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Word predictions in a text entry interface can help accelerate a user’s input. This may especially be true for users who have a
slow input rate due to some form of motor-impairment. The choice of how many word predictions to offer in a text entry
interface is an important design decision. In this work, we offered different number of word predictions in a keyboard where
able-bodied users had to dwell on a key for one second to click it. We found participants’ text entry rate did not improve with
increasing number of predictions.
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1 INTRODUCTION
One important design decision in a text interface is howmany word predictions we should provide in the interface.
Providing word predictions is particularly useful for people who have some form of motor- or speech-impairments
and use an Augmentative and Alternative Communication (AAC) device to communicate. The rate at which
these users enter text is very low, often less than 10 words-per-minute [5–7, 13, 16, 19]. Word predictions can
help them accelerate their input. The intuitive choice of the number of word predictions in an interface might be
the number of prediction slots the interface can fit. But previous work [2, 3, 18, 20, 22] has shown increasing
number of prediction slots does not necessarily improve performance. With large number of slots, there is an
associated cognitive cost while looking for the desired text. Also with increasing number of slots, we have smaller
slot targets which can make selecting a slot difficult. In this paper, we examine the text entry performance of a
keyboard with varying numbers of word predictions in a large online user study. While existing work tested
multiple word predictions, the effect of multiple word predictions is unknown with keyboards where it requires
dwelling on a key for a certain amount of time to activate it. In our work, the users had to dwell over a key for
1000ms using their mouse pointer to click it. Our intention was to simulate the slow-input of a dwell keyboard
with eye-gaze input.

2 RELATED WORK
Our choice of 1000ms dwell-time was based on previous work [10]. Past work has examined both static and
dynamic dwell times. Stampe and Reingold [17] used a dwell time of 750ms in eye typing. Majaranta et al. [9, 10]
used a dwell time of 400ms and 900ms. Paulus and Remijn [12] found users preferred a dwell time of 600ms for
selecting objects. Mott et al. [11] investigated adjusting a key’s dwell time dynamically based on the likelihood
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of the key being selected next. Other work [8, 14, 15] also investigated adjustable dwell times with able-bodied
users.

Our dwell keyboard differs from previous work in that we did not use an eye tracker. Instead, we substituted
dwelling on a key using a mouse pointer. We did this for two reasons. First, it allowed us to compare performance
using a large number of participants in a between-subject experimental design conducted online. Second, we felt
dwelling via mouse would not materially impact the end-user utility of number of word prediction slots. For
example, Hansen et al. [4] found users spent similar amount of time selecting a key via eye gaze and via a mouse
for a given dwell time.

3 USER STUDY
To examine how many prediction slots provide the best performance for a text entry interface designed for AAC
users, we conducted a user study using a web-based dwell keyboard.

Participants. We recruited 219 Amazon Mechanical Turk workers. Workers copied a set of phrases using our
dwell keyboard. We instructed workers to enter text “quickly and accurately”. Workers wrote phrases written by
people with ALS for voice banking purposes [1]. We paid each worker $3.50. Workers took about 20 minutes to
complete the study.
Design. Our web-based keyboard interface was similar to a touchscreen mobile keyboard but with a con-

figurable number of prediction slots above the keyboard (Figure 1). The keyboard contained the letters A–Z, a
spacebar, a backspace button, and a done button which moved to the next phrase. There were 2–9 prediction
slots above the keyboard and a given user only saw the same number of slots in their session. The leftmost slot
was dedicated to showing the literal text, i.e. the series of letters nearest to each tap for a word thus far. Before
entering any letters for a word, the literal slot displayed an additional word prediction. The predictions were
shown above the keyboard in real-time. We used the VelociTap [21] decoder hosted on a remote server to provide
the word suggestions. The dwell keyboard application running in the user’s web browser requested predictions
from the server at the start of a dwell on a key. This allowed us to provide predictions in most cases instantly to
users when they completed a dwell.

A user had to dwell on a button (i.e. a key or a prediction slot) using their mouse for one second (1000ms) to
select it. When a user hovered on a button, it was highlighted with a red rectangle and a green shade started
filling the button. If the user stayed inside the button for a second, a click sound was played and the character or
word corresponding to the button was added to the text field above the keyboard. If a prediction slot was most
probable according to the decoder, we highlighted it in purple. In this situation, if the user entered space, it would
select the highlighted prediction slot. We did this to imitate the iPhone keyboard. In other cases, space would
select the literal slot.

Procedure.We conducted a between-subject user study with the number of prediction slots as the independent
variable. There were eight conditions: two slots through nine slots. After entering each phrase, the participants
saw the error rate and entry rate on that phrase. Each participant entered 32 phrases in total with the first two
being practice phrases. We did not analyze the practice phrases. A participant never saw the same phrase twice.
We logged participants’ interaction with the keyboard, including: what key they were hovering on, which

prediction slot they used, how many times they used backspaces, and how much time it took to get a response
from the remote server hosting the decoder. We measured the average server response time for each participant.
We replaced participants in which more than 5% of their responses were more than 1000ms. Such delays may
have resulted in participants having to wait for predictions to populate; we wanted to approximate performance
of a local prediction engine as would be commonly the case for an actual AAC device.

Due to a bug, in some cases the keyboard automatically selected a second word prediction immediately if a user
selected a prediction and then moved the mouse pointer to an area above the keyboard. To identify phrases where
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Fig. 1. The dwell keyboard interface. The user is dwelling on the
“great” slot. The red rectangle indicates that the mouse pointer is
currently hovering on this slot and a blue color fills the button as the
dwell progresses.

Slots WPM CER KS

2 9.1 ± 0.7 0.75 ± 0.40 32.0 ± 5.4
3 10.2 ± 0.9 1.56 ± 0.80 45.2 ± 4.1
4 9.7 ± 1.0 2.10 ± 1.11 44.0 ± 6.4
5 10.7 ± 0.7 0.56 ± 0.34 47.5 ± 4.9
6 10.8 ± 1.1 0.83 ± 0.32 51.0 ± 4.8
7 11.0 ± 1.0 1.27 ± 0.98 50.5 ± 4.8
8 10.3 ± 1.0 1.21 ± 1.18 47.9 ± 6.1
9 10.5 ± 1.0 1.18 ± 0.74 50.0 ± 6.4

Table 1. Entry rate (WPM), character error rate
(CER), and keystroke savings (KS) result from
the study. ± values denote 95% user-wise boot-
strap confidence intervals.
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Fig. 2. Entry rate in words per minute (WPM) versus character error rate (CER) for each condition. Each dot represents one
participant.

this issue occurred, we checked if there were two prediction slot selections within less than one second (as this
would not be feasible with a one second dwell). We determined the number of phrases where a participant had
the issue. If a worker had the issue in more than five phrases, we replaced that worker. Otherwise, we removed
the problematic phrases from the corresponding worker’s data. After removing 59 problematic workers and 80
problematic phrases, we ended up having 160 users and 4,720 clean phrases where the bug did not occur. For
each number of slots from two to nine, we had 20 participants in the final set.

Results. Table 1 shows the input performance in the eight different conditions. We calculated entry rate using
words per minute (WPM). We defined a word as consisting of five characters including spaces. Participants
entered text at about 9–11 WPM using keyboards with differing number of slots. A one-way ANOVA revealed
this difference was not statistically significant (𝐹7,152 = 1.15, p = 0.33).
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We calculated the keystroke savings (KS) on each phrase. KS measures the percentage reduction in key presses
made compared to letter-by-letter input of a given phrase without the use of word predictions. Keystroke savings
was highest with 6-slots at 51% but after that it flattened with increasing number of slots. Despite somewhat
higher KS for the conditions with more slots, the corresponding entry rates were similar suggesting the cognitive
cost of checking the additional slots was washing out any gains resulting from reducing the keystrokes required.
However, it should be noted that for some AAC users, each input action can be tiring, so lowering the number of
actions required even without an increase in entry rate can be advantageous.

We calculated error rate using character error rate or CER. CER is the number of character insertions, substitu-
tions, and deletions required to transform user text into the reference text. Error rates were low in all conditions
and ranged between 0.56%–2.10%. A one-way ANOVA test was not significant (𝐹7,152 = 1.01, p = 0.42).

Table 1 suggests entry rate with 4-slots was less than 3-slots. Figure 2 shows entry rate versus character error
rate plot for each slot. We can see eight 4-slot users had an average entry rate lower than 8WPM and five had a
CER of more than 2.5%. Perhaps, more correction led to slow entry rate for 4-slot users.
We also calculated the backspaces-per-output-character with all slots. Since it took participants at least one

second to click a button, participants could stop dwelling on a button if it was less than a second and they were
dwelling on the wrong button. Despite this, participants still sometimes made mistakes and selected an incorrect
button. Average backspaces-per-output-character was low in all conditions at roughly four backspaces per 100
characters.

Given our interface’s dwell-based interaction, we were interested to know how much time participants spent
on each key. For each phrase, we calculated the elapsed time between when the participant started dwelling on
the first letter of a phrase and when they dwelled on the done button. We divided the elapsed time by the total
number of taps including tapping the done button to calculate the spent time per tap. Participants’ average time
spent per tap was 2,298ms, with a minimum of 1,609ms, and a maximum of 5,273ms.

4 DISCUSSION AND LIMITATIONS
We conducted a crowdsourced user study with able-bodied but artificially rate-limited users to investigate the
number of word predictions to offer in a keyboard style interface. We tested a range of prediction slots from two
to nine but did not find any particular choice that provides a significant performance improvement. Except with
only two slots, participants entered text at 10–11 words-per-minute and had keystroke savings of 44–51%. With
increasing number of slots, performance flattened after 5 slots. This is similar to the finding in Vertanen et al. [20]
in which participants typed on a smartwatch. While we had hoped that in cases where users typed slowly (as is
the case for many AAC users) additional word predictions would offer improved performance, our study results
suggest otherwise.
We used a static dwell-time of 1000ms for the crowdsourced user study. As we discussed, past work has

also investigated dynamic dwell time with eye-gaze input. But since we used the mouse pointer to have the
participants dwell on the key, we did not use a dynamic dwell time. Our static dwell time was long. Future work
might investigate the use of different and shorter dwell times. Our technique of dwelling using a mouse pointer
was different from a traditional eye-gaze keyboard. Traditional eye-gaze would involve an actual eye or head
tracker. Also able-bodied participants may differ from actual AAC users. Therefore, our study needs further
validation with a more realistic input device and actual rate-limited users.

5 CONTRIBUTION
Our work helps keyboard designers decide the number of word predictions to include in a text entry interface.
In particular, we focus on users who have a slow input speed due to a speech- or motor-impairment, which is
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relevant to the theme of the workshop. We think our empirical data on prediction efficacy tested with a large
number of users will also be useful to text entry interface designers in general.
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