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Abstract
With the emergence of microsecond-scale NVMe storage

devices, the Linux kernel storage stack overhead has become
significant, almost doubling access times. We present XRP,
a framework that allows applications to execute user-defined
storage functions, such as index lookups or aggregations, from
an eBPF hook in the NVMe driver, safely bypassing most
of the kernel’s storage stack. To preserve file system seman-
tics, XRP propagates a small amount of kernel state to its
NVMe driver hook where the user-registered eBPF functions
are called. We show how two key-value stores, BPF-KV, a
simple B+-tree key-value store, and WiredTiger, a popular
log-structured merge tree storage engine, can leverage XRP
to significantly improve throughput and latency.

1 Introduction
With the rise of new high performance memory technologies,
such as 3D XPoint and low latency NAND, new NVMe stor-
age devices can now achieve up to 7 GB/s bandwidth and
latencies as low as 3 µs [11, 19, 24, 26]. At such high per-
formance, the kernel storage stack becomes a major source
of overhead impeding both application-observed latency and
IOPS. For the latest 3D XPoint devices, the kernel’s storage
stack doubles the I/O latency, and it incurs an even greater
overhead for throughput (§2.1). As storage devices become
even faster, the kernel’s relative overhead is poised to worsen.

Existing approaches to tackle this problem tend to be
radical, requiring intrusive application-level changes or new
hardware. Complete kernel bypass through libraries such as
SPDK [82] allows applications to directly access underlying
devices, but such libraries also force applications to imple-
ment their own file systems, to forgo isolation and safety, and
to poll for I/O completion which wastes CPU cycles when I/O
utilization is low. Others have shown that applications using
SPDK suffer from high average and tail latencies and severely
reduced throughput when the schedulable thread count ex-
ceeds the number of available cores [54]; we confirm this in
§6, showing that in such cases applications indeed suffer a
3× throughput loss with SPDK.

In contrast to these approaches, we seek a readily-
deployable mechanism that can provide fast access to emerg-
ing fast storage devices that requires no specialized hardware
and no significant changes to the application while working
with existing kernels and file systems. To this end, we rely on
BPF (Berkeley Packet Filter [67, 68]) which lets applications
offload simple functions to the Linux kernel [8]. Similar to
kernel bypass, by embedding application-logic deep in the
kernel stack, BPF can eliminate overheads associated with
kernel-user crossings and the associated context switches. Un-
like kernel bypass, BPF is an OS-supported mechanism that
ensures isolation, does not lead to low utilization due to busy-
waiting, and allows a large number of threads or processes to
share the same core, leading to better overall utilization.

The support of BPF in the Linux kernel makes it an attrac-
tive interface for allowing applications to speed up storage
I/O. However, using BPF to speed up storage introduces sev-
eral unique challenges. Unlike existing packet filtering and
tracing use cases, where each BPF function can operate in a
self-contained manner on a particular packet or system trace
— for example, network packet headers specify which flow
they below to — a storage BPF function may need to syn-
chronize with other concurrent application-level operations or
require multiple function calls to traverse a large on-disk data
structure, a workload pattern we call “resubmission” of I/Os
(§2.3). Unfortunately the state required for resubmission such
as access-control information or metadata on how individual
storage blocks fit in the larger data structure they belong to is
not available at lower layers.

To tackle these challenges, we design and implement XRP
(eXpress Resubmission Path), a high-performance storage
data path using Linux eBPF. XRP is inspired by XDP, the
recent efficient Linux eBPF networking hook [28]. In order
to maximize its performance benefit, XRP uses a hook in
the NVMe driver’s interrupt handler, thereby bypassing the
kernel’s block, file system and system call layers. This allows
XRP to trigger BPF functions directly from the NVMe driver
as each I/O completes, enabling quick resubmission of I/Os
that traverse other blocks on the storage device.
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The key challenge in XRP is that the low-level NVMe
driver lacks the context that the higher levels provide. Those
layers contain information such as who owns a block (file
system layer), how to interpret the block’s data, and how to
traverse the on-disk data structure (application layer).

Our insight is that many storage-optimized data structures
that power real-world databases [10, 12, 20, 27, 44, 66, 70,
80] – such as on-disk B-trees, log-structured merge trees, and
log segments – are typically implemented on a small set of
large files, and they are updated orders of magnitude less
frequently than they are read; we validate this in §3. Hence,
we exclusively focus XRP on operations contained within
one file and on data structures that have a fixed layout on
disk. Consequently, the NVMe driver only requires a minimal
amount of the file system mapping state, which we term the
metadata digest; this information is small enough that it can
be passed from the file system to the NVMe driver so it can
safely perform I/O resubmissions. This allows XRP to safely
support some of the most popular on-disk data structures.

We present a design and implementation of XRP on Linux,
with support for ext4, which can easily be extended to other
file systems. XRP enables the NVMe interrupt handler to
resubmit storage I/Os based on user-defined BPF functions.

We augment two key-value stores with XRP: BPF-KV, a
B+-tree based key-value store that is custom-designed for
supporting BPF functions, and WiredTiger’s log-structured
merge tree, which is used as one of MongoDB’s storage en-
gines [27]. With random 512 B object reads on BPF-KV
with multiple threads using a B+-tree that has three index
levels on disk, XRP has 47%–94% higher throughput and
20%–34% lower p99 latency than read(). XRP also en-
ables more efficient sharing of cores among applications than
kernel bypass: it is able to provide 56% better p99 latency
than SPDK with two threads sharing the same core. In ad-
dition, XRP is able to consistently improve WiredTiger’s
performance by up to 24% under YCSB [41]. We open
source XRP and our changes to BPF-KV and WiredTiger
at https://github.com/xrp-project/XRP.

We make the following contributions.

1. New Datapath. XRP is the first datapath that enables the
use of BPF to offload storage functions to the kernel.

2. Performance. XRP improves the throughput of a B-tree
lookup by up to 2.5× compared to normal system calls.

3. Utilization. XRP provides latencies that approach kernel
bypass, but unlike kernel bypass, it allows cores to be
efficiently shared by the same threads and processes.

4. Extensibility. XRP supports different storage use cases,
including different data structures and storage operations
(e.g., index traversals, range queries, aggregations).

2 Background and Motivation
In this section we show why the Linux kernel is becoming
a primary bottleneck with fast NVMe devices and provide a
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Figure 1: Kernel’s latency overhead with 512 B random reads. HDD
is Seagate Exos X16, NAND is Intel Optane 750 TLC NAND, NVM-
1 is first generation Intel Optane SSD (900P), and NVM-2 is second
generation Intel Optane SSD (P5800X).

kernel crossing 351 ns 5.6%
read syscall 199 ns 3.2%
ext4 2006 ns 32.0%
bio 379 ns 6.0%
NVMe driver 113 ns 1.8%
storage device 3224 ns 51.4%

total 6.27 µs 100.0%

Table 1: Average latency breakdown of a 512 B random read()

syscall using Intel Optane P5800X.

primer on BPF.

2.1 Software is Now the Storage Bottleneck
New media like 3D Xpoint [1] and low-latency NAND [26],
have led to new NVMe storage devices that exhibit single-
digit µs latencies and millions of IOPS [11, 19, 24, 26]. The
kernel storage stack is becoming a major performance bot-
tleneck when accessing these devices. Figure 1 shows the
percentage of time spent in the Linux stack when issuing a
512 B random read I/O on different storage devices. While
the software overhead for the first generation of fast NVMe
devices (first generation Intel Optane or Z-NAND) was non-
negligible (~15%), with the latest generation of devices (Intel
Optane SSD P5800X) the software overhead accounts for
about half of the latency of each read request. The kernel’s
relative overhead will only get worse as storage devices be-
come even faster.
Where is the time going? Table 1 shows the time spent in
the different storage layers when issuing a random 512 B read
with O_DIRECT on Optane P5800X. The experimental setup,
which is used throughout this section, is a server with 6-core
i5-8500 3 GHz with 16 GB of memory, using Ubuntu 20.04,
and Linux 5.8.0. We also disable processor C-states and turbo
boost, use the maximum performance governor, and disable
KPTI [30]. The experiment shows that the most expensive
layer is the file system (ext4), followed by the block layer (bio)
and the kernel crossing, and that the total software overhead
accounts for 48.6% of the average latency.
Why not just bypass the kernel? One approach to elimi-
nate kernel overhead is to bypass it altogether [7, 65, 82, 83],
leaving just the cost to post a request to the NVMe driver and
the device’s latency. However, kernel bypass is no panacea:
each user is entrusted with full access to the device; they must
also construct their own user space file systems [73, 74]. This
means that there is no mechanism to enforce fine-grained
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Figure 2: Dispatch paths for the application and two kernel hooks.

isolation or to share capacity among different applications ac-
cessing the same device. In addition, there is no efficient way
for user space applications to receive interrupts on I/O comple-
tions, so applications must directly poll on device completion
queues to obtain high performance. Consequently, when I/O
is not the bottleneck, cores cannot be shared among processes,
which results in significant under-utilization and wasted CPU.
Furthermore, when more than one polling thread shares the
same processor, the CPU contention between them coupled
with the lack of synchronization lead all polling threads to ex-
perience degraded tail latency and significantly lower overall
throughput. Recent work has highlighted this issue [54] and
we reproduce it in §6.2.

2.2 BPF Primer
BPF (Berkeley Packet Filter) is an interface that allows
users to offload a simple function to be executed by the ker-
nel. Linux’s framework for BPF is called eBPF (extended
BPF) [23]. Linux eBPF is commonly used for filtering pack-
ets (e.g., TCPdump) [5, 6, 28, 52], load balancing and packet
forwarding [5,18,25,60], tracing [2,4,50], packet steering [46],
network scheduling [53,58] and network security checks [15].
Functions are verified by the kernel at install-time to ensure
they are safe; for example, they are checked to make sure
they do not contain too many instructions, unbounded loops,
or accesses to out-of-bounds memory addresses [29]. After
verification, which typically takes a few seconds or less, the
eBPF functions can be called normally.

2.3 The Potential Benefit of BPF
BPF can be a mechanism for avoiding data movement be-
tween the kernel and user space in cases when a logical lookup
requires a sequence of “auxiliary” I/O requests that generate
intermediate data not needed directly by the application, such

Latency Speedup Throughput Speedup

User Space 78 µs 1× 109K IOPS 1×
Syscall Layer 68 µs 1.15× 130K IOPS 1.2×
NVMe Driver 40 µs 1.95× 276K IOPS 2.5×

Table 2: Average latency and throughput improvement with respect
to user space when resubmitting I/O from the given layer; for kernel
layers, resubmission is executed with a BPF function. Results shown
for lookups on an on-disk B-tree of depth 10 [85].

as in pointer-chasing workloads. For example, to traverse a
B-tree index, a lookup at each level traverses the kernel’s en-
tire storage stack only to be thrown away by the application
once it obtains the pointer to the next child node in the tree.
Instead of a sequence of system calls from user space, each
of the intermediate pointer lookups could be executed by a
BPF function, which would parse the B-tree node to find the
pointer to the relevant child node. The kernel would then sub-
mit the I/O to fetch the next node. Chaining a sequence of
such BPF functions could avoid the cost of traversing kernel
layers and moving data to user space.

Other popular on-disk data structures, such as log-
structured merge trees (LSM trees) [70], also have such aux-
iliary pointer lookups which can be accelerated using BPF
functions. Other types of operations that would benefit from
such an approach include range queries, iterators, and other
types of aggregations (e.g., obtain the maximum or average
value in a range of key-value pairs). In all of these cases, only
a single result or a small subset of the objects that might be
accessed by the storage system ultimately need to be returned
to the application.

The BPF function that resubmits (dispatches) I/O in auxil-
iary I/O workloads could be placed at any layer of the kernel.
Figure 2 shows the I/O paths for both normal user space dis-
patch and for two possible locations of BPF resubmission
hooks: in the syscall layer and in the NVMe driver. Zhong
et al. [85] compared the performance improvement from a
resubmission hook in both locations on workloads with auxil-
iary I/O by measuring the speedup of lookup queries on an
on-disk B-tree of depth 10. The baseline for comparison is
reading I/O through the read system call. Table 2 summarizes
the results.

Best Case Acceleration. Dispatching the I/O requests from
the NVMe driver provides a significant latency reduction (up
to 49%) and corresponding speedup (up to 2.5×), since it
bypasses almost the entire kernel software stack. On the other
hand, as expected, issuing the BPF functions from the syscall
dispatch layer only provides a maximum speedup of 1.25×,
since the requests only benefit from eliminating kernel bound-
ary crossings, which only account for 5-6% of the kernel
overhead (Table 1). After reaching CPU saturation, the com-
putation savings of reissuing the submissions from the NVMe
driver translate into throughput improvements of 1.8-2.5×,
depending on the number of threads in the workload [85].
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Figure 3: Single-threaded lookups with io_uring syscall, using
NVMe driver hook.

Placing an eBPF hook anywhere in the kernel may im-
prove throughput between 1.2–2.5×. However, pushing the
I/O dispatching as close as possible to the storage device
dramatically improves the performance of a traversal. Hence
to obtain the highest possible speedup, XRP’s resubmission
hook should reside in the NVMe driver.

What about io_uring? io_uring is a new Linux system
call framework [9] that allows processes to submit batches
of asynchronous I/O requests, which amortizes user-kernel
crossings. However, each I/O submitted with io_uring still
passes through all the layers shown in Table 1, so each in-
dividual I/O still incurs the full storage stack overhead. In
fact, BPF I/O resubmissions are largely complementary to
io_uring: io_uring can efficiently submit batches of I/Os that
trigger different I/O chains managed by BPF in the kernel.

Figure 3 shows throughput improvements when using io_-
uring with a BPF hook in the NVMe driver. I/O Chain Length
denotes the total number of I/Os, including the initial I/O and
the resubmitted I/Os. Figure 3 shows that BPF can increase
throughput with respect to io_uring by up to 1.5× for small
batch sizes and up to 2.5× as batch sizes increase.

In summary, BPF can benefit both legacy read and io_-
uring system calls. By placing the hook in the kernel NVMe
driver, BPF may increase throughput of both legacy I/O and
single-threaded io_uring by up to 2.5×.

3 Design Challenges and Principles
As shown in the previous section, I/O resubmission must oc-
cur as close to the device as possible in order to reap the great-
est benefits. In the NVMe software stack, this is the NVMe
interrupt handler. However, executing the resubmissions from
within the NVMe interrupt handler, which lacks the context
of the file system layer, introduces two major challenges.

Challenge 1: address translation and security. The
NVMe driver has no access to file system metadata. In the
example of an index traversal, XRP issues a read I/O to a par-
ticular block and executes a BPF function that would extract
the offset of the next block it would like to query. However,
this offset is meaningless to the NVMe layer, since it cannot
tell which physical block the offset corresponds to without

having access to the file’s metadata and extents. Even if the ap-
plication developer made the effort to embed physical block
addresses to avoid the translation of the file system offset,
which would be burdensome, the BPF function could access
any block on the device, including blocks that belong to a file
that the user does not have permissions to access.

Challenge 2: concurrency and caching. It is challenging
to enable concurrent reads and writes issued from the file
system with XRP. A write issued from the file system will
only be reflected in the page cache, which is not visible to
XRP. In addition, any writes that modify the layout of the
data structure (e.g., modify the pointers to the next block)
that are issued concurrently to read requests could lead XRP
to accidentally fetch the wrong data. Both of these could be
addressed by locking, but accessing locks from within the
NVMe interrupt handler may be expensive.

Observation: most on-disk data structures are stable.
Both of these challenges would make it difficult to imple-
ment arbitrary concurrent BPF storage functions. However,
we make the observation that the files of many storage engines
(e.g., LSM trees and B-trees) remain relatively stable. Some
data structures simply do not modify on-disk storage struc-
tures in-place. For example, once an LSM tree writes its index
files (called SSTables) to disk, they are immutable until they
are deleted [12, 27, 44]. Accessing these immutable on-disk
storage structures requires less synchronization effort. Simi-
larly, even though some on-disk B-tree index implementations
support in-place updates, their file extents remain stable for
long periods of time. We verify this in a 24-hour YCSB [41]
(40% reads, 40% updates, 20% inserts, Zipfian 0.7) experi-
ment on MariaDB running TokuDB [20], which uses a fractal
tree (an on-disk B-tree variant) as its lookup index. We found
the index file’s extents only changed every 159 seconds on
average, with only 5 extent changes in 24 hours unmapping
any blocks, making it possible to cache file system metadata
in the NVMe driver without the overhead of frequent updates.
We also make the observation that in all of these storage en-
gines, the indices are stored on a small number of large files,
and each index does not span multiple files.

Design principles. These observations and experiments in-
form the following design principles.

• One file at a time. We initially restrict XRP to only is-
sue chained resubmissions on a single file. This greatly
simplifies address translation and access control, and it
minimizes the metadata that we need to push down to the
NVMe driver (the metadata digest, §4.1.3).

• Stable data structures. XRP targets data structures,
whose layout (i.e. pointers) remain immutable for a long
period of time (i.e. seconds or more). Such data structures
include the indices used in many popular commercial
storage engines, such as RocksDB [44], LevelDB [12],
TokuDB [12] and WiredTiger [27]. Since the cost of im-
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plementing locks in the NVMe layer is high, we also
initially do not plan to support operations that require
locks during the traversal or iteration of data structures.

• User-managed caches. XRP does not interface with the
page cache, so XRP functions cannot safely be run concur-
rently if blocks are buffered in the kernel page cache. This
constraint is acceptable since popular storage engines of-
ten implement their own user space caches [20,27,39,44];
Commonly they do this to fine-tune their caching and
prefetching policies and to cache data in an application-
meaningful way (e.g., cache key-value pairs or database
rows instead of physical blocks).

• Slow path fallback. XRP is best-effort; if a traversal fails
for some reason (e.g., the extent mappings become stale),
the application must retry or fall back to dispatching the
I/O requests using user space system calls.

4 XRP Design and Implementation
This section presents XRP’s design and implementation with
Linux eBPF and ext4. We describe the kernel modifications
that enable XRP’s resubmission logic in the interrupt han-
dler, and how applications are modified to use XRP. We also
discuss XRP’s synchronization and scheduling limitations.

4.1 Resubmission Logic
The core of XRP augments the NVMe interrupt handler with
resubmission logic that consists of a BPF hook, a file system
translation step, and the construction and resubmission of the
next NVMe request at the new physical offsets (Figure 4).
Our modifications to the Linux kernel consist of ~900 lines
of code: ~500 lines for the BPF hook and the changes to the
NVMe driver, ~400 lines for the file system translation step.

When an NVMe request completes, the device generates
an interrupt that causes the kernel to context switch into the
interrupt handler. For each NVMe request that is completed
in the interrupt context, XRP calls its associated BPF function
(bpf_func_0 in Figure 4), the pointer of which is stored in a
field in the kernel I/O request struct (i.e. struct bio). After
calling the BPF function, XRP invokes the metadata digest,
which is usually a digest of file system state that enables
XRP to translate the logical address of the next resubmission.
Finally, XRP prepares the next NVMe command resubmission
by setting the corresponding fields in the NVMe request, and
it appends the request to the NVMe submission queue (SQ)
for that core.

For a particular NVMe request, the resubmission logic is
called as many times as necessary for subsequent completions
as determined by the specific BPF function registered with
the NVMe request. For example, for traversing a tree-like
data structure, the BPF function would resubmit I/O requests
for branch nodes and end resubmission whenever a leaf node
is found. In our current prototype there is no hard limit on
the number of resubmissions before the completion returns
control to the application; such a limit would be necessary to
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Figure 4: XRP architecture.

struct bpf_xrp {

// Fields inspected outside BPF

char *data;

int done;

uint64_t next_addr[16];

uint64_t size[16];

// Field for BPF function use only

char *scratch;

};

uint32_t BPF_PROG_TYPE_XRP(struct bpf_xrp *ctxt);

Listing 1: Signature of BPF programs that can be loaded by XRP.

prevent unbounded execution. A hard limit can be enforced
by maintaining a resubmission counter in each I/O request
descriptor. Since I/O request descriptors cannot be accessed
from user space or from XRP’s BPF programs, their hard
resubmission limits cannot be overridden by users even if
XRP has multiple BPF functions that execute request resub-
missions. BPF function contexts are per-request, while the
metadata digest is shared across all invocations of the inter-
rupt handler across all cores. Safe concurrent access to the
metadata digest relies on read-copy-update (RCU) (§4.1.3).

4.1.1 BPF Hook

XRP introduces a new BPF type (BPF_PROG_TYPE_XRP) with
the signature shown in Listing 1 – any BPF function that
matches the signature can be called from the hook. §5 presents
one concrete BPF function matching this signature that is used
in our application. For example, for on-disk data structure
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traversal, the BPF function typically contains logic to extract
the next offset to fetch from the block.

BPF_PROG_TYPE_XRP programs require a context with five
fields, categorized into fields that are inspected or modified by
the BPF caller (resubmission logic in the interrupt handler),
and fields that should be private to the BPF function. Fields
that are accessed externally include data, which buffers data
read from the disk (e.g., a B-tree page waiting to be parsed
by the BPF function). done is a boolean that notifies the
resubmission logic whether to return to the user or continue
resubmitting I/O requests. next_addr and size are arrays of
logical addresses and their corresponding sizes that indicate
the next logical addresses for resubmission.

In order to support data structures with fanout, multiple
next_addr values can be supplied. By default we limit fanout
to 16; on-disk data structures align their components to small
multiples of device pages, so we have not encountered a need
for higher fanout per completion. For example, chained hash
table buckets are likely implemented as a chain of individual
physical pages and the elements of an on-disk linked list
are likely implemented at the granularity of physical pages.
Setting a corresponding size field to zero issues no I/O.

scratch is a scratch space that is private to the user and
the BPF function. It can be used to pass the parameters from
the user to the BPF function. Also, the BPF function can use
it to store intermediate data in between I/O resubmissions
and to return data to the user. For example, in the first BPF
invocation, the application can store a search key in the scratch
buffer so that the BPF function can compare it with the keys
in the disk block in order to find the next offset. When the I/O
chain reaches the leaf node of the B-tree, the BPF function
then places the key-value pair in the scratch buffer to return
it back to the application. For simplicity, we assume that the
size of the scratch buffer is always 4 KB. We find that a 4 KB
scratch buffer is sufficient to support a BPF function for a
production key-value store (§5). BPF functions can also use
BPF maps to store more data if their intermediate data cannot
fit into the scratch buffer. Each BPF context is private to one
NVMe request, so no locking is needed when working with
BPF context state. Letting the user supply a scratch buffer
(instead of using BPF map) avoids the overhead of processes
and functions having to call bpf_map_lookup_elem to access
the scratch buffer.

4.1.2 BPF Verifier

The BPF verifier ensures memory safety by tracking the se-
mantics of the value stored in each register [14]. A valid value
can either be a scalar or a pointer. SCALAR_TYPE represents a
value that cannot be dereferenced. The verifier defines var-
ious pointer types; most of them include extra constraints
beyond the no out-of-bound access requirement. For exam-
ple, PTR_TO_CTX is the type for the pointer to a BPF context.
It can only be dereferenced using a constant offset so the
verifier can identify which context field a memory operation

void update_mapping(struct inode *inode);

void lookup_mapping(struct inode *inode,

off_t offset, size_t len,

struct mapping *result);

Listing 2: Metadata digest: XRP exposes an interface to share
logical-to-physical-block mappings between the file system and
the IRQ handler.

accesses. Each BPF function type also defines a callback
function is_valid_access() to perform additional checks
on context accesses and to return the value type of the context
field. PTR_TO_MEM describes a pointer referring to a fixed-size
memory region. It supports dereferencing using a variable
offset as long as the access is always within bounds. The
data and scratch fields of the BPF_PROG_TYPE_XRP context
are PTR_TO_MEM and the rest are SCALAR_TYPE. We augment
the verifier to allow the BPF_PROG_TYPE_XRP’s is_valid_ac-
cess() callback to pass the size of the data buffer or scratch
buffer to the verifier so that it can perform the boundary check.
We discussed our proposed modification to the verifier with
the Linux eBPF maintainers, and they think it is sensible.

4.1.3 The Metadata Digest

In the conventional storage stack, the logical block offsets
in on-disk data structures are translated by the file system in
order to identify the next physical block to read. This transla-
tion step also enforces access control and security, preventing
reading in regions that are not mapped to the open file. In
XRP, the next logical address for a lookup is given by the
next_addr field after the BPF call. However, translating this
logical address to a physical address is challenging since the
interrupt handler has no notion of a file and does not perform
physical address translation.

To solve this, we implement the metadata digest, a thin in-
terface between the file system and the interrupt handler that
lets the file system share its logical-to-physical-block map-
pings with the interrupt handler, enabling safe eBPF-based
on-disk resubmissions. The metadata digest consists of two
functions (Listing 2). The update function is called within the
file system when the logical-to-physical mapping is updated.
The lookup function is called within the interrupt handler; it
returns the mapping for a given offset and length. The lookup
function also enforces access control by preventing BPF func-
tions from requesting resubmissions for blocks outside of the
open file. The inode address of the open file is passed to the
interrupt handler in order to query the metadata digest. If an
invalid logical address is detected, XRP returns to user space
immediately with an error code. The application can then fall
back to normal system calls to attempt its request again.

These two functions are specific to each file system, and
even for a particular file system, there may be multiple ways to
implement the metadata digest, presenting a tradeoff between
ease of implementation and performance. For example, in
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our implementation for ext4, the metadata digest consists
of a cached version of the extent status tree, which stores
the physical-to-logical block mappings. This cached tree is
accessed by the update and lookup function of the interface,
and it uses read-copy-update (RCU) for concurrency control.
RCU enables the lookup function to be lockless and fast (96 ns
on average).

To keep the cached tree up-to-date with the extents in ext4,
the update function is called in two places in ext4: whenever
extents are inserted or removed from the main extent tree. To
prevent a race condition where an extent is modified while
there is an inflight read on it, we maintain a version number
for each extent to track its changes. After data is read, but
before it is passed to the BPF function, a second metadata
digest lookup is performed. If the corresponding extent no
longer exists or its version number has changed, XRP will
abort the operation. Since application-level synchronization
usually prevents concurrent modifications and lookups on the
same region of a file at the same time, version mismatches
should only occur if the application is buggy or malicious.

An alternative, simpler implementation of the metadata
digest for ext4 could simply pass through to existing update
and access functions of the extent tree in ext4. In this case, the
update function would be a no-op, because ext4 already keeps
its extent tree up-to-date. However, such an implementation
would be much slower on the lookup path, because the extent
lookup function in ext4 acquires a spinlock, which would be
prohibitively expensive in the interrupt handler.

For now, XRP only supports the ext4 file system, but the
metadata digest can be easily implemented for other file sys-
tems. For example, in f2fs [64], logical-to-physical-block
mappings are stored in the node address table (NAT). Similar
to the ext4 implementation, an implementation of its metadata
digest could cache a local copy of the NAT, which would be
consulted in lookup_mapping. Then update_mapping would
need to be called anywhere in f2fs where the NAT is updated.

4.1.4 Resubmitting NVMe Requests

After looking up the physical block offsets, XRP prepares the
next NVMe request. Because this logic occurs in the interrupt
handler, to avoid the (slow) kmalloc calls needed to prepare
NVMe requests, XRP reuses the existing NVMe request struct
(i.e. struct nvme_command) of the just-completed request.
XRP simply updates the physical sector and block addresses
of the existing NVMe request to the new offsets derived from
the mapping lookup. Reusing NVMe request structs for im-
mediate resubmission is safe because neither user space nor
XRP BPF programs can access the raw NVMe request structs.

While struct bpf_xrp supports a maximum fanout of 16,
in the current implementation a resubmitted I/O request can
only fetch as many physical segments as the initial NVMe
request. For example, if an initial NVMe request only fetches
a single block, then all subsequent resubmissions for that
request can only fetch a single physical segment. During a

resubmission chain, if the BPF call returns multiple valid
addresses in next_addr, XRP will abort the request. This
limitation can be worked around by allocating and setting up
16 dummy NVMe commands in the first I/O request so that
subsequent resubmissions can express fanout if necessary.

4.2 Synchronization Limitations
BPF currently only supports a limited spinlock for synchro-
nization. The verifier only allows BPF programs to acquire
one lock at a time, and they must release the lock before
returning. Also, user space applications do not have direct
access to these BPF spinlocks. Instead, they must invoke the
bpf() syscall; the syscall can read or write the lock-protected
structure while holding the lock for the duration of that oper-
ation. Hence, complex modifications that require synchroniz-
ing across multiple reads and writes cannot be accomplished
in user space.

Users can implement custom spinlocks using BPF atomic
operations. This allows both BPF functions and user space
programs to acquire any spinlock directly. However, the ter-
mination constraint prohibits BPF functions from spinning to
wait for a spinlock infinitely. Another option for synchroniza-
tion is RCU. Since XRP BPF programs are run in the NVMe
interrupt handler, which cannot be preempted, de-facto they
are already in an RCU read-side critical section.

4.3 Interaction with Linux Schedulers
Process scheduler. Interestingly, we observed that a
microsecond-scale storage device like Optane SSD interferes
with Linux’s CFS when multiple processes share the same
core, even when all I/O is issued from user space. For ex-
ample, in the case where an I/O-heavy and compute-heavy
process share the same core, the I/O interrupts generated by
the I/O-heavy process will be handled in the timeslice of
the compute-heavy process. This may cause the compute-
heavy process to be starved of CPU; in the worst case in
our experiments, the compute-heavy process only received
about 34% of what would be a “fair” allocation of CPU time.
We experimentally verified this does not occur when using a
slower storage device, which generates interrupts much less
frequently. While XRP exarcerbates this problem by gener-
ating chains of interrupts, this issue is not specific to eBPF,
and can also be caused by network-driven interrupts [59]. We
leave this problem for future work.

I/O scheduler. XRP bypasses Linux’s I/O scheduler, which
sits at the block layer. However, the noop scheduler is already
the default I/O scheduler for NVMe devices, and the NVMe
standard supports arbitration at hardware queues if fairness is
a requirement [17].

5 Case Studies
To use XRP, applications use the interface shown in Listing 3.
Applications call libbpf [13] function bpf_prog_load to load
a BPF function of type BPF_PROG_TYPE_XRP to be offloaded
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int bpf_prog_load(const char *file,

enum bpf_prog_type type,

struct bpf_object **pobj,

int *prog_fd);

int read_xrp(int fd, void *buf, size_t count,

off_t offset, int bpf_fd,

void *scratch);

Listing 3: The XRP application interface consists of a libbpf
function to load BPF functions into the kernel and a read syscall that
requests that a BPF function be used. bpf_prog_load is an existing
function in libbpf. bpf_prog_load returns a file descriptor for the
loaded function, which must be passed to read_xrp. read_xrp adds
two arguments to the standard pread [21] syscall: this file descriptor
and a pointer to a 4 KB scratch space that is passed to the BPF
context.

in the driver and call read_xrp to apply a specific BPF func-
tion to the read request. Applications can load multiple BPF
functions with XRP. For example, a database can load a func-
tion for filtering and calculating aggregations from values
on-disk and a function for GET point lookups. XRP allows the
application to load multiple BPF functions into the kernel and
to specify the BPF function to use in each read_xrp syscall.
We present two case studies on how applications should be
modified to use XRP.

5.1 BPF-KV
We built a simple key-value store, called BPF-KV, with which
we can evaluate XRP against other baselines: Linux’s syn-
chronous and asynchronous system calls and kernel bypass
(SPDK [82]). BPF-KV is designed to store a large number
of small objects and to provide good read performance even
under uniform access patterns. BPF-KV uses a B+-tree index
to find the location of objects, and the objects themselves
are stored in an unsorted log. For simplicity, BPF-KV uses
fixed-sized keys (8 B) and values (64 B). The index and the
log are both stored in one large file. The index nodes use a
simple page format with a header followed by keys followed
by values. Leaf nodes contain a file offset pointing to the next
leaf node, enabling efficient index traversal for range queries
and aggregation. Object sizes are fixed, so updates occur in-
place in the unsorted log. Newly inserted items are appended
to the log; their index is initially stored in an in-memory hash
table. Once the hash table fills, BPF-KV merges it with the
on-disk B+-tree file.

Caching. BPF-KV implements a user space DRAM cache
for index blocks and objects. To reduce the number of I/Os it
needs to issue for lookups, BPF-KV caches the top k levels of
the B+-tree index. With a sufficiently large number of objects,
it is not possible to fit the entire index in the cache. Consider
the case where BPF-KV is used to store 10 billion 64 B
objects. In BPF-KV’s index, each node is 512 B (matching
the access granularity of the Optane SSD); hence, the tree

has a fanout of 31 (i.e. each internal node can store pointers
to 31 children). Therefore, 10 billion objects would require
an index with 8 levels. Fitting 6 index levels in DRAM is
expensive and would require 14 GB, while fitting 7 levels or
more becomes prohibitively expensive (437 GB of DRAM or
more). So, to support a large number of keys, BPF-KV would
require at the minimum 3-4 I/Os from storage for each lookup,
including a final I/O to fetch the actual key-value pair from
disk. Also note that having a hard memory budget for caching
the index is common in many real-world key-value stores
(e.g., RocksDB [45], DocumentDB [78], SplinterDB [40],
TokuDB [20]), since the index cache often competes with
other parts of the system that need memory, such as filters
and the object cache.

BPF-KV also maintains a least recently used (LRU) object
cache of the most popular key-value pairs. Before looking up
an object on disk, BPF-KV first checks whether it is stored
in the object cache. If not, it checks whether it is indexed
in the in-memory hash table. If the item is not found in the
in-memory hash table, it looks up the object by accessing the
first k cached levels of the index. Once it encounters an index
node that is not cached, it completes the index and the final
lookup on disk.

To find an object without XRP, BPF-KV traverses the B-
tree until the desired value is found using an I/O request per
level. For example, if the index contains 7 levels and the first
3 are cached and read from DRAM, then the traversal will
issue 4 I/Os to navigate the rest of the tree, followed by a final
I/O to fetch the object from the log.

BPF function. Listing 4 shows the BPF function used in
BPF-KV to lookup a key-value pair. We omit the code to
handle the final lookup in the log for simplicity. struct

node defines the layout of B+-tree index nodes whose size is
512 B. The BPF function bpfkv_bpf first extracts the target
key stored in the scratch buffer, and then it linearly searches
the slots in the current node to find the next node to read.

Interface modifications. We replace read calls with
read_xrp. Before calling into read_xrp, BPF-KV first al-
locates a buffer for the scratch space and calculates the offset
at which to start the lookup.

Range queries. BPF-KV supports range queries returning
a variable number of objects. We implement a BPF function
that runs as a state machine, allowing the operation to be
suspended and resumed when objects are returned to the ap-
plication for processing. The BPF function state, including the
beginning and end of the range, and the retrieved objects, are
stored in the scratch space (up to 32 72-byte key-value pairs).
On the initial invocation, the function traverses to the leaf
node that contains the starting key. Once the first key in the
range is found, the function stores the leaf node in the scratch
space and requests the block containing the corresponding
value. On the next BPF invocation, the function stores the
value in the scratch space and it continues the index scan
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struct node {

uint64_t num; uint64_t type;

uint64_t key[31]; uint64_t ptr[31];

};

uint32_t bpfkv_bpf(struct bpf_xrp *ctxt) {

uint64_t key = *((uint64_t*)ctxt->scratch);

struct node *n = (struct node *)ctxt->data;

if (n->type == LEAF_NODE) {

ctxt->done = true;

return 0;

}

int i;

for (i = 1; i < n->num; i++)

if (key < n->key[i]) break;

ctxt->done = false;

ctxt->next_addr[0] = n->ptr[i - 1];

ctxt->size[0] = 512;

return 0;

}

Listing 4: BPF function for BPF-KV.

on the cached leaf node. When the leaf node has been read
completely, the function submits a request for the next leaf
node using the node’s next-leaf file offset. The function re-
turns to the application in three cases: 1) the function reaches
a key past the end of the range; 2) the function reaches the
end of the index; 3) the function fills the scratch space with
values read from the log. In the last case, the application can
process the values and re-invoke the BPF function with the
range query state, allowing the range query to resume from
where it left off.

Aggregations. BPF-KV also supports aggregation opera-
tions, such as SUM, MAX and MIN. We implement these oper-
ations on top of the BPF range query function by setting a
bit that causes the function to perform the corresponding ag-
gregation instead of returning the individual values. Since
aggregation queries return a single answer, storing values in
the scratch space does not limit the number of I/O resubmits
the BPF function can request.

5.2 WiredTiger
WiredTiger is a popular key-value store that is the default
backend for MongoDB [27]. We use it as a case study since it
is a relatively simple and open key-value store that is used in
production. WiredTiger provides an option to use an LSM tree
where data is split into different levels; each level contains a
single file. Each file uses a B-tree index with the key-value
pairs embedded in the tree’s leaf nodes. The files are read-
only; updates and inserts are written into a buffer in memory.
When the buffer is full, the data is written out in a new file. We
configure the B-tree page size to be the same as our Optane
SSD’s block size (512 B). Our modification to WiredTiger
is around 500 lines of code, which mainly consist of buffer

allocation, extending function signatures and wrapping the
XRP syscall. XRP helps accelerate reads that are serviced
from disk, and it does not affect updates or inserts, which are
always absorbed by WiredTiger’s in-memory buffer.

BPF function. To use XRP, WiredTiger installs a BPF func-
tion similar to the one shown in Listing 4. The difference is
in order to find the next lookup address from the current page,
the BPF function contains a port of WiredTiger’s B-tree page
parsing code. This parsing logic replaces the for loop in
Listing 4.

The WiredTiger BPF function also makes several modi-
fications to make the BPF program compile correctly and
pass the BPF verifier. The modifications mainly consist of
adding bounds on loops to avoid infinite loops, masking point-
ers to eliminate out-of-bound access, and initializing local
variables to prevent access to uninitialized registers. We also
use the BPF function-by-function verification feature [3] to
break a complex function into several simple sub-functions.
This allows BPF functions to be verified independently, so
the functions that have been verified do not need another
round of verification when being called by other functions.
The function-by-function verification feature also supports
more complex BPF programs without exceeding the verifier’s
restrictions on function length.

Caching. WiredTiger maintains a least recently used (LRU)
cache for its B-tree internal pages and leaf pages. When look-
ing up a new key-value pair, WiredTiger caches the entire
lookup path including the leaf page in the cache. In order to
comply with WiredTiger caching semantics, the BPF function
described in the previous section also returns all traversed
pages so that WiredTiger can cache them. The BPF func-
tion stores traversed pages in the scratch buffer of its context.
When the scratch buffer is exhausted, the BPF function will
stop resubmitting requests and return to user space imme-
diately. After WiredTiger adds those pages into its cache, it
will call read_xrp again to continue the lookup starting at
the previous page. Since we set the size of the scratch buffer
to 4 KB, a BPF function can store up to 6 traversed 512 B
pages in the scratch buffer, which leaves room for necessary
metadata such as the search key.

Interface modifications. To integrate WiredTiger with
XRP, we replace normal read calls with read_xrp. read_-
xrp is called when the next page is not in the cache and needs
to be read from disk. The eviction policy of WiredTiger en-
forces that only the pages without any cached children pages
can be evicted, so any uncached page will not have cached
descendants. Therefore, it is safe to call read_xrp to read
all of the remaining path from disk without checking the
application-level cache again. If read_xrp fails for any rea-
son, WiredTiger falls back to the normal lookup path. We
allocate a data and scratch buffer for each WiredTiger session
to avoid the overhead of allocating and freeing buffers for
every request. WiredTiger sessions synchronously process
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Average Lookup Latency (µs)

# Ops SPDK io_uring read() XRP

1 5.2 13.6 13.4 10.7
2 7.8 20.2 20.6 14.2
3 11.2 28.0 27.4 18.0
4 14.3 35.0 34.0 21.7
5 17.2 42.4 41.5 25.4
6 20.2 49.3 48.8 29.3

Table 3: Average latency of a random key lookup with BPF-KV as
a function of the depth of the B+-tree stored on-disk. # ops is the
number of index I/Os per lookup.

one request at a time, which avoids concurrency issues.

6 Evaluation
In this section we seek to answer the following questions:
1. What are the overheads of using BPF for storage (§6.1)?
2. How does XRP scale to multiple threads (§6.2)?
3. What types of operations can XRP support (§6.3)?
4. Can XRP accelerate a real-world key-value store (§6.4)?

Experimental setup. All experiments are conducted on a
6-core i5-8500 3 GHz server with 16 GB of memory, using
Ubuntu 20.04, and Linux 5.12.0 with an Intel Optane 5800X
prototype. All experiments use O_DIRECT, turn off hyper-
threading, disable processor C-states and turbo boost, use the
maximum performance governor, and enable KPTI [30]. We
use WiredTiger 4.4.0 in the experiments.

Baselines. We compare the following configurations: (a)
XRP, (b) SPDK (a popular kernel-bypass library), (c) standard
read() system calls, and (d) standard io_uring system calls.

6.1 BPF-KV
Latency. To answer the first evaluation question, we mea-
sure the performance of BPF-KV on a benchmark that per-
forms a million read operations with keys drawn randomly
with uniform probability. The experiment varies the number
of levels of the tree that are stored on-disk. In this subsection,
we disable caching of data objects and index nodes to focus
on the overhead of looking up on-disk items. The measured
average latency is shown in Table 3. The leftmost column rep-
resents the number of chained I/Os that are required to lookup
the key in the index (not including the final data lookup). For
example, if the number of operations is 4, then BPF-KV is
configured with an on-disk tree of depth 4, and it also needs
to issue one more I/O to fetch the key-value pair from the log.

There are a few takeaways from this experiment. First,
XRP improves latency over read(), because XRP saves one
or more storage layer traversals when it traverses the index
or moves from the index to the log. Indeed, one can see
that XRP’s latency increases by about 3.5-3.9 µs for each
additional I/O operation, which is close to the device’s latency
(Table 1). This means that XRP achieves close to optimal

latency for resubmitted requests. The same is true for io_-
uring: in the case of submitting I/O requests synchronously
without batching, read() and io_uring are almost equivalent.
Second, SPDK exhibits better latency than XRP since XRP
must pass through the kernel’s storage stack once to initiate
the index traversal, while SPDK completely bypasses the
kernel. Nonetheless, XRP’s marginal added latency when the
depth of the B+-tree is increased is close to SPDK’s (2.6 µs-
3.4 µs). For this reason, in the case of a 6-level index, XRP is
only 45% slower than SPDK while read() is 142% slower
than SPDK. Importantly, XRP achieves this without resorting
to polling. This means that, unlike with SPDK, processes can
continue to use CPU cores efficiently for other work; XRP’s
use of CPU time is limited to what is specifically needed
to resubmit I/Os in the background and to keep I/O device
utilization high.

Figure 5a and Figure 5b present the 99th-percentile latency
and 99.9th-percentile latency of XRP, respectively. When run-
ning with a single thread, similar to the average latency re-
sults, XRP reduces both 99th-percentile latency and 99.9th-
percentile latency by up to 30% compared to read() and
io_uring. Note that our experiment runs as a closed loop, so
XRP is running at a higher throughput than read() and io_-
uring. At identical throughput XRP would show additional
improvement over these baselines. Interestingly, when the
number of threads exceeds the number of cores (6) by more
than 3, SPDK’s 99.9th-percentile latency increases signifi-
cantly. This is due to the fact that with SPDK all threads are
busy-polling, and cannot effectively share the same core with
other threads. To this end, we measure the percentage of re-
quests whose latencies are greater than or equal to 1 ms and
present the data in Figure 5c. The results show that SPDK has
0.03% of such requests with 7 threads, and this percentage
increases to 0.28% when the number of threads reaches 24. In
contrast, io_uring, read(), and XRP always have fewer than
0.01% of such requests.

Throughput. Figure 6a shows the throughput of XRP. As
expected, as the index depth increases, XRP’s speedup is
higher compared to standard system calls. Figures 6b and 6c
show the throughput speedups with a varying number of
threads with an index of depth 3 and 6, respectively. Both
figures show the speedup of XRP relative to issuing standard
system calls does not decrease even as I/O and XRP BPF
functions are scaled across several cores. Once again, XRP
provides equal to or higher throughput compared to SPDK
once the number of threads is 9 or higher.

6.2 Thread Scaling
Since storage applications often use a large number of con-
current threads that access I/O devices, for example in order
to process concurrent requests and to perform background
garbage collection [12, 20, 27, 44], XRP needs to be able to
provide good tail latency and throughput under a large number
threads. We analyze how XRP scales as a function of the num-
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(b) (Log scale) 99.9th-percentile latency.
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Figure 5: Tail latency and percentage of requests with extreme latency of XRP and SPDK against read and io_uring with BPF-KV with index
depth 6, random key lookups, and closed-loop load generator.
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(a) Single thread with varying index depth.
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(b) Multiple threads with index depth 3.
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(c) Multiple threads with index depth 6.

Figure 6: Throughput of XRP and SPDK against read and io_uring with BPF-KV with random key lookups and closed-loop load generator.
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Figure 7: XRP vs. SPDK with open-loop load generator.
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Figure 8: Average read latency and throughput of BPF-KV with
XRP vs. read() when performing a range query over a varying
number of objects.

ber of threads and compare it to SPDK. We run an open loop
experiment, where the amount of load matches the maximum
bandwidth of the Intel device (5M IOPS for 512 B random
reads). Figure 7a compares the throughput of XRP (integrated

with io_uring) to SPDK with BPF-KV using 6 on-disk index
levels, where each thread represents a different tenant. Two
major observations are: 1) when using 6 working threads (the
number of CPU cores on the machine) both SPDK and XRP
can achieve a throughput close to the hardware limit (the grey
dashed line); 2) once the thread count exceeds the CPU cores,
SPDK’s throughput steadily decreases while XRP still pro-
vides stable throughput. SPDK’s throughput collapse stems
from its polling-based approach; SPDK threads never yield,
leaving scheduling up to Linux’s CFS which works in coarse
6 ms timeslices. However, idle XRP threads will voluntarily
yield the CPU to busy threads, so more CPU cycles are spent
on actual work. Figure 7b presents the throughput-latency
relationship under 12 working threads as a function of the
load. With more threads than CPU cores, both average and
tail latencies also increase more significantly in SPDK, as
each thread waits longer to be scheduled than in XRP.

6.3 Range Query
Figure 8 compares the average latency and the throughput
of running a range query with XRP against performing the
query with read() system calls. In both cases the range query
performs a single index traversal to find the first object, and
traverses the leaf nodes of the index to find the address of
subsequent objects. The index depth is 6 in this experiment.
Even though the XRP range query can only retrieve 32 objects
per syscall, the results show this adds negligible overhead.
XRP’s performance speedup remains relatively constant as a
function of the length of the aggregation, since XRP performs
only one storage stack traversal for every 32 values retrieved.
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Figure 9: Throughput of reads/scans in WiredTiger with (a) varying client threads with a 512 MB cache and (b) varying cache size.
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percentile latency of reads/scans in WiredTiger with varying number of threads with 512 MB cache.

6.4 WiredTiger

To understand whether XRP can benefit a real-world database,
we evaluate the performance of WiredTiger with and without
XRP on YCSB [41]. We run the different YCSB workloads so
that their runtime takes more or less the same time: YCSB A,
B, C and E use 10M operations, D uses 50M operations and
E uses 3M. The baseline WiredTiger uses pread() to read B-
tree pages, while the WiredTiger with XRP uses read_xrp().
We populate the database with 1 billion key-value pairs and
set the size of both key and value to 16 B. The total size of
the database is 46 GB. WiredTiger runs eviction threads to
evict pages when its cache usage is close to full, and we set
the number of eviction threads to 2.

Throughput. Figure 9 shows the total throughput of
WiredTiger with different cache sizes and different numbers
of client threads. We configure WiredTiger with 512 MB,
1 GB, 2 GB, and 4 GB cache sizes to ensure that WiredTiger
can cache at least 1% of its database while not exhausting
all the available memory on the machine. We run up to 3
client threads to avoid context switches. The results show
that XRP speeds up most workloads consistently by up to
1.25×. The throughput improvements are mostly affected by
the cache size. The speedup generally goes down when the
cache size becomes larger. In general, XRP provides a lower
speedup on WiredTiger than on BPF-KV, because WiredTiger
is less optimized than BPF-KV for reading from fast NVM
storage, and only spends 63% of its total time on I/O. In par-
ticular, XRP does not provide significant improvements on

YCSB D and YCSB E. This is because YCSB D follows a
latest distribution where the newly inserted items are the most
popular ones. Since new inserts are always written into in-
memory buffers, most read operations read from those buffers
in YCSB D. On the other hand, YCSB E only has inserts
and scans. WiredTiger supports scans via an iterator interface,
which only looks up one key-value pair at a time. XRP can
only benefit the lookup of the first key-value pair of a scan
operation, since the rest of the key-value pairs mostly either
reside on the same leaf node or require only one additional
I/O to fetch the next leaf node.

To study the effect of access distribution on XRP, we run
YCSB C with a varying Zipfian constant and with a uniform
distribution. Figure 10a shows that XRP’s benefit decreases
when the Zipfian constant becomes larger (i.e. , the distribu-
tion is more skewed) because of the increased cache hit ratio.
Note that skews greater than 0.99 represent very high skew
levels. We also see that the throughput gain on WiredTiger is
lower than that on BPF-KV with the uniform YCSB C. This
is again because WiredTiger spends 37% of its total time on
non-I/O operations.

Tail latency. We measure the tail read latency of
WiredTiger with and without XRP under a fixed load: 20 kop/s
per client thread for YCSB A, B, C, D, F, and 5 kops/s per
client thread for YCSB E. Since YCSB E has scans instead
of reads, we set a lower load for it and measure the tail scan
latency instead of the tail read latency. Figure 10b shows
that XRP can reduce the 99th-percentile latency by up to 40%.
Similar to the throughput, the 99th-percentile latency improve-

386    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



ment mostly decreases with a larger cache size, and XRP does
not have significant effect on YCSB D and E.

7 Related Work
There are four areas of related work: (a) using BPF to acceler-
ate I/O (typically networking), (b) kernel-bypass systems, (c)
near-storage compute, and (d) extensible operating systems
and library file systems.

BPF for I/O. There is a large number of systems and frame-
works that use BPF to accelerate I/O processing, primarily
focused on networking and tracing use cases [2,4–6,15,18,25,
28, 37, 46, 49, 50, 52]. Most closely related to XRP, XDP [28]
accelerates networking I/O by adding a hook in the NIC
driver’s RX path. It then provides an interface for eBPF pro-
grams that either filter, redirect, or bounce the packet.

There are no existing systems that use BPF to resubmit
storage requests from within the kernel. Kourtis et al. [62]
propose a system that uses eBPF functions as an interface to
submit disaggregated storage requests in order to avoid cross-
ing the network. In their system, resubmissions occur from
a user space service sitting at the host and are not serviced
by the kernel itself, since the network is the primary bottle-
neck (not the kernel software stack). ExtFUSE [36] allows
user space file systems on Linux to load BPF functions into
the kernel to serve low-level file system requests and thus
eliminates unnecessary context switches. While ExtFUSE ac-
celerates user space file systems, it provides no performance
benefits for an application that already uses a standard kernel
file system (e.g., ext4), since it does not allow applications
to bypass the kernel’s storage stack. BMC [49] uses BPF to
accelerate memcached by intercepting packets on the network
path at the host. The BPF functions can then access a separate
small kernel-based cache, which serves as a first-level cache
and is not synchronized with the user space memcached ap-
plication. Zhong et al. [85] provide motivation for using BPF
for accelerating storage from within the kernel, but do not
provide a concrete design, implementation or evaluation.

Kernel bypass. In order to reduce the kernel’s overhead
when processing I/O, several libraries and operating systems
have been designed to let users directly access I/O devices [7,
33, 34, 42, 47, 57, 65, 69, 71, 72, 82–84]. Most relevant to our
work, Intel’s SPDK [82] is a popular kernel-bypass library for
storage. In general, the downside of allowing users to access
I/O directly is that applications must directly poll for I/O to
obtain high performance. This means that cores cannot be
shared among processes, which leads to significant under-
utilization when I/O is not the bottleneck.

Near-storage compute. There are several systems that al-
low applications to offload their storage functions to the
processor embedded within or attached to a storage de-
vice [16, 22, 31, 38, 43, 51, 55, 61, 63, 74, 75, 77, 81]. The
downside of this approach is that it requires specialized stor-
age devices, dedicated hardware, or both.

Extensible operating systems and library file systems.
Our approach is reminiscent of extensible operating systems
and library file systems from the 1990s. Extensible operating
systems (e.g., SPIN [35] and VINO [76, 79]) allow exten-
sion of kernel functionality via user-defined functions. For
example, a client can write kernel extensions that read and de-
compress video frames from disk. Another related approach is
library file systems, such as XN [48,56]. Similar to XRP, XN
allows userspace library file systems to load untrusted meta-
data translation functions into the kernel, while guaranteeing
disk block protection without understanding file systems’ data
structures. These approaches required using dedicated operat-
ing and file systems, while XRP is compatible with Linux and
its standard file systems. ExtOS [32], a more recent extensible
OS, minimizes data movements in read() and splice() by
using BPF functions to filter data before copying them to user
space or another file, but it still incurs the full storage stack
overhead and does not allow I/O request resubmissions.

8 Conclusions and Future Work
BPF has the potential to accelerate applications using fast
NVMe devices by moving computation closer to the device.
XRP lets applications write functions that can resubmit de-
pendent storage requests to achieve speedups close to kernel-
bypass while retaining the advantages of being OS-integrated.
Beyond fast lookups, we envision XRP can be used for many
types of functions such as compaction, compression and dedu-
plication. In addition, XRP in the future can be developed as
a common interface for other use cases where computation
needs to be moved closer to storage, such as programmable
storage devices and networked storage systems. For example,
XRP could be used as an interface that can dynamically sup-
port both in-kernel offloading, as well as offloading functions
to a smart storage device or an FPGA. Another direction we
plan to explore is networked storage. XRP storage functions
could be chained with XDP networking functions to create
a datapath that bypasses both the kernel’s networking and
storage paths.
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A Artifact Appendix
Abstract
We open-source XRP, a high-performance storage data path
using Linux eBPF. The artifact includes the implementation
of XRP in the Linux kernel and two key-value stores that
leverage XRP to significantly improve throughput and latency.

Scope
The artifact allows readers to run all the experiments in §6
and generate Table 3, Figure 5, Figure 6, Figure 7, Figure 8,
Figure 9, and Figure 10.

Contents
The artifact provides the following parts.
1. XRP: the implementation of XRP in the Linux kernel

v5.12.0.
2. BPF-KV: a simple key-value store that uses XRP to accel-

erate both point and range lookups.
3. WiredTiger: a modified WiredTiger (based on v4.4.0) that

integrates with XRP to speed up index lookups.
4. My-YCSB: an efficient YCSB benchmark written in C++

for WiredTiger.
Test scripts and drawing scripts are also provided for all

the experiments and results in §6.

Hosting
The artifact is hosted on the main branch (commit fae90c5) of
the Github repository https://github.com/xrp-project/
XRP.

Requirements
XRP requires a low latency NVMe SSD on which the over-
head of the Linux storage stack is significant. We use Intel
Optane SSD P5800X in all the experiments. In the test scripts,
we assume that the operating system is Ubuntu 20.04, and
there are 6 physical CPU cores on the machine. Other config-
urations may require changing the scripts accordingly.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    393

https://github.com/xrp-project/XRP
https://github.com/xrp-project/XRP

	Introduction
	Background and Motivation
	Software is Now the Storage Bottleneck
	BPF Primer
	The Potential Benefit of BPF

	Design Challenges and Principles
	XRP Design and Implementation
	Resubmission Logic
	BPF Hook
	BPF Verifier
	The Metadata Digest
	Resubmitting NVMe Requests

	Synchronization Limitations
	Interaction with Linux Schedulers

	Case Studies
	BPF-KV
	WiredTiger

	Evaluation
	BPF-KV
	Thread Scaling
	Range Query
	WiredTiger

	Related Work
	Conclusions and Future Work
	Acknowledgments
	Artifact Appendix

