds for the empirical spectral distributions of 1

nZΣZ¦. Lemma A.3 follows from

the change of variables n = d
³ (1 + o(1)).

B Proofs of identities in Theorem 1

B.1 Proof of Lemma 4.1

This is essentially trivial: by definition, we can write

PredX(»̂) = E»

[
PredX,»(»̂)

]
= E»,w

[
‖(AX 2 I)» +Aw‖2Σ | X

]

= Tr

(
E»,w

[
((AX 2 I)» +Aw)¦Σ ((AX 2 I)» +Aw) | X

])

= Tr

(
E»

[
Σ(AX 2 I)»»¦(AX 2 I)¦ | X

])
+ Ã2

Tr

(
A¦ΣA

)

=
1

d

∥∥∥Σ
1
2 (AX 2 I)

∥∥∥
2

F
+ Ã2

∥∥∥Σ
1
2A
∥∥∥
2

F
,

where in the last line we use E[»»¦] = Id/d. Similarly

TrainX(»̂) = E»

[
TrainX,»(»̂)

]
=

1

n
E»,w

[
‖(XA2 I) (X» + w)‖22 | X

]

=
1

n
Tr

(
E»,w

[
(X» + w)¦ (XA2 I)¦ (XA2 I) (X» + w) | X

])

=
1

n
Tr

(
(XA 2 I)X»»¦X¦(XA 2 I)¦

)
+

Ã2

n
Tr

(
(XA2 I)(XA 2 I)¦

)

=
1

nd
‖XAX 2X‖2F +

Ã2

n
‖XA2 I‖2F .

B.2 Proof of Lemma 4.2

While problem (13) is non-convex, it consists of a quadratic objective and quadratic constraint,
and taking A ³ > shows that there certainly exist feasible points in the interior of the set
of A satisfying T (A; Σ) g ë2. Thus, strong duality holds [10, Appendix B.1]. We therefore
consider the Lagrangian dual problem, introducing the dual multplier » g 0 for the constraint
and writing the Lagrangian

L(A,») = P(A; Σ) + »(ë2 2 T (A; Σ))
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=
1

d

∥∥∥Σ
1
2 (AX 2 I)

∥∥∥
2

F
+ Ã2

∥∥∥Σ
1
2A
∥∥∥
2

F
2 »

(
1

nd
‖XAX 2X‖2F +

Ã2

n
‖XA2 I‖2F

)
+ »ë2.

Using L, we begin by demonstrating the first claim of the lemma, that is, that if Σ 2
»
nX

TX 6{ 0, then we have infA L(A,») = 2>. To see this, first let V * R
d×r be an

orthogonal basis for X’s row space and V § its orthogonal complement. Then XV § = 0 and
Σ2 »

nX
¦X failing to be positive definite is equivalent to

[
V V §]¦

(
Σ2 »

n
X¦X

)[
V V §] =

[
V ¦ (Σ2 »

nX
¦X
)
V 0

0 (V §)¦ΣV §

]

failing to be positive definite. Then as (V §)¦ΣV § { 0 by assumption that Σ { 0, it must
thus be the case that V ¦(Σ2 »

nX
¦X)V 6{ 0. We leverage this indefiniteness to observe that,

as V spans the row space of X, there exists a unit vector ¿ * R
d, ‖¿‖ = 1, and vector µ * R

n

satisfying ¿ = X¦µ * R
d and

³ := ¿¦
(
Σ2 »

n
X¦X

)
¿ f 0. (19)

To show that the non-positivity (19) entails infA L(A,») = 2> requires a few additional
steps. We detour by taking the gradient of the Lagrangian with respect to A (this will be
useful later),

"

"A
L(A,»)

=
1

d

(
ΣAXX¦ 2ΣX¦

)
+ Ã2ΣA2 »

n

{
1

d

(
X¦XAXX¦ 2X¦XX¦

)
+ Ã2

(
X¦XA2X¦

)}

=
1

d

(
Σ2 »

n
X¦X

)
AXX¦ + Ã2

(
Σ2 »

n
X¦X

)
A2 1

d

(
Σ2 »

n
X¦X 2 »dÃ2

n
I

)
X¦

=
1

d

(
Σ2 »

n
X¦X

)
A
(
XX¦ + dÃ2I

)
2 1

d

(
Σ2 »

n
X¦X 2 »dÃ2

n
I

)
X¦. (20)

Using the µ defining ¿ = X¦µ in Eq. (19), let t * R be unspecified and take A = t¿µ¦.
Define the function L(t) = L(t¿µ¦, »), for which we have

d

dt
L(t) = Tr

(
"

"A
L(t¿µ¦, »)(¿µ¦)¦

)

=
t

d
¿¦
(
Σ2 »

n
X¦X

)
¿µ¦

(
XX¦ + dÃ2I

)
µ2 1

d
¿¦
(
Σ2 »

n
X¦X 2 »dÃ2

n
I

)
X¦µ

(i)
=

t

d
³ · (‖¿‖22 + dÃ2 ‖µ‖22)2

1

d
¿¦
(
Σ2 »

n
X¦X 2 »dÃ2

n
I

)
¿

(ii)
=

t³

d
·
(
1 + dÃ2 ‖µ‖22

)
2 ³

d
+

»Ã2

n

where step (i) substitutes the definition (19) of ³ and that X¦µ = ¿, while step (ii) similarly
uses the definition of ³ and that ‖¿‖2 = 1 by assumption. We consider two cases: if ³ < 0,
then taking t ³ > yields L2(t) ³ 2>, so that L(t) ³ 2> and infA L(A,») = 2>. If ³ = 0,

then L2(t) = »Ã2

n > 0, and so taking t ³ 2> yields L(A,») ³ 2> as well. As such, the

optimal » g 0 must satisfy Σ2 »
nX

¦X { 0, as we desired to show.
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Having verified that Σ 2 »
nX

¦X { 0, we can use the derivative (20) and solve for the A

satisfying the stationary condition "
"AL(A,») = 0, obtaining

1

d

(
Σ2 »

n
X¦X

)
A
(
XX¦ + dÃ2I

)
2 1

d

(
Σ2 »

n
X¦X 2 »dÃ2

n
I

)
X¦ = 0.

Solving this equation yields

A =

(
Σ2 »

n
X¦X

)21(
Σ2 »

n
X¦X 2 »dÃ2

n
I

)
X¦

(
XX¦ + dÃ2I

)21

=

(
I 2 »dÃ2

n

(
Σ2 »

n
X¦X

)21
)
X¦(XX¦ + dÃ2I)21

=

(
I 2 »dÃ2

n

(
Σ2 »

n
X¦X

)21
)
(X¦X + dÃ2I)21X¦ .

In the last equation we use the matrix identity X¦(XX¦ + dÃ2I)21 = (X¦X + dÃ2I)21X¦,
which follows directly via the SVD of X. We complete the proof by identifying Ãn := »n

d .

B.3 Proof of Lemma 4.3

The proof is essentially pure calculations. For reference, we divide the proof into three parts.

I. We compute formulas for A(Ã; Σ)X 2 I and XA(Ã; Σ) 2 I.

II. Derive the expansion for P(A(Ã,Σ);Σ) 2 P(A(0,Σ);Σ).

III. Derive the expansion for for T (A(Ã,Σ);Σ).

Throughout we write A(Ã) = A(Ã; Σ) for simplicity.

Part I: Computing A(Ã)X 2 I and XA(Ã)2 I. We first substitute expression (14a) for
A(Ã) into the difference A(Ã)X 2 I to obtain

A(Ã)X 2 I

=

(
I 2 ÃÃ2

(
Σ2 Ã

d
X¦X

)21
)
(X¦X + dÃ2I)21X¦X 2 I

= 2ÃÃ2
(
Σ2 Ã

d
X¦X

)21
(X¦X + dÃ2I)21X¦X + (X¦X + dÃ2I)21

(
X¦X 2X¦X 2 dÃ2I

)

(i)
= 2ÃÃ2

(
Σ2 Ã

d
X¦X

)21
X¦X(X¦X + dÃ2I)21 2 dÃ2(X¦X + dÃ2I)21

=

{
2ÃÃ2

(
Σ2 Ã

d
X¦X

)21
X¦X 2 dÃ2

(
Σ2 Ã

d
X¦X

)21 (
Σ2 Ã

d
X¦X

)}
(X¦X + dÃ2I)21

= 2Ã2
(
Σ2 Ã

d
X¦X

)21 {
ÃX¦X + d

(
Σ2 Ã

d
X¦X

)}
(X¦X + dÃ2I)21

= 2dÃ2
(
Σ2 Ã

d
X¦X

)21
Σ(X¦X + dÃ2I)21 , (21)

where in step (i) we use that X¦X and (X¦X+dÃ2I)21 commute. Similarly, we can compute
XA(Ã)2 I by using the alternative formulation (14b) for A(Ã), substituting to obtain

XA(Ã)2 I
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= X

(
I 2 ÃÃ2

(
Σ2 Ã

d
X¦X

)21
)
X¦(XX¦ + dÃ2I)21 2 I

= 2ÃÃ2X
(
Σ2 Ã

d
X¦X

)21
X¦(XX¦ + dÃ2I)21 +

(
XX¦ 2XX¦ 2 dÃ2I

)
(XX¦ + dÃ2I)21

= 2ÃÃ2X
(
Σ2 Ã

d
X¦X

)21
X¦(XX¦ + dÃ2I)21 2 dÃ2(XX¦ + dÃ2I)21

= 2dÃ2

{
Ã

d
X
(
Σ2 Ã

d
X¦X

)21
X¦ + I

}(
XX¦ + dÃ2I

)21
.

As X is wide and XX¦ is non-singular by assumption, lim»³0 X(X¦X + »I)21X¦ = I and
therefore

XA(Ã) 2 I

= 2dÃ2

{
Ã

d
X
(
Σ2 Ã

d
X¦X

)21
X¦ + lim

»³0
X(X¦X + »I)21X¦

}(
XX¦ + dÃ2I

)21

= 2 lim
»³0

dÃ2X

{(
d

Ã
Σ2X¦X

)21

+
(
X¦X + »I

)21
}

·X¦
(
XX¦ + dÃ2I

)21

= 2 lim
»³0

dÃ2X ·
{(

d

Ã
Σ2X¦X

)21(
»I +

d

Ã
Σ

)(
X¦X + »I

)21
}
X¦ ·

(
XX¦ + dÃ2I

)21

(i)
= 2 lim

»³0
dÃ2X ·

{(
d

Ã
Σ2X¦X

)21(
»I +

d

Ã
Σ

)
X¦

(
XX¦ + »I

)21
}

·
(
XX¦ + dÃ2I

)21

= 2dÃ2X
(
Σ2 Ã

d
X¦X

)21
ΣX¦

(
XX¦

)21 (
XX¦ + dÃ2I

)21
, (22)

where in step (i) we use that
(
X¦X + »I

)21
X¦ = X¦ (XX¦ + »I

)21
.

Part II: Computing P(A(Ã,Σ);Σ) 2 P(A(0,Σ);Σ). As

P(A(Ã,Σ);Σ) 2P(A(0,Σ);Σ) (23)

=
1

d

∥∥∥Σ
1
2 (A(Ã)X 2 I)

∥∥∥
2

F
+ Ã2

∥∥∥Σ
1
2A(Ã)

∥∥∥
2

F
2 1

d

∥∥∥Σ
1
2 (A(0)X 2 I)

∥∥∥
2

F
2 Ã2

∥∥∥Σ
1
2A(0)

∥∥∥
2

F

=
1

d

(∥∥∥Σ
1
2 (A(Ã)X 2 I)

∥∥∥
2

F
2
∥∥∥Σ

1
2 (A(0)X 2 I)

∥∥∥
2

F

)

︸ ︷︷ ︸
(I)

+Ã2

(∥∥∥Σ
1
2A(Ã)

∥∥∥
2

F
2
∥∥∥Σ

1
2A(0)

∥∥∥
2

F

)

︸ ︷︷ ︸
(II)

,

we compute terms (I) and (II) separately. For (I) we substitute in the explicit form (21) of
A(Ã)X 2 I to obtain

(I) = dÃ4
Tr

(
Σ
(
Σ2 Ã

d
X¦X

)21
Σ
(
X¦X + dÃ2I

)22
Σ
(
Σ2 Ã

d
X¦X

)21
)
2 dÃ4

Tr

(
Σ
(
X¦X + dÃ2I

)22
)
.

We then use the identity

(
Σ2 Ã

d
X¦X

)21
Σ = I +

(
Σ2 Ã

d
X¦X

)21
· Ã
d
X¦X

to obtain further that

(I) = dÃ4
Tr

(
Σ

(
I +

(
Σ2 Ã

d
X¦X

)21
· Ã
d
X¦X

)(
X¦X + dÃ2I

)22
(
I +

Ã

d
X¦X ·

(
Σ2 Ã

d
X¦X

)21
))
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2 dÃ4
Tr

(
Σ
(
X¦X + dÃ2I

)22
)

= dÃ4
Tr

(
Σ
(
Σ2 Ã

d
X¦X

)21
· Ã
d
X¦X

(
X¦X + dÃ2I

)22
)

+ dÃ4
Tr

(
Σ
(
X¦X + dÃ2I

)22 Ã

d
X¦X ·

(
Σ2 Ã

d
X¦X

)21
)

+ dÃ4
Tr

(
Σ
(
Σ2 Ã

d
X¦X

)21
· Ã
d
X¦X

(
X¦X + dÃ2I

)22 Ã

d
X¦X ·

(
Σ2 Ã

d
X¦X

)21
)

= ÃÃ4
Tr

(
Σ
(
Σ2 Ã

d
X¦X

)21
X¦X

(
X¦X + dÃ2I

)22
)

(24)

+ ÃÃ4
Tr

(
Σ
(
X¦X + dÃ2I

)22
X¦X

(
Σ2 Ã

d
X¦X

)21
)

+
Ã2Ã4

d
Tr

(
Σ
(
Σ2 Ã

d
X¦X

)21
X¦X

(
X¦X + dÃ2I

)22
X¦X

(
Σ2 Ã

d
X¦X

)21
)
.

For term (II), we substitute in formula (14b) for A(Ã) and use that X¦X and (X¦X+dÃ2I)21

commute, yielding that

(II) = Ã2
Tr

(
Σ

(
I 2 ÃÃ2

(
Σ2 Ã

d
X¦X

)21
)
X¦X(X¦X + dÃ2I)22

(
I 2 ÃÃ2

(
Σ2 Ã

d
X¦X

)21
))

2 Ã2
Tr

(
ΣX¦X(X¦X + dÃ2I)22

)

= 2ÃÃ4
Tr

(
Σ
(
Σ2 Ã

d
X¦X

)21
X¦X

(
X¦X + dÃ2I

)22
)

2 ÃÃ4
Tr

(
Σ
(
X¦X + dÃ2I

)22
X¦X

(
Σ2 Ã

d
X¦X

)21
)

+ Ã2Ã6
Tr

(
Σ
(
Σ2 Ã

d
X¦X

)21
X¦X

(
X¦X + dÃ2I

)22 (
Σ2 Ã

d
X¦X

)21
)
.

Substituting the equality (24) for term (I) and the above identity for term (II) back into the
expansion (23) of P(A(Ã,Σ);Σ) 2 P(A(0,Σ);Σ), we get our desired expansion:

P(A(Ã,Σ);Σ) 2 P(A(0,Σ);Σ)

=
Ã2Ã4

d
Tr

(
Σ
(
Σ2 Ã

d
X¦X

)21
X¦X

(
X¦X + dÃ2I

)22
X¦X

(
Σ2 Ã

d
X¦X

)21
)

+ Ã2Ã6
Tr

(
Σ
(
Σ2 Ã

d
X¦X

)21
X¦X

(
X¦X + dÃ2I

)22 (
Σ2 Ã

d
X¦X

)21
)

=
Ã2Ã4

d
Tr

(
Σ
(
Σ2 Ã

d
X¦X

)21
X¦X

(
X¦X + dÃ2I

)22 (
X¦X + dÃ2I

)(
Σ2 Ã

d
X¦X

)21
)

=
Ã2Ã4

d
Tr

((
Σ2 Ã

d
X¦X

)21
Σ
(
Σ2 Ã

d
X¦X

)21
X¦X

(
X¦X + dÃ2I

)21
)

.

Part III: Computing T (A(Ã,Σ);Σ). Leveraging the expansion

T (A(Ã,Σ);Σ) =
1

nd
‖XA(Ã)X 2X‖2F +

Ã2

n
‖XA(Ã) 2 I‖2F
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=
1

nd
Tr

(
(XA(Ã) 2 I)XX¦(XA(Ã) 2 I)¦

)
+

Ã2

n
Tr

(
(XA(Ã)2 I)(XA(Ã) 2 I)¦

)

=
1

nd
Tr

(
(XA(Ã) 2 I)

(
XX¦ + dÃ2I

)
(XA(Ã) 2 I)¦

)
,

we can substitute the expression (22) for XA(Ã) 2 I to obtain

T (A(Ã,Σ);Σ) =

dÃ4

n
Tr

(
X
(
Σ2 Ã

d
X¦X

)21
ΣX¦

(
XX¦

)21 (
XX¦ + dÃ2I

)21 (
XX¦

)21
XΣ

(
Σ2 Ã

d
X¦X

)21
X¦
)
.

Leveraging the identity X¦(XX¦ + dÃ2I)21 = (X¦X + dÃ2I)21X¦ and that (XX¦)21 and
(XX¦ + »I)21 commute, we have

X¦(XX¦)21(XX¦ + dÃ2I)21(XX¦)21X = X¦(XX¦)22X(X¦X + dÃ2I)21

= (X¦X) (X¦X + dÃ2I)21.

Substituting this into the preceding display gives

T (A(Ã,Σ);Σ)

=
dÃ4

n
Tr

(
X
(
Σ2 Ã

d
X¦X

)21
Σ(X¦X) (X¦X + dÃ2I)21Σ

(
Σ2 Ã

d
X¦X

)21
X¦
)

=
dÃ4

n
Tr

(
Σ
(
Σ2 Ã

d
X¦X

)21
X¦X

(
Σ2 Ã

d
X¦X

)21
Σ
(
X¦X

) (
X¦X + dÃ2I

)21
)

by the cyclic property of the trace, as desired.

B.4 Proof of Lemma 4.4

By Bai and Silverstein [4, Lemma 3.11] we can exactly compute

lim
y³0+

mH(2Ã2 + iy) =
12 1/³ + Ã2 2

√
(1 + 1/³ + Ã2)2 2 4/³

22Ã2/³

=

√
(12 1/³ + Ã2)2 + 4Ã2/³ 2

(
12 1/³ + Ã2

)

2Ã2/³

=
2Ã2/³ + o(Ã2/³)

2Ã2/³ · (12 1/³ + Ã2)
,

completing the proof.

B.5 Proof of Lemma 4.5

As the Bai-Yin law (Lemma A.2) guarantees the convergence of the smallest eigenvalue of
1
nXX¦ and XX¦ is eventually non-singular, we can invoke the identities on the prediction
and training error in Lemma 4.3. Therefore

P(A(Ã, I); I) 2 P(A(0, I); I) =
Ã2Ã4

d
Tr

((
I 2 Ã

d
X¦X

)22
X¦X

(
X¦X + dÃ2I

)21
)
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=
Ã2Ã4

d/n
· 1
n

n∑

i=1

1
(
12 Ã»2

i /d
)2 · »

2
i

d
· 1

»2
i /d+ Ã2

=
Ã2

d/n

∫
Ã4s

(12 Ãs)2(s + Ã2)
dHn(s).

By the assumption that Ã < »21
+ , the Bai-Yin law (Lemma A.2) guarantees that I 2 Ã

dXX¦

is eventually positive definite and with probability one »2
1/d ³ »+. The function s 7³

Ã4s
(12Ãs)2(s+Ã2)

is thus eventually bounded on the support of Hn. Applying the Marchenko-

Pastur law, we deduce

lim
n³>

(P(A(Ã, I); I) 2 P(A(0, I); I)) =
Ã2

³

∫
Ã4s

(12 Ãs)2(s+ Ã2)
dH(s).

For the second limit in Lemma 4.5, we can again leverage Σ = I in Lemma 4.3 to compute

T (A(Ã, I); I) =
dÃ4

n
Tr

((
I 2 Ã

d
X¦X

)21
X¦X

(
I 2 Ã

d
X¦X

)21 (
X¦X

) (
X¦X + dÃ2I

)21
)

=
Ã4

n
Tr

((
I 2 Ã

d
X¦X

)21 X¦X
d

(
I 2 Ã

d
X¦X

)21
(
X¦X
d

) (
X¦X
d

+ Ã2I

)21
)

= Ã4 · 1
n

n∑

i=1

1

12 Ã»2
i /d

· »
2
i

d
· 1

12 Ã»2
i /d

· 1

»2
i /d

· 1

»2
i /d+ Ã2

=

∫
Ã4

(12 Ãs)2(s + Ã2)
dHn(s).

Applying the Marchenko-Pastur law gives the desired limit.

C Proof of Theorem 2

We only need to prove under Assumption A2 thanks to Theorem 4. First, we recall our
standard notation that X has singular values »1 g »2 g · · · g »n g 0 and empirical spectral
c.d.f. Hn(s) = 1

n

∑n
i=1 1»2

i
/dfs. We first prove (most of) part (i) of the theorem, which we

state as a lemma. It is immediate by the definitions (3) and (4) of Cost and Cost that
CostX(ë)2 CostX(ë) = PredX(»̂ols)2 PredX(»̂(0)), so we focus on the latter quantity.

Lemma C.1. With probability 1

lim
n³>

(
PredX

(
»̂ols

)
2 PredX

(
»̂(0)

))
=

Ã2

³

(∫
1

s
dH(s)2

∫
1

s+ Ã2
dH(s)

)
.

Proof. By the Bai-Yin law (Lemma A.2) we may assume that XX¦ { 0, as this eventually
holds with probability 1. Let »̂(0) = A(0, I)y for A(0, I) = (X¦X+dÃ2I)21X¦ be the optimal
unconstrained estimator (recall Lemma 4.2) and »̂ols = Aolsy for Aols = X¦(XX¦)21 = X .
Then

PredX

(
»̂OLS

)
2 PredX

(
»̂(0)

)
= P(Aols; I)2 P(A(0, I); I). (25)

We expand each of the prediction errors above in turn.
For the first, we have the identity

P(Aols; I) =
1

d
‖AolsX 2 I‖2F + Ã2 ‖Aols‖2F
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=
1

d
Tr

((
X¦(XX¦)21X 2 Id

)2)
+ Ã2

Tr

(
X¦(XX¦)22X

)
=

d2 n

d
+ Ã2

Tr

(
(XX¦)21

)
,

where we have used that X¦(XX¦)21X 2 Id is a projection matrix of rank d 2 n. For the
second,

P(A(0, I); I) =
1

d
‖A(0, I)X 2 I‖2F + Ã2 ‖A(0, I)‖2F

=
1

d
Tr

((
X¦(XX¦ + dÃ2I)21X 2 I

)2)
+ Ã2

Tr

(
X¦

(
XX¦ + dÃ2I

)22
X

)

(i)
= 1 +

1

d
Tr

(
(XX¦)2(XX¦ + dÃ2I)22 2 2XX¦(XX¦ + dÃ2I)21

)
+ Ã2

Tr

(
XX¦(XX¦ + dÃ2I)22

)

= 1 +
1

d
Tr

(
XX¦

(
XX¦ 2 2(XX¦ + dÃ2I) + dÃ2I

)(
XX¦ + dÃ2I

)22
)

= 1 +
1

d
Tr

(
XX¦

(
XX¦ + dÃ2I

)21
)
,

where in step (i) we use that XX¦ and (XX¦ + dÃ2I)21 commute and the cyclic property
of the trace. Substituting these equalities into expression (25) yields

PredX

(
»̂OLS

)
2 PredX

(
»̂(0)

)
= 2n

d
+ Ã2

Tr

(
(XX¦)21

)
+

1

d
Tr

(
XX¦

(
XX¦ + dÃ2I

)21
)
.

From this point, we expand the traces in terms of the empirical spectral distributions Hn,
so multiplying and dividing XX¦ by d and normalizing the traces by n, we obtain

PredX

(
»̂OLS

)
2 PredX

(
»̂(0)

)
= 2n

d
+

Ã2n

d

∫
1

s
dHn(s) +

n

d

∫
s

s+ Ã2
dHn(s).

We may apply the Bai-Yin law (Lemma A.2) and the Marchenko-Pastur law (Lemma A.1),
so »min(XX¦/d) converges with probability 1, and thus almost surely

lim
n³>

(
PredX

(
»̂OLS

)
2 PredX

(
»̂(0)

))
= 21

³
+

Ã2

³

∫
1

s
dH(s) +

1

³

∫
s

s+ Ã2
dH(s).

An algebraic manipulation gives the lemma.

Noting that 1
s2 1

s+Ã2 = Ã2

s(s+Ã2)
gives the first equality of part (i) of the theorem. We divide

the remainder of the proof into two parts. In the first, we perform an asymptotic expansion
of the integral in Lemma C.1 to finalize part (i). In the second, we prove part (ii), including
the existence of the threshold Ã and the limiting values of CostX(ë).

Finalizing Theorem 2 (i): The cost of minimum norm interpolation. As in our
derivation of Eq. (15), we can apply Bai and Silverstein [4, Lemma 3.11] to the integral form
of Lemma C.1. Recalling Bai and Silverstein’s result, we have

∫
1

s+ Ã2
dH(s) =

12 1/³ + Ã2 2
√

(12 1/³ + Ã2)2 + 4Ã2/³

22Ã2/³
. (26)
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As
þ
ø
(
12 1

³
+ Ã2

)
2

√(
12 1

³
+ Ã2

)2

+
4Ã2

³

ù
û
þ
ø
(
12 1

³
+ Ã2

)
+

√(
12 1

³
+ Ã2

)2

+
4Ã2

³

ù
û =

4Ã2

³
,

we then use that H has support bounded away from zero to immediately obtain

∫
1

s
dH(s) = lim

Ã³0

12 1/³ + Ã2 2
√

(12 1/³ + Ã2)2 + 4Ã2/³

22Ã2/³

= lim
Ã³0

2√
(12 1/³ + Ã2)2 + 4Ã2/³ + (12 1/³ + Ã2)

=
1

12 1/³
.

As Ã2

s(s+Ã2)
= 1

s 2 1
s+Ã2 , we then again use identity (26) and Lemma C.1 to see that

Ã2

³
·
(∫

1

s
dH(s)2

∫
1

s+ Ã2
dH(s)

)

=
Ã2

³
·

û
ý 1

12 1/³
2 2√

(12 1/³ + Ã2)2 + 4Ã2/³ + (12 1/³ + Ã2)

þ
ø

=
Ã2

³
·

û
ý 1

12 1/³
2 2

(12 1/³ + Ã2) + 4Ã2/³
2(121/³+Ã2)

+ (12 1/³ + Ã2) + o(Ã2)

þ
ø

=
Ã2

³
·
(

1

12 1/³
2 1

12 1/³ + Ã2

121/³ + o(Ã2)

)

=
Ã4

³ (12 1/³)3
+ o(Ã4) ,

where we use the Taylor expansions
:
x2 + t = x+ t

2x + o(t2) and 1
x+t =

1
x 2 t

x2 + o(t2), valid
for any fixed x > 0.

Proving Theorem 2 (ii): interpolation threshold. To obtain the threshold value Ãols,
we derive the limit limn³> CostX(ë) for any ë > 0. As Lemma C.1 shows,

lim
n³>

(
CostX(ë)2 CostX(ë)

)
=

Ã4

³

∫
1

s(s+ Ã2)
dH(s).

Applying Theorem 1 for the limiting value of CostX(ë), we recall the definition (7) of ë2Ã =∫
Ã4

s+Ã2 dH(s). Choose Ã = Ã(ë) to be Ã(ë) = 0 if ë < ëÃ and to satisfy ë2 =
∫

Ã4

(12Ãs)2(s+Ã2)
dH(s)

when ë g ëÃ, as in Eq. (8) in Theorem 1, which decreases continuously to Ã(ëÃ) = 0. The
theorem then implies

lim
n³>

CostX(ë) =
Ã2

³

∫
Ã4s

(12 Ãs)2(s+ Ã2)
dH(s).

Adding and subtracting CostX(ë), we therefore have with probability 1 that

lim
n³>

CostX(ë) = lim
n³>

CostX(ë)2 lim
n³>

(
CostX(ë)2 CostX(ë)

)
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=
Ã2

³

∫
Ã4s

(12 Ãs)2(s+ Ã2)
dH(s)2 Ã4

³

∫
1

s(s+ Ã2)
dH(s) (27)

(compare with Eq. (10)). Notably, Ã = Ã(ë) satisfies Ã = 0 whenever ë < ëÃ, so that

lim
n³>

CostX(ë) = 2Ã4

³

∫
1

s(s+ Ã2)
dH(s) < 0

for ë < ëÃ.
Now, consider the Ãols solving identity (10) and the associated value ëÃ,ols, where it is

evident that Ãols > 0. Then the preceding calculations yield immediately that

lim
n³>

CostX(ëÃ,ols) =
Ã4

³
·
(
Ã2ols

∫
s

(12 Ãolss)2 (s+ Ã2)
dH(s)2

∫
1

s(s+ Ã2)
dH(s)

)
= 0.

Because the value Ã = Ã(ë) solving the identity (8) is increasing in ë g ëÃ, we conclude that
Ã(ë) > Ãols for ë > ëÃ,ols and ëÃ,ols > ëÃ. Combining everything to this point and the limit (27),
we see that

lim
n³>

CostX(ë)

{
> 0 if ë > ëÃ,ols

< 0 if ë < ëÃ,ols.

Lastly, we provide the concrete claimed bounds on ëÃ,ols in terms of ëÃ. We have already
seen that ëÃ,ols > ëÃ, and so the claimed upper bound revolves around lower bounding Ãols so

that we may provide an upper bound on ëÃ,ols =
∫

Ã4

(12Ãolss)2(s+Ã2)
dH(s). To that end, note

that identity (10) gives a lower bound for Ãols: as

∫ (
Ã2olss

2

(12 Ãolss)2
2 1

)
· 1

s (s+ Ã2)
dH(s) = 0 ,

we must have

sup
s*[»2,»+]

Ã2olss
2

(12 Ãolss)2
2 1 g 0, so Ãols g

1

2»+
.

Invoking the lower bound Ãols · 2»+ g 1 and that s/»2 g 1 on the support of H, we have

ë2Ã,ols =

∫
Ã4

(12 Ãolss)2 (s+ Ã2)
dH(s)

f 4»2
+

»2
· Ã4 · Ã2ols

∫
s

(12 Ãolss)2 (s+ Ã2)
dH(s) =

4»2
+Ã

4

»2

∫
1

s(s+ Ã2)
dH(s),

where we used the identity (10). Noting that 1
s f 1

»2
and using the definition (7) of ëÃ =

∫
Ã4

s+Ã2 dH(s) gives the final bound that ë2Ã,ols f
4»2

+

»2
2

ë2Ã, as desired.

D Proof of Theorem 3

The proof follows a similar approach to that we use in the proof of Theorem 1 in Section 4:
we compute formulae for the training and prediction errors conditional on the data matrices
X, then use these to provide the bounds on the memorization threshold and costs for fitting
to accuracy worse than that threshold. While in the proof of Theorem 1, we could develop
explicit spectral limits for the error measures of interest, here exact forms are difficult, but we
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can obtain tight enough bounds (mitigated by the condition number » of the covariance Σ of
the data vectors x) to give the desired results. With that in mind, we note that Lemmas 4.1,
4.2, and 4.3 all continue to hold, so that the reduction via strong duality applies. In particular,
the optimal linear estimator A in the form »̂ = Ay continues to take the form A(Ã,Σ) in (14).

Throughout the proof, we let »1 g »2 g · · · g »n g 0 denote the singular values of X and
µ1 g µ2 g · · · g µn g 0 those of Z, and so the empirical spectral c.d.f.s of 1

dXX¦ and 1
dZZ¦

are (respectively)

Gn(s) :=
1

n

n∑

i=1

1»2
i
/dfs and Hn(s) :=

1

n

n∑

i=1

1µ2
i
/dfs.

By the Marchenko-Pastur and deformed Marchenko-Pastur laws (Lemmas A.1 and A.3), Gn

and Hn converge weakly (almost surely) to c.d.f.s G and H, respectively. Again, we only need
to prove under Assumption A2 by applying Theorem 4.

Part I: Memorization threshold. We begin with the expansion of ëÃ,def and the bound
ë2Ã,def f ë2:

»Ã
/». Rewriting ëÃ and ëÃ,def in terms of the limits arising from their respective

Marchenko-Pastur laws, we have

ë2Ã,def =

∫
Ã4

s+ Ã2
dG(s) = lim

n³>

∫
Ã4

s+ Ã2
dGn(s) = lim

n³>
dÃ4

n
Tr

(
(XX¦ + dÃ2I)21

)
,

ë2:»Ã/» =

∫
»Ã4

s+ »Ã2
dH(s) = lim

n³>

∫
»Ã4

s+ »Ã2
dHn(s) = lim

n³>
dÃ4

n
Tr

(
(ZZ¦/»+ dÃ2I)21

)
.

As XX¦ = ZΣZ¦ � ZZ¦/», we have Tr(ZZ¦/»+ dÃ2I)21 g Tr(XX¦ + dÃ2I)21 and thus
ë2Ã,def f ë2:

»Ã
/».

Part II: No cost below threshold. It is immediate via Lemma 4.2 that the global
minimizer for the unconstrained problem (2) (with ë = 0) is A(0,Σ), that is, Ã = 0 as
the constraint is inactive and

A(0,Σ) = X¦(XX¦ + dÃ2I)21 = (X¦X + dÃ2I)21X¦.

Then as usual inf
»̂*H(0)

PredX(»̂) = PredX(»̂dÃ2), where we recall »̂dÃ2 is the ridge estimator.

To prove that limn³> CostX(ë) = 0 when ë < ëÃ,def, it is thus sufficient to show that »̂dÃ2 is
contained in H(ë) eventually, which amounts to proving

lim inf
n³>

TrainX

(
»̂dÃ2

)
= lim inf

n³>
T (A(0,Σ);Σ) > ë2.

Invoking the expansion of T (A(Ã,Σ);Σ) in Lemma 4.3 and setting Ã = 0, we obtain

T (A(0,Σ);Σ) =
dÃ4

n
Tr

(
X¦X

(
X¦X

) (
X¦X + dÃ2I

)21
)

=

∫
Ã4

s+ Ã2
dGn(s).

By weak convergence,

lim
n³>

T (A(0,Σ);Σ) = lim
n³>

∫
Ã4

s+ Ã2
dGn(s) =

∫
Ã4

s+ Ã2
dG(s) = ë2Ã,def > ë2,

so indeed we have »̂dÃ2 * H(ë) as desired.
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Part III: Cost of not-fitting above threshold. Our starting point is to demonstrate the
existence and uniqueness of Ãdef *

[
0, »21

+

)
solving the identity (12). For this, we note that

the difference

∆H(Ã) :=

∫ [
1

(12 Ãs)2(s+ »Ã2)
2 1

s+ Ã2

]
dH(s)

is monotone increasing in Ã, and ∆H(0) = 0. That ∆H(Ã) ³ > as Ã ± »21
+ is then an

immediate consequence of the expansion (16) of the left integrand above.
We turn to the second claim in part (iii): the lower bound on CostX(ë). We (roughly)

reduce the general covariance case to the isotropic case, then apply our previous results and
techniques. To do so, we require the following lemma, which upper-bounds the training
error growth and lower-bounds the prediction error growth. The proof is essentially tedious
algebraic manipulations, so we defer it to Appendix D.1.

Lemma D.1. Let the same conditions of Lemma 4.3 hold and assume Ã»2
1/d < 1. Then

P(A(Ã,Σ);Σ) 2 P(A(0,Σ);Σ) g Ã2Ã4

d
Tr

((
I 2 Ã

d
ZZ¦

)22 ZZ¦

d
·
(
ZZ¦

d
+ Ã2I

)21
)
,

T (A(Ã,Σ);Σ) 2 T (A(0,Σ);Σ) f »Ã4

n
Tr

[((
I 2 Ã

d
ZZ¦

)22
2 I

)(
1

d
ZZ¦ + »Ã2I

)21
]
.

We use the upper and lower bounds in Lemma D.1, coupled with the strong duality
guarantees in Lemma 4.2 (and the identities (14)), to prove the desired growth of the CostX(ë).
Consider any 0 f Ã < Ãdef, where Ãdef satisfies the identity (12). By construction and duality,
A(Ã,Σ) is the optimal solution to the problem

minimize
A*Rd×n

P(A; Σ)

subject to T (A(Ã,Σ);Σ) 2 T (A; Σ) f 0.

Thus, whenever T (A(Ã,Σ);Σ) < ë2 it holds that

CostX(ë) g P(A(Ã,Σ);Σ) 2 P(A(0,Σ);Σ). (28)

Therefore, to prove that CostX(ë) grows it is sufficient to show that eventually T (A(Ã,Σ);Σ) <
ë for our chosen Ã and provide lower bounds on the difference P(A(Ã,Σ);Σ) 2P(A(0,Σ);Σ).

To that end, let us take limits of T . Applying the upper bound in Lemma D.1, we have

lim sup
n³>

T (A(Ã,Σ);Σ)

f lim sup
n³>

T (A(0,Σ);Σ) + lim sup
n³>

»Ã4

n
Tr

[((
I 2 Ã

d
ZZ¦

)22
2 I

)(
1

d
ZZ¦ + »Ã2I

)21
]

= ë2Ã,def + lim sup
n³>

»Ã4

∫
Ãs(22 Ãs)

(12 Ãs)2 (s+ »Ã2)
dHn(s)

with probability 1. As Ã < Ãdef < »21
+ , the quantity s(22Ãs)

(12Ãs)2(s+»Ã2)
is eventually bounded on

the support [»2, »+] + o(1) of Hn by the Bai-Yin law (Lemma A.2), and so with probability
one

»Ã4

∫
Ãs(22 Ãs)

(12 Ãs)2 (s+ »Ã2)
dHn(s) ³ »Ã4

∫
Ãs(22 Ãs)

(12 Ãs)2 (s+ »Ã2)
dH(s)
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= »Ã4

∫ (
1

(12 Ãs)2 (s+ »Ã2)
2 1

s+ »Ã2

)
dH(s)

< »Ã4

∫ (
1

(12 Ãdefs)2 (s+ »Ã2)
2 1

s+ »Ã2

)
dH(s)

= ë2 2 ë2Ã,def,

where the last line follows from the definition (12) of Ãdef. In particular, with probability 1
we have

lim sup
n³>

T (A(Ã,Σ);Σ) < ë2Ã,def + ë2 2 ë2Ã,def = ë2,

and therefore inequality (28) implies that with probability 1,

lim inf
n³>

CostX(ë) g lim inf
n³>

[P(A(Ã,Σ);Σ) 2 P(A(0,Σ);Σ)] .

We now apply Lemma D.1 again, invoking the lower bound on the prediction errors to
obtain

lim inf
n³>

CostX(ë) g lim
n³>

Ã2Ã4

d
Tr

((
I 2 Ã

d
ZZ¦

)22 ZZ¦

d
·
(
ZZ¦

d
+ Ã2I

)21
)

= lim
n³>

Ã2Ã4 · n
d
·
∫

s

(12 Ãs)2 (s+ Ã2)
dHn(s)

=
Ã2

³

∫
Ã4s

(12 Ãs)2(s+ Ã2)
dH(s) .

Taking Ã ± Ãdef yields the second claim of part (iii).
Our last step is to prove a concrete lower bound showing that CostX(ë) grows linearly in ë2

provided that ë2 g 2»Ã4

»2+»Ã2 , in parallel to the result in Lemma 4.6. We state a small integral
inequality:

Lemma D.2. Let Ã = Ãdef solve the fixed point (12). Then
∫

»Ã4

(12 Ãs)2(s+ »Ã2)
dH(s) g ë2.

Proof. The identity (12) shows that the integral in the statement of the lemma equals
∫

»Ã4

s+»Ã2 dH(s)+

ë22 ë2Ã,def. Recall that by part (i) of Theorem 3, we have ë2Ã,def f ë2:
»Ã
/» =

∫
»Ã4

s+»Ã2 dH(s).

Taking Ã = Ãdef to solve the fixed point (12), we apply the second claim in part (iii) to see
that

lim inf
n³>

CostX(ë) g Ã2

³

∫
Ã4s

(12 Ãs)2(s+ Ã2)
dH(s) g Ã2»2

³

∫
Ã4

(12 Ãs)2(s+ Ã2)
dH(s)

g Ã2»2
»³

∫
»Ã4

(12 Ãs)2(s+ »Ã2)
dH(s) g Ã2»2

»³
ë2 (29)

by Lemma D.2. It remains to lower bound Ã = Ãdef < »21
+ . For this, we observe that

1

(12 Ã»+)2
g
∫

1

(12 Ãs)2
dH(s) g »2 + »Ã2

»Ã4

∫
»Ã4

(12 Ãs)2(s+ »Ã2)
dH(s) g »2 + »Ã2

»Ã4
· ë2,

again applying Lemma D.2. In particular, whenever »++»Ã2

»Ã4 ë2 g 2, we obtain (12Ã»+)
22 g 2,

or Ãdef g 1
»+

(121/
:
2). Substituting in inequality (29) gives the lower bound on lim infn CostX(ë).
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D.1 Proof of Lemma D.1

We prove each claim of the lemma in turn. For the first, we use the shorthand ∆P(Ã) :=
P(A(Ã,Σ);Σ) 2 P(A(0,Σ);Σ). Then applying Lemma 4.3, we have

∆P(Ã) =
Ã2Ã4

d
Tr

((
Σ2 Ã

d
X¦X

)21
Σ
(
Σ2 Ã

d
X¦X

)21
X¦

(
XX¦ + dÃ2I

)21
X

)
,

and making the substitution X = ZΣ
1
2 immediately yields

∆P(Ã)

=
Ã2Ã4

d
Tr

((
Σ2 Ã

d
Σ

1
2Z¦ZΣ

1
2

)21
Σ
(
Σ2 Ã

d
Σ

1
2Z¦ZΣ

1
2

)21
Σ

1
2Z¦

(
ZΣZ¦ + dÃ2I

)21
ZΣ

1
2

)

=
Ã2Ã4

d
Tr

(
Z
(
I 2 Ã

d
Z¦Z

)22
Z¦ ·

(
ZΣZ¦ + dÃ2I

)21
)
.

As Z(I2 Ã
dZ

¦Z)22Z¦ � 0 and ZΣZ¦+dÃ2I � ZZ¦+dÃ2I as Σ � I by assumption, we can
leverage that the mapping A 7³ Tr(AC) is increasing in the positive definite order for C � 0
to obtain that

∆P(Ã) g
Ã2Ã4

d
Tr

(
Z
(
I 2 Ã

d
Z¦Z

)22
Z¦ ·

(
ZZ¦ + dÃ2I

)21
)

=
Ã2Ã4

d
Tr

((
I 2 Ã

d
ZZ¦

)22 ZZ¦

d
·
(
ZZ¦

d
+ Ã2I

)21
)
,

where in the last line we used the identity Z(I2 Ã
dZ

¦Z)21 = (I 2 Ã
dZZ¦)21Z. This gives the

first claim of Lemma D.1.
We turn to the upper bound on the training error, for which we use the shorthand ∆T (Ã) :=

T (A(Ã,Σ);Σ) 2 T (A(0,Σ);Σ). Beginning from the expansion of T in Lemma 4.3, we have

n

dÃ4
∆T (Ã) = Tr

[
Σ
(
Σ2 Ã

d
X¦X

)21
X¦X

(
Σ2 Ã

d
X¦X

)21
Σ
(
X¦X

) (
X¦X + dÃ2I

)21
]

2 Tr

[
X¦X(X¦X) (X¦X + dÃ2I)21

]
. (30)

Leveraging the identities X = ZΣ
1
2 and that

(X¦X) (X¦X + dÃ2I)21 = X¦(XX¦)22(XX¦ + dÃ2I)21X

= Σ
1
2Z¦(ZΣZ¦)22(ZΣZ¦ + dÃ2I)21ZΣ

1
2 ,

the right hand side of the expansion (30) becomes

Tr

[(
Σ

1
2

(
I 2 Ã

d
Z¦Z

)21
Z¦Z

(
I 2 Ã

d
Z¦Z

)21
Σ

1
2 2 Σ

1
2Z¦ZΣ

1
2

)
X¦(XX¦)22(XX¦ + dÃ2I)21X

]

= Tr

[
Σ

1
2

((
I 2 Ã

d
Z¦Z

)21
Z¦Z

(
I 2 Ã

d
Z¦Z

)21
2 Z¦Z

)
ΣZ¦(ZΣZ¦)22(ZΣZ¦ + dÃ2I)21ZΣ

1
2

]

= Tr

[
Σ

1
2

((
I 2 Ã

d
Z¦Z

)22
2 I

)
Z¦(ZΣZ¦)21

(
ZΣZ¦ + dÃ2I

)21
ZΣ

1
2

]
,
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where we have used that (I 2 Ã
dZ

¦Z)21 and Z¦Z commute and eliminated one inverse of
ZΣZ¦. The singular value decomposition gives the equality (I 2 Ã

dZ
¦Z)22Z¦ = Z¦(I 2

Ã
dZZ¦)22, where I is an identity matrix of appropriate size. The cyclic property of the trace
and that (ZΣZ¦)21 and (ZΣZ¦ + dÃ2I)21 comute then allows us to substitute into the
identity (30) to obtain

∆T (Ã) =
dÃ4

n
Tr

[((
I 2 Ã

d
ZZ¦

)22
2 I

)(
ZΣZ¦ + dÃ2I

)21
]
.

Lastly, we again use the monotonicity of A 7³ Tr(AC) for C � 0 and that ZΣZ¦ + dÃ2I �
ZZ¦/»+ dÃ2I to get claimed upper bound in the lemma.

E Proof of Theorem 4

We provide the proof conditional on X, implicitly conditioning throughout. As Hlin(ë) ¢
Hsq(ë), we only need to show

inf
»̂*Hsq(ë)

PredX

(
»̂
)
g min

»̂*Hlin(ë)
PredX

(
»̂
)
.

First we note that in the Gaussian setting that » > N(0, 1dI), we have y = X»+· > N(0, XX¦

d +
Ã2I). By a standard calculation, the conditional distribution of » given y is

» | y > N

((
X¦X + dÃ2I

)21
X¦y, Ã2

(
X¦X + dÃ2I

)21
)
,

and therefore for any »̂(X, y) * Hsq,

PredX

(
»̂
)
= Ey

[
E»|y

[∥∥∥Σ
1
2

(
»̂ 2 »

)∥∥∥
2

2
| y
]]

= Ey

[∥∥∥∥Σ
1
2

(
»̂ 2

(
X¦X + dÃ2I

)21
X¦y

)∥∥∥∥
2

2

+ Ã2
Tr

(
Σ
(
X¦X + dÃ2I

)21
)]

.

Notably, the posterior mean E[» | y] always minimizes the prediction risk. By Lemma 4.2 we
know there is a Ã such that »̂(Ã) := A(Ã,Σ)y is optimal for problem (2) where

A(Ã,Σ) =

(
I 2 ÃÃ2

(
Σ2 Ã

d
X¦X

)21
)
(X¦X + dÃ2I)21X¦.

We consider two cases, depending on whether the value of the dual variable Ã = 0 or Ã > 0.

Case I: Ã = 0. In this case »̂(0) =
(
X¦X + dÃ2I

)21
X¦y * Hlin(ë) ¢ Hsq(ë). But this is

the posterior mean, that is, »̂(0) = E[» | y], which is thus optimal.

Case II: Ã > 0. As PredX(»̂(Ã)) is continuous in Ã, if we can prove for any »̂ * Hsq(ë) and
any 0 f Ã < Ã that

PredX

(
»̂
)
g PredX

(
»̂(Ã)

)
, (31)
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taking Ã ± Ã completes the proof. (Note that Ã is the optimal dual variable for problem (2),
and so »̂(Ã) * F(ë).)

To show claim (31), let µ = N(0, 1dXX¦ + Ã2I) be the marginal distribution over y. We

construct a sequence of random measures µ1, µ2, · · · , by sampling yi
iid> µ and constructing

the empirical measure

µm =
1

m

m∑

i=1

·yi .

In this case the optimization problem

minimize
»̂(X,yi)*Rd,1fifm

∫ ∥∥∥∥Σ
1
2

(
»̂ 2

(
X¦X + dÃ2I

)21
X¦y

)∥∥∥∥
2

2

dµm

subject to

∫ ∥∥∥X»̂ 2 y
∥∥∥
2

2
dµm g

∫ ∥∥∥X»̂(Ã)2 y
∥∥∥
2

2
dµm

is a finite dimensional optimization problem with (strongly convex) quadratic objective and a
single quadratic constraint. Then strong duality obtains [10, Appendix B.1], so we can write
the stationary condition that for some » g 0,

Σ

(
»̂(X, yi)2

(
X¦X + dÃ2I

)21
X¦yi

)
2 »X¦(X»̂(X, yi)2 yi) = 0

simultaneously for i = 1, . . . ,m. Rewriting gives
(
Σ2 »X¦X

)
»̂(X, yi) =

(
Σ
(
X¦X + dÃ2I

)21
2 »I

)
X¦yi, for i = 1, . . . ,m.

By an identical argument to that we use to prove Lemma 4.2 in Appendix B.2, it must be
the case that Σ2 »X¦X { 0 and thus for each i = 1, . . . ,m,

»̂(X, yi) =
(
Σ2 »X¦X

)21 (
Σ2 »X¦X 2 »dÃ2I

)(
X¦X + dÃ2I

)21
X¦yi

=

(
I 2 »dÃ2

(
Σ2 »X¦X

)21
)(

X¦X + dÃ2I
)21

X¦yi.

By inspection, this estimator is linear in y, and for the choice » = Ã
d takes identical values at

y1, . . . , ym as »̂(Ã). The constraints of the problem (32) are satisfied and the KKT conditions
hold, so (an) optimal solution is »̂(Ã).

For any »̂ * Hsq(ë), whenever the training errors satisfy
∫ ∥∥∥X»̂ 2 y

∥∥∥
2

2
dµm g

∫ ∥∥∥X»̂(Ã)2 y
∥∥∥
2

2
dµm,

we must have ∫ ∥∥∥Σ
1
2

(
»̂ 2 E[» | y]

)∥∥∥
2

2
dµm g

∫ ∥∥∥Σ
1
2

(
»̂(Ã)2 E[» | y]

)∥∥∥
2

2
dµm. (32)

By the law of large numbers, if »̂ is square integrable, then with probability one

lim
m³>

∫ ∥∥∥X»̂ 2 y
∥∥∥
2

2
dµm =

∫ ∥∥∥X»̂ 2 y
∥∥∥
2

2
dµ g ë2

(æ)
>

∫ ∥∥∥X»̂(Ã)2 y
∥∥∥
2

2
dµ = lim

m³>

∫ ∥∥∥X»̂ 2 y
∥∥∥
2

2
dµm,

where inequality (æ) holds by the assumption that Ã < Ã = Ã(ë), yielding the difference in
training errors. Thus Eq. (32) holds eventually for all large m. Again applying the law of
large numbers and taking m ³ >, we establish the desired prediction error gap (31).
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