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Abstract

Group-fair learning methods typically seek to ensure that
some measure of prediction efficacy for (often historically)
disadvantaged minority groups is comparable to that for the
majority of the population. When a principal seeks to adopt a
group-fair approach to replace another, more conventional ap-
proach, the principal may face opposition from those who feel
that they have been disadvantaged as a result of the switch,
and this, in turn, may deter adoption. We propose to mitigate
this concern by ensuring that a group-fair model is also pop-
ular, in the sense that it yields a preferred distribution over
outcomes compared with the conventional model for a major-
ity of the target population. First, we show that state of the art
fair learning approaches are often unpopular in this sense. We
then present several efficient algorithms for postprocessing an
existing group-fair learning scheme to improve its popularity
while retaining fairness. Through extensive experiments, we
demonstrate that the proposed postprocessing approaches are
highly effective.

1 Introduction

Increasing adoption of machine learning approaches in high-
stakes domains, such as healthcare and social assistance,
has led to increased scrutiny of their impact on vulnerable
groups. A number of studies demonstrating the disparate
impact of automation on such groups (Citron and Pasquale
2014; Angwin et al. 2016; Dastin 2018; Lee 2018; Koenecke
et al. 2020) has motivated an extensive literature that aims at
achieving group fairness of machine learning (Kearns et al.
2018; Agarwal et al. 2018; Pleiss et al. 2017; Hardt, Price,
and Srebro 2016; Chouldechova and Roth 2018; Mehrabi
et al. 2021; Barocas, Hardt, and Narayanan 2017; Angwin
et al. 2016; Dwork et al. 2012) by imposing an explicit con-
straint that prediction efficacy (which can be measured in
many different ways) is similar across groups. However, a
principal contemplating a change from a conventional, and
potentially biased, prediction model to a group-fair approach
must contend with the perception that such a switch could
inadvertently harm many individuals in the process of im-
proving fairness (for example, making them less likely to
receive a scarce resource such as a welfare benefit or ad-
mission to a college). Such perceptions could make any
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change from the status quo contentious and, consequently,
less likely. Our central question is whether it is possible to
make group-fair classifiers sufficiently popular—reducing
the prevalence of realized or perceived harm—so as to make
their adoption less contested.

We model the principal’s problem as a comparison be-
tween a conventional approach fC and a group-fair approach
fF , with the principal considering a switch from the former
to the latter. Both algorithms select a subset of individuals
from a target population to obtain a particular desirable out-
come (e.g., a resource, such as admission to a college). We
examine popularity in this context through the lens of pref-
erences of individuals in a target population over selection
outcomes (which we can encode as positive outcomes of bi-
nary classification): an individual weakly prefers fF to fC
if the probability of being selected is not lower under the
former than under the latter. Popularity of a group-fair ap-
proach fF then amounts to ensuring that a given fraction
(e.g., majority) of a target population prefers fF to fC .

To illustrate the relationship between fairness, accuracy,
and popularity, consider the following example. Let G1 and
G0 have four and two members respectively, with true la-
bels h1, 1, 1, 1i and h0, 0i. A randomized conventional clas-
sifier fC , predicts each member of G1 to be positive with
probability 0.75 and each member of G0 to be positive with
probability 0.25. Under demographic parity fairness, G1 is
advantaged as this group has a positive rate 0.5 greater than
that of G0. Consider two choices for a fair model. fF1

pre-
dicts members of G1 to be positive with probability 0.75
and members of G0 to be positive with probability 0.55. fF2

predicts one member of G1 to be positive with probability
1, and the others with probability 2

3 ; it predicts one member
of G0 to be positive with probability 1 and the other with
probability 0.1. Note that both models have identical accu-
racy and unfairness, namely .65 and .2 respectively. How-
ever, fF1

has not decreased the score of any agent in the
population; all six prefer fF1

at least as much as the original
fC . In contrast, fF2

has decreased the scores of three agents
from G1 and one agent from G0; only two agents prefer fF2

at least as much as fC . This example illustrates that popular-
ity should be viewed as a different axis than either accuracy
or fairness, and there may be space to innovate by enabling
popularity comparisons among fair(er) models.

We start this paper by asking an empirical question: Do



typical group-fair classification approaches yield models
that are, in fact, unpopular in the sense above? We demon-
strate that they are: in experiments on several standard
datasets, more than half the target population can strictly
prefer the conventional scheme to several prominent group-
fair learning methods. Given that the group-fair approaches
have significant motivation and momentum behind them, in-
stead of designing an entirely new approach to finding pop-
ular and fair classifier, we ask whether it is possible to mini-
mally postprocess the output of a group-fair classifier in or-
der to achieve some target popularity while maintaining a
high level of fairness. We answer this question in the af-
firmative. Specifically, we describe two approaches to effi-
ciently postprocess the outputs from a given group-fair clas-
sifier in order to boost its popularity. The first approach
formalizes the problem as a minimal change of outcome
probabilities over the target population to guarantee a tar-
get level of fairness and popularity. We show that this prob-
lem can be solved in polynomial time. Our second approach
involves a form of regularized empirical risk minimization
with fairness and popularity constraints. This approach re-
lies on partitioning prediction scores into a set of quantiles,
and we show that, in general, the problem is strongly NP-
Hard. However, we also show that if the number of quan-
tiles is constant, this problem can be solved in polynomial
time. Our methods are applicable in both the classification
and scarce resource allocation settings, and allow a model
designer to directly control the level of popularity and fair-
ness.

In summary, our contributions are:

1. We propose the notion of popularity of group-fair classi-
fiers and allocation schemes, measuring the fraction of a
population that is weakly better off when switching from
a conventional to a fair learning scheme.

2. We demonstrate the degree to which state of the art
group-fair approaches are unpopular compared to their
conventional counterparts.

3. We introduce two postprocessing algorithms which allow
a principal to directly control the popularity of a given
fair model, while maintaining good fairness properties.
The first post-processing technique, dubbed DOS (Direct
Outcome Shift), is polynomial time solvable for both de-
terministic and randomized classifiers, and can also be
applied to the scarce resource allocation setting. The sec-
ond technique, k-QLS (k-Quantile Lottery Shift), works
by grouping agents into k quantiles (where k is chosen by
the model designer), and running lotteries on each quan-
tile. k-QLS is polynomial time solvable for deterministic
classifiers. While we show that k-QLS is NP-hard in the
randomized case, it becomes tractable for constant k, as
would be standard in practice.

4. We empirically demonstrate that the proposed postpro-
cessing techniques can achieve high levels of popularity
and fairness with minimal impact on prediction accuracy.

Related Work: Our work is broadly related to the field
of algorithmic group fairness which is concerned with both
defining what it means for a model to be fair, as well as oper-
ationalizing these definitions to produce fair models (Hardt,

Price, and Srebro 2016; Pleiss et al. 2017; Feldman et al.
2015; Dwork et al. 2012; Agarwal et al. 2018; Kearns et al.
2018; Jang, Shi, and Wang 2021; Kusner et al. 2017). In par-
ticular our algorithms work through postprocessing, a com-
mon technique for for achieving fairness (Pleiss et al. 2017;
Hardt, Price, and Srebro 2016; Kamiran, Karim, and Zhang
2012; Canetti et al. 2019; Lohia et al. 2019; Jang, Shi, and
Wang 2021). In these works, the scores or decisions of a con-
ventional classifier are modified in order to achieve fairness.
Most post processing techniques for fairness work through
“inclusion/exclusion” systems where a potentially random-
ized procedure is uniformly applied across groups, e.g. ran-
dom selection of group-specific thresholds (Hardt, Price, and
Srebro 2016; Jang, Shi, and Wang 2021), or randomly se-
lecting agents from one group to receive positive classifica-
tion with constant probability (Pleiss et al. 2017). Our post-
processing techniques, while concerned not exclusively with
fairness, follow a similar inclusion/exclusion system.

More generally, randomized prediction methods are com-
mon in prior literature. In some cases, randomization is in-
herently desirable, for example, to explore or correct ex-
isting bias in domains such as hiring (Berger et al. 2020;
Tassier and Menczer 2008; Hong and Page 2004) or lend-
ing (Karlan and Zinman 2010a,b). In other settings, the aim
is to increase model robustness (Pinot et al. 2019; Salman
et al. 2019), or to achieve better trade-offs between model
performance and fairness, as is common in many group-fair
classification approaches (Agarwal et al. 2018; Kearns et al.
2018; Pleiss et al. 2017).

Several recent papers look at the potential negative conse-
quences of applying group fairness (Liu et al. 2018; Zhang
et al. 2020; Corbett-Davies and Goel 2018; Kasy and Abebe
2021; Ben-Porat, Sandomirskiy, and Tennenholtz 2019). In
particular (Liu et al. 2018; Ben-Porat, Sandomirskiy, and
Tennenholtz 2019) demonstrate that specific types of group
equity can be decreased by the use of fair algorithms. Others
have merged notions of welfare and fairness (Hu and Chen
2020; Cousins 2021; Chen and Hooker 2021). Both the no-
tion of popularity, as well as our proposed techniques for
satisfying popularity and fairness, differ from these lines of
work in that popularity casts welfare in terms of the fraction
of a population which prefers a fair model compared with a
fairness-agnostic model. While the idea of agent preference
over models has received some recent attention (Ustun, Liu,
and Parkes 2019) (which aims to classify a population using
multiple models such that each agent prefers their assigned
model over all others), popularity in the context of group fair
learning has remained unexplored thus far.

2 Preliminaries
We begin by formalizing our models of conventional and
fair learning, as well as our definition of popularity. Let
D = (X, Y,G) be a dataset of n examples where the
ith example (xi, yi, gi) consists of features xi 2 X ⇢ R

d,
binary labels yi 2 {0, 1} and binary group membership
gi 2 {0, 1}. We assume throughout that the positive label
y = 1 corresponds to the preferred outcome, such as being
selected to receive a valuable resource (e.g., college admis-
sion). Consider two learning schemes, say C and F , where



C is a conventional learning scheme, designed to minimize
some fairness-agnostic objective, and F is a fair learning
scheme, designed to achieve a desired level of fairness be-
tween groups. Then, C solves a problem of the form:

fC 2 arg min
f2HC

LC

�

f,X, Y
�

(1)

i.e., choosing an optimal model fC from the hypothesis class
HC with respect to the loss LC . However, we do not require
that fC is the result of strict error minimization, only that it
maps X to {0, 1}. In the context of conventional learning,
the objective LC and learning scheme C may have exoge-
nous considerations aside from error minimization, such as
robustness or interoperability.

We further assume that the learned classifier is of the type
that produces a score function h : X ! [0, 1] which is used
to induce the classification f(X). Most classifiers used in
practice yield such score functions (e.g., SVM, Logistic Re-
gression, Neural Nets, Decision Trees, etc.). We study both
deterministic and randomized classifiers in this framework.
While deterministic predictions are most common, random-
ization can offer flexibility that can play a useful role both
in achieving fairness (Dwork et al. 2012; Kearns et al. 2018)
and robustness (Pinot et al. 2019; Li and Vorobeychik 2015;
Salman et al. 2019; Vorobeychik and Li 2014). A determin-
istic classifier f can be thought of as a threshold on scores
from h, i.e., f(x) = I

⇥

h(x) � ✓
⇤

for threshold ✓. A random-
ized classifier f , in turn, can be viewed as a Bernoulli ran-
dom variable with a mean given by h, i.e., E[f(x)] = h(x).

In addition to the classification setting above in which,
in principle, anyone can be selected (i.e., assigned a posi-
tive outcome y = 1), we consider scarce resource allocation
(henceforth simply allocation). In the allocation setting, un-
like the classification setting, the model designer is limited
in the number of positive predictions—that is, the number
of individuals that can be selected. Specifically, the score
function h is used to allocated k < n homogeneous, in-
divisible, goods among a population of n agents. This fol-
lows a well-established paradigm of allocating scarce re-
sources among individuals using a score function learned
on a binary prediction task (Kube, Das, and Fowler 2019).
Let Ii(X, h, k) 2 {0, 1} indicate allocation of a resource to
agent i when score function h is applied to a population X
and there are k resources. Similar to the classification set-
ting, the allocation function I can be deterministic or ran-
domized. In the case of deterministic allocation, Ii is ob-
tained directly from the set of scores h(X), e.g., allocating
resources to the k highest scoring individuals. In random-
ized allocation, Ii is a Bernoulli random variable, but unlike
in the classification setting, Ii may have an arbitrary joint
relationship with allocation decisions made for other agents,
e.g., sampling without replacement weighted by h(X).

Let M(f(X), Y ; g) be an efficacy metric computed with
respect to group membership g 2 {0, 1} (for example,
false positive rate (FPR) or error rate (ERR)). Define group
disparity U(f,D) = |M(f(X), Y ; 1)�M(f(X), Y ; 0)|,
i.e., the difference in efficacy between two groups. Then the
group-fair learning scheme F solves a problem of the form

fF = arg min
f2HF

LF

�

f,X, Y
�

s.t. U(f,D)  �. (2)

i.e., fF is an optimal group-fair model from hypothesis class
HF , with fairness captured by the constraint that group
disparity U is bounded by �. We refer to the fair learn-
ing scheme and model fF as �-fair. Note that when re-
sources are scarce, fairness is defined over allocation deci-
sions Ii(X, h, k), not over scores h; an example of a fairness
objective would be selection rate parity of Ii(X, h, k) be-
tween groups. Our analysis that follows applies to the broad
class of additive efficacy metrics in both the classification
and allocation settings.

Definition 2.1. (Additive Efficacy Metric): An efficacy met-
ric M is additive if for any population (X, Y,G),

M
�

f(X), Y ; g
�

=
X

y2{0,1}

X

i2Gg :
yi=y

f(xi)c
(g)
y,1 + (1� f(xi))c

(g)
y,0

for some c
(g)
y,0, c

(g)
y,1 2 [0, 1]. In the case of scarce resources

f(xi) is interchangeable with Ii(X, h, k). In the case of
randomized models, f(xi) is replaced with E[f(xi)] or
E[Ii(X, h, k)].

In an additive efficacy metric, the coefficients c
(g)
y,0, c

(g)
y,1

give the respective “costs” of classifying an example from
group Gg , with true label y, as negative or positive, respec-
tively. Thus, unfairness U is given as the difference in the to-
tal efficacy cost between groups. Additive metrics are widely
studied in the literature and include metrics such as error
rate (ER), positive (or selection) rate (PR), false positive rate
(FPR), and true positive rate (TPR). As an example, in the

case of PR fairness c
(g)
y,1 = 1/|Gg| and c

(g)
y,0 = 0 for each

y, g 2 {0, 1}.
We consider the situation in which a conventional learn-

ing scheme C is initially in place, and a principal considers
a switch from C to a group-fair scheme F , and wishes to
ensure that F is �-popular in the sense that it is preferred to
C by at least a fraction � of the target population. We for-
malize preference over learning schemes by assuming that
an individual prefers schemes which yield higher expected
outcomes for them, that is, they prefer being selected to not
being selected, as in Hardt, Price, and Srebro (2016). Thus,
an individual i with features xi prefers F over C if

fC(xi)  fF (xi) or IC,i(X, h, k)  IF,i(X, h, k) (3)

when decisions are deterministic and

E
⇥

fC(xi)
⇤

 E
⇥

fF (xi)
⇤

or (4)

E
⇥

IC,i(X, h, k)
⇤

 E
⇥

IF,i(X, h, k)
⇤

when decisions are stochastic.
Note that our analysis is in the space of outcomes, rather

than scores. Consequently, if decisions are deterministic, ei-
ther in classification or allocation settings, agents only have
a definitive preference over scores produced by h if this
is consequential to outcomes (e.g., pushing them above or
below ✓). In the stochastic case, on the other hand, agents
prefer the classifier or allocation scheme which yields the
higher expected outcome (that is, higher probability of be-
ing selected).

Armed with this model of individual preference, we now
define what it means for F to be popular.



Definition 2.2. (γ-popularity): A learning scheme F is said
to be �-popular with respect to a population (X, Y,G) and
conventional scheme C, if Condition (3) (for deterministic
models), or Condition (4) (for randomized models), holds
for at least �|X| individuals.

Popularity thus captures the fraction � of a population
which is weakly better off (or, equivalently, not made worse)
from the use of F over C. Similar to the concept of �-
fairness, in which a model designer can specify the desired
level of fairness �, the definition of popularity, as well as our
postprocessing techniques described later, allow the model
designer to directly specify, and control, the desired level of
popularity. Note that we do not capture the degree to which
individuals are made better or worse off as a result of switch-
ing from C to F , but only whether they are.

As mentioned earlier, our setting is one of a concrete
choice by a principal between a particular conventional ap-
proach C and a particular group-fair approach F . This re-
flects a decision by the principal to switch from C—which
is currently deployed—to F in order to reduce impact to a
disadvantaged group (or groups). Of course, different pairs
of C and F (e.g., using different loss functions, different
learning algorithms, etc) would yield different judgments
about popularity of F , which is, by construction, relative
to C. Consequently, these will also yield different decisions
about improving popularity of F based on algorithms we
discuss below. Nevertheless, our framework generalizes im-
mediately to a setting in which neither C nor F are fixed,
and there is uncertain about either, or both. In such a case,
we treat uncertainty about either C or F as a distribution
over approaches and, consequently, over outcomes induced.
This can then be immediately captured within our frame-
work dealing with randomized schemes, and all definitions
above, and technical results below, go through unchanged.

Our goal is to investigate the following three questions:
1) Are common group-fair learning techniques popular? 2)
For a given � and �, can we compute �-fair and �-popular
decisions in polynomial time? 3) What is the nature of the
tradeoff between popularity, fairness, and accuracy?

3 Improving Popularity through

Postprocessing

We consider two approaches to minimally postprocess a �-
fair scheme fF such that the resulting decisions also be-
come �-popular, for exogenously specified � and �: 1) di-
rect outcome shift (DOS) and 2) k-quantile lottery shift (k-
QLS). Postprocessing is performed in a transductive setting,
in which the populations’ features (X, G) (and possibly also
labels Y ) are known in advance. Throughout, we use fP to
refer to either approach we propose that combines both pop-
ularity and group fairness.

Direct Outcome Shift (DOS) DOS-based postprocess-
ing arises from solving the problem of finding a minimal
perturbation to the agents’ outcomes that achieves both fair-
ness and popularity, e.g. Program 5 for randomized classifi-
cation. For a target population with feature vectors X, we
shift individuals’ outcomes fF (X) or expected outcomes
E[fF (X)] by a perturbation vector p. For deterministic de-

cisions, p 2 {�1, 0, 1}n, while for stochastic decisions
p 2 [�1, 1]n. The optimization goal in either case is to
minimize kpkq for some `q-norm (q 2 {1, 2,1}) such
that the final decisions, whether they involve predictions
(fF (X)+p, or E[fF (X)]+p) or allocations (I(X, h, k)+p,

or E
⇥

I(X, h, k)
⇤

+ p) are both �-fair and �-popular. Since
DOS does not use knowledge of true labels Y , it can be ap-
plied directly at prediction time to a population of individ-
uals. However, this also means that it can only be applied
when the measure of fairness is independent of the true la-
bels Y (for example, ensuring equality of positive rates).
k-Quantile Lottery Shift (k-QLS) Another option for

creating popular and fair classifiers is to directly mini-
mize a loss function regularized by the distance of the
fair-and-popular classifier from the fair classifier (distance
is measured on predictions at training time), e.g. Program
12 for randomized classifiers. k-QLS-based postprocessing
achieves this goal by partitioning scores hF (X) for a pop-
ulation X into k bins (based on quantiles). The goal is then

to compute probabilities p
(g)
`

for each bin ` and group g,
which minimize empirical risk and change to each agent’s
outcome, while achieving �-popularity and �-fairness. This
is done at training time. Then at prediction time, we take
all agents in group g with scores in bin ` and run a lottery,

where each agent is classified as 1 with probability p
(g)
`

, and
0 otherwise. Since k-QLS is applied on the training dataset,
it also allows us to use fairness metrics that depend on labels
Y ; for this reason k-QLS is not used in allocation, where Y
is typically unknown.
k-QLS is motivated by works such as (Hardt, Price, and

Srebro 2016; Pleiss et al. 2017; Kamiran, Karim, and Zhang
2012; Canetti et al. 2019; Lohia et al. 2019) which aim
to postprocess a conventional model to achieve �-fairness
by running an “inclusion/exclusion” lottery on groups of
agents. However, k-QLS differs from these approaches:
shifting all outcomes of a group, even in a randomized man-
ner, is too granular to achieve �-popularity, and thus we shift
outcomes within k quantiles. In Section C.3 of the Supple-
ment we demonstrate the poor performance of group level
shifts compared the higher precision shifts of both the quan-
tile shifts of k-QLS and the individual shifts of DOS.

Remark 3.1. Achieving �-popularity and �-fairness may be
infeasible in general. However, for common efficacy metrics
(e.g., PR, FPR, and TPR), doing so is always possible. Both
DOS and k-QLS have a feasible solution for any level of
�-popularity and �-fairness, for both randomized and de-
terministic models.

3.1 Postprocessing for Deterministic Models

When the conventional model fC , and �-fair model fF
are deterministic, the optimization problems defined for
both the DOS approach and the k-QLS approach can be
efficiently solved for any U defined by an additive efficacy
metric M. In both cases, since model decisions are binary,
post processing amounts to finding some set of agents
negatively classified by fC , which minimally impact loss
while not violating fairness, when positively classified.



Theorem 3.2 (Informal). When classifiers produce deter-
ministic outcomes and U is defined by an additive fairness
metric, the optimization problems for both DOS and k-QLS
can be solved in polynomial time.

We defer the formal statement of this claim, and a full dis-
cussion of deterministic postprocessing, to the Supplement.

3.2 DOS for Randomized Classification

Next we investigate popularity as it relates to randomized
classifiers. Recall that in the case of randomized classi-
fiers DOS aims to minimally shift the expected outcomes
of fF on a population (X, G), with unknown true labels
Y , to produce the �-popular �-fair model, which we de-
note by fP , where E

⇥

fP (xi)
⇤

= E
⇥

fF (xi)
⇤

+ pi, and

0  E
⇥

fP (xi)
⇤

 1. Thus, DOS aims to solve the follow-
ing optimization problem:

min
p2[�1,1]n

kpkq (5)

s.t. U
�

E
⇥

fF (X)
⇤

+ p, G
�

 � (6)

1

n

n
X

i=1

I
⇥

E
⇥

fC(xi)
⇤

 E
⇥

fF (xi)
⇤

+ pi
⇤

� � (7)

for q 2 {1, 2,1}. A key challenge is that the popularity
constraint (7) is discrete and non-convex, amounting to a
combinatorial problem of identifying a subset of �|X| in-
dividuals who prefer the fP to its conventional counterpart
fC . Nevertheless, this problem can be solved in polynomial
time.

Algorithm 1: (Randomized DOS) Postprocessing technique
for converting a �-fair model fF into a �-popular �-fair
model fP .

Input: population: (X, Y,G), �-fair model: fF , conven-
tional model: fC , popularity: �
Result: weights p s.t. fP = fF + p is �-popular and �-
fair

1: Gg := {i : gi = g} s.t.

E
⇥

fC(xi)
⇤

� E
⇥

fF (xi)
⇤

 E
⇥

fC(xi+1)
⇤

� E
⇥

fF (xi+1)
⇤

2: m := d�ne
3: for i = 1 to m do
4: Si =

�

E
⇥

fC(xj)
⇤

 E
⇥

fF (xj)
⇤

+ pj : j 2 G1[: i]
 

[
�

E
⇥

fC(xj)
⇤

 E
⇥

fF (xj)
⇤

+pj : j 2 G0[: m�i]
 

5: build Program 5 and replace Constraint 7 with Si

6: pi = solution to the modified program
7: end for

return p⇤ = argmini kpik

Theorem 3.3. Let fC and fF be respectively a conventional
and �-fair randomized classifier. Let U be derived from an
additive efficacy metric M which is independent of Y (e.g.,
PR). Then for q 2 {1, 2,1} Program 5 can be solved in
time Θ(�nT ) (where Θ(T ) is the time required to solve a
linear program or semi-definite program, as appropriate) by
Algorithm 1, which returns a �-popular, �-fair model fP .

Proof Sketch. Recall that E[f(x)] = h(x), an agent i
prefers fP to fC if hC(xi)  hP (xi) = hF (xi)+ pi, and if
this holds for at least m = �n agents then fP is �-popular.
In the case of DOS postprocessing, if a specific set of m con-
straints is required to hold, rather than any m constraints, the
problem is tractable as it is a linear program (q = 1,1) or
semi-definite program (q = 2).

To order the set of possible constraints such that only a
polynomial number must be examined, we make use of the
following observations: for any two agents i, j 2 Gg , 1.)
since U is additive and independent of Y , unfairness is in-
variant under any change to pi, pj which preserves pi + pj ,
and 2.) if hC(xi) � hF (xi) � hC(xj) � hF (xj) then
hC(xi)  hF (xi)+pi iff hC(xj)  hF (xj)+pi. Thus, for
any solution p where hC(xi)  hF (xi)+ pi, but hC(xj) >
hF (xj) + pj , permuting pi and pj does not affect loss, fair-
ness, or popularity, (when permutation is infeasible, shifting
the maximum allowed weight from pi to pj is sufficient).
Since the problem is invariant under such permutations, we
need only consider imposing hC(xi)  hF (xi) + pi if
hC(xj)  hF (xj) + pj is already imposed.

Thus, each Gg can be ordered such that for i, j 2 Gg , if
j < i then hC(xj)� hF (xj)  hC(xi)� hF (xi). Since
the intragroup decisions are made trivial via this ordering,
only the intergroup decisions remain. Since at least m popu-
larity constraints need to hold, and there are m ways to select
exactly m total constraints between the two groups while
preserving the intragroup ordering, there are only m sets of
constraints that need investigation. Each set corresponds to
solving either a LP or SDP which takes time Θ(T ) to solve.
The specific running time of each program type is outlined
in the Supplement. Thus the total running time of DOS is
Θ(�nT ).

3.3 DOS for Randomized Resource Allocation

Next we turn our attention to resource allocation, in which
k < n equally desirable resources are allocated to a pop-
ulation of size n. Recall that the randomized allocation
scheme given by I(X, G) assigns resources to agents where

E
⇥

Ii(X, G)
⇤

2 [0, 1] gives the probability that agent i re-
ceives a resource with allocation performed over popula-
tion (X, G). For notational convenience, we use I(i) =
E
⇥

Ii(X, G)
⇤

to represent the probability that agent i re-
ceives the resources and suppress the expectation and im-
plicit dependence on the population (X, G).

Scarce resource allocation is particularly well suited for
DOS as true labels (with respect to the allocation decision)
are typically unknown. In this case, DOS postprocessing is
given by,

min
p2[�1,1]n

kpkq (8)

s.t.

n
X

i=1

IF (i) + pi  k (9)

U
�

IF + p, G
�

 � (10)

1

n

n
X

i=1

I
⇥

IC(i)  IF (i) + pi
⇤

� � (11)



We now show that DOS in resource allocation settings
remains tractable.

Theorem 3.4. Let IC and IF be a conventional and �-fair
allocation scheme, respectively, and U be derived from an
additive efficacy metric M which is independent of Y (e.g.,
PR). Then for q 2 {1, 2,1} Program 8 can be solved in
time Θ(�nT ) by Algorithm 1 which returns a �-popular, �-
fair allocation if one exists.

Proof Sketch. In the case of scarce resources, agents can
again be ordered in an identical fashion to the classification
setting (Theorem 3.3). Note that for any solution p and any
i, j 2 Gg , the resource constraint

Pn

i=1 IF (i)+pi  k is in-
variant to any change in pi, pj , which preserves pi+pj . Thus
a similar argument to Theorem 3.3, with a few caveats relat-
ing to infeasible solutions, holds. Specifically, this yields �n
programs (either LPs or SDPs), each of which is solvable in
time Θ(T ). Thus DOS post processing for resource alloca-
tion can be computed in time Θ(�nT ).

3.4 k-QLS for Randomized Classification

Finally, we explore k-QLS postprocessing for randomized
classifiers. k-QLS creates k intervals by the quantiles of
hF (X), where k is chosen by the model designer. Specifi-
cally, let ⇢` be the maximum score associated with quantile
` of hF (X). Each interval is given as I` = [⇢`�1, ⇢`], with
the understanding that ⇢0 = 0 and ⇢k = 1. On each inter-

val I`, and for each group g, a parameter p
(g)
`

is learned. At

prediction time, E
⇥

fP
�

xi

�⇤

= p
(gi)
`

for i s.t. hF (xi) 2 I`, .
Finding the optimal lottery probabilities can formulated

as the following optimization problem:

min
p2[0,1]2k

L
�

fP ,X, Y
�

+ �kfF (X)� fP (X)kqq (12)

s.t. U
�

fP , D
�

 � (13)

1

n

n
X

i=1

I
⇥

fC(xi)  fP (xi, gi)
⇤

� �, (14)

where L is expected training error. As was the case for DOS
postprocessing with randomized classifiers, the constraint
that � fraction of the population prefers fP over fC is dis-
crete and non-convex. Indeed, unlike DOS, the k-QLS prob-
lem becomes strongly NP-hard.

Theorem 3.5. Postprocessing to achieve �-popularity and
�-fairness with k-QLS (i.e., solving Program 12) is strongly
NP-hard when models are randomized, and U is derived
from an additive efficacy metric.

We defer this proof to Section B.3 of the Supplement.

The intractability stems entirely from the model de-
signer’s ability to choose the number of quantiles k: if k
is fixed, the problem can be solved in polynomial time as
shown in the following theorem. In practice, we can fix k to
be small, thus obtaining a tractable algorithm.

Theorem 3.6. Let fC and fF be a conventional and a �-fair
randomized classifier respectively. Let U be derived from
an additive efficacy metric M. Then for a fixed number of

quantiles k, Program 12 for q = {1, 2,1} can be solved in
polynomial time, thus obtaining �-popular �-fair decisions.

Proof. As was the case for DOS applied to random-
ized classifiers, k-QLS applied to randomized classifiers
is tractable if a specific set of m = �n agents is re-
quired to prefer fP , rather than any m agents. When the
number of intervals is constant it is straightforward to in-
duce an ordering on agents which explores only a polyno-
mial number of constraint sets. Specifically, let G(g,`) =
{i 2 [n] : gi = g and hF (xi) 2 I`}. Then agents in each

Gg can be ordered by the magnitude of p
(g)
`

required such
that they prefer fP to fC . Order Gg such that for i, j 2 Gg

if i < j then hC(xj)  hC(xi), then if agent i 2 Gg prefers
fP to fC , so does every j  i. There are 2k such sets, each
containing at most n/k agents. Since the popularity over each
Gg can be parameterized by the identity of the agent with the
largest value of hC(x) who prefers fP , there are no more
than (�n)k unique values under this parameterization, and
thus no more than (�n)k sets of constraints need be exam-
ined; each examination requires only polynomial time.

4 Experiments

In this section we empirically investigate the relationship be-
tween popularity and fairness, and evaluate the efficacy of
the proposed postprocessing algorithms. Each experiment
is conducted on four data sets: 1) the Recidivism dataset,
2) the Income dataset, 3) the Community Crime dataset,
and 4) the Law School dataset. In each dataset features can
be continuous or categorical; each label is binary and de-
fined such that 1 is always the more desirable outcome, e.g.
in the Recidivism dataset y = 1 indicates not reoffending.
A specific description of the label is given in the Supple-
ment. Group membership is defined by race for Community
Crime and Law School, and by gender for Recidivism and
Income; either feature is assumed to be binary. All other sen-
sitive features, such as age, are removed from the dataset.
We consider three fair learning schemes: the Reductions al-
gorithm (Agarwal et al. 2018), the CalEqOdds algorithm
(Pleiss et al. 2017), the KDE algorithm (Cho, Hwang, and
Suh 2020). Results for the latter two are provided in Section
C of the supplement.

Popularity of Current Fair Learning Schemes: We be-
gin by considering popularity of group-fair classifiers. The
fractions of the overall population, and subgroup population,
which prefer the fair classifier are shown in Figure 1, where
fairness is achieved using the Reductions method.

Not surprisingly, we see that in all instances the disad-
vantaged group G0 prefers fF at far higher rates than G1.
With the exception of the CalEqOdds algorithm (which
achieves fairness via group specific score shifts, resulting
in far stronger group-level preference over classifiers), re-
sults for other methods are similar; these are provided in the
supplement. Overall, randomized fair classifiers frequently
have popularity of less than 50% . On the other hand, fair
deterministic classifiers are relatively popular in most cases.

In either case, however, postprocessing can be used to fur-
ther boost popularity of group-fair methods.
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