BRIDGING FREQUENTIST AND CLASSICAL PROBABILITY THROUGH DESIGN
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The frequentist and classical models of probability provide students with different lenses through
which they can view probability. Prior research showed that students may bridge these two
lenses through instructional designs that begin with a clear connection between the two, such as
coin tossing. Considering that this connection is not always clear in our life experiences, we
aimed to examine how an instructional design that begins with a scientific scenario that does not
naturally connect to theoretical probability, such as the weather, may support students’ bridging
of these two models. In this paper, we present data from a design experiment in a sixth-grade
classroom to discuss how students’ shifts of reasoning as they engaged with such a design
supported their construction of bridges between the two probability models.
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There are distinct views of probability in the literature which differ not only in the way they
define probability but also in the nature of their emerging solutions to the solving of problems
(Batanero et al., 2016). The classical view of probability is one of the earliest approaches and is
connected to chance in games. From this view, probability is considered as a fraction of the
number of favorable cases divided by the number of all possible cases. This definition was
created on the assumption that “all possible elementary events were equiprobable” (Batanero et
al. 2016, p. 5), which is applicable to most situations in games. However, this view has been
criticized because the idea of equiprobable outcomes is not always valid in natural phenomena.

The other most common approach, the frequentist view, sees probability as a convergence of
relative frequency when a random experiment is repeated infinitely many times. According to
Cosmides and Tooby (1996), humans have more experience with encountered frequencies in
their observation of the world, therefore students would be more receptive to frequentist
probability where data is collected through experience. In contrast to the connection to real-life
experiences, the frequentist ideas of probability are not appropriate when discussing a single
event or when the experiment cannot be repeated multiple times under the same conditions. This
frequentist view is only an estimation of probability that results from a series of repetitions.

Considering the above, Lee et al. (2010) claim that since most everyday probabilistic
situations (such as weather forecasting) “do not allow for the classical approach to probability”
(p. 91), it is necessary for students to examine situations where it is possible to both calculate
classical theoretical probability and make the connection to the frequentist experimentally
collected empirical probability. Similar to Lee et al. (2010), many researchers have claimed that
developing a connection between the classical and frequentist views is helpful for students to
fully grasp the concept of probability (e.g., Henry & Parzysz, 2011; Ireland & Watson, 2009).
During the learning process, students need to distinguish between the two models and understand
when each one can be used for solving problems (Batanero et al., 2016).
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Prodromou (2012) argued that while the two models differ, they are complementary and not
mutually exclusive. She engaged pre-service teachers (PTs) in dice rolling tasks related to both
theoretical and experimental probability and examined how they developed a bidirectional
relationship between the two, explaining that “PTs perceived the theoretical probability as the
intended outcome and the experimental probability as the actual outcome. In the opposite
direction, PTs considered the theoretical probability as the target towards which the experimental
probability is directed” (p. 866). This notion was also highlighted by Stohl and Tarr (2002), who
reported that the tasks that engaged students in bidirectionality of probability helped students to
develop robust inferences about probability. To engineer this bidirectionality, they started with
coin tossing and dice rolling designs, and then used three different computer simulation tasks,
two of them using experimental probability as a tool to evaluate theoretical probability and the
other using theoretical probability as a tool to anticipate the result of the experiment.

Many supported that the connection between classical and frequentist probability is
grounded in the Law of Large Numbers (LLN) (e.g., Drier, 2000; Prodromou, 2012; Stohl &
Tarr, 2002), which states that larger numbers of trials performed for a given event lead the
relative frequency for that event to approach the theoretical probability. A study by Aspinwall
and Tarr (2001), examined how sixth graders’ understanding of experimental probability related
to sample size and the LLN using designs with flipping chips, spinners, and dice. They
demonstrated that probability simulations can challenge students’ preexisting conceptions.
However, they also noted that there were challenges in developing the understanding of the role
that sample size played in determining experimental probability through the LLN. Aspinwall and
Tarr (2001) claim this theorem has been shown to be challenging and nonintuitive for students.
Students may not recognize when to use the LLN (Fischbein & Schnarch, 1997), or they may
believe that the LLN applies to small numbers as well (Tversky & Kahneman, 1971).

Researchers found that offering students multiple representations of data supports their
understanding of the connection between theoretical and experimental probability. Stohl and Tarr
(2002) reported that the use of graphs and tables enables students to see bidirectionality of
probability by involving them in representing and analyzing data with different forms. Similarly,
Ireland and Watson (2009) claimed that multiple representations in computer simulations can
help students perceive how theoretical probability is connected to experimental probability. In
their experiment with digital mixers and spinners, students made a connection between
theoretical and experimental probability by comparing data in various representations.

Using computer simulations as a mode of representation provides students with the
opportunity to collect large amounts of data in shorter periods of time, which addresses the
limitations of time constraints and resources that Biehler (1991) argued students encounter as
they explore the concept of probability. Computer simulations also support students’ connection-
making between classical and frequentist approaches of probability (Ireland & Watson, 2009;
Prodromou, 2012). Abrahamson and Wilensky (2005) used modified coin flipping computer
simulations to help students develop their understanding of experimental probability by bridging
the gap of theoretical probability with simulating and collecting large amounts of experimental
data. Paparistodemou (2005) conducted a study where students were able to manipulate aspects
of the computer environment to affect the generation of random events. The students
manipulated the simulation in multiple ways to make use of the LLN to achieve the target
probability.

While many studies have examined how students construct bridges between the two models
of probability, their designs involved beginning with a clear connection between the two, such as
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coin tossing or dice rolling scenarios (e.g., Abrahamson & Wilensky, 2005; Prodromou, 2012).
However, our real-life experiences of probability, such as predicting the weather, do not always
have clear theoretical probabilities that can be calculated. Consequently, we started with the
conjecture that it is possible to support students’ bridging of these two models by first engaging
them with probability scenarios situated in the context of science. We hoped that this would
make use of students’ realistic experiences to construct more meaningful connections between
the two models. Specifically, we explored: (@) What kind of design that starts with the
frequentist perspective without a clear connection to the theoretical probability and moves to the
classical perspective would support students’ bridging between the two models? (b) How may
students’ reasoning progress as they shift between the frequentist and classical perspectives?

Methods

In this paper we report on the results of a whole-class design experiment (Cobb et al., 2003)
in a sixth-grade classroom in the Northeastern U.S. The class met in ten 15- to 50-minute
sessions via Google Meet due to COVID-19 restrictions. To test our conjecture we designed two
simulations, one based on the frequentist and one on the classical model, along with investigation
and interview questions. We chose a scientific context because our previous work (e.g.,
Panorkou & Germia, 2021; Panorkou & York, 2020) showed that sixth-grade students can
engage meaningfully with mathematical concepts in a setting integrated with science concepts.
We focused on the topic of weather because research showed that students consider weather
events as a relevant context for probability discussions (Chick & Baker, 2005).

The Weather Forecast simulation (Figure 1) is based on the frequentist model and generates
the results of an imaginary weather forecast. The chosen Data Set determines the forecasted
percentages of days that are expected to be rainy and sunny. The Run Size determines how many
times the simulation runs the experiment. The larger the chosen Run Size the more accurate the
resulting forecast will be for the chosen Data Set. After exploring this simulation, students were
asked to gather data about the results of different Run Sizes in a table and graph these values on
a log-scale plot of Percentage of Rainy Days versus Run Size to observe how the results tend
towards certain probabilities for each Data Set as the Run Size increases.

Figure 1: The Weather Forecast Simulation Showing Different Run Sizes for Data Set 1

The Chance of Rain simulation (Figure 2) is based on the classical model and represents
weather data for every day during the month of June for 20 years in a certain location. The data
is not based on a real location but was instead chosen to provide certain ratios of the different
outcomes. Each of the 600 individual data points indicates if that day was sunny, cloudy, rainy,
or stormy. The student can view a random day, a specific day, an entire specific month, or a bar
chart summarizing all 600 days. As in the classical model, the probability of each weather
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outcome for any given day can be described by a fraction with the total number of days in the
denominator. After exploring the simulation, the students were asked to gather data by clicking
on the View Random Day button 100 times, recording what the weather was for each of these
random days, and then comparing this to the probability fractions for each type of weather.

Figure 2: The Chance of Rain Simulation Showing the Different Data View Screens

In this paper, we focus on the analysis of one pair of students, Violet and Anne, to describe a
chronological account of the progression of their reasoning about probability and the design
decisions that the researcher made to support the development of their reasoning further. Of the
three pairs of students recorded, this pair was chosen for an initial analysis due to completeness
of data and their work with the research team member who was also part of the design team.

Findings

At the beginning of the design experiment, Violet and Anne were asked to state if they knew
anything about weather reports or the concept of chance in predicting rainy or sunny weather.
Violet made a connection to a recent snow day and mentioned weather forecasters talking about
the chance of snow, saying, “There’s a 50% of snow, 50% chance that snow might come. Well,
when they say that they're not completely sure if it’s going to come though.” Her reasoning
shows a classical understanding of probability as a percent.

Next, students were asked to explore the Weather Forecast simulation. First, they examined
Run Size 1 for Data Set 1 (30% rainy, 70% sunny) and identified that it was sometimes rainy and
sometimes sunny. As Violet said, “it only got rainy two times so it’s not always rainy”” showing
the classical perspective of considering two rainy times out of the total number of runs. They
then tried Run Size 5 and identified that it was now more likely for the predictions to be sunny
than rainy. As Violet stated, this is because “it mostly shows that it’s going to be more percent
chances of being sunny than rain,” illustrating that she was starting to notice a pattern in the data.
Subsequently, students were asked to explore the larger Run Sizes (10, 50, 100, 500, 1000, 5000,
10000, 50000, 100000) and observed that there are usually more sunny than rainy days.
However, they were not yet ready to bridge the connection to a specific theoretical probability.

In the next task, students were asked to use the simulation to record data in a table with the
percent rainy and percent sunny for a single run for each size (Figure 3). When asked if they saw
a pattern, Violet replied “I got 30 and 70, 3 times. ... But I'm a little surprised I got the same one
three times because | thought I was gonna get different more but then I got the same.” This
collection of data was challenging Violet’s preconceptions about the expected probability.

They then graphed the data from their tables and compared their graphs to each other (Figure
3). Violet identified that their graphs were similar, but not the same: “When I got to 100 my
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number, her number, like the Run Size started to get a little different from 100 to 1000. But then
when we got into the even bigger numbers, we had the same again.” Violet was beginning to
identify patterns in the Run Sizes, but the limitations of collecting random data was impeding her
ability to make a claim that larger Run Sizes are more precise than smaller Run Sizes.

Figure 3: Recreation of Tables and Graphs of Data Set 1

Figure 4: Recreation of Tables and Graphs of Data Set 2

The students went through the same process for Data Set 2 (90% rainy, 10% sunny). As
Figure 4 shows, Anne got 100% rainy for Run Size 1 and 10, and 90% rainy for Run Sizes 1,000
to 100,000. When asked to make a numerical prediction about the chance of rain Violet replies,
“there is 100% chance in the beginning of the day in the graph. But then it gets lower. So, I’ll put
it between, like 99 and 100%, it’s gonna rain.” Her reasoning shows that she erroneously
considered the x-axis to represent time of day rather than Run Size and this led her to struggle in
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identifying what the different probabilities represented. The researcher then intervened to clarify
this and asked her to explain what happens when the Run Size increases:

Violet: I think you should run the simulator, seven times. Or a lot of times, because the
number you get the most is probably the percentage of rain or the chances of rain, you’re
gonna get that day. Because if you run it one time, you’re probably not going to get the
right answer. Cause it could say that it’s going to be 100% sunny when you run it one
time, but it’s probably going to be rainy that day. But when you run it like seven or more
times, you’re gonna get probably the same number like two or three times. But if you get
it more than that, it means that it’s probably going to be that weather that day.

Violet identified that there was a “right answer” or target theoretical probability that the
experimental data should approach. She was also able to observe the limitations of small Run
Sizes. However, for her a Run Size of “seven” or “a lot of times” was large enough to make a
claim about the effect of the increased Run Size.

At this point the researcher modified the original design and discussed coin flipping and dice
rolling aiming to examine whether the focus on the classical approach would help them in
developing their frequentist understanding. Violet was able to bridge the connection between
flipping a coin and its theoretical probability by saying there was “a 50% chance because there’s
like half a chance you’re going to land on tails.” They struggled with understanding the
theoretical probability of the dice, but Violet used her understanding of experimental probability
to bridge the connection to the theoretical probability by explaining the chances of rolling a one:

Violet:  Yeah, six possibilities, you can get it, but most of the time, you’re not gonna get
it. It’s like, 10 out of 100, that you’re probably going to get one. When you roll the dice,
you’re not going to get the number, most of the time, you’re not going to get the number
you wanted.

After this introduction to classical probability, they engaged with the Chance of Rain
simulation and used the bar graph (Figure 2) to calculate the theoretical probability for each
weather type in June (Figure 5, left). The students then collected 100 data points using the View
Random Day button (Figure 5, right).

Figure 5: Theoretical and Experimental Probability for Chance of Rain Investigation

Working with the probabilities in fraction form required that they use strategies to compare
fractions, which made connecting the probabilities more difficult. They discussed rainy and
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stormy which each had a theoretical of “one-eighth” and then created 12.5/100 as an equivalent
fraction to compare it to their experimental 10/100 and 13/100. As Violet stated, “I tried
simplifying some of them to see if I got closer to the same number.” They were able to connect
the experimental to the theoretical probabilities. As Anne stated, “they’re all in the same thing
cause like 10, if it was 11 it would have been more closer, like 11, 12, 13. But I think they’re
like, equal.” They were then asked why they collected 100 data points, and not more or less:

Anne: So that you could get a good amount of like, sunny, stormy, rainy, and cloudy.
And, it won’t have to only be sunny, cause maybe if you did 10, it would maybe be like
30 sunny maybe like two stormy, three rainy.

Violet:  Ido prefer 100 more than 10. But I tried it out. I clicked the view Random Day
button 10 times. And I actually got rainy, stormy and cloudy. But I only got like two
chances of sun.

They both saw the limitations of a small sample size and Violet even used experimental data to
help support her point. At this point the researcher brought up the example of coin flipping again
in another modification of the experimental design, to help illustrate what happens as the sample
size increases. They discussed how it was more believable that they would get heads repeatedly
with small sample sizes, but Violet explained:

Violet: ~ When the number gets bigger, the more unbelievable it gets that you’re gonna get
tails, or heads like that much. I mean, it could be possible to get heads or tails, like three
or two times the same. ... Because if I take a few minutes to flip my small watch 100
times, ’'m most likely going to get tails and heads at the same time. Because like I said,
there’s two sides of a coin.

Violet showed some understanding of the LLN and the advantages of larger sample sizes by
using her understanding of experimentally flipping a coin and connecting it to the target
theoretical probability of flipping a coin, bridging the frequentist and classical perspectives.
Anne then showed similar reasoning when talking about the possibility of a computer simulation
flipping heads 100 times in a row, saying, “there might be a 50% chance that the computer might
just get like heads 100 in a row and then there’s like the other 50% chance,” showing that with
large samples, she would expect the results to approach the target theoretical probability.

At this point they were asked to return to the Weather Forecast to continue their discussion
on the LLN in a modification of the design. The researcher bridged the transition by continuing
the discussion on the 100 data points collected and what they thought would happen if they
collected more data. Both students agreed that collecting more than 100 would have been better
with Violet saying, “if we did 200, the higher we go, I think it might be the easiest to compare
them,” and Anne saying, “maybe if we did more than 100 maybe it would be like, close to each
other. A little bit.” They had both explained the limitations of smaller sample sizes and agreed
that larger sample sizes could make it easier to compare to the theoretical target.

However, when asked to draw conclusions about what happens as the Run Size gets larger
from the graphs of the Data Sets, they still had difficulty connecting those thoughts to their
analysis of the graphs. As Violet stated, “sometimes it goes higher, and then lower, and then it’s
gonna go higher,” and Anne said, “it was one at the bottom, then at the top, then at the center,
then at the top again.” Here they were focused on the variation of the data points and had not
developed the covariational reasoning to connect their data to the Run Size. The researcher
decided to prompt them to discuss the ‘gaps’ between their data points (Figure 4), which was a
productive design modification:
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Violet: [Looking at the right of the graph of Data Set 2, Fig. 4] Well, for the first three,
there’s not as big a gap because they’re all 90. [Looks at the left of the graph] That’s a
big gap. Because for the last one here, it’s 89. But this one’s 100. That’s sort of a big gap.

Anne: [Referring to Data Set 1, Fig. 3] Because you were comparing like there was a big
gap or if they were closer to each other. Most of them were closer to each other,
especially the 30 and the 29 and stuff.

This discussion was productive in helping them distinguish the pattern with smaller Run Sizes
compared to larger Run Sizes. Violet was able to summarize this:

Violet: Because as larger as it gets, it shows how likely the number you picked is going to
be the answer. Like in my graph as the numbers got bigger, it showed 30, two times. So
that means it’s gonna be 30% chance of rain. So as larger as the number is, is how it’s
going to be or how it may be. ... Because the run number did get larger, and it did show
why it’s gonna be that percentage.

Violet’s explanation shows her understanding of the LLN and how it can be used to approach the
target theoretical probability or “answer.” Anne mostly agreed with Violet’s thinking but
questioned what amount of data was sufficiently large. Despite this continuing limitation, Violet
and Anne developed their understanding of experimental probability to predict a theoretical
probability using the LLN, through their bidirectional engagement with the two simulations and
the use of multiple representations of probability.

Discussion

Our results show that our design that started with a frequentist perspective without a clear
connection to theoretical probability and moved to the classical perspective supported students’
construction of a bidirectional link (Prodromou, 2012) between the two probabilities. While
engaging in the simulations, the students’ learning process was not linear but rather it was their
transitions between the different representations that helped them develop bridges of the two
models. Through these transitions, students developed an understanding of the LLN by
emphasizing the strength of large numbers and the limitations of smaller Run Sizes.

The scientific context of the weather showed to be productive in illustrating the utility of
probability for understanding phenomena in the real world. Bringing in examples of flipping
coins and tossing dice helped bridge the gap for students in connecting the two probability
models. Interaction with data by engaging with multiple modes of representations, including
simulations, tables, and graphs, also fostered the students’ understanding of this connection.

This experiment was limited as we only analyzed the reasoning of one pair of students. Thus,
for future research, we would like to investigate other pairs to see how their connection of
theoretical and experimental probability would develop. We would also plan to continue revising
our design by exploring further how we can support students’ struggles related to reading graphs,
comparing fractions, and understanding what Run Size is sufficiently large.
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