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Abstract
Finding large cliques or cliques missing a few edges is a fundamental algorithmic task in the study
of real-world graphs, with applications in community detection, pattern recognition, and clustering.
A number of effective backtracking-based heuristics for these problems have emerged from recent
empirical work in social network analysis. Given the NP-hardness of variants of clique counting,
these results raise a challenge for beyond worst-case analysis of these problems. Inspired by the
triadic closure of real-world graphs, Fox et al. (SICOMP 2020) introduced the notion of c-closed
graphs and proved that maximal clique enumeration is fixed-parameter tractable with respect to c.

In practice, due to noise in data, one wishes to actually discover "near-cliques", which can be
characterized as cliques with a sparse subgraph removed. In this work, we prove that many different
kinds of maximal near-cliques can be enumerated in polynomial time (and FPT in c) for c-closed
graphs. We study various established notions of such substructures, including k-plexes, complements
of bounded-degeneracy and bounded-treewidth graphs. Interestingly, our algorithms follow relatively
simple backtracking procedures, analogous to what is done in practice. Our results underscore the
significance of the c-closed graph class for theoretical understanding of social network analysis.
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1 Introduction

The discovery of cliques and clique-like subgraphs is a fundamental tool in modern graph
analysis, especially for social networks. Such substructures have been used in many different
applications including community detection in social networks [57, 75], identification of
real-time stories in the news [3] and even detection of regulatory motifs in DNA [36]. They
have been used for graph visualization [83, 84] and for creating index structures for answering
reachability and distance queries in databases [22, 49].

In practice, due to noise in data, one is also interested in large "near-cliques". While this
is an ill-defined term, applications require cliques that are missing a small sparse subgraph.
For example, incomplete cliques have been used to predict missing pairwise interactions [82]
and for identifying functional groups [41] in a protein interaction network. They have been
used for community detection [86] and for detecting test collusion [7]. Recent works have
used the fraction of near-cliques to k-cliques to define higher order variants of clustering
coefficients [81]. A common notion is that of k-plexes (a clique minus a subgraph with degree
bound k). They have been used in community detection [78, 4], for partitioning of sparse
biological networks [37], and for determining molecular similarity [43].

From a worst-case standpoint, even the simpler problem of maximum clique is a notoriously
difficult computational problem. Even getting O(n1−δ)-approximations is NP-hard [42,
87], and it is hard to non-trivially approximate even with algorithm parameterized by
solution size [16]. On the other hand, there have been many recent successes in clique
enumeration/approximation in the data mining community [47, 48, 60, 28, 17, 30, 46]. Many
of these results employ backtracking heuristics [47, 46, 28, 30]. These algorithms can even get
the exact maximum clique for graphs with millions of edges. Moreover, the basic backtracking
techniques work for approximating counts of cliques missing a few edges [48, 79, 8, 74].

This gap between theory and practice is the main focus of our work. Can we prove the
existence of efficient (hopefully, backtracking) algorithms for near-clique discovery, assuming
the input has "reasonable" properties of social networks?

The starting point for our work is the recent notion of c-closed graphs, defined by Fox
et al. [34, 35]. Triadic closure – the property that friends of friends are often friends – is
a well-observed property of social networks. A c-closed graph has the property that two
vertices sharing at least c common neighbors are connected by an edge. Fox et al. empirically
show that real-world social network are often (or approximately) c-closed for small values of
c. Theoretically, they proved that maximal clique enumeration can be done in time 2O(c)n2,
and is hence fixed parameter tractable (FPT) in c. (The basic brute force algorithm can be
shown to run in O(nc) time.)

1.1 Main results
Our focus is on counting the number of maximal near-clique structures, which we can roughly
define as "a clique minus a sparse subgraph", or alternately, the complement of a sparse
subgraph. The input graph G has n vertices, m edges, and is assumed to be c-closed.

We define the various pattern subgraphs that will be counted. We begin with the classic
notion of a (d + 1)-plex.

▶ Definition 1 ((d + 1)-plex, [73]). A subset of vertices S is called a (d + 1)-plex if each
v ∈ S is adjacent to all but at most d vertices of S (excluding itself).

Observe that a (d + 1)-plex is precisely the complement of a graph with maximum degree
at most d. Our first result is that enumerating maximal (d + 1)-plexes (for constant d) in an
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input c-closed graph is FPT in c.

▶ Theorem 2. For c-closed graphs and a fixed d ≥ 0, there is an algorithm running in time
O(n2d·κc

d·p(c)) for enumerating (d+1)-plexes, where κd < 2 is the root of xd+4−2xd+3+1 = 0;
and for a polynomial p. For 2-plexes, a stronger bound O(n2 · 10c/5 · p(c)) applies.

We go further and show analogous results for other patterns that can be expressed as
complements of sparse graphs. A pattern has bounded co-degeneracy if the degeneracy of
the complement is bounded. The degeneracy can be thought of as a more robust notion of
maximum degree, and has a significant role in social network analysis. Bounded co-degenerate
graphs are a natural generalization of (d + 1)-plexes. Analogously, we also consider counting
maximum bounded co-treewidth graphs.

▶ Theorem 3. For c-closed graphs and a fixed d ≥ 0, there is an algorithm running in time
O(n2d+44c) that outputs all maximal induced subgraphs with co-degeneracy d in an input
c-closed graph.

▶ Theorem 4. For c-closed graphs and a fixed t ≥ 0, there is an algorithm running in time
O(nt+422c) that outputs all maximal induced subgraphs with co-treewidth ≤ t.

The exponential dependence nd in Theorems 2 and 3 is necessary, as is the dependence
nt in Theorem 4 as we show with examples.

We note that not all natural notions of “co-sparse” subgraphs lead to FPT bounds. For
example, the maximal subgraphs with bounded average co-degree cannot be listed by an
FPT algorithm, even for average co-degree of at most 2.

▶ Example 5. Let ℓ ∈ N and let c = ℓ
2 (ℓ + 1) + 1. By the hand-shaking lemma, a subgraph

G[S] has average co-degree at most 2 if and only if G[S] contains at most |S| non-edges.
Consider a graph G consisting of a clique K on c − 1 vertices and an independent set I on n

vertices, where any vertex in I is adjacent to every vertex in K. G is c-closed since any two
non-adjacent vertices are adjacent only to K. Note that G contains exactly n + c − 1 vertices.

Let us show that the number of maximal subgraphs G[S] with at most |S| non-edges is at
least nℓ and hence not FPT with respect to c. In particular, consider a set of the form S ∪ K

where S ⊆ I. If |S| = s, then the number of non-edges in G[S ∪ K] is exactly s(s − 1)/2. By
the choice of c, any set S of size ℓ is a maximal subgraph with at most |S| non-edges. Thus,
there are at least O(nℓ) ≈ O(n

√
2c) maximal subgraphs G[S] with at most |S| non-edges.

The backtracking connection: One of the first steps in proving the above theorems is a
different, simpler proof that maximal clique enumeration is FPT in c. (This is the main
result of Fox et al. [35].) Typical backtracking algorithms exhaustively and incrementally
build candidates for solutions until they have discovered all candidates. We analyze a simple
backtracking procedure that finds cliques (Section 3), and give a bound on its running time.
Moreover, we use this result to show that maximal bounded co-degenerate subgraphs can
be enumerated efficiently. We consider these proofs as mathematical justification for the
empirical success of backtracking algorithms, and see our results as “beyond the worst-case
analysis” results [72].

Organization: In Section 1.2, we describe our results in more detail. Section 1.3 covers
related work. Section 2 describes the definitions and terms required for the proofs. Sec-
tions 3, 4, 5 and 6 respectively gives proofs for FPT bounds for cliques, (d + 1)-plexes,
bounded co-degeneracy and bounded co-treewidth graphs.
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1.2 Discussion of results

Cliques We first provide a simple proof that uses a backtracking tree to show that the number
of maximal cliques is bounded by O(cm2c) where m represents the number of edges in the
complement graph. (Fox et al. prove a bound of min {3(c−1)/3n2, 4(c+4)(c−1)/2n2−21−c}). We
convert this result into a simple backtracking algorithm for enumerating maximal cliques that
runs in time O(cmn22c). Although the running time bound we obtain is slightly worse than
that of Fox et al., the algorithm and proof are simpler, in particular, as Fox et al. black-box
clique enumeration. We also believe that our proof provides theoretical understanding for the
practical efficiency of common backtracking methods, such as the Bron-Kerbosch algorithm
[13] and a recent work of Jain-Seshadhri [47].

Two approaches For the other dense subgraph types, we do the following: for each type,
we provide structural results bounding the maximum possible number of maximal subgraphs
of that type. Our results come in two flavors. In one flavor, the backtracking approach, we
show that any subgraph of that type can be split into parts which are either bounded in
size or are cliques. For parts that are cliques, we use the simple backtracking algorithm for
counting cliques mentioned above. For parts that are not cliques (and are thus bounded
in size), we simply find candidate vertices for each part, enumerate all subsets of these
candidate sets and combine them to give a set of subgraphs that is a superset of the set of
all maximal subgraphs of that type (for cliques, k-plexes and co-degenerate subgraphs, there
exist simple tests for checking if a subgraph is a maximal subgraph of that type). Because
the parts are of bounded size, we get FPT bounds for the size of this superset. In some
cases (cliques and d + 1-plexes), this approach leads to slightly worse exponential factors
than bounds obtained using the second approach, but leads to simple algorithms that are
easy to describe. Indeed, the enumeration algorithms follow from the structural results;
obtaining the structural results is the main challenge. Interestingly, the algorithms obtained
using this approach have significant portions that use backtracking, reflecting the fact that
backtracking has proven to be effective in practice.

In the other flavor, the three-step approach, we use the approach taken by Fox et al. for
proving their result for maximal cliques. We view their proof as being composed of three
parts. The first part uses a combinatorial bound on the number of maximal cliques, the
classic Moon-Moser theorem [66, 65]. This theorem states that the number of maximal
cliques in an arbitrary N -vertex graph is bounded above by 3N/3 (with a matching lower
bound furnished by a complete (N/3)-partite graph).

The second and most interesting part of the proof exploits the c-closed condition to
translate the Moon-Moser theorem into an FPT bound of at most n23(c−1)/3 maximal cliques
in a c-closed graph with n vertices. Roughly, this step of the proof works as follows. For
(almost) every maximal clique, one can identify two non-adjacent vertices such that the
clique is contained in the common neighborhood of the two vertices. Such a maximal clique
in the original graph is also maximal in an induced subgraph on at most c − 1 vertices, by
the c-closure property. The upper bound follows by applying the Moon-Moser theorem to
these subgraphs (of which there is a polynomial number), each of size at most c − 1.

The third step is to translate the FPT combinatorial bound on the number of maximal
cliques into an FPT algorithm for enumerating them. For the case of cliques, there is a well
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known algorithm [77] that can be used to list all maximal cliques in O(mn) time per clique.1
Thus, for proofs using the three-step approach, we use the same three-part framework

outlined above for the special case of cliques:

1. Combinatorial bound: Find an upper bound on the number of maximal dense sub-
graphs in an arbitrary N -vertex graphs, in the spirit of the Moon-Moser theorem. (Either
relying on an existing bound or proving a new one from scratch.)

2. FPT bound: Exploit the c-closed condition to translate the combinatorial bound into
an FPT-type upper bound (with parameter c) on the number of maximal dense subgraphs
in a c-closed graph on n vertices.

3. Enumeration: Give an FPT enumeration algorithm for listing all maximal dense
subgraphs in a c-closed graph. (Either relying on an existing enumeration algorithm or
devising a new one.)

We describe our contributions in more detail below:
(d + 1)-plexes2 A subset S ⊆ V (G) is called a (d + 1)-plex if every vertex v ∈ S is non-
adjacent to at most d other vertices in S. Equivalently, a subset S is a (d+1)-plex if G[S] has
co-degree at most d. Thus, a clique is 1-plex. This is a common relaxation of cliques used in
practice [33, 73]. For each fixed d, we give an FPT algorithm for enumerating (d + 1)-plexes.
In general graphs, an FPT algorithm for finding a largest (d + 1)-plex is impossible (assuming
P ̸= NP) [59].

For the backtracking approach, we show that every maximal (d + 1)-plex is either a
maximal clique, or contains a pair of non-adjacent vertices (u, v) such that the (d + 1)-plex
can be split into two parts – one part of size at most 2d − 2 consisting of vertices that are
non-adjacent to either u or v, and the other of size at most c consisting of (a subset of)
common neighbors of u and v. Since the number of pairs of non-adjacent vertices in the given
c-closed graph is equal to the number of edges in its complement graph, m, this gives the
maximum number of maximal (d + 1)-plexes as O(mn2d−22c) and the enumeration algorithm
follows.

For the three-step approach, we use Md(N) – the maximum number of maximal (d + 1)-
plexes in an N vertex graph. (Equivalently, Md(N) is the number of maximal subgraphs of
degree at most d in an N vertex graph.) For the combinatorial bound we need an upper
bound on Md(N). A recent result shows that for every fixed d there is a constant κd < 2
such that Md(N) ≤ κN

d [85].
Determining a tight bound for Md(N) appears to be challenging. To the best of our

knowledge, the only tight bound is the Moon-Moser theorem stating that M0(N) ≤ 3N/3 ≈
1.442N . One of our contributions is to give a tight bound for M1(N): M1(N) ≤ 10N/5 ≈
1.585N . This result is presented in Appendix B, and requires a much more involved proof than
the Moon-Moser theorem (see Appendix A for a short proof of the Moon-Moser theorem).3

1 Replacing the Moon-Moser bound with the trivial bound of 2N would also lead to an FPT result, albeit
one that is exponentially worse. Fox et al. [34, 35] also prove an incomparable bound with better
dependence on n (n2−21−c

) but worse dependence on c (4(c+4)(c−1)/2).
2 Similar result for (d + 1)-plexes was proved independently and concurrently with the previous version

of this paper by Koana, Komusiewicz, and Sommer [50]. The results in [50, 51] apply more generally
to the class of weakly c-closed graphs defined in [34, 35] (The paper [50] also includes several results
showing polynomial-size kernels for various problems in weakly c-closed graphs, an important direction
that is not pursued here.)

3 The induced subgraphs with maximum degree at most one are also called dissociation sets [80]. Thus,
we show that the number of maximal dissociation sets in an N -vertex graph is at most 10N/5.
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In the second step of the three-step approach, we give an FPT bound with a smaller
(than in the case of backtracking) exponential factor O(n2d · κc

d) using a more careful analysis
of the structure of a (d + 1)-plex. (Example 21 shows that the exponential dependence nd is
necessary.) Moreover, using the tight bound for M1(N) we give a stronger bound O(n2 ·10c/5)
for the number of maximal 2-plexes in a c-closed graph on n vertices.

To convert the tighter bound into an enumeration algorithm and complete the third step,
the simplest approach is to apply black-box one of the recent polynomial delay algorithms
for efficiently listing (d + 1)-plexes [9, 14]. E.g., Berlowitz et al. [9] give an algorithm which
enumerates all maximal (d + 1)-plexes in time O((d + 1)2d+2p(n)) per maximal (d + 1)-plex,
where p(n) is a polynomial in n. By the FPT bound, the enumeration algorithm runs in
FPT time. However, we can obtain a better running time by translating our proof of the
FPT bound into a bespoke enumeration algorithm.
Bounded co-degeneracy We say that a graph has co-degeneracy at most d if its complement
is d-degenerate. (Recall that a graph is d-degenerate if every induced subgraph has at least
one vertex with degree at most d.) In Section 5 we give, for each fixed d, FPT algorithms for
enumerating maximal subgraphs with co-degeneracy at most d.

For the backtracking approach, we first show that every subgraph with bounded co-
degeneracy is either a clique, or the degeneracy ordering of the complement of the subgraph
contains an edge that splits the subgraph into three parts; two of whose sizes are bounded
(2d − 2 and c, respectively) and the third is a maximal independent set (in the complement
graph) which can be discovered using the algorithm for enumerating cliques. This gives a
bound of O(cm2n2d4c) on the number of maximal subgraphs with co-degeneracy d and an
enumeration algorithm follows.

For the three-step approach, for the combinatorial bound, we define Dd(N) to be the
maximum number of maximal subgraphs with co-degeneracy at most d in an arbitrary
N -vertex graph. For every fixed d there is a constant γd < 2 such that Dd(N) ≤ γN

d , see [69].
For the FPT bound, we show that the number of maximal subgraphs with co-degeneracy

at most d is at most O(n8d · Dd(2dc)) ≤ O(n8d · γ2dc
d ). The idea is to show that there are two

types of maximal subgraphs with co-degeneracy at most d: either they have the structure of
a generalized co-star, or we can find 2d pairs of non-adjacent edges such that the maximal
subgraph is contained in the common neighborhoods of these non-adjacent pairs and an
additional 4d vertices. Counting generalized stars reduces to counting cliques, and we control
the other case using the c-closed condition.

An FPT algorithm is obtained by applying the recent enumeration algorithm [25] that lists
all maximal subgraphs with bounded degeneracy in time O(mnd+2) per maximal subgraph.
Bounded co-treewidth A graph is said to have co-treewidth at most t if its complement
has treewidth at most t. The class of graphs with co-treewidth at most t is denoted by Tt. In
Section 6, we give, for each fixed t, FPT algorithms for enumerating Tt-graphs using (only)
the three-step approach.

Obtaining non-trivial combinatorial bounds on the number of maximal subgraphs with
(co-)treewidth at most t in an arbitrary N -vertex graph is an open question in graph theory,
so we use the trivial upper bound of 2N . (In any case, there are no known polynomial-
delay algorithms for listing subgraphs of bounded (co-)treewidth that would allow us to
algorithmically exploit (black-box) the savings that a better bound would give us.)

For our FPT bound, we show that for almost every maximal subgraph of bounded
co-treewidth we can either find two pairs of non-adjacent vertices and show that the subgraph
is contained in the common neighborhoods of these two pairs (plus t additional vertices),
or else that the subgraph is a generalized co-star. In the former case we use the c-closure
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condition and reduce the latter case to counting maximal cliques in smaller graphs. We show
that there are O(nt+422c) maximal subgraphs with co-treewidth at most t. Exponential
dependence nt is necessary, even when c = 1 (Example 32).

While there are no known polynomial-delay enumeration algorithms for listing maximal
subgraphs of bounded (co-)treewidth, we show how to turn our FPT bound into an FPT
algorithm for enumerating Tt-graphs.

We also extend these results to the subgraphs of bounded local co-treewidth (Appendix D).

1.3 Further related work

Polynomial-time solvable special cases of the Maximum Clique problem and its
generalizations in hereditary graph classes The problems we consider generalize the
fundamental Maximum Independent Set and Maximum Clique problems. It is well
known that polynomial-time and fixed-parameter tractability results for these problems
require significant restrictions on the allowable input graphs. For example, it is known
that Maximum Independent Set is NP-hard already for subcubic graphs, and for H-free
graphs (for H connected) whenever H is not a path nor a subdivision of the claw (K1,3) [2].
Similarly, the problem is W [1]-hard when parameterized by the solution size for H-free
graphs whenever H is not a suitable generalization of a path or a subdivision of the claw [10]
(obtained by replacing each vertex by a clique); in fact, the problem does not even admit
an FPT constant-factor approximation for these graph classes (assuming Gap ETH) [31].
Known polynomial-time solvable special cases of the Maximum Independent Set problem
include input graphs that are perfect (including (co-)chordal and (co-)bipartite graphs),
P6-free graphs [61], fork-free graphs [62], and other highly restricted classes [1, 18, 19, 44].

Real worlds graphs It is widely accepted that the real-world graphs possess several nice
properties that differentiate them from arbitrary graphs. The established ones include
heavy-tailed degree distributions, a high density of triangles and communities, the small
world property (low diameter), and triadic closure. Over the years there has been a lot of
significant and influential work trying to capture the special structure of real-world graphs.
The literature is almost entirely focused on the generative (i.e., probabilistic) models. A few
most popular ones include preferential attachment [6], the copying model [56], Kronecker
graphs [58], the Chung-Lu random graph model [20, 21], with many new models introduced
every year. For example, already in 2006, the survey by Chakrabarti and Faloutsos [15]
examines 23 different models. Generative approaches are very enticing as they, by definition,
give an easy way of producing synthetic data, and are a good proxy for studying random
processes on graphs. On the other hand, if one is to design an algorithm for real-world graphs
with good worst-case guarantees, a hard choice of the exact model arises as there is a little
consensus about which of the many models is the “right” one, if any.

An idea is to find algorithms that are not suited to any specific generative model, but
only assume a deterministic condition. In other words, isolate a parameter of the real-world
graphs that differentiates them from arbitrary graphs and use it give stronger guarantees
for particular algorithms/problems. Fox, Roughgarden, Seshadhri, Wei, and Wein [34, 35]
took this approach and introduced the class of c-closed graphs, where they showed that the
maximum clique problem is FPT when parameterized by c.

There are only a few other algorithmic results in the same spirit. Notably, several
problems can be solved faster for graphs with a power-law degree distribution: Barch, Cygan,
Łacki, and Sankowski [12] gave faster algorithms for transitive closure, maximum matching,
determinant, PageRank and matrix inverse; and Borassi, Crescenzi, and Trevisan [11] gave
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faster algorithms for diameter, radius, distance oracles, and computing the most “central”
vertices by assuming additional axioms satisfied by real-world graphs.

Motivated by triadic closure, Gupta, Roughgarden, and Seshadhri [39] define triangle-
dense graphs and proved relevant structural results. Informally, they proved that if a
constant fraction of two-hop paths are closed into triangles, then (most of) the graph can be
decomposed into clusters with diameter at most 2.
c-closed graphs The c-closed graph model was introduced by Fox et al. [35] (see book
chapter in [72] by some of the authors). After Fox et al. introduced c-closed graphs, Koana,
Komusiewicz, and Sommer wrote several papers further exploting c-closure to design FPT
algorithm for hard problems. In [53] they showed that the dominating set problem, the
induced matching problem, and the irredundant set problem admit kernels of size kO(c),
O(c7k8), O(c5/2k3) respectively; where k is the size of the solution. In [52], they show that
enumerating maximal bicliques and (d + 1)-plexes, is FPT with respect to c and study fixed
parameter tractability of related hard problems with respect to the parameter c and size of
the solution. In [54], they give the kernels for Capacitated Vertex Cover, Connected Vertex
Cover, and Induced Matching of sizes kO(c), and (ck)O(c), respectively. Moreover, Koana
and Nichterlein [55] explore the fixed parameter tractability of enumerating small induced
subgraphs in a c-closed graph.

We note that the densest subgraph problem is trivially solvable in polynomial time for
c-closed graph when c = 1, and NP-hard already for c = 2, see [70].
(d + 1)-plexes The maximal cliques often fail to detect cohesive subgraphs. To address
the issue, Seidman and Foster [73] in 1978 introduced the notion of (d + 1)-plex. We refer
the reader to [79, 64, 68, 9, 23, 8] and references therein for an overview of the literature.
The literature is mostly focused on heuristic algorithms for finding large (d + 1)-plexes or
enumerating (several) maximal (d + 1)-plexes without providing any worst-case guarantees.
For example, recently Conte, Firmani, Patrignani, and Torlone [24] gave a novel approach
for the detection of 2-plexes. We point out that Lewis and Yannakakis [59] proved that the
problem of finding a maximum (d + 1)-plex is NP-hard for any fixed d. Alternate proof is
given in [5].
Counting and enumerating maximal subgraphs Counting (maximal) induced sub-
graphs in an arbitrary N -vertex graph is a crucial part when it comes to design of faster
exact algorithms. We mention a few related results. Moon and Moser [66] and also Miller
and Muller [65] prove that the number of maximal cliques (equivalently maximal independent
sets) in a graph on N vertices is at most 3N/3. Tomita, Tanaka and Takahashi [76] gave an
algorithm for finding a maximum clique by enumerating all maximal cliques in time O(3N/3).

Gupta, Raman and Saurabh [40, Theorem 4] show that the number of maximal 1-regular
induced graphs in an N -vertex graph is at most 10N/5 and gave an algorithm for finding a
maximum such subgraph with similar running time. Note that in any graph, the number of
maximal induced matchings is not larger than the number of maximal induced subgraphs
with degree at most 1. Therefore, it is somewhat surprising that the number of maximal
induced subgraphs with degree at most 1 is also bounded by 10N/5, as we show in Appendix B.
The same paper [40] shows that for each integer r there is a constant ρr < 2, such that the
number of maximal r-regular graphs in an N vertex graph is at most ρN

r .
Zhou, Xu, Guo, Xiao, and Jin [85] show that for each d there is a constant κd < 2 such

that all maximal (d + 1)-plexes can be enumerated in time O(κN
d N2). Implicitly, they also

show that the number of maximal (d + 1)-plexes is at most κN
d , i.e., Md(N) ≤ κN

d .
Pilipczuk and Pilipczuk [69] show that for every fixed d there is a constant γd < 2 such

that the number of maximal induced d-degenerate subgraphs in a graph on N vertices is at
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most γN
d , i.e., Dd(N) ≤ γN

d .

2 Preliminaries and complementary terminology

We consider finite, simple, undirected graphs. Let G = (V, E) be a graph. We write
uv ∈ E(G) for an edge {u, v} ∈ E(G) and we say that the vertices u and v are adjacent or
that u is a neighbor of v and vice versa. If w ∈ NG(u) ∩ NG(v) we say that w is a common
neighbor of u and v. For a vertex v ∈ V (G) we denote by NG(v) = {u ∈ V (G) : uv ∈ E(G)}
the neighborhood of v in G and NG[v] = NG(v) ∪ {v} the closed neighborhood of v in G. For
U ⊆ V (G), we define NG(U) = ∪u∈U NG(u) \ U and NG[U ] = NG(U) ∪ U . For simplicity,
if the set U is given implicitly as a collection of vertices u1, . . . , uℓ we write NG(u1, . . . , uℓ)
instead of NG({u1, . . . , uℓ}), and similarly for NG[u1, . . . , uℓ]. We drop the subscript G when
the graph is clear from the context.

Let W ⊆ V (G). The induced subgraph G[W ] is defined as the graph H = (W, E(G)∩
(

W
2

)
),

where
(

W
2

)
is the set of all unordered pairs with elements in W . The graph G[V (G) \ W ]

is also denoted as G \ W . Set W is separator in G if G \ W has strictly more connected
components than graph G. A connected component is non-trivial if it contains at least two
vertices (equivalently at least one edge). The diameter of G, denoted diam(G), is the length
of a longest shortest path among two vertices in G. If G is disconnected, then diam(G) = ∞.

The complement of a graph G = (V, E) is the graph G := (V,
(

V
2
)

\ E). We say that
W is a clique (in G) if for any two vertices u, v ∈ W we have uv ∈ E(G). A set I is an
independent set in G if I is a clique in G. A set U ⊆ V (G) is a vertex cover in G if V (G) \ U

is an independent set in G.
The degree of v in G is degG(v) = |NG(v)|, and the maximum degree of G is

∆(G) = maxv∈V (G) degG(v). Graph is d-degenerate (has degeneracy at most d) if every
induced subgraph of G[S] contains a vertex v such that degG[S](v) ≤ d.

▶ Definition 6 (Treewidth, [71]). Let G be a graph. A tree decomposition of G is a pair
(T, W), where T is a tree and W = {Wt ⊆ V (G) : t ∈ V (T )} is a set of bags satisfying

∪t∈V (T )Wt = V (G) and for every edge uv in G there is bag Wt containing u and v; and
if t, t′, t′′ ∈ V (T ) and t′ lies on the path between t and t′′ in T , then Wt ∩ Wt′′ ⊆ Wt′ .

The width of (T, W) is maxt∈V (T )(|Wt| − 1). The treewidth of G, denoted tw(G), is the
smallest number t such that there is a tree decomposition (T, W) of G with width t.

Co-degree, co-treewidth, and co-degeneracy refer to the degree, treewidth and degeneracy
in the complement graph, respectively.

▶ Definition 7 (c-closed, [34]). A graph G is c-closed if any two non-adjacent vertices have
at most c − 1 common neighbors.

Finding the smallest c for which a given graph G is c-closed can be done by squaring the
adjacency matrix in O(nω) time, where ω < 2.373 is the matrix multiplication exponent.

A problem is said to be fixed-parameter tractable with respect to a parameter k if there is
an algorithm that solves it in time O(f(k)nα) where f can be an arbitrary function and α is
a constant, for more details on parameterized algorithms and complexity we refer to [27].
Throughout the paper, unless otherwise stated the parameter is c, the number of vertices
(resp. edges) in a c-closed graph (or its complement) is denoted by n (resp. m), and the
number of vertices in a generic graph is denoted by N .

We state the main theorem of Fox et al. proving that maximal clique enumeration is
FPT in c.
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▶ Theorem 8 (Fox et al.[34, 35]). In any c-closed graph, a set of cliques containing all
maximal cliques can be generated in time O(p(n, c) + 3c/3n2), where p(n, c) = O(n2+o(1)c +
c2−ω−α/(1−α)nω + nω log(n)) for the matrix multiplication exponent ω and α > 0.29.

Complementary terminology We are interested in finding the dense subgraphs in c-closed
graphs, but it is more convenient to present the rest of the paper in the complementary
terminology. This means that we will be working with the complements of c-closed graphs.
We will use m to denote the number of edges in the co-graph (short for complement graph)
of a c-closed graph.

▶ Proposition 9. A graph G is the complement of a c-closed graph if and only if for any
two adjacent vertices u, v in G it holds |V (G) \ NG[u, v]| ≤ c − 1.

As the notions of co-treewidth and co-degeneracy are already introduced in the complementary
notions, it is clear that we are interested in the subgraphs of bounded treewidth and bounded
degeneracy in the complement of a c-closed graph.

We provide an alternate definition of degenerate graphs, that follows by results of Matula-
Beck [63].

Given an ordering of vertices (v1, . . . , vn), we will let V +(v) denote the set of vertices
following v in the ordering, and N+(v) denote the neighbors of v that are after v in the
ordering. Thus, N+(v) ⊆ V +(v). Note that N+(v) and V +(v) depend on the ordering, but
for brevity we do not it include in the notation as the ordering will always be clear from the
context.

▶ Definition 10. (Degeneracy Ordering) An ordering of vertices (v1, . . . , vn) is a degeneracy
ordering if for all 1 ≤ i ≤ n, vi is the minimum degree vertex in G[{vi, . . . , vn}], breaking
ties lexicographically.

▶ Definition 11. (d-Degenerate Graph) A graph G = (V, E) is d-degenerate if there exists
an ordering (v1, . . . , vn) such that for all 1 ≤ i ≤ n, we have |N+(vi)| ≤ d. The degeneracy
ordering of a d-degenerate satisfies this property.

We recall that whenever we say maximal subgraph this is referred to a maximal vertex
induced subgraph.

3 Cliques

For enumerating cliques, we only consider the backtracking approach, as the three-step
approach is already given by Fox et al. [35].

▶ Definition 12. (Independent Set Backtracking Tree) Let G = (V, E) denote the co-graph
of a c-closed graph and fix an ordering of the vertices. The backtracking tree of G is denoted
as T = (X, F ) where X is a node-set and F a link-set (we will use nodes and links for the
backtracking tree and vertices and edges for G). A node in X is labeled by a U ⊆ V , and a
link is labeled by a v ∈ V . The tree has the following properties.

The root node is labeled by V .
All nodes that are labeled by an independent set are leaves.
For all internal nodes labeled by U , there is a child node for each v ∈ U labeled by
U ′ = V +(v) \ N(v) with the corresponding link (U, U ′) labeled by v.
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The root node is at level 0 and the children of any vertex are at exactly one level lower than
the vertex. We call every P ∪ Q an independent set path where P is a root-to-leaf path in T

and Q is the last node label of P .

Consider any root-to-leaf path P = (v1, . . . , vk). By definition of T , we have vi ∈
V +(vi−1) \ N(v1, . . . , vi−1) for all 1 ≤ i ≤ k. Hence, P is an induced independent set since
P ⊆ V \ N(P ). Let the last node label of P be Q which is an independent set since it is a
leaf label. Then, P ∪ Q is also an independent set since Q ⊆ V \ N [P ]. Compiling the above
conclusions, it follows that every independent set path in T indeed is an induced independent
set in G. Moreover, by the fixed ordering, no two independent set paths correspond to the
same independent set. Now the following converse theorem is fairly straightforward and it
does not use the c-closure property.

▶ Theorem 13. Every maximal independent set of G is an independent set path in the
backtracking tree T .

Proof. Consider a maximal independent set S of size k, and let (v1, . . . , vk) be the ordered
form of S according to our fixed ordering (in Definition 12). Choose the minimum j such
that V +(vj) \ N(v1, . . . , vj) is an independent set. We now show that P = (v1, . . . , vj) is a
root-to-leaf path in T and that Q = {vj+1, . . . , vk} is the last node label of P ; hence, S is
an independent set path of T . Further observe that if P is a path starting at the root (a
root-originating path), its last node must be a leaf by our choice of j.

We prove that P is a root-originating path by induction on j. For j = 0, this is
vacuously true, and for j = 1, the claim holds since v1 ∈ V . Now, consider some j ≥ 2 and
assume the inductive hypothesis for j − 1, so (v1, . . . , vj−1) is a root-originating path. Since
vj ∈ V \ N(v1, . . . , vj−1), since S is an independent set, and since vj is of higher order than
the vertices v1, . . . , vj−1, we have vj ∈ V +(vj−1) \ N(v1, . . . , vj−1). Thus, by definition of T ,
the path P exists and is a root-originating path.

Next, since P is a root-to-leaf path, the last node label of P is U = V +(vj) \ N(P ). Since
S is an independent set, for all j < i ≤ k, we have vi ∈ U since vi has higher order than any
vertex in P . Further, if there exists a v ∈ U \ {vj+1, . . . , vk}, we have an independent set
P ∪ U whose subset is S, contradicting the maximality of S. Hence, Q = U as required. ■

The key argument that bounds the size of the backtracking tree follows. It shows a
surprising connection with the c-closure parameter.

▶ Lemma 14. The backtracking tree T has at most c levels.

Proof. We show the lemma by showing that for every independent set S of size c, the set of
its non-neighbours is also an independent set.

Let U = V \ N [S] be the set of non-neighbours of S. We claim U is an independent
set. If G[U ] were to contain an edge {u, v}, then S ⊆ V \ N [u, v] since S ∪ {u} and S ∪ {v}
are independent sets. Since |S| = c, we breach the c-closed condition; thus, U must be an
independent set. Hence T has at most c levels, since every node at level c is a leaf node. ■

▶ Theorem 15. The size of the backtracking tree T is O(cm2c).

Proof. For any non-leaf node label U , the induced subgraph G[U ] contains an edge. For any
edge e = {u, v}, let us count the number of such tree nodes such that G[U ] contains e. Let
P be the path in T from the root to U . Then we have P ⊆ V \ N [u, v] since P ∪ {u} and
P ∪ {v} are independent sets. Since |V \ N [u, v]| < c and all paths are unique, the edge e can
appear in at most

(
c
i

)
non-leaf nodes at level i. In other words, the number of occurrences of
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edge e at level i can be at most
(

c
i

)
. Thus the total number of occurrences of all edges at

level i is at most
∑

e∈E(G)

(
c
i

)
= m

(
c
i

)
. In other words, if we let U i be the set of all non-leaf

nodes at level i, then
∑

U∈Ui

|E(U)| ≤ m
(

c
i

)
. Note that this means that |U i| ≤ m

(
c
i

)
.

The number of isolated vertices in G[U ] is less than c since G[U ] contains an edge, and
the number of non-isolated vertices in G[U ] is at most 2|E(U)|. Hence, the node labeled by
U can have at most 2|E(U)| + c children. Thus the number of all children produced at level
i (i.e. the total number of nodes in the tree T at level i + 1) is at most∑

U∈Ui

(2|E(U)| + c) ≤ 2
∑

U∈Ui

(|E(U)|) + c|U i| ≤ 2m

(
c

i

)
+ cm

(
c

i

)
= (2 + c)m

(
c

i

)
,

Thus, the total number of nodes in T is given by

(2 + c)m
c∑

i=0

(
c

i

)
= O(cm2c)

as desired. ■

To construct the children for every internal node of this tree will take O(n2) time, so to build
T and enumerate a superset of maximal independent sets in G (equivalently, a superset of
maximal cliques in the c-closed graph whose complement is G) will take O(cmn22c) time.
Thus, the backtracking algorithm runs in FPT time with parameter c. Interestingly, the
backtracking algorithm does not need to know the value of the parameter c.

▶ Corollary 16. The backtracking algorithm enumerates a superset of all maximal independent
sets in the co-graph of a c-closed graph in time O(cmn22c), where m is the number of edges
in the co-graph and n is the number of vertices.

4 (d + 1)-plexes

For any fixed d, we show that the number of maximal subgraphs with degree at most d in
the complement of a c-closed graph admits an FPT bound. This implies that the number of
maximal (d + 1)-plexes in a c-closed graph admits an FPT bound and an FPT enumeration
algorithm.

We give proofs using both approaches, starting with the approach that uses backtracking
as a subroutine.

▶ Theorem 17. Let G be the complement of a c-closed graph. The number of maximal
subgraphs with degree at most d in G is bounded by O(mn2d−22c).

Proof. We count two types of maximal subsets S that induce a subgraph with degree at
most d:

subsets S for which G[S] is edgeless, and
subsets S for which G[S] contains at least one edge.

If G[S] is a maximal subgraph with degree at most d and G[S] is edgeless, then S is also a
maximal independent set in G. By Corollary 16, a superset of all maximal independent sets
in G can be enumerate in time O(cmn22c).

Suppose G[S] has an edge, say (u, v). Let Y = S ∩ N(u, v) and Z = S \ N [u, v], then by
the c-closed condition, |Z| ≤ c. Moreover, since Y consists of neighbors of (u, v) and u and v
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can have at most d − 1 neighbors, |Y | ≤ 2d − 2. For any edge, there are 2c possible choices
for Z and O(n2d−2) choices for Y . Hence, the number of maximal (d + 1)-plexes containing
at least one edge is O(mn2d−22c). By simply enumerating all possible choices for Y and Z

for every edge and combining them, in total time O(mn2d−22c), we will have enumerated a
superset of all (d + 1)-plexes containing an edge. ■

▶ Corollary 18. Let G be the complement of a c-closed graph. A superset of all maximal
subgraphs with degree at most d in G can be enumerated in time O(mn2d−22c + cmn22c).

4.1 Enumerating (d + 1)-plexes via the three-step approach
Next, we give an alternate bound with exponential improvement in c is using the three step
approach. The running time bound we obtain is O(n2d · κc

d · p(c)) where κd < 2 is the root of
xd+4 − 2xd+3 + 1 = 0; and for a polynomial p.
Combinatorial bound Our bound depends on an extension of Md(N). For a (not neces-
sarily c-closed) graph G and P ⊆ V (G), the number of maximal subgraphs containing P and
with degree at most d is denoted by Md(G; P ). Analogously, Md(N + p; p) is the maximum
value Md(G; P ) takes over all graphs on N + p vertices and all sets P ⊆ V (G) with size
p. In particular, Md(N) = Md(N ; 0). By adding isolated vertices, it is easy to see that
Md(N + p; p) ≤ Md(N + p′; p′) for all p ≤ p′.

By closely examining the result by Zhou et al. [85, Theorem 1], we note that they implicitly
show that for each d and every p there is a constant κd < 2 such that Md(N+p; p) ≤ κN

d . More
precisely, they show that the bound holds if κd is the positive solution of xd+3 −2xd+2 +1 = 0.
For d = 0, . . . , 4 we have κd = 1.618, 1.839, 1.928, 1.966 and 1.984. To the best of our
knowledge, next to the Moon-Moser theorem, these are the best (and only) existing bounds
for Md(N) and Md(N + p; p).

The Moon-Moser theorem states that κ0 = 31/3 suffices. In Appendix B, we prove a tight
upper bound on M1(N). In other words we show that we can set κ1 = 101/5 ≤ 1.585. The
proof uses similar recursive bound(s) as in the Moon-Moser theorem (Theorem 34), and in
the proof for 1-regular graphs given by Gupta et al. [40, Theorem 4], but our proof requires
a significantly more extensive case analysis.

▶ Theorem 19. M1(N) ≤ 10N/5 ≤ 1.585N .

To see that the bound is tight consider any N a multiple of 5. The graph consisting of N
5

copies of K5 contains 10N/5 maximal subgraphs with degree at most 1. The same number of
subgraphs is attained if we remove a matching from each of the K5s.
FPT bound Our next goal is to give an upper bound on the number of subgraphs with
degree at most d in the complement of a c-closed graph using Md(N + p; p) for d > 1, and
M1(N). For the case when d = 0, we already have Theorem 8 which we use in the proof.

▶ Theorem 20. Let G be the complement of a c-closed graph. The number of maximal
induced subgraphs with degree at most d in G, is bounded by 2n2d · Md(c − 1 + 2d; 2d).
Moreover, for d = 1 the bound simplifies to 2n2 · M1(c − 1).

Proof. Similar to the proof for the first bound for counting (d + 1)-plexes, we count two
types of maximal subsets S that induce a subgraph with degree at most d:

subsets S for which G[S] is edgeless, and
subsets S for which G[S] contains at least one edge.
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If G[S] is a maximal subgraph with degree at most d and G[S] is edgeless, then S is also a
maximal independent set in G. By Theorem 8, the number of maximal independent sets
in G is bounded by n2 · M0(c − 1). By definition, it is not hard to see that M0(c − 1) ≤
M0(c − 1 + d; d) ≤ Md(c − 1 + 2d; 2d) holds. Therefore, in order to prove the theorem, it
suffices to show that the number of maximal subgraphs that contain an edge and with degree
at most d is bounded by n2d · Md(c − 1 + 2d; 2d).

u

v
NS

R
G :

u

v

G[S] :

Figure 1 Proof of Theorem 20. Left: G[S] represents an induced subgraph with maximum degree
4. Right: depiction of G[S] within G. Recall that R = V (G) \ NG[u, v] and that |R| ≤ c − 1 as G is
the complement of a c-closed graph. The dashed lines represent non-edges.

We refer to Figure 1. Let uv be an edge in G. Suppose that S is a maximal set such that
∆(G[S]) ≤ d and u, v ∈ S. Let NS = S ∩ NG(u, v). By the maximum degree assumption and
since u and v are adjacent to each other, there are at most 2d − 2 vertices in NS . To prove
the theorem, we show that the number of maximal sets S satisfying the following two

degree of G[S] is at most d, and
S contains {u, v} and S ∩ N(u, v) = NS (S contains ≤ 2d fixed vertices);

is bounded by Md(c − 1 + 2d; 2d).
We claim that any such maximal set S also induces a maximal subgraph (with the same

properties) in graph G[{u, v} ∪ NS ∪ R] where R = V \ NG[u, v]. Namely, we can obtain
G[{u, v} ∪ NS ∪ R] from G by removing some vertices that are not in S. As removal of such
vertices does not influence the maximality of S, it follows that S induces a maximal subgraph
(with the above stated properties) in G[{u, v} ∪ NS ∪ R].

Since G is the complement of a c-closed graph and by definition of R, we have |R| ≤ c − 1.
Let k = |{u, v} ∪ NS |. Then, by definition of Md(c − 1 + k; k) it follows that the number
of maximal sets S that induce a subgraph with degree at most d and contain {u, v} ∪ NS

is bounded by Md(c − 1 + k; k). As |{u, v} ∪ NS | = k ≤ 2d we have Md(c − 1 + k; k) ≤
Md(c − 1 + 2d; 2d) and the proof follows.

Next, we deal with the case d = 1. The proof is largely the same and we make a small
change in the way we count the subsets S that contain u, v. As the maximum degree of
G[S] is at most 1 and since u and v are adjacent to each other we have that NS = ∅. We
claim that if S is maximal set with degree at most 1 in G containing uv, then S \ {u, v} is a
maximal set with degree at most 1 in G[R].

For a contradiction, suppose that S \ {u, v} is not a maximal such set, and let S′ ⊆ R

such that S \ {u, v} ⊂ S′ and ∆(G[S′]) ≤ 1. Since S′ ⊆ R = V (G) \ N [u, v] it follows that u

and v are non-adjacent to S′. Thus, ∆(G[S′ ∪ {u, v}]) ≤ 1 contradicting maximality of S.
It follows that the number of maximal subsets S with ∆(G[S]) ≤ 1 and that contain

edge uv is at most M1(c − 1). Thus, the number of maximal subsets S with ∆(G[S]) ≤ 1 is
bounded by n2M0(c − 1) + n2M1(c − 1) ≤ 2n2M1(c − 1). ■

We give an example showing that the dependency on n and d cannot be improved.
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▶ Example 21. Any complete bipartite graph is the complement of a 1-closed graph as any
two adjacent vertices have no common non-neighbors. Let Ki,j be the complete bipartite
graph with parts of size i and j. It is easy to see that the number of maximal subgraphs
with degree at most d in Kℓ,ℓ for ℓ > d, is at least Ω(ℓ2d) = Ω

(
|V (Kℓ,ℓ)|2d

22d

)
for any fixed d.

Enumeration Equipped with Theorem 20 it is straightforward to obtain an algorithm, with
running time similar to the FPT bound, for enumeration of all maximal (d + 1)-plexes in
c-closed graph. A simple way is to run a polynomial delay algorithm for listing all maximal
subgraphs with degree at most d on the complement graph [9]. The FPT bound then implies
that the enumeration algorithm indeed runs in FPT time. A better running time can be
obtained if the enumeration algorithm is incorporated directly into the proof of the FPT
bound. We sketch it below.

▶ Corollary 22. [Restatement of Theorem 2] For c-closed graphs and a fixed d ≥ 0, there is
an algorithm running in time O(n2d · κc

d · p(c)) for enumerating (d + 1)-plexes, where κd < 2
is the root of xd+4 − 2xd+3 + 1 = 0; and for a polynomial p. For 2-plexes, a stronger bound
O(n2 · 10c/5 · p(c)) applies.

Proof of Corollary 22. We enumerate all maximal subgraphs with degree at most d in the
complement graph. If a maximal subgraph with degree at most d is edgeless, then it is also
a maximal independent set and we use the algorithm by Fox et al. [35] stated in Theorem 8.

Hence, we only need to enumerate the maximal subgraphs with degree at most d and
that contain at least one edge. Similarly, as in the proof of Theorem 20 once we fix an edge
uv, and the neighbors of u and v the rest of maximal induced subgraph is contained in a
subset of at most c − 1 vertices. By applying the polynomial delay algorithm [9] to these
vertices, we can obtain all maximal subgraphs of degree at most d that contain the fixed
vertices in time O(Md(c − 1 + 2d; 2d) · p(c)) ≤ O(κc

d · p(c)) for a polynomial p. ■

5 Bounded co-degeneracy

As with (d + 1)-plexes, we first give the result with the backtracking approach.
Any d-degenerate graph (with possible isolated vertices) can either be an independent

set or it can be separated into 3 components, characterized by an edge in the graph. This
decomposition is unrelated to the c-closed property, but we exploit this structure for faster
enumeration in a c-closed co-graph.

▶ Lemma 23. Consider a d-degenerate graph H with the degeneracy ordering of (u1, . . . , un).
If H is not an independent set, there exists an edge (us, ut) such that for

X = {u1, . . . , us−1}, Y = {us+1, . . . , ut−1}, Z = {ut+1, . . . , un},

X is an independent set, Y is a subset of V \ N [us, ut], and Z is a subset V \ N [us, ut] with
at most 2d − 2 additional vertices.

Proof. Choose minimum t such that ut is a terminal vertex of an edge in H. Then choose
maximum s such that (us, ut) is an edge in H (this must exist since H is not an independent
set). By the minimality of t, X is an independent set.

By the minimality of t, us is not adjacent to any vertex in Y . By the maximality of s, ut

is not adjacent to any vertex in Y . Hence, Y ⊆ V \ N [us, ut].
Furthermore, since ut and us are connected, each can be adjacent to at most d − 1

vertices in Z to ensure the d-degeneracy condition. Thus, the rest of the vertices in Z are
non-adjacent from both ut and us. ■
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Notice that since |V \ N [us, ut]| < c by the c-closed condition, we have |Y | < c and
|Z| < 2d − 2 + c. Furthermore, note that if H is maximal, then so is the independent set X.

▶ Theorem 24. [Restatement of Theorem 3] For c-closed graphs and a fixed d ≥ 0, there
is an algorithm running in time O(cm2n2d4c + cmn22c) that outputs a set containing all
maximal induced subgraphs with co-degeneracy d in the c-closed graph, where m is the number
of edges in the complement graph of the c-closed graph.

Proof. We describe an algorithm that generates supersets of all maximal induced d-degenerate
subgraphs in a c-closed co-graph G. (We can check in linear time whether each such subgraph
is truly d-degenerate.)

Start with any edge {u, v} and pick an orientation (say) (u, v). Then, we construct all
possible choices of Y and Z, which takes O(n2d−22c) time. Next, we choose Y and Z such
that G[Y ∪ Z ∪ {u, v}] is a d-degenerate subgraph whose degeneracy ordering is (u, Y, v, Z).
Then, we can build a set S of vertices s where s is the first vertex in the degeneracy ordering
of G[{s, u, v} ∪ Y ∪ Z]. Lastly, we enumerate all maximal independent sets X in G[S] which
takes O(cmn22c) time by Corollary 16. Then, any maximal d-degenerate subgraph H of G

is X ∪ Y ∪ Z ∪ {u, v} for some chosen X, Y , Z, and {u, v} according to the above algorithm.
The total run-time for this algorithm is O(cm2n2d4c + cmn22c). ■

5.1 Enumerating subgraphs of bounded co-degeneracy with the
three-step approach

We give another FPT algorithm for enumerating all maximal subgraphs with degeneracy at
most d in the complement of a c-closed graph using the three-step approach. For this (as well
as for bounded-treewidth) we use the notion of a generalized star and of an (ℓ, k)-partition.
We define these below. The bound obtained using this approach is worse than the algorithm
described above but we include it for the sake of completeness and since the same notions
are used in the case of bounded treewidth. The proof uses an alternate characterization of
the structure of a bounded-degeneracy graph in the co-graph of a c-closed graph. For details
and missing proofs we refer to Appendix C.
Generalized stars We say that that a graph H is a k-star if there is a partition {A, B} of
V (H) such that |A| ≤ k and B is an independent set. Equivalently, graph is a k-star if and
only if it has a vertex cover of size at most k. We say that A is the head of the k-star H,
and B is the set of tails. A k-star is proper if every tail is adjacent to at most k − 1 vertices
(in the head). In particular, any (k − 1)-star is a proper k-star. We note that an edgeless
graph is a proper 1-star and a (vertex disjoint) union of an edgeless graph and a star is a
proper 2-star.

▶ Lemma 25. Let G be the complement of a c-closed graph. The number of subsets S ⊆ V (G)
that induce a proper k-star with a maximal set of tails is at most 2 · nk+2 · M0(c − 1).

Note that we only require that the set of tails is maximal: there is no proper k-star with the
same head and a strictly larger (inclusion-wise) set of tails.

Proof of Lemma 25. Let A ⊆ V (G) be a set of at most k vertices. For a proper k-star with
head A and the set of tails B it holds that B is an independent set in G \ A. Suppose that
the B is the maximal set of tails for the k-star G[A ∪ B].

Let X be the set of vertices v ∈ V (G) \ A that are adjacent to every vertex in A. If
|A| = k, then since G[A ∪ B] is proper and by maximality of the tail, it follows that B is a
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maximal independent set in G \ (A ∪ X). If |A| < k then by the maximality of tail, B is a
maximal independent set in G \ A.

By Theorem 8 there are at most n2M0(c − 1) maximal independent sets in G \ A and
similarly at most n2M0(c − 1) maximal independent sets in G \ (A ∪ X). The lemma
follows. ■

Good (ℓ, k)-partitions Next, we introduce a definition that captures the property of graphs
we can count by fixing several edges. Informally, we say that a graph H admits a good
(ℓ, k)-partition if there are k edges and a set A0 on at most ℓ vertices such that the rest of the
graph can be partitioned into non-neighborhoods of the edges. We show that the subgraphs
admitting a good (ℓ, k)-partition are easy to count.

▶ Definition 26. We say that a graph H admits a good (ℓ, k)-partition if there exist k

edges e1, . . . , ek and a (k + 1)-partition {A0, A1, . . . , Ak} of the set V (H) \
(
∪k

i=1ei

)
such that

NH(ei) ∩ Ai = ∅ for every i ∈ [k] and |A0| ≤ ℓ.

▶ Lemma 27. Let G be the complement of a c-closed graph. The number of subsets S ⊆ V

for which graph G[S] admits a good (ℓ, k)-partition, is bounded by nℓ+2k · 2k(c−1).

Proof of Lemma 27. Let H be induced subgraph of G that let e1, . . . , ek and A0, . . . , Ak

be the edges and sets defining a good (ℓ, k)-partition of H. To prove the lemma, it suffices
to show that the number of induced subgraphs that admit a good (ℓ, k)-partition with the
same edges e1, . . . , ek and the same set A0 is bounded by 2k(c−1).

Denote with U the vertices of G that are neither incident to the edges e1, . . . , ek nor in the
set A0, i.e., U = V (G) \ (A0 ∪k

i=1 ei). By definition of a good (ℓ, k)-partition, for any induced
subgraph with a good (ℓ, k)-partition e1, . . . , ek and A0, A′

1, . . . A′
k it holds A′

i ⊆ U \ NG(ei)
for each i ∈ [k]. Since G is complement of a c-closed graph, it follows that |U \ N(ei)| ≤ c − 1
for each i ∈ [k]. Hence, there are at most 2k(c−1) induced subgraphs G[S] that admit a good
(ℓ, k)-partition with A0 and the edges e1, . . . , ek. The lemma follows. ■

.
We obtain an FPT algorithm for bounded-degeneracy graphs in the following way.

Combinatorial bound Recall that the maximum number of maximal d-degenerate subgraph
with in an arbitrary N -vertex graph is denoted by Dd(N). Pilipczuk and Pilipczuk [69] show
that for every d there is a constant γd < 2 such that Dd(N) ≤ γN

d .

FPT bound It can be shown that a d-degenerate graph is either a 4d-star or admits a good
(4d, 2d)-partition. Then, by Lemmas 25 and 27 we obtain an FPT upper bound.

▶ Theorem 28. Let G be the complement of a c-closed graph. The number of maximal
d-degenerate subgraphs in G is bounded by O(n8dDd(2dc)).

Enumeration Maximal d-degenerate subgraphs can be listed in time O(mnd+2) per maximal
subgraph [25]. We obtain the following corollary.

▶ Corollary 29. For each fixed integer d, there is a constant γd < 2 and an FPT algorithm
running in time O(n9d+4 · γ2dc

d ) for enumerating all maximal subgraphs with co-degeneracy
at most d in a c-closed graph G.
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6 Bounded co-treewidth

We give FPT algorithms for enumerating all maximal subgraphs of bounded treewidth in the
complement of a c-closed graph using (only) the three-step approach. For the combinatorial
bound, we use the trivial upper bound 2N for the number of maximal subgraphs of bounded
treewidth in an N -vertex graph. For the enumeration, we are unaware of any polynomial
delay algorithms for enumerating maximal subgraphs of bounded treewidth. Nevertheless,
the proof of the FPT bound is easily turned into an FPT enumeration algorithm. Therefore,
we are only concerned with proving the FPT bound. In Appendix D, we extend the upper
bound (and consequently the algorithm) to the subgraphs of bounded local treewidth.
FPT bound To count star-like maximal subgraphs with treewidth at most t in the com-
plement of a c-closed graph, we use Lemma 25. The counting reduces to counting maximal
independent sets in smaller graphs.

To count the non-star-like graphs with treewidth at most t, we use Lemma 27. The
lemma shows how to count all subgraphs that contain several edges and show that any other
vertex is non-adjacent to at least one of the fixed edges.

The upper bound is proved by combining the two mentioned cases. More precisely, we
show that any subgraph of bounded treewidth is counted by either Lemma 25 or Lemma 27.

We present the main theorem of this section.

▶ Theorem 30. Let G be the complement of a c-closed graph and let t ∈ N. The number of
maximal subsets S ⊆ V (G) for which tw(G[S]) ≤ t is at most 3nt+422(c−1).

Before we prove the theorem, we mention that the class of all graphs with treewidth
at most t contains all “proper” (t + 1)-stars but not all (t + 1)-stars. Simply, Kt+2 is a
(t + 1)-star but has treewidth t + 1. The proof relies on the following claim.

▷ Claim 31. Let S ⊆ V (G) such that tw(G[S]) ≤ t. Then, G[S] is either a proper (t+1)-star
or admits a good (t, 2)-partition.

Proof of Claim 31. Let (T, W) be a tree decomposition of G[S] of width at most t; Wa is the
bag corresponding to vertex a ∈ V (T ) and W is the set of bags, i.e., W = {Wa : a ∈ V (T )}.
Without loss of generality, we may assume that for any edge ab ∈ E(T ) the bags Wa and
Wb are crossing, i.e., it holds Wa \ Wb ̸= ∅ ̸= Wb \ Wa. On the contrary, if Wa ⊆ Wb we can
simply remove the vertex a and the bag Wa and reconnect the tree in the natural way to
obtain a tree decomposition with the same width and a smaller tree.

Let ab ∈ E(T ) and let Ta, Tb be the trees in T \ ab. Tree Ta (resp. Tb) is the tree in
T \ ab containing the vertex a (resp. b). It is easy to check that there is no edge between
Ua := ∪t∈V (Ta)Wt \ (Wa ∩ Wb) and Ub := ∪t∈V (Tb)Wt \ (Wa ∩ Wb). In other words, Wa ∩ Wb

is a separator of G[S] whenever Ua ≠ ∅ ≠ Ub. Since the adjacent bags in T are crossing we
do have Ua ≠ ∅ ̸= Ub. Moreover, since |Wa|, |Wb| ≤ t + 1 and Wa \ Wb ̸= ∅ it follows that
|Wa ∩ Wb| ≤ t. Thus, Wa ∩ Wb is a separator of size at most t in G[S] for every ab ∈ E(T ).
If Ua and Ub both contain an edge, say e1 and e2 respectively, then G[S] admits a good
(t, 2)-partition. Namely, we can set A0 = Wa ∩ Wb, A1 = Ub, and A2 = Ua. Therefore, we
assume that for each edge ab ∈ E(T ) at least one of Ua or Ub is an independent set. We
show, that this implies that G[S] is a proper (t + 1)-star.

If for some ab ∈ E(T ) both Ua and Ub are independent sets, then so is Ua ∪ Ub. As
Ua ∪ Ub = S \ (Wa ∩ Wb) and |Wa ∩ Wb| ≤ t, it follows that G[S] is a t-star. Hence, for
the rest of the proof we assume that for each edge ab ∈ E(T ) either Ua or Ub is not an
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independent set. Combining with the previous paragraph, we have that for each ab ∈ E(T )
exactly one of Ua, Ub is an independent set and the other one is not.

Such a property gives a natural orientation of the edges in T . In particular, if Ua is an
independent set we orient the edge ab as (a, b) and say that edge ab is oriented towards
b. Otherwise we orient ab as (b, a) as say that ab is oriented towards a. Since T is a tree,
there is a vertex s ∈ V (T ) such that all incident edges are oriented towards s. (Start with
an arbitrary vertex x ∈ V (T ) and move to any vertex y ∈ NT (x) such that xy is oriented
towards y. We keep iterating until we encounter a vertex s such that all incident edges are
oriented towards s. The process terminates as T is a tree.) We show that S \ Ws is an
independent set.

Suppose on the contrary that there is an edge uv ∈ G[S] \ Ws. By the definition of tree
decomposition (T, W), the vertices u and v are both contained in some bag Wp for p ∈ V (T ).
Moreover, it holds that p ̸= s. Let q be the neighbor of s on the undirected s-p path in T

(possibly q = p). Then, Uq is not an independent set: we have uv ∈ Uq since Wp \ Ws ⊆ Uq.
It follows that the edge sq is oriented from s to q. A contradiction with the choice of s. As
|Ws| ≤ t + 1 we conclude that S is a (t + 1)-star.

It remains to show that the (t + 1)-star is proper, i.e., that every vertex v ∈ S \ Ws is
adjacent to at most t vertices in Ws. If |Ws| ≤ t, then there is nothing to prove, so assume
|Ws| = t + 1. For the sake of contradiction, let v ∈ S \ Ws be a vertex adjacent to all t + 1
vertices of Ws. Let Wr be the bag containing v that is closest to the bag Ws in the tree T .
Let Tv be the tree in T \ s that contains r. Since v ̸∈ Ws, for any bag Wx that contains v it
holds x ∈ Tv. Moreover, the unique s − x path in T contains the vertex r. By the properties
of tree decomposition, and since v is adjacent to every vertex in Ws it follows that Ws ⊂ Wr.
Thus, |Wr| ≥ |Ws ∪ {v}| = t + 2. A contradiction with the width of (T, W). ◁

Proof of Theorem 30. Let S be a maximal subset of vertices of G such that tw(G[S]) ≤ t.
By Claim 31, either G[S] admits a good (t, 2)-partition or S induces a proper (t + 1)-star.
The number of sets S that admit a good (t, 2)-partition is at most nt+422c−2 by Lemma 27.

Let us consider the case when G[S] is a proper (t + 1)-star. Since S is a maximal set with
property that G[S] ∈ C it follows that S is also a set that induces a proper (t + 1)-star with
maximal tail. It is not hard to see that the class of graph with bounded treewidth contains
all proper (t + 1)-stars. The number of sets S that induce a proper (t + 1)-star with maximal
tail is at most 2nt+32c−1 by Lemma 25. The theorem follows. ■

▶ Example 32. Recall that Ka,b is the complement of a 1-closed graph, and that tw(Ka,b) =
min{a, b} for any a, b ∈ N. Trivially, Kℓ,t+1 contains at least Ω(ℓt) = Ω ((|V (Kℓ,t+1)| − t − 1)t)
maximal induced subgraphs with treewidth at most t. Hence, the dependence on nt in
Theorem 30 is necessary.

Enumeration Let us explain how to turn the above proof in an enumeration algorithm. In
the proof of Theorem 30 we showed that any maximal induced subgraph of treewidth at
most t is either a proper (t + 1)-star or admits a good (t, 2)-partition.

Enumeration of all proper (t + 1)-stars reduces to the enumeration of all maximal
independnet sets in the complement of smaller c-closed graphs by the same reduction as in
the proof of Lemma 25. Thus, listing all proper (t + 1)-stars takes O(nt+3M0(c − 1)) time.

To enumerate all subgraphs admitting a good (t, 2)-partition we use the defintion of the
good (t, 2)-partition and the c-closure condition. For two edges e, f there are at most 2c

vertices that are non-adjacent to either e or f by the complementary c-closure property.
After fixing a set A of size at most t and particular two edges e, f , by brute-force we can
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find all subgraphs with treewidth at most t that admit a good (t, 2)-partition with the set A

and the edges e and f . Since there are at most 2c vertices over which we have to apply the
bruce-force this takes O(22c) time. In total, going over all sets of size at most t and every
two edges e, f takes O(nt+422c) time.

▶ Corollary 33. [Restatement of Theorem 4] For c-closed graphs and a fixed t ≥ 0, there is
an algorihtm running in time O(nt+422c) that outputs a set containing all maximal induced
subgraphs with co-treewidth ≤ t.

Co-forests Recall that the class of forests is equivalently defined as the class graphs with
treewidth at most 1, or as the class of graph with degeneracy at most 1. In Appendix E, we
give stronger bound than the one given in Section 6 and Section 5 for enumerating maximum
co-forests in a c-closed graph.
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A Moon-Moser Theorem

▶ Theorem 34. M0(N) ≤ 3N/3 ≤ 1.443N .

Proof. We prove that M0(N) ≤ 3N/3 by induction on N . Let G be a graph on N vertices
and v a vertex of minimum degree ℓ in G. Any maximal independent set I intersects N [v] in
some vertex w. As I is a maximal independent set in G then I \ w is a maximal independent
set in G \ N [w]. Thus, we get the following recursive bound

M0(G) ≤
∑

w∈N [v]

M0(G \ N [w]) ≤
∑

w∈N [v]

M0(N − |N [w]|) ≤ (ℓ + 1)M0(N − (ℓ + 1)) ,

where in the last inequality we use M0(N −|N [w]|) ≤ M0(N − (ℓ+1)) for all w ∈ N [v] since
ℓ is the minimum degree. By induction, we have (ℓ + 1)M0(N − (ℓ + 1)) ≤ (ℓ + 1) · 3

N−(ℓ+1)
3 .

The theorem follows since 3 N
3 (ℓ + 1)3

−(ℓ+1)
3 ≤ 3 N

3 for all ℓ ∈ N. ■

The proofs by Miller and Müller [65] and Moon and Moser [66] give a more refined bound
by distinguishing the case analysis based on the divisibility of n by 3.

B Counting maximal subgraphs with degree at most 1

In this section we prove Theorem 19 (or equivalently Theorem 40). As this section does not
use c-closure, we use n instead of N for the number of vertices in an arbitrary graph G (G is
not necessarily c-closed).

We say that a set S ⊆ V (G) is a generalized induced matching if ∆(G[S]) ≤ 1. Moreover
S is a maximal generalized induced matching in G if there is no set S′ ⊆ V (G) such that
S ⊂ S′ and S′ is a generalized induced matching.

We are interested in the number of maximal generalized induced matchings in a graph
G, i.e., M1(G). For a generalized induced matching S, we say that v ∈ S is unmatched if v

has no neighbors in S, and matched if v has a neighbor in S – such a neighbor is unique. A
useful way to think about the maximal generalized induced matchings is following:

▶ Observation 35. Let S be a maximal generalized induced matching in G. Then, each
vertex w ∈ V (G) \ S is adjacent to either a matched vertex in S or two unmatched vertices
of S.

A converse holds as well. Suppose that S is a generalized induced matching. If every
vertex w ̸∈ S is adjacent to a matched vertex in S or at least two unmatched vertices, then S

is maximal.

Before we prove the main theorem, we prove three simple lemmas and an easy proposition.

▶ Lemma 36. Let U be a connected component of a graph G. Then, M1(G) = M1(G[U ]) ·
M1(G \ U).

Proof. Any maximal generalized induced matching S in G is the disjoint union of a maximal
generalized induced matching S ∩ U in G[U ], and a maximal generalized induced matching
S \ U in G \ U . ■

▶ Lemma 37. Let u, v be twin vertices in G, i.e., uv ∈ E and N(v) = N(u). Then,
M1(G) ≤ M1(G \ uv).

The lemma states that disconnecting twin vertices in a graph cannot decrease the number of
maximal generalized induced matchings.
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Proof. Let S be a maximal generalized induced matching in G. It suffices to prove that S

induces a maximal generalized matching in G \ uv. If S does not contain u nor v, then S is
a maximal generalized induced matching in G \ uv. Without loss of generality, u ∈ S. Note
that u is matched: if not, then S ∪ v is a generalized induced matching since u and v are
twins.

Case 1: The neighbor of u in S is w, w ̸= v. Then, S is a generalized induced matching
in G \ uv with the same number of edges. S is still maximal since u and v are twins.

Case 2: The neighbor of u in S is v. Then, S is an induced matching in G \ uv with one
less edge than the generalized induced matching S in G. By Observation 35 and since u and
v are twins, S is maximal. ■

▶ Lemma 38. Let S be a maximal generalized induced matching in G and let v ∈ S. Then,
either |N(u) \ N [v]| > 0 for all u ∈ N(v) or v is matched in S.

In a graph G, we say that a vertex v dominates a vertex u if N(u) ⊆ N(v). The lemma states
that if v dominates a vertex in its neighborhood, then v is always matched in a maximal
generalized induced matching.

Proof. For the sake of contradiction suppose that v is unmatched and that for some w ∈ N(v)
it holds N(w) ⊆ N [v]. As v is unmatched it holds that u ̸∈ S, for all u ∈ N(v). Since
N(w) ⊆ N [v] it follows S ∪ w is also a generalized induced matching. A contradiction with
maximality of S. ■

▶ Proposition 39. Let G be a graph and suppose that n = |V (G)| ≤ 5. Then, M1(G) ≤
10n/5.

For missing definitions in the following proof we refer to [29].

Proof. The proposition is trivial to check for n ≤ 3. Given a ground set A denote with P(A)
the family of all subsets of A. P(A) admits a natural partial ordering by the inclusion.

We observe that the set of all maximal generalized induced matchings is an antichain in
P(V (G)) (or any other type of maximal sets). If n = 4 (resp. n = 5), then the maximum
size of an antichain in P(V (G)) is

(4
2
)

= 6 < 104/5 (resp.
(5

2
)

= 10 = 105/5). ■

▶ Theorem 40. M1(n) ≤ 10n/5 ≤ 1.585n.

Proof. We prove the result by induction on the number of vertices. Let G be a graph on
n vertices. Proposition 39 is the base case of the induction and allows us to assume that
|V (G)| ≥ 6. By Lemma 36 we assume that G is connected. Observation 35 is used throughout
the proof implicitly. We will consider several different cases based on the degree of vertices
in G.

Case A: there exists a vertex v ∈ V (G) with deg(v) = 1. Denote with w the unique
neighbor of v in G. Since S is maximal, it contains at least one of v, w. Moreover, if v ̸∈ S,
then w is matched in S by Lemma 38. Thus, either w ∈ S and w is matched in S or w ̸∈ S

and v ∈ S.
If w ∈ S and w is matched then there is u ∈ N(w) such that u ∈ S. In this case, S \{w, u}

is a maximal generalized induced matching in G \ N [w, u]. If v ∈ S and w ̸∈ S, then S \ v is
a maximal generalized induced matching in G \ {v, w} = G \ N [v]. Combining the two, we
obtain the following recursive upper bound on M1(G):

M1(G) ≤ M1(G \ {v, w}) +
∑

u∈N(w)

M1(G \ N [w, u]) .
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As |N [w, u]| ≥ |N [w]| ≥ deg(w) + 1 we have M1(G \ N [w, u]) ≤ M1(n − deg(w) − 1) and

M1(G) ≤ M1(n − 2) + deg(w)M1(n − deg(w) − 1) .

By induction we have

M1(G) ≤ 10n/5
(

10−2/5 + deg(w) · 10−(deg(w)+1)/5
)

.

Since 10−2/5 + x · 10−(x+1)/5 < 1, for all x ≥ 1, this case is proved. Note that we proved a
stronger statement: if deg(v) = 1 for v ∈ V (G), then the number of maximal generalized in-
duced matchings is 10n/5 (

10−2/5 + deg(w) · 10−(deg(w)+1)/5)
< 10n/5 ·

(
10−2/5 + 2 · 10−3/5)

where w is the neighbor of v in G. We will use the stronger statement in one of the remaining
cases.

Recursive bound We give a generic recursive bound for M1(G) that will be useful for
several cases. Let v be an arbitrary vertex. For a maximal generalized induced matching S

we have the following possibilities.

S does not contain v. Then, S is also a maximal generalized induced matching in G \ v.
Hence, the number of maximal generalized induced matchings S in G that do not contain
v is at most M1(G \ v).
S contains v and v is unmatched in S. Then, S \ v is a maximal generalized induced
matching in G \ N [v]. The number of such sets S in G is at most M1(G \ N [v]).
S contains v and v is matched to w in S. Then, S\{v, w} is a maximal generalized induced
matching in G \ N [v, w]. The number of such sets S in G is at most

∑
w∈N(v) M1(G \

N [v, w]).

We obtain the following bound on M1(G):

M1(G) ≤ M1(G \ v) + M1(G \ N [v]) +
∑

w∈N(v)

M1(G \ N [v, w])

By Lemma 38, if there is a vertex w ∈ N(v) such that N(w) ⊆ N [v], then we cannot have
v ∈ S and v unmatched. Therefore, in this case the stronger bound applies:

M1(G) ≤ M1(G \ v) +
∑

w∈N(v)

M1(G \ N [v, w])

Case B: ∆(G) ≥ 6. Let v be a vertex of degree at least 6. Since |N [v, w]| ≥ |N [v]| =
deg(v) + 1, it follows that M1(G \ N [v, w]) ≤ M1(G \ N [v]) ≤ M1(n − deg(v) − 1). Using
the previous in the (weaker) recursive bound gives

M1(G) ≤ M1(n − 1) + (deg(v) + 1) · M1(n − deg(v) − 1) .

By induction and since 10−1/5 + (x + 1) · 10−(x+1)/5 ≤ 1 for x ≥ 6 we have

M1(G) ≤ 10n/5
(

10−1/5 + (deg(v) + 1) · 10−(deg(v)+1)/5
)

< 10n/5 .

Case C: ∆(G) = 5. Let v be a vertex of degree 5. Since G is connected, either |V (G)| = 6
or there is a vertex w ∈ N(v) such that |N(w) \ N(v)| ≥ 1.

If |V (G)| = 6, then a maximal generalized induced matching is either an edge vw for some
w ∈ N(v) or a maximal generalized induced matching in G \ v. Hence, by Proposition 39 we
have M1(G) ≤ 5 + 105/5 < 106/5.
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For the rest of this case we assume that |V (G)| > 6. Consequently, there is a vertex w ∈
N(v) such that |N(w) \ N(v)| ≥ 1. For the four vertices u ∈ N(v) \ w we use the same bound
as before |N [u, v]| ≥ |N [v]| = deg(v) + 1 = 6. Since |N(w) \ N(v)| ≥ 1, we have a stronger
bound |N [v, w]| ≥ |N [v]| + 1 = deg(v) + 2. Thus, M1(G \ N [v, w]) ≤ M1(n − deg(v) − 2).
By the (weaker) recursive bound and induction we have

M1(G) ≤ M1(n − 1) + M1(n − 6) + 4 · M1(n − 6) + M1(n − 7)

≤ 10n/5
(

10−1/5 + 5 · 10−6/5 + 10−7/5
)

< 10n/5 .

Case D: ∆(G) = 4. Let v be a vertex of degree 4. We consider two subcases. In the
first case we assume that each w ∈ N(v) has a neighbor outside N [v]. Otherwise, for some
w ∈ N(v) it holds N [w] ⊆ N [v] – the second case.

Case D.1: For all w ∈ N(v) it holds |N(w)\N [v]| ≥ 1. Therefore, |N [v, w]| ≥ |N [v]|+1 =
deg(v) + 2 = 6. By the (weaker) recursive bound and induction we have

M1(G) ≤ M1(n − 1) + M1(n − 5) + 4 · M1(n − 6)

≤ 10n/5
(

10−1/5 + 10−5/5 + 4 · 10−6/5
)

< 10n/5 .

Case D.2: For some w ∈ N(v) we have N(w) ⊆ N [v]. Since |V (G)| ≥ 6 and since G is
connected, for some u ∈ N(v) we have |N(u) \ N [v]| ≥ 1 and thus |N [v, u]| ≥ |N [v]| + 1 =
deg(v) + 2 = 6. Combining it with the (stronger) recursive bound, and by induction gives

M1(G) ≤ M1(n − 1) + 3 · M1(n − 5) + M1(n − 6)

≤ 10n/5
(

10−1/5 + 3 · 10−5/5 + 10−6/5
)

< 10n/5 .

Case E: ∆(G) = 3. Let v be a vertex of degree 3 and denote with w1, w2, w3 its neighbors.
Since G is connected and |V (G)| ≥ 6 at least one wi has a neighbor outside of N [v]. Moreover,
by case A there are no vertices of degree 1 in G.

We consider five subcases. In the first three the cases, at least one of w1, w2, w3 has
degree 2 in G. In the last two, deg(wi) = 3 for every i ∈ [3].

Case E.1: deg(w3) = 2, N(w3) ⊆ N [v] and for i ∈ [2] it holds |N(wi) \ N [v]| ≥ 1 . For
i ∈ [2] we have |N [v, wi]| ≥ |N [v]|+1 ≥ deg(v)+2 = 5. Moreover, |N [v, w3]| = deg(v)+1 = 4.
By the (stronger) recursive bound, and induction we have

M1(G) ≤ M1(n − 1) + 2 · M1(n − 5) + M1(n − 4)

≤ 10n/5
(

10−1/5 + 2 · 10−5/5 + 10−4/5
)

< 10n/5 .

Case E.2: deg(w3) = 2, for i ∈ {2, 3} it holds N(wi) ⊆ N [v], and |N(w1) \ N [v]| ≥ 1.
Since ∆(G) = 3 vertex w1 can be adjacent to at most one of w2, w3. If w3 is adjacent to w1,
then deg(w2) = 1. Hence, w3 in non-adjacent to w1 and w3 is adjacent to w2. By Lemma 37
we assume that w2 and w3 are not twins. Hence, w2 is adjacent to w1.

We use a refined version of the strong recursive bound. In particular, we refine the term
corresponding to the case where v ̸∈ S. If v ̸∈ S, then by maximality at least one of the
following cases holds:

w1, w3 ∈ S and w1 is unmatched,
w1, w3 ∈ S and w1 is matched to its neighbor t with t ∈ S \ N [v],
w1, w2 ∈ S,
w2, w3 ∈ S.
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We obtain the bound

M1(G) ≤ M1(G \ N [w1, w3]) +
∑

t∈N(w1)\N [v]

M1(G \ N [w1, t, w3]) + M1(G \ N [w1, w2])

+ M1(G \ N [w2, w3]) +
∑
i∈[3]

M1(G \ N [v, wi]) .

Note that |N(w1) \ N [v]| = 1 as v, w2 ∈ N(w1) ∩ N [v]. Since |N [w1, t, w3]| ≥ |N [w1, w3]| =
|N [w1, w2]| = |N [w1, v]| = 5 we have

M1(G) ≤ M1(n − 5) + M1(n − 5) + M1(n − 5)
+ M1(n − 4) + 2 · M1(n − 4) + M1(n − 5) .

By induction we have M1(G) ≤ 10n/5
(

4 · 10−5/5 + 3 · 10−4/5
)

. The case is proved since
4 · 10−1 + 3 · 10−4/5 < 1.

Case E.3: deg(w3) = 2 and for all i ∈ [3] it holds |N(wi) \ N [v]| ≥ 1. Let u3 be the
neighbor of w3 different than v. Note that u3 ̸∈ N [v] by the assumption. By case A it holds
deg(u3) ∈ {2, 3}. We use a refined version of the weaker recursive bound. More precisely,
we refine the term M1(G \ N [v]) corresponding to v ∈ S and v unmatched. If v ∈ S and v

unmatched, then by maximality it follows that either u3 ∈ S and u3 unmatched or for some
t ∈ N(u3) \ N [v] we have u3t ∈ S. The recursion becomes

M1(G) ≤ M1(G \ v)

+ M1(G \ N [v, u3]) +
∑

t∈N(u3)\N [v]

M1(G \ N [v, u3, t])

+
∑
i∈[3]

M1(G \ N [v, wi]) .

Let x = |N(u3) \ N [v]|, i.e, x is the number of vertices that are adjacent to u3 but not
v. Since deg(u3) ∈ {2, 3} it follows that x ∈ {0, 1, 2}. By definition of x and since
{v, w1, w2, w3, u3} ⊆ N [v, u3] it holds that |N [v, u3]| ≥ x + 5. Thus, |N [v, u3, t]| ≥ x + 5 as
well. The induction gives:

M1(G\N [v, u3])+
∑

t∈N(u3)\N [v]

M1(G\N [v, u3, t]) ≤ (x+1)·M1(n−x−5) ≤ (x+1)·10(n−x−5)/5 .

By induction and since |N [v, wi]| ≥ 5 for all i ∈ [3] we also have∑
i∈[3]

M1(G \ N [v, wi]) ≤ 3 · 10(n−5)/5 .

Note that the degree of w3 in graph G \ v is 1. Hence, we can apply the following bound
given in case A:

M1(G \ v) ≤ 10(n−1)/5
(

10−2/5 + 2 · 10−3/5
)

Combining the above three we have:

M1(G) ≤ 10(n−1)/5
(

10−2/5 + 2 · 10−3/5
)

+ (x + 1) · 10(n−x−5)/5 + 3 · 10(n−5)/5 .

For all three possible values {0, 1, 2} for x the last is bounded by 10n/5. Therefore, case E.3
is proved.
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Consider the previous three subcases. The vertex v is an arbitrary vertex of a connected
graph G. In other words, one of the three subcases can be applied as soon as there is a
vertex in G of degree 3, with a neighbor of degree 2. Therefore, by case A and since G is
connected, we may assume for the rest of the proof that G is a cubic graph, i.e., the degree
of every vertex in G is 3.

Let v be a vertex in the cubic graph G. By Lemma 37 for every wi ∈ N [v] it holds
|N(wi)\N [v]| ≥ 1. We will consider the following two possibilities: G[N(v)] is an independent
set or G[N(v)] contains exactly one edge.

Case E.4: G[N(v)] is an independent set. Equivalently, for all i ∈ [3] it holds |N(wi) \
N [v]| = 2. Since |N [v, wi]| = 6 for all i ∈ [3], we have by the (weak) recursive bound:

M1(G) ≤ M1(n − 1) + M1(n − 4) + 3 · M1(n − 6) .

Then, by induction M1(G) ≤ 10n/5
(

10−1/5 + 10−4/5 + 3 · 10−6/5
)

< 10n/5 .

Case E.5: G[N(v)] contains exactly one edge. Without loss of generality assume that
w2w3 ∈ E(G). Let u2 be the neighbor of w2 outside of N [v], and analogously define u3. By
Lemma 37 we assume that u2 ≠ u3. Denote with a, b the neighbors of w1. (It is possible
that {a, b} = {u2, u3}.)

We again use a refined version of the weak recursive bound. We refine the term M1(G\v)
corresponding to the case when v ̸∈ S. By maximality, at least one of the following holds:

for one of i ∈ {2, 3} we have w1, wi ∈ S and both w1 and wi are unmatched. Then
S \ {w1, wi} is a maximal generalized induced matching in G \ N [w1, wi].
w2, w3 ∈ S. Then S\{w2, w3} is a maximal generalized induced matching in G\N [w2, w3].
For some i ∈ [3] and some t ∈ N(wi) \ N [v] it holds wi, t ∈ S. Then S \ {wi, t} is a
maximal generalized induced matching in G \ N [wi, t].

From the above

M1(G) ≤ +
∑

i∈{2,3}

M1(G \ N [w1, wi])

+ M1(G \ N [w2, w3])

+
∑

t∈{a,b}

M1(G \ N [w1, t]) + M1(G \ N [w2, u2]) + M1(G \ N [w3, u3])

+ M1(G \ N [v]) +
∑
i∈[3]

M1(G \ N [v, wi]) .

Since G is cubic and by the adjacencies in G the following equalities and inequalities hold:

|N [w1, w2]| ≥ 6 and |N [w1, w3]| ≥ 6;
|N [w2, w3]| = 5;
|N [w1, a]| ≥ 5 and |N [w1, b]| ≥ 5; N [w2, u2] ≥ 6; |N [w3, u3]| ≥ 6;
|N [v]| = 4; |N [v, w1]| = 6, |N [v, w2]| = 5 and |N [v, w3]| = 5.

Hence
M1(G) ≤ M1(n − 4) + 5 · M1(n − 5) + 5 · M1(n − 6) .

By induction we get M1(G) ≤ 10n/5
(

10−4/5 + 5 · 10−5/5 + 5 · 10−6/5
)

< 10n/5 .

Case F: ∆(G) = 2. Since G is connected and by case A it follows that G is a cycle. Let
v2 ∈ V (G) and denote with v1 and v3 its neighbors. We use a refined recursive bound where
we refine the term M1(G \ v2) corresponding to the maximal generalized induced matchings
that do not contain v2. If v2 ̸∈ S then at least one of the following holds
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v1, v3 ∈ S and both v1 and v3 are unmatched.
v1 ∈ S and v1 is matched to its neighbor v0, where v0 ̸= v2.
v3 ∈ S and v3 is matched to its neighbor v4, where v4 ̸= v2.

The bound arises

M1(G) ≤ M1(G \ N [v1, v3]) + M1(G \ N [v1, v0]) + M1(G \ N [v3, v4])
+ M1(G \ N [v2]) + M1(G \ N [v1, v2]) + M1(G \ N [v2, v3])

Since |V (G)| ≥ 6 it follows that v0 ̸= v4. Similarly as before, by induction we obtain

M1(G) ≤ 10n/5
(

10−5/5 + 2 · 10−4/5 + 10−3/5 + 2 · 10−4/5
)

< 10n/5 .

This completes the proof. ■

C Bounded co-degeneracy

In this section, we give FPT algorithms for enumerating maximal subgraph with bounded
co-degeneracy in a c-closed graph. As before, we work in the complement of a c-closed graph
and look for the maximal subgraphs of bounded degeneracy. The proof of the FPT bound
uses the same lemmas as in the case of bounded treewidth. Namely, it is easy to show that
d-degenerate graph is either a 4d-star or admits a good (4d, 2d)-partition. The FPT bound
then follows by Lemmas 25 and 27.

In comparison with bounded treewidth, we are able to make exponential savings in
running time with respect to c since there is a non-trivial combinatorial bound, and there is
a polynomial delay algorithm for listing maximal d-degenerate subgraphs.
Combinatorial bound Recall that the maximum the number of maximal d-degenerate
subgraph with in an arbitrary N -vertex graph is denoted by Dd(N). Pilipczuk and Pilip-
czuk [69] show that for every d there is a constant γd < 2 such that Dd(N) ≤ γN

d . Forests
are exactly 1-degenerate graphs, so we have D1(N) = F(N) ≤ 1.8638N .
FPT bound To give the algorithm, we use the same two lemmas as in the case of subgraphs
of bounded treewidth in the complement of a c-closed graph. In the case of bounded
degeneracy, the dichotomy theorem is easier to prove but it comes at the expense of worse
upper bounds. To make the saving in the base of the exponent we give a stronger version of
Lemma 27.

▶ Lemma 41. Let G be the complement of a c-closed graph and let ℓ and k be fixed integers.
The number of maximal subsets S ⊆ V for which graph G[S] is d-degenerate and admits a
good (ℓ, k)-partition, is at most O(nℓ+2k · Dd(kc)).

Proof. Let H be a maximal d-degenerate subgraph of G that let e1, . . . , ek and A0, . . . , Ak

be the edges and sets defining a good (ℓ, k)-partition of H. To prove the lemma, it suffices
to show that the number of induced subgraphs that admit a good (ℓ, k)-partition with
the same edges e1, . . . , ek and the same set A0 is bounded by Dd(ℓ + k(c + 1)). Namely,
O(nℓ+2k · Dd(ℓ + kc + k)) ≤ O(nℓ+2k · 2ℓ+k · Dd(kc)) = O(nℓ+2k · Dd(kc)).

Denote with U the vertices of G that are neither incident to the edges e1, . . . , ek nor
in the set A0, i.e., U = V (G) \ (A0 ∪k

i=1 ei). By definition of a good (ℓ, k)-partition, for
any induced subgraph with a good (ℓ, k)-partition e1, . . . , ek and A0, A′

1, . . . A′
k it holds

A′
i ⊆ U \ NG(ei) for each i ∈ [k]. Since G is complement of a c-closed graph, it follows

that |U \ N(ei)| ≤ c − 1 for each i ∈ [k]. Hence, H is also a maximal subgraph in graph
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induced by A0 ∪
(⋃k

i=1(ei ∪ (U \ N [ei]))
)

. As
∣∣∣A0 ∪

(⋃k
i=1(ei ∪ (U \ N [ei]))

)∣∣∣ ≤ ℓ + k(c + 1)
we conclude that there are at most Dd(ℓ + k(c + 1)) subgraph H with desired properties.
The lemma follows. ■

To prove that every d-degenerate graph is either a 4d-star or admits a good (4d, 2d)-
partition we need an easy proposition.

▶ Proposition 42. If H is a graph of degeneracy at most d then every induced subgraph H ′

it holds |E(H ′)| ≤ d|V (H ′)|.

▶ Lemma 43. Let H be a graph of degeneracy at most d. Then H is either a 4d-star or H

admits a good (4d, 2d)-partition.

Proof. Let M be the maximum size matching in H. If |M | ≤ 2d then the vertices incident
with the edges in M form a vertex cover of size at most 4d. In this case, H is trivially a
4d-star. So assume that |M | ≥ 2d and consider 2d arbitrary edges from M , say e1, . . . , e2d.

In order to prove the lemma it suffices to show that | ∩2d
i=1 N(ei)| ≤ 4d: namely, we set

A0 =
⋂2d

i=1 N(ei); then each v ∈ V (H) \ (A0
⋃2d

i=1 ei) is non-adjacent to at least one edge ei

and we can assign v to Ai.
Denote with ℓ = |∩2d

i=1 N(ei)|. Our goal is to show that ℓ ≤ 4d. Let Z = ∪2d
i=1ei be the set

of vertices incident to the edges e1, . . . , e2d. It holds |Z| = 4d. As each vertex in ∩2d
i=1N(ei)

is adjacent to every edge ei, the number of edges in G[A0 ∪ Z] is at least ℓ · 2d. Since H has
degeneracy at most d, by Proposition 42 it holds

2ℓd ≤ |E(G[A0 ∪ Z])| ≤ d|A0 ∪ Z| = d(ℓ + 4d) = dℓ + 4d2 .

Hence, dℓ ≤ 4d2 and ℓ ≤ 4d. ■

We are ready to prove the theorem.

▶ Theorem 28. Let G be the complement of a c-closed graph. The number of maximal
d-degenerate subgraphs in G is bounded by O(n8dDd(2dc)).

Proof. By Lemma 43 any maximal induced subgraph with degeneracy at most d is either a
4d-star (and hence a proper 4d+1-star) or admits a good (4d, 2d)-partition. By Lemma 25 the
number of proper 4d + 1-starts with maximal set of tails is 2n4d+1M0(c − 1). By Lemma 41
there are at most O(n8dDd(2dc)) subgraphs that admit a good (4d, 2d)-partition in G. ■

Since the minimum degeneracy of Ka,b is min{a, b}, Example 32 shows that the dependency
nt is necessary.
Enumeration Maximal d-degenerate subgraphs can be listed in time O(mnd+2) per maximal
subgraph [25]. We obtain the following corollary.

▶ Corollary 29. For each fixed integer d, there is a constant γd < 2 and an FPT algorithm
running in time O(n9d+4 · γ2dc

d ) for enumerating all maximal subgraphs with co-degeneracy
at most d in a c-closed graph G.

D Bounded local co-treewidth

We use the lemmas and ideas present above for the subgraphs of bounded treewidth to show
that the similar results hold for the subgraphs of bounded local treewidth. First, we give a
corollary of Lemma 27 and then we recall the definition of locally bounded treewidth.
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▶ Corollary 44. Let G be a complement of a c-closed graph. Then, the number of subsets S,
for which either

G[S] contains at least two non-trivial connected components, or
the diameter of some connected component in G[S] is at least 6

is bounded by n4 · 22(c−1).

Proof of Corollary 44. We show that in both cases G[S] admits a good (0, 2)-partition. The
corollary then follows by Lemma 27. If G[S] contains two non-trivial connected components
then G[S] clearly admits a good (0, 2)-partition.

Suppose that G[S] contains two vertices v, u in the same component that are at distance
at least 6. Since u, v are in the same connected component there are different vertices
u′, v′ ∈ S \ {u, v} such that uu′, vv′ ∈ E(G) (say the neighbors of u, v on the shortest u − v

path). As u and v are at distance at least 6 it follows that N(uu′) ∩ N(vv′) ∩ S = ∅. In
other words, any vertex is either non-adjacent to uu′ or vv′. Thus, G[S] admits a good
(0, 2)-partition with edges e1 = uu′ and e2 = vv′. ■

Informally, the corollary states that if we are are counting (finding) sparse subgraphs in
the complement of a c-closed graph, we only need to worry about the subgraphs with a small
diameter.
Local treewidth The local treewidth of a graph G = (V, E) is the function ltwG : N → N
that associates with every r ∈ N the maximal treewidth of an r-neighborhood in G, see [38, 67].
More formally, the r-neighborhood Nr(v) of a vertex v ∈ V is the set of all vertices u ∈ V at
distance at most r from v. Then

ltwG(r) := max{tw(G[Nr(v)]) : v ∈ V } .

We say that a class of graph C has bounded local treewidth, if there is a function f : N → N
such that for all G ∈ C and r ∈ N it holds ltwG(r) ≤ f(r). Suppose that C is a class of graphs
with locally bounded treewidth for a function f with f(1) = f(2) = f(3) = f(4) = f(5) = t.
(Equality is needed to ensure that the class C contains all proper t + 1-stars. By assuming
other conditions, we can relax this assumption.) We obtain the following theorem.

▶ Theorem 45. Let C be a class of graphs of bounded local treewidth as defined above. Let G

be a complement of a c-closed graph. Then there are at most O(nt+44c−1) maximal induced
subgraphs of G that are in C.

Proof. Let S be a subset of V (G) such that G[S] ∈ C. By Corollary 44, there are at
most n4 · 22c−2 subsets S for which G[S] has diameter more than 5. On the other hand, if
diam(G[S]) ≤ 5, then tw(G[S]) ≤ t since C has locally bounded treewidth. In this case, we
can prove the theorem exactly the same as Theorem 30 by using Claim 31. ■

E Co-forests

We consider the dense subgraphs G[S] with at most |S| − 1 non-edges. As we have seen in
Example 5 if we do not require any structural assumption on the non-edges, then we cannot
hope to enumerate such dense subgraphs in FPT time with respect to c. On the contrary, if
we require that the non-edges form a forest then we can get a positive result. Intuitively,
the difference is that in the latter case the non-edges are uniformly distributed within the
dense subgraph while in the former case the non-edges can be concentrated in a small but
not-so-dense part of the subgraph.
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For brevity, we are working with maximal forests in the complement of c-closed graphs.
We use existing results for the combinatorial bound and enumeration. An FPT bound follows
by separately counting stars and the forests that are not stars. We show that counting
stars reduces to counting independent sets. If a forest is not a star then it either contains
a path on four vertices, or two non-trivial components. We denote a path on 4 vertices by
P4. To count the forests containing a P4 or two non-trivial components we use the following
observation. Any such forest contains two edges e, f with the property that any other vertex
is non-adjacent to either the endpoints of e or the endpoints of f . We use the complementary
c-closure to observe that any forest admitting two such two edges, is contained in a set of at
most 2c − 2 vertices – the non-neighbors of e and f .
Combinatorial bound As counting maximal stars reduces to counting maximal independent
set, in this case we use M0(N) and the Moon-Moser theorem. For counting maximal forests
different than stars, we use F(N) – the maximum number of maximal induced forests in a
graph on N vertices. Currently, the best bound is F(N) ≤ 1.8638N [32]. It is known that
M0(N) ≤ 3N/3 < 105N/10 ≤ F(N).
FPT bound We start by counting the maximal stars in the complement of a c-closed graph.
A non-standard definition of a star is used: a star is a graph that can be obtained as a
(vertex disjoint) union of a tree with diameter at most 2 and an independent set.

▶ Lemma 46 (Stars). Let G be a complement of a c-closed graph. The number of maximal
induced stars in G is bounded by n3 · M0(c − 1).

Proof. For a vertex v ∈ V (G), we show that the number of maximal stars for which v is a
center is bounded by n2 · M0(c − 1). A center of a star is any vertex with maximum degree
(center is unique whenever there is a vertex with degree at least 2).

Let S be a set inducing a star such that v is a center of G[S]. By our definition of a
star, we have that S \ v is an independent set. Moreover, S \ v is a maximal independent
set in graph G \ v: suppose not and let u ∈ V (G) \ v be a vertex such that S ∪ u \ v is
an independent set in G \ v, then S ∪ u induces a star in G regardless of the adjacency
of u and v. By Theorem 8, the number of maximal independent sets in G \ v is at most
(n − 1)2M0(c − 1). The lemma follows. ■

We show that the dependence on n3 cannot be improved unless the bound in Theorem 8
is improved.

▶ Example 47. Adding an isolated vertex to a c-closed graph produces a larger c-closed graph.
Equivalently, adding a universal vertex (adjacent to all other vertices) to the complement of
a c-closed graph produces a larger co-c-closed graph.

Let G be the complement of a c-closed graph on 2
3 n vertices. Denote with G+ the graph

obtained by adding n
3 universal vertices to G. The number of maximal induced stars in G+

is at least n
3 times larger than the number of maximal independent sets in G as any maximal

independent set in G gives rise to n
3 maximal stars in G+. Thus, if we start with a graph G

having M maximal independent sets we can build graph G+ with n
3 · M maximal induced

starts.

We proceed the give an upper bound on the number of forests that contain a P4, and the
number of forests that contain two non-trivial components.

▶ Lemma 48. Let G be the complement of a c-closed graph. Then the number of maximal
induced forests in G
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1. with at least two non-trivial components, is at most n2 · (c − 1)2F(2c − 4);
2. containing a P4, is at most n3 · (c − 1)F(2c − 3).

Proof. (1) Let e = ab be an edge in G. We show that the number of maximal forests in G

with at least two non-trivial components one of which contains e, is at most (c−1)2 ·F(2c−4).
Any such forest contains an edge f = cd that is in a different connected component than e.
In particular, vertices c and d are non-adjacent to a, b. Therefore, the edge f is contained in
the set V (G) \ N [a, b]. See Figure 2. Since G is the complement of a c-closed graph it holds
|V (G) \ N [a, b]| < c. Thus, there are at most (c − 1)2 possibilities for an edge f . Fix such
an edge f . To prove 1, it suffices to show that the number of maximal induced forests that
contain edges e and f in different components is at most F(2c − 4).

a

b
c

d

e = ab f = cd e f

V \N [a, b]

V \N [c, d]

G :
G[S] :

Figure 2 Proof of Lemma 48. Left: G[S] represents an induced forest with two non-trivial
components and two designated edges e and f . Right: depection of G[S] within G. As G is the
complement of a c-closed graph we have |V (G) \ N [a, b]| ≤ c − 1 and |V (G) \ N [c, d]| ≤ c − 1.

Let S be a set inducing a maximal forest with edges e and f in different components.
Denote with X the connected component containing e. Since X is not in the same component
as f it follows that X ⊆ V (G)\N [c, d]. Similarly, we have that S \X ⊆ V (G)\N [a, b]. Hence,
S is also a maximal induced forest in the graph induced by (V (G)\N [c, d]) ∪ (V (G)\N [a, b]).
As G is the complement of a c-closed graph it follows that |(V (G)\N [c, d])∪(V (G)\N [a, b])| ≤
c − 1 + c − 1. At this point we could conclude that the number of such maximal sets S

is bounded by F(2c − 2), but we can do a bit better since we are only counting maximal
induced forests that contain e and f .

Consider graph H = G[(V (G) \ N [c, d]) ∪ (V (G) \ N [a, b])]. Any vertex that is adjacent
to both a, b or both c, d cannot be in an induced forest containing e and f , so we assume
that there are no such vertices in H. Contract the edges e and f in H to obtain H ′ and
denote with ve (resp. vf ) the vertex obtained by contracting e (resp. f). Then, for any set S

that induces a maximal forest containing e and f in H we have that S ∪ ve ∪ vf \ {a, b, c, d}
induces a maximal forest containing ve and vf in H ′. Since |V (H ′)| ≤ 2c − 4, the number of
maximal induced forest that contain e and f is at most F(2c − 4).

(2) We proceed in a similar fashion to prove the second part of the lemma. Let a, b, c

be three vertices that induce a P3 in G. We count the number of maximal induced forests
containing a, b, c and in which c is not a leaf. Since c is not a leaf, any such forest contains a
vertex d that is adjacent to c but not to a, b. It is not hard to see that there are at most
c − 1 possible choices for d since d ∈ V (G) \ N [a, b], and |V (G) \ N [a, b]| < c. Let S be a set
inducing a maximal forest and containing a, b, c, d in G. To prove the lemma we show that
any such set S also induces a maximal forest in a graph on 2c − 3 vertices.

Consider an arbitrary vertex v ∈ S. Since G[S] is a tree containing a P4 induced by
{a, b, c, d} it follows that v is either non-adjacent to both a and b, or non-adjacent to c and
d. Therefore, S is also a maximal induced forest in the graph H = G[(V (G) \ N [a, b]) ∪
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(V (G) \ N [c, d]) ∪ {b, c}]. As G is the complement of a c-closed graph there are at most
c − 1 vertices non-adjacent to both a, b (including d) and at most c − 1 vertices non-adjacent
to c, d (including a), i.e., |V (H)| ≤ 2c. Similarly as before, we are only interested in sets
S containing a, b, c, d. Let H ′ be the graph obtained by contracting the edges ab, bc, cd in
H into a vertex u. It is not hard to see that S ∪ u \ {a, b, c, d} induces a maximal induced
forest in a graph H ′, and the same holds for any set inducing a maximal forest that contains
{a, b, c, d}. Since |V (H ′)| ≤ 2c − 3, it follows that the number of maximal induced forests
that contain a, b, c is at most (c − 1) · F(2c − 3). ■

The main idea in the both parts of the above proof is finding two edges e and f that partition
the rest of the graph into their respective non-neighborhoods. This idea is generalized in
Lemma 27 and will be used in later proofs.

▶ Theorem 49 (Forests). Let G be the complement of a c-closed graph. The number of
maximal induced forests in G is at most

n3M0(c − 1) + 2n3 · (c − 1)F(2c − 3) ≤ 3n3 · (c − 1) · 1.86382c−3 .

Proof. A forest either contains at least two non-trivial components, a P4, or is a star. By
Lemma 46 there are at most n3M0(c − 1) maximal stars in G. By Lemma 48 the number
of maximal induced forests that contain at least two non-trivial components or a P4 is at
most 2n3 · (c − 1)F(2c − 3). The theorem follows since 3 c−1

3 ≤ 1.443c−1 ≤ 1.86382c−3 for any
integer c bigger than 1. ■

Enumeration By Theorem 49, the polynomial delay algorithm for enumerating maximal
induced forest [26, 25] on the complement of c-closed graph runs in FPT time. As the
enumeration algorithm takes O(n5) per maximal forest we obtain an FPT algorithm. Similarly,
as in Corollary 22, we can obtain a better running time by applying the algorithm directly in
the proof of the upper bound. We state the improved running time in the following corollary.

▶ Corollary 50. For c-closed graphs, there is an FPT algorithm running in time O(n3 ·
1.86382c−3 · c6) for Enumerate co-forests.
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