
This paper is included in the Proceedings of the

19th USENIX Symposium on Networked Systems

Design and Implementation.
April 4–6, 2022 • Renton, WA, USA

978-1-939133-27-4

Open access to the Proceedings of the

19th USENIX Symposium on Networked

Systems Design and Implementation

is sponsored by

RDMA is Turing complete, we just did not know it yet!
Waleed Reda, Université catholique de Louvain and KTH Royal Institute of

Technology; Marco Canini, KAUST; KTH Royal Institute of Technology;

Simon Peter, University of Washington

https://www.usenix.org/conference/nsdi22/presentation/reda

RDMA is Turing complete, we just did not know it yet!

Waleed Reda
Université catholique de Louvain

KTH Royal Institute of Technology

Marco Canini
KAUST

Dejan Kostić
KTH Royal Institute of Technology

Simon Peter
University of Washington

Abstract

It is becoming increasingly popular for distributed systems

to exploit offload to reduce load on the CPU. Remote Direct

Memory Access (RDMA) offload, in particular, has become

popular. However, RDMA still requires CPU intervention

for complex offloads that go beyond simple remote memory

access. As such, the offload potential is limited and RDMA-

based systems usually have to work around such limitations.

We present RedN, a principled, practical approach to im-

plementing complex RDMA offloads, without requiring any

hardware modifications. Using self-modifying RDMA chains,

we lift the existing RDMA verbs interface to a Turing com-

plete set of programming abstractions. We explore what is

possible in terms of offload complexity and performance with

a commodity RDMA NIC. We show how to integrate these

RDMA chains into applications, such as the Memcached key-

value store, allowing us to offload complex tasks such as key

lookups. RedN can reduce the latency of key-value get opera-

tions by up to 2.6× compared to state-of-the-art KV designs

that use one-sided RDMA primitives (e.g., FaRM-KV), as

well as traditional RPC-over-RDMA approaches. Moreover,

compared to these baselines, RedN provides performance

isolation and, in the presence of contention, can reduce la-

tency by up to 35× while providing applications with failure

resiliency to OS and process crashes.

1 Introduction

As server CPU cycles become an increasingly scarce resource,

offload is gaining in popularity [23, 28, 30–32, 36]. System

operators wish to reserve CPU cycles for application execu-

tion, while common, oft-repeated operations may be offloaded.

NIC offloads, in particular, have the benefit that they reside in

the network data path and NICs can carry out operations on

in-flight data with low latency [31].

For this reason, remote direct memory access (RDMA)

[15] has become ubiquitous [20]. Mellanox ConnectX NICs

[4] have pioneered ubiquitous RDMA support and Intel has

added RDMA support to their 800 series of Ethernet network

adapters [7]. RDMA focuses on the offload of simple message

passing (via SEND/RECV verbs) and remote memory access

(via READ/WRITE verbs) [15]. Both primitives are widely

used in networked applications and their offload is extremely

useful. However, RDMA is not designed for more complex

offloads that are also common in networked applications. For

example, remote data structure traversal and hash table access

are not normally deemed realizable with RDMA [39]. This led

to many RDMA-based systems requiring multiple network

round-trips or to reintroduce involvement of the server’s CPU

to execute such requests [18, 22, 26, 27, 35, 37, 41].

To support complex offloads, the networking commu-

nity has developed a number of SmartNIC architectures

[2, 3, 11, 14, 17]. SmartNICs incorporate more powerful com-

pute capabilities via CPUs or FPGAs. They can execute arbi-

trary programs on the NIC, including complex offloads. How-

ever, these SmartNICs are not ubiquitous and their smaller

volume implies a higher cost. SmartNICs can cost up to 5.7×

more than commodity RDMA NICs (RNICs) at the same

link speed (§2.1). Due to their custom architecture, they are

also a management burden to the system operator, who has to

support SmartNICs apart from the rest of the fleet.

We ask whether we can avoid this tradeoff and attempt to

use the ubiquitous RNICs to realize complex offloads. To

do so, we have to solve a number of challenges. First, we

have to answer if and how we can use the RNIC interface,

which consists only of simple data movement verbs (READ,

WRITE, SEND, RECV, etc.) and no conditionals or loops, to

realize complex offloads. Our solution has to be general so

that offload developers can use it to build complex RDMA

programs that can perform a wide range of functionality. Sec-

ond, we have to ensure that our solution is efficient and that

we understand the performance and performance variability

properties of using RNICs for complex offloads. Finally, we

have to answer how complex RNIC offloads integrate with

existing applications.

In this paper, we show that RDMA is Turing complete,

making it possible to use RNICs to implement complex of-

floads. To do so, we implement conditional branching via self-

modifying RDMA verbs. Clever use of the existing compare-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 71

and-swap (CAS) verb enables us to dynamically modify

the RNIC execution path by editing subsequent verbs in an

RDMA program, using the CAS operands as a predicate. Just

like self-modifying code executing on CPUs, self-modifying

verbs require careful control of the execution path to avoid

consistency issues due to RNIC verb prefetching. To do so,

we rely on the WAIT and ENABLE RDMA verbs [28, 34] that

provide execution dependencies. WAIT allows us to halt exe-

cution of new verbs until past verbs have completed, provid-

ing strict ordering among RDMA verbs. By controlling verb

prefetching, ENABLE enforces consistency for verbs modified

by preceding verbs. ENABLE also allows us to create loops

by re-triggering earlier, already-executed verbs in an RDMA

work queue—allowing the NIC to operate autonomously with-

out CPU intervention.

Based on these primitives, we present RedN, a principled,

practical approach to implementing complex RNIC offloads.

Using self-modifying RDMA programs, we develop a number

of building blocks that lift the existing RDMA verbs interface

to a Turing complete set of programming abstractions. Using

these abstractions, we explore what is possible in terms of

offload complexity and performance with just a commodity

RNIC. We show how to integrate complex RNIC offloads,

developed with RedN principles, into existing networked ap-

plications. RedN affords offload developers a practical way

to implement complex NIC offloads on commodity RNICs,

without the burden of acquiring and maintaining SmartNICs.

Our code is available at: https://redn.io.

We make the following contributions:

• We present RedN, a principled, practical approach to offload-

ing arbitrary computation to RDMA NICs. RedN leverages

RDMA ordering and compare-and-swap primitives to build

conditionals and loops. We show that these primitives are

sufficient to make RDMA Turing complete.

• Using RedN, we present and evaluate the implementation of

various offloads that are useful in common server computing

scenarios. In particular, we implement hash table lookup with

Hopscotch hashing and linked list traversal.

• We evaluate the complexity and performance of offload in a

number of use cases with the Memcached key-value store. In

particular, we evaluate offload of common key-value get oper-

ations, as well as performance isolation and failure resiliency

benefits. We demonstrate that RNIC offload with RedN can

realize all of these benefits. It can reduce average latency of

get operations by up to 2.6× compared to state-of-the-art one-

sided RDMA key-value stores (e.g., FaRM-KV [22]), as well

as traditional two-sided RPC-over-RDMA implementations.

Moreover, RedN provides superior performance isolation, im-

proving latency by up to 35× under contention, while also

providing higher availability under host-side failures.

2 Background

RDMA was conceived for high-performance computing

(HPC) clusters, but it has grown out of this niche [20]. It

is becoming ever-more popular due to the growth in network

bandwidth, with stagnating growth in CPU performance, mak-

ing CPU cycles an increasingly scarce resource that is best

reserved to running application code. With RNICs now con-

sidered commodity, it is opportunistic to explore the use-cases

where their hardware can yield benefits. These efforts, how-

ever, have been limited by the RDMA API, which constrains

the expression of many complex offloads. Consequently, the

networking community has built SmartNICs using FPGAs

and CPUs to investigate new complex offloads.

2.1 SmartNICs

To enable complex network offloads, SmartNICs have been

developed [1,2,10,11]. SmartNICs include dedicated comput-

ing units or FPGAs, memory, and several dedicated accelera-

tors, such as cryptography engines. For example, Mellanox

BlueField [11] has 8×ARMv8 cores with 16GB of memory

and 2×25GbE ports. These SmartNICs are capable of running

full-fledged operating systems, but also ship with lightweight

runtime systems that can provide kernel-bypass access to the

NIC’s IO engines.

Related work on SmartNIC offload. SmartNICs have been

used to offload complex tasks from server CPUs. For exam-

ple, StRoM [39] uses an FPGA NIC to implement RDMA

verbs and creates generic kernels (or building blocks) that

perform various functions, such as traversing linked lists. KV-

Direct [30] uses an FPGA NIC to accelerate key-value ac-

cesses. iPipe [31] and Floem [36] are programming frame-

works that simplify complex offload development for primar-

ily CPU-based SmartNICs. E3 [32] transparently offloads

microservices to SmartNICs.

The cost of SmartNICs. While SmartNICs provide the ca-

pabilities for complex offloads, they come at a cost. For ex-

ample, a dual-port 25GbE BlueField SmartNIC at $2,340

costs 5.7× more than the same-speed ConnectX-5 RNIC at

$410 (cf. [13]). Another cost is the additional management re-

quired for SmartNICs. SmartNICs are a special piece of com-

plex equipment that system administrators need to understand

and maintain. SmartNIC operating systems and runtimes can

crash, have security flaws, and need to be kept up-to-date with

the latest vendor patches. This is an additional maintenance

burden on operators that is not incurred by RNICs.

2.2 RDMA NICs

The processing power of RDMA NICs (RNICs) has doubled

with each subsequent generation. This allows RNICs to cope

with higher packet rates and more complex, hard-coded of-

floads (e.g., reduction operations, encryption, erasure coding).

We measure the verb processing bandwidth of several gen-

erations of Mellanox ConnectX NICs, using the Mellanox

ib_write_bw benchmark. This benchmark performs 64B

RDMA writes and, as such, it is not network bandwidth lim-

ited due to the small RDMA write size. We find that the verb

processing bandwidth doubles with each generation, as we can

72 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Client

CPU

3

4

S
e
rv

e
r

Host Memory

NOP

READ

Trigger Function (invoked as necessary)

1

WAIT

User buffers

Example: RDMA chain

5

Response Ready

Send back reply
RPC request

triggers WAIT

Conditional branch using

Compare-and-Swap (CAS)

Read/Write arbitrary

memory +

Conditional branching

= RDMA NIC is

Turing Complete
?CAS

2

Compile offload RDMA program

Post RDMA Code

(chain of work

requests)

Work Queues

(WQs)
WRITE

RECV

if (x == 5)
return true;

else
return false;

Example offload

Setup Offload
(done once)

RDMA NIC

Figure 1: RDMA NICs can implement complex offloads if we allow conditional branches to be expressed. Conditional branching can

be implemented by using CAS verbs to modify subsequent verbs in the chain, without any hardware modification.

see in Table 1. This is primarily due to a doubling in process-

ing units (PUs) in each generation.1 As a result, ConnectX-6

NICs can execute up to 110 million RDMA verbs per second

using a single NIC port. This increased hardware performance

further motivates the need for exploiting the computational

power of these devices.

Related work on RDMA offload. RDMA has been em-

ployed in many different contexts, including accelerating

key-value stores and filesystems [19, 22, 26, 35, 44], consen-

sus [18,27,37,41], distributed locking [45], and even nuanced

use-cases such as efficient access in distributed tree-based

indexing structures [46]. These systems operate within the

confines of RDMA’s intended use as a data movement offload

(via remote memory access and message passing). When com-

plex functionality is required, these systems involve multiple

RDMA round-trips and/or rely on host CPUs to carry out the

complex operations.

Within the storage context, Hyperloop [28] demonstrated

that pushing the RNIC offload capabilities is possible. Hyper-

loop combines RDMA verbs to implement complex storage

operations, such as chain replication, without CPU involve-

ment. However, it does not provide a blueprint for offloading

arbitrary processing and cannot offload functionality that uses

any type of conditional logic (e.g., walking a remote data

structure). Moreover, the Hyperloop protocol is likely incom-

patible with next-generation RNICs, as its implementation

relies on changing work request ownership—a feature that is

deprecated for ConnectX-4 and newer cards.

Unlike this body of previous work, we aim to unlock the

general-purpose processing power of RNICs and provide an

1Discussions with Mellanox affirmed our findings.

RNIC PUs Throughput

ConnectX-3 (2014) 2 15M verbs/s

ConnectX-5 (2016) 8 63M verbs/s

ConnectX-6 (2017) 16 112M verbs/s

Table 1: Number of Processing Units (PUs) and performance of

various ConnectX generations.

unprecedented level of programmability for complex offloads,

by using novel combinations of existing RDMA verbs (§3).

3 The RedN Computational Framework

To achieve our aforementioned goals, we develop a framework

that enables complex offloads, called RedN. RedN’s key idea

is to combine widely available capabilities of RNICs to enable

self-modifying RDMA programs. These programs—chains of

RDMA operations—are capable of executing dynamic control

flows with conditionals and loops. Fig. 1 illustrates the usage

of RedN. The setup phase involves (1) preparing/compiling

the RDMA code required for the service and (2) posting

the output chain(s) of RDMA WRs to the RNIC. Clients can

then use the offload by invoking a trigger (3) that causes the

server’s RNIC to (4) execute the posted RDMA program,

which returns a response (5) to the client upon completion.

To further understand this proposed framework, we first

look into the execution models offered by RNICs, and the

ordering guarantees they provide for RDMA verbs. We then

look into the expressivity of traditional RDMA verbs and

explore parallels with CPU instruction sets. We use these

insights to describe strategies for expressing complex logic

using traditional RDMA verbs, without requiring any hard-

ware modifications.

3.1 RDMA execution model

The RDMA interface specifies a number of data movement

verbs (READ, WRITE, SEND, RECV, etc.) that are posted as

work requests (WRs) by offload developers into work queues

(WQs) in host memory. The RNIC starts execution of a se-

quence of WRs in a WQ once the offload developer triggers a

doorbell—a special register in RNIC memory that informs the

RNIC that a WQ has been updated and should be executed.

Work request ordering. Ordering rules for RDMA WRs dis-

tinguish between write WRs and non-write WRs that return a

value. Within each category of operations, RDMA guarantees

in-order execution of WRs within a single WQ. In particular,

write WRs (i.e., SEND, WRITE, WRITEIMM) are totally or-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 73

(a) Completion order.

Tail

WAIT

WR

Head

1

WR

WAIT + ENABLE waits for a

completion before

fetching & executing a WR

WR 21WR 2ENABLE

WQ1

WQ2

Managed queue fetch barrier

(b) Doorbell order.

Figure 2: Work request ordering modes that guarantee a total

order of operations 2a and, a more restrictive “doorbell” or-

der 2b, where operations are fetched by the NIC one-by-one.

The symbols on the right will be used as notation for these WR

chains in the examples of §3.

dered with regard to each other, but writes may be reordered

before prior non-write WRs.

We call the default RDMA ordering mode work queue

(WQ) ordering. Sophisticated offload logic often requires

stronger ordering constraints, which we construct with the

help of two RDMA verbs. Fig. 2 shows two stricter ordering

modes that we introduce and how to achieve them.

The WAIT verb stops WR execution until the completion

of a specified WR from another WQ or the preceding WR

in the same WQ. We call this completion ordering (Fig. 2a).

It achieves total ordering of WRs along the execution chain

(which potentially involves multiple WQs). It can be used to

enforce data consistency, similar to data memory barriers in

CPU instruction sets—to wait for data to be available before

executing the WRs operating on the data. Moreover, WAIT

allows developers to pre-post chains of RDMA verbs to the

RNIC, without immediately executing them.

In all the aforementioned ordering modes, the RNIC is free

to prefetch into its cache the WRs within a WQ. Thus, the

execution outcome reflects the WRs at the time they were

fetched, which can be incoherent with the versions that reside

in host memory in case these were later modified. To avoid

this issue, the RNIC allows placing a WQ into managed mode,

in which WR prefetch is disabled. The ENABLE verb is then

used to explicitly start the prefetching of WRs. This allows for

existing WRs to be modified within the WQ, as long as this

is done before completion of the posted ENABLE—similar to

an instruction barrier. We achieve a full (data and instruction)

barrier, by using WAIT and ENABLE in sequence. We call

this doorbell ordering (Fig. 2b). Doorbell ordering allows

developers to modify WR chains in-place. In particular, it

allows for data-dependent, self-modifying WRs.

(4) Send response

(2) Modify
posted WR

WRITE

RECVSEND

WRITE

WRITE

(1) Send RPC

(3) Trigger
response

Server

Client
WQ2

WQ1

WQ

Figure 3: Clients can trigger posted operations. Thick solid lines

represent (meta)data movements.

Thus, we have shown that we can control WR fetch and

execution via special verbs, which we will exploit in the next

section to develop full-fledged RDMA programs. These verbs

are widely available in commodity RNICs (e.g., Mellanox

terms them cross-channel communication [34]).

3.2 Dynamic RDMA Programs

While a static sequence of RDMA WRs is already a rudi-

mentary RDMA program, complex offloads require data-

dependent execution, where the logic of the offload is depen-

dent on input arguments. To realize data-dependent execution,

we construct self-modifying RDMA code.

Self-modifying RDMA code. Doorbell ordering enables

a restricted form of self-modifying code, capable of data-

dependent execution. To illustrate this concept, we use the

example of a server host that offloads an RPC handler to its

RNIC as shown in Fig. 3. The RPC response depends on the

argument set by the client and thus the RDMA offload is data-

dependent. The server posts the RDMA program that consists

of a set of WRs spanning two WQs. The client invokes the

offload by issuing a SEND operation. At the RNIC, the SEND

triggers the posted RECV operation. Observe that RECV spec-

ifies where the SEND data is placed. We configure RECV to

inject the received data into the posted WR chain in WQ2 to

modify its attributes. We achieve this by leveraging doorbell

ordering, to ensure that posted WRs are not prefetched by the

RNIC and can be altered by preceding WRs.

This is an instance of self-modifying code. As such, clients

can pass arguments to the offloaded RPC handler and the

RNIC will dynamically alter the executed code accordingly.

However, this by itself is not sufficient to provide a Turing

complete offload framework.

Turing completeness of RDMA. Turing completeness im-

plies that a system of data-manipulation rules, such as RDMA,

are computationally universal. For RDMA to be Turing com-

plete, we need to satisfy two requirements [25]:

T1: Ability to read/write arbitrary amounts of memory.

T2: Conditional branching (e.g. if/else statements).

T1 can be satisfied for limited amounts of memory with

regular RDMA verbs, whereas T2 has not been demonstrated

with RDMA NICs. However, to truly be capable of accessing

an arbitrary amount of memory, we need a way of realizing

loops. Loops open up a range of sophisticated use-cases and

74 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

R3

R1 changes R2 opcode from NOOP to WRITE
R2 changes R3 1

R1

If equals :

R2

R3

opcode id

Pseudocode

Input ,

If (==)

send(1);

else

send(0);

RDMA code

Figure 4: Simple if example and equivalent RDMA code. Con-

ditional execution relies on self-modifying code using CAS to

enable/disable WRs based on the operand values.

lower the number of constraints that programmers have to

consider for offloads. To highlight their importance, we add

them as a third requirement, necessary to fulfill the first:

T3: The ability to execute code repeatedly (loops).

In the next sub-sections, we show how dynamic execution

can be used to satisfy all the aforementioned requirements. A

proof sketch of Turing completeness is given in Appendix A.

3.3 Conditionals

Conditional execution—choosing what computation to per-

form based on a runtime condition—is typically realized us-

ing conditional branches, which are not readily available in

RDMA. To this end, we introduce a novel approach that uses

self-modifying CAS verbs. The main insight is that this verb

can be used to check a condition (i.e., equality of x and y)

and then perform a swap to modify the attributes of a WR.

We describe how this is done in Fig. 4. We insert a CAS

that compares the 64-bit value at the address of R2’s opcode

attribute (initially NOOP) with its old parameter (also initially

NOOP). We then set the id field of R2 to x. This field can

be manipulated freely without changing the behavior of the

WR, allowing us to use it to store x. Operand y is stored in

the corresponding position in the old field of R1. This means

that if x and y are equal, the CAS operation will succeed and

the value in R1’s new field—which we set to WRITE—will

replace R2’s opcode. Hence, in the case x = y, R2 will change

from a NOOP into a WRITE operation. This WRITE is set to

modify the data value of the return operation (R3) to 1. If x

and y are not equal, the default value 0 is returned.

Now that we have established the utility of this technique

for basic conditionals, we next look into how to can be used

to support loop constructs.

3.4 Loops

To support loop constructs efficiently, we require (1) condi-

tional branching to test the loop condition and break if neces-

sary, and (2) WR re-execution, to repeat the loop body. We

develop each, in turn, below.

Consider the while loop example in Figure 5. This offload

searches for x in an array A and sends the corresponding

index. The loop is static because A has finite size (in this case,

size =2), known a priori. To simplify presentation, consider

the case A[i] = i,∀i. Without this simplification, the example

would include an additional WRITE to fetch the value at A[i].

Input

ADDWQ2

WQ1 RECV NOOP

If == A[]:

Send response (change NOOP to WRITE)

increment
set old to A[]

CAS

Input

= 0;

while (< 2)

if(== A[])

send()

++;

CAS

NOOP

ADD

1

2

3

Figure 5: while loop using CAS. Loop is unrolled since loop size

is fixed and set to 2.

ADDWQ2

WQ1 RECV NOOP

If == A[]:

change NOOP to BREAK

BREAK changes NOOP to WRITE

and stops next iteration from executing

CAS

Input

= 0;

while (1)

if(== A[])

send()

break;

++;

NOOP

Input 1

2

NOOP

3

ADD

Figure 6: while loop with breaks realized using CAS. To imple-

ment breaks, we use CAS to change a NOOP WR to an RDMA

WRITE, which then stops subsequent iterations from executing.

The loop body uses a CAS verb to implement the if condi-

tion (line 3), followed by an ADD verb to increment i (line 6).

Given that the loop size is known a priori (size = 2), RedN

can unroll the while loop in advance and post the WRs for all

iterations. As such, there is no need to check the condition

at line 2. For each iteration, if the CAS succeeds, the NOOP

verb in WQ1 will be changed to WRITE—which will send

the response back to the client. However, it is clear that, re-

gardless of the comparison result, all subsequent iterations

will be executed. This is inefficient since, if the send (line 4)

occurs before the loop is finished, a number of WRs will be

wastefully executed by the NIC. This is impractical for larger

loop sizes or if the number of iterations is not known a priori.

Unbounded loops and termination. Figure 6 modifies the

previous example to make it such that the loop is unbounded.

For efficiency, we add a break that exits the loop if the element

is found.The role of break is to prevent additional iterations

from being executed. We use an additional NOOP that is for-

matted such that, once transformed into a WRITE by the CAS

operation, it prevents the execution of subsequent iterations

in the loop. This is done by modifying the last WR in the

loop such that it does not trigger a completion event. The next

iteration in the loop, which WAITs on such an event (via com-

pletion ordering), will therefore not be executed. Moreover,

the WRITE will also modify the opcode of the WR used to

send back the response from NOOP to WRITE.

As such, break allows efficient and unbounded loop execu-

tion. However, it still remains necessary for the CPU to post

WRs to continue the loop after all its WRs are executed. This

consumes CPU cycles and can even increase latency if the

CPU is unable to keep up with the speed of WR execution.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 75

RedN Constructs Number of WRs Operand limit [bits]

if 1C + 1A + 3E

48
while

Unrolled 1C + 1A + 3E

Recycled 3C + 2A + 4E

Table 2: Breakdown of the overhead of our constructs with

different offload strategies. C refers to copy verbs, A refers

to atomic RDMA verbs, and E refers to WAIT/ENABLE verbs.

while loops that use WQ recycling incur 2 additional READs, 1

ADD, and 1 ENABLE WR.

Unbounded loops via WQ recycling. To allow the NIC to

recycle WRs without CPU intervention, we make use of a

novel technique that we call WQ recycling. RNICs iterate over

WQs, which are circular buffers, and execute the WRs therein.

By design, each WR is meant to execute only once. However,

there is no fundamental reason why WRs cannot be reused

since the RNIC does not actually erase them from the WQ.

To enable recycling of a WR chain, we insert a WAIT and

ENABLE sequence at the tail of the WQ. This instructs the

RNIC to wrap around the tail and re-execute the WR chain

for as many times as needed.

It is important to note that WQ recycling is not a panacea.

To allow the tail of the WQ to wrap around, all posted WAIT

and ENABLE WRs in the loop need to have their wqe_count

attribute updated. This attribute is used to determine the index

of the WR that these ordering verbs affect. In ConnectX NICs,

these indices are maintained internally by the RNIC and their

values are monotonically increasing (instead of resetting after

the WQ wraps around). As such, the wqe_count values need

to be incremented to match. This incurs overhead (as seen

in Table 2) and requires an additional ADD operation in

combination with other verbs. As such, loop unrolling, where

each iteration is manually posted by the CPU, is overall less

taxing on the RNIC. However, WQ recycling avoids CPU

intervention, allowing the offload to remain available even

amid host software failures (as we will see later in §5.6).

3.5 Putting it all together

With conditional branching, we can dynamically alter the

control flow of any function on an RNIC. Loops allow us

to traverse arbitrary data structures. Together, we have trans-

formed an RNIC into a general processing unit. In this section,

we discuss the usability aspects from overhead, security, pro-

grammability, and expressiveness perspectives.

Building blocks. We abstract and parameterize the RDMA

chains required for conditional branching and looping into if

and while constructs. The overhead in terms of RDMA WR

chains of our constructs is shown in Table 2. We can see a

breakdown of the minimum number of operations required

for each. Inequality predicates, such as < or >, can also be

supported by combining equality checks with MAX or MIN,

as seen later in Table 3. However, their availability is vendor-

specific and currently only supported by ConnectX NICs.

Operand limits. RedN’s limit is based on the supported size

for the CAS verb, which is 64 bits. The operand is provided

as a 48-bit value, encoded in its id and other neighboring

fields (which can also be freely modified without affecting

execution). The remaining bits are used for modifying the

opcode of the WR depending on the result of the compari-

son. We note that our advertised limits only signify what is

possible with the number of operations we allocate for our

constructs. For instance, despite the 48-bit operand limit for

our constructs, we can chain together multiple CAS opera-

tions to handle different segments of a larger operand (we do

not rely on the atomicity property of CAS). As such, there is

no fundamental limitation, only a performance penalty.

Offload setup. To offload an RDMA program, clients first

create an RDMA connection to the target server and send an

RPC to initiate the offload. We envision that the server already

has the offload code; however, other ways of deploying the

offload are possible. Upon receiving a connection request, the

server creates one or more managed local WQs to post the

offloaded code. Next, it registers two main types of memory

regions for RDMA access: (a) a code region, and (b) a data

region. The code region is the set of remote RDMA WQs

created on the server, which are unique to each client and

need to be accessible via RDMA to allow self-modifying code.

Code regions are protected by memory keys—special tokens

required for RDMA access—upon registration (at connection

time), prohibiting unauthorized access. The data region holds

any data elements used by the offload (e.g., a hash table). Data

regions can be shared or private, depending on the use-case.

Security. RedN does not solve security challenges in existing

RDMA or Infiniband implementations [40]. However, RedN

can help RDMA systems become more secure. For such sys-

tems, one-sided RDMA operations (e.g., RDMA READ and

WRITE) are frequently used [22,28,33,35,42,43] as they avoid

CPU overheads at the responder. However, doing so requires

clients to have direct read and/or write memory access. This

can compromise security if clients are buggy and/or malicious.

To give an example, FaRM allows clients to write messages

directly to shared RPC buffers. This requires clients to behave

correctly, as they could otherwise overwrite or modify other

clients’ RPCs. RedN allows applications to use two-sided

RDMA operations (e.g., SEND and RECV), which do not re-

quire direct memory access, while still fully bypassing server

CPUs. As we demonstrate in our use-cases in §5, SEND op-

erations can be used to trigger offload programs without any

CPU involvement.

Isolation. Given that RedN implements dynamic loops,

clients can abuse such constructs to consume more than their

fair share of resources. Luckily, popular RNICs, like Con-

nectX, provide WQ rate-limiters [6] for performance isolation.

As such, even if clients trigger non-terminating offload code,

they still have to adhere to their assigned rates. Moreover, of-

floaded code can be configured by the servers to be auditable

through completion events, created automatically after a WR

is executed. These events can be monitored and servers can

terminate connections to clients running misbehaving code.

76 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Parallelism. RDMA WR fetch and execution latencies are

more costly compared to CPU instructions, as WRs are

fetched/executed via PCIe (microseconds vs. nanoseconds).

As such, to hide WR latencies, it is important to parallelize

logically unrelated operations. Like threads of execution in

a CPU, each WQ is allocated a single RNIC PU to ensure

in-order execution without inter-PU synchronization. As such,

we carefully tune our offloaded code to allow unrelated verbs

to execute on independent queues to be able to parallelize

execution as much as possible. The benefits of parallelism are

evaluated in §5.2.

4 Implementation

Our offload framework is implemented in C with ∼2,300

lines of code—this includes our use cases (∼1400), and con-

venience wrappers for RDMA verbs (libibverbs) API (∼900).

Our approach does not require modifying any RDMA li-

braries or drivers. RedN uses low-level functions provided by

Mellanox’s ConnectX driver (libmlx5) to expose in-memory

WQ buffers and register them to the RNIC, allowing WRs to

be manipulated via RDMA verbs. We configure the ConnectX-

5 firmware to allow the WR id field to be manipulated freely,

which is required for conditional operations as well as WR

recycling. This is done by modifying specific configuration

registers on the NIC [12].

RedN is compatible with any ConnectX NICs that support

WAIT and ENABLE (e.g., ConnectX-3 and later models).

5 Evaluation

We start by characterizing the underlying RNIC performance

(§5.1) to understand how it affects our implemented program-

ming constructs. Then, in our evaluation against state-of-the-

art RNIC and SmartNIC offloads, we show that RedN:

1. Speeds up remote data structure traversals, such as hash

tables (§5.2) and linked lists (§5.3) compared to vanilla

RDMA offload;

2. Accelerates (§5.4) and provides performance isolation

(§5.5) for the Memcached key-value store;

3. Provides improved availability for applications (§5.6)—

allowing them to run in spite of OS & process crashes;

4. Exposes programming constructs generic enough to en-

able a wide-variety of use-cases (§5.2–§5.6);

Testbed. Our experimental testbed consists of 3× dual-socket

Haswell servers running at 3.2 GHz, with a total of 16

cores, 128 GB of DRAM, and 100 Gbps dual-port Mellanox

ConnectX-5 Infiniband RNICs. All nodes are running Ubuntu

18.04 with Linux Kernel version 4.15 and are connected via

back-to-back Infiniband links.

NIC setup. For all of our experiments, we use reliable con-

nection (RC) RDMA transport, which supports the RDMA

synchronization features we use. All WQs that enforce door-

bell order are initialized with a special “managed” flag to

disable the driver from issuing doorbells after a WR is posted.

The WQ size is set to match that of the offloaded program.

L
a

te
n

c
y
 (

u
s
)

0
.0

0
.5

1
.0

1
.5

2
.0

Copy Atomic Calc

READ WRITE CAS MAX

R
e
m

L
o

c
a
l

D
o

o
rb

e
ll

Network

Execution

Figure 7: Latencies of different RDMA verbs. The solid line

marks the latency of ringing the doorbell via MMIO. The differ-

ence between dashed and solid lines estimates network latency.

5.1 Microbenchmarks

We run microbenchmarks to break down RNIC verb execution

latency, understand the overheads of our different ordering

modes, and determine the processing bandwidth of different

RDMA verbs and of our constructs.

5.1.1 RDMA Latency

We break down the performance of RDMA verbs, configured

to perform 64B IO, by measuring their average latencies after

executing them 100K times. All verbs are executed remotely,

unless otherwise stated. As seen in Fig. 7, WRITE has a la-

tency of 1.6 µs. It uses posted PCIe transactions, which are

one-way. Comparatively, non-posted verbs such as READ or

atomics such as fetch-and-add (ADD) and compare-and-swap

(CAS) need to wait for a PCIe completion and take ∼1.8 µs.2

Overall, the execution time difference is small among verbs,

even for more advanced, vendor-specific Calc verbs that per-

form logical and arithmetic computations (e.g., MAX).

To break down the different latency components for RDMA

verb execution, we first estimate the latency of issuing a door-

bell and copying the WR to the RNIC. This can be done

by measuring the execution time of a NOOP WR. This time

can be subtracted from the latencies of other WRs to give

an estimate of their execution time once the WR is available

in the RNIC’s cache. We also quantify the network cost by

executing remote and local loopback NOOP WRs (shown on

the right-hand side) and measuring the difference—roughly

0.25 µs for our back-to-back connected nodes. Overall, these

results show low verb execution latency, justifying building

more sophisticated functions atop. We next measure the im-

plications of ordering for offloads.

5.1.2 Ordering Overheads

We show the latency of executing chains of RDMA verbs

using different ordering modes. All the posted WRs within a

chain are NOOP, to simplify isolating the performance impact

of ordering. We start by measuring the latency of executing

a chain of verbs posted to the same queue but absent any

constraints (WQ order), and compare it to the ordering modes

2Older-generation NICs (e.g., ConnectX-4) use a proprietary concurrency

control mechanism to implement atomics, resulting in higher latencies than

later generations that rely on PCIe atomic transactions.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 77

0
5

1
0

1
5

2
0

2
5

3
0

3
5

Number of Ops

L
a
te

n
c
y
 (

u
s
)

●
●

●
●

●
●

●

1 5 10 20 30 40 50

● WQ order Completion order Doorbell order

Figure 8: Execution latency of RDMA verbs posted using differ-

ent ordering modes. More restrictive modes such as Doorbell

order add non-negligible overheads as it requires the NIC to

fetch WRs sequentially.

that we introduced in Fig. 2—completion order and doorbell

order. WQ order only mandates in-order updates to memory,

which allows for increased concurrency. Operations that are

not modifying the same memory address can execute concur-

rently and the RNIC is free to prefetch multiple WRs with a

single DMA3. We can see in Fig. 8 that the latency of a sin-

gle NOOP is 1.21 µs and the overhead of adding subsequent

verbs is roughly 0.17 µs per verb. The first verb is slower

since it requires an initial doorbell to tell the NIC that there

is outstanding work. For completion ordering, less concur-

rency is possible since WRs await the completions of their

predecessors, and the overhead of increases slightly to 0.19

µs per additional WR. For doorbell order, no latency-hiding

is possible, as the NIC has to fetch WRs from memory one-

by-one, which results in an overhead of 0.54 µs per additional

WR. These results signify that, doorbell ordering should be

used conservatively, as there is more than 0.5 µs latency in-

crease for every instance of its use, compared to more relaxed

ordering modes.

5.1.3 RDMA Verb Throughput

We show the throughput of the common RDMA verbs in Ta-

ble 3 for a single ConnectX-5 port. ConnectX cards assign

compute resources on a per port basis. For ConnectX-5, each

port has 8 PUs. Atomic verbs, such as CAS, offer a compara-

tively limited throughput (8× lower than regular verbs) due

to memory synchronization across PCIe.

In addition, we measure the performance of RedN’s if and

while constructs. Using 48-bit operands, a ConnectX-5 NIC

can execute 700K if constructs per second. This is due to the

need for CAS to ensure doorbell ordering between CAS and

the subsequent WR it modifies. This causes the throughput

to be bound by NIC processing limits. Unrolled while loops

require the same number of verbs per iteration as an if state-

ment and their throughput is identical. while loops with WQ

recycling have reduced performance due to having to execute

more WRs per iteration.

3The number of operations fetched by the RNIC can change dynamically.

The Prefetch mechanism in ConnectX RNICs is proprietary.

Operation Throughput (M ops/s) Support

Atomic
CAS

8.4

Native
ADD

Copy
READ 65

WRITE 63

Calc MAX 63 Mellanox

Constructs

if 0.7

RedN
while

Unrolled 0.7

Recycled 0.3

Table 3: Throughput of common RDMA verbs and RedN’s con-

structs on a single port of a ConnectX-5. if and unrolled while

have identical performance. while loops with WQ recycling re-

quire additional WRs and therefore have a lower throughput.

5.2 Offload: Hash Lookup

After evaluating the overheads of RedN’s ordering modes and

constructs, we next look into the performance of RedN for

offloading remote access to popular data structures. We first

look into hash tables, given their prominent use in key-value

stores for indexing stored objects. To perform a simple get op-

eration, clients first have to lookup the desired key-value entry

in the hash table. The entry can either have the value directly

inlined or a pointer to its memory address. The value is then

fetched and returned back to the client. Hopscotch hashing is

a popular hashing scheme that resolves collisions by using H

hashes for each entry and storing them in 1 out of H buckets.

Each bucket has a neighborhood that can probabilistically

hold a given key. A lookup might require searching more

than one bucket before the matching key-value entry is found.

To support dynamic value sizes, we assume the value is not

inlined in the bucket and is instead referenced via a pointer.

For distributed key-value stores built with RDMA, get op-

erations are usually implemented in one of two ways:

One-sided approaches first retrieve the key’s location using a

one-sided RDMA READ operation and then issue a second

READ to fetch the value. These approaches typically require

two network round-trips at a minimum. This greatly increases

latency but does not require involvement of the server’s CPU.

Many systems utilize this approach to implement lookups,

including FaRM [22] and Pilaf [35].

Two-sided approaches require the client to send a request

using an RDMA SEND or WRITE. The server intercepts the

request, locates the value and then returns it using one of the

aforementioned verbs. This widely used [19, 26] approach

follows traditional RPC implementations and avoids the need

for several roundtrips. However, this comes at the cost of

server CPU cycles.

5.2.1 RedN’s Approach

To offload key-value get operations, we leverage the offload

schemes introduced in §3.3 and §3.4.

Fig. 9 describes the RDMA operations involved for a single-

hash lookup. To get a value corresponding to a key, the client

first computes the hashes for its key. For this use-case, we

set the number of hashes to two, which is common in prac-

tice [24]. The client then performs a SEND with the value of

78 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 9: Hash lookup RDMA program. Black arrows indicate

order of execution of WRs in their WQs. Brown arrows indi-

cate self-modifying code dependencies and require doorbell or-

dering. x is the requested key and H1(x) is its first hash. The

acronym src indicates the “source address” field of WRs. old in-

dicates the “expected value” at the target address of the CAS

operation. The id field is used for storing conditional operands.

the key x and address of the first bucket H1(x), which are then

captured via a RECV WR posted on the server. The RECV

WR (R1) inserts x into the old field of the CAS WR (R3)

and the bucket address H1(x) into the READ WR (R2). The

READ WR retrieves the bucket and sets the source address

(src) of the response WR (R4) to the address of the value (ptr).

It also inserts the bucket’s key into the id field to prepare it

for the conditional check. Finally, CAS (R3) checks whether

the expected value old, which is set to key x, matches the id

field in (R4), which is set to the bucket’s key. If equal, (R4)’s

opcode is changed from NOOP to WRITE, which then returns

the value from the bucket. Given that each key may be stored

in multiple buckets (two in our setup), these lookups may

be performed sequentially or in parallel, depending on the

offload configuration.

5.2.2 Results

We evaluate our approach against both one-sided and two-

sided implementations of key-value get operations. We use

FaRM’s approach [22] to perform one-sided lookups. FaRM

uses Hopscotch hashing to locate the key using approximately

two RDMA READs — one for fetching the buckets in a neigh-

borhood that hold the key-value pairs and another for reading

the actual value. The neighborhood size is set to 6 by default,

implying a 6× overhead for RDMA metadata operations. For

64 1K 4K 16K 64K

Value Size (B)

L
a
te

n
c
y
 (

u
s
)

0
1
0

2
0

3
0

4
0

Ideal RedN One−sided Event Polling

Two−sided

Figure 10: Average latency of hash lookups. Ideal shows the la-

tency of a single network round-trip READ.

64 1K 4K 16K 64K

Value Size (B)

L
a
te

n
c
y
 (

u
s
)

0
5

1
0

1
5

2
0

2
5

Ideal One−sided Two−sided

RedN

Figure 11: Average latency of hash lookups during collisions.

Ideal shows the latency of a single network round-trip READ.

two-sided lookups, our RPC to the host involves a client-

initiated RDMA SEND to transmit the get request, and an

RDMA WRITE initiated by the server to return the value after

performing the lookup.

Latency. Fig. 10 shows a latency comparison of KV get oper-

ations of RedN against one-sided and two-sided baselines. We

evaluate two distinct variations of two-sided. The event-based

approach blocks for a completion event to avoid wasting CPU

cycles, whereas the polling-based approach dedicates one

CPU core for polling the completion queue. We use 48-bit

keys and vary the value size. The value size is given on the

x-axis. In this scenario, we assume no hash collisions and that

all keys are found in the first bucket. RedN is able to outper-

form all baselines — fetching a 64 KB key-value pair in 16.22

µs, which is within 5% of a single network round-trip READ

(Ideal). RedN is able to deliver close-to-ideal performance

because it bypasses the server’s CPU and fetches the value in

a single network RTT. Compared to RedN, one-sided opera-

tions incur up to 2× higher latencies, as they require two RTTs

to fetch a value. Two-sided implementations do not incur any

extra RTT; however, they require server CPU intervention.

The polling-based variant consumes an entire CPU core but

provides competitive latencies. Event-based approaches block

for completion events to avoid wasting CPU cycles and incur

much higher latencies as a consequence. RedN is able to out-

perform polling-based and event-based approaches by up to

2 and 3.8×, respectively. Given the much higher latencies of

event-based approaches, for the remainder of this evaluation,

we will only focus on polling-based approaches and simply

refer to them hereafter as two-sided.

Fig. 11 shows the latency in the presence of hash collisions.

In this case, we assume a worst case scenario, where the

key-value pair is always found in the second bucket. In this

scenario, we introduce two offload variants for RedN— RedN-

Seq & RedN-Parallel. The former performs bucket lookups

sequentially within a single WQ. The latter parallelizes bucket

lookups by performing the lookups across two different WQs

to allow execution on different NIC PUs. We can see that

RedN-Parallel maintains similar latencies to lookups with no

hash collisions (i.e., RedN in Fig. 10), since bucket lookups

are almost completely parallelized. It is worth noting that

parallelism in this case does not cause unnecessary data move-

ment, since the value is only returned when the corresponding

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 79

Hash lookup
IO Size

≤ 1 KB 64 KB

Port config. Single Dual Single Dual

Rate (ops/s) 500K 1M 180K 190K

Bottleneck NIC PU IB bw PCIe bw

Table 4: NIC throughput of hash lookups and its bottlenecks.

Figure 12: Linked list RDMA program.

key is found. For the other bucket, the WRITE operation (R4

in Fig. 9) is a NOOP. RedN-Seq, on the other hand, incurs at

least 3 µs of extra latency as it needs to search the buckets

one-by-one. As such, whenever possible, operations with no

dependencies should be executed in parallel. The trade-off is

having to allocate extra WQs for each level of parallelism.

Throughput. We describe our throughput in Table 4. At lower

IO, RedN is bottlenecked by the NIC’s processing capacity

due to the use of doorbell ordering—reaching 500K ops/s on

a single port (1M ops/s with dual ports). At 64 KB, RedN

reaches the single-port IB bandwidth limit (~ 92 Gbps). Dual-

port configs are limited by ConnectX-5’s 16× PCIe 3.0 lanes.

SmartNIC comparison. We compare our performance for

hashtable gets against StRoM [39], a programmable FPGA-

based SmartNIC. Since we do not have access to a pro-

grammable FPGA, we extract the results from [39] for com-

parison, and report them in Table 5. RedN uses the same

experimental settings as before. Our hashtable configuration

is functionally identical to StRoM’s and our client and server

nodes are also connected via back-to-back links. We can

see that RedN provides lower lookup latencies than StRoM.

StRoM uses a Xilinx Virtex 7 FPGA, which runs at 156.25

MHz, and incurs at least two PCIe roundtrips to retrieve the

key and value. Our evaluation shows that RedN can provide

latency that is in-line with more expensive SmartNICs.

IO Size System Median 99thile

64 B
RedN 5.7 µs 6.9 µs

StRoM ~7 µs ~7 µs

4 KB
RedN 6.7 µs 8.4 µs

StRoM ~12 µs ~13 µs
Table 5: Latency comparison of hash gets. Results for StRoM

obtained from [39].

1 2 4 8

L
a
te

n
c
y
 (

u
s
)

0
1
0

2
0

3
0

4
0

5
0

One−sided Two−sidedRedN

Figure 13: Average latency of walking linked lists.

5.3 Offload: List Traversal

Next, we explore another data structure also popularly used in

storage systems. We focus on linked lists that store key-value

pairs, and evaluate the overhead of traversing them remotely

using our offloads. Similar to the previous use-case, we focus

on one-sided approaches, as used by FaRM and Pilaf [22, 35].

Linked list processing can be decomposed into a while

loop for traversing the list and an if condition for finding

and returning the key. We describe the implementation of our

offload in Fig. 12. The client provides the key x and address

of the first node in the list N0. A READ operation (R2) is then

performed to read the contents of the first node and update the

values for the return operation (R5). We also use a WRITE

operation (R3) to prepare the CAS operation (R4) by inserting

key x in its old field. As an optimization, this WRITE can be

removed and, instead, x can be inserted directly by the RECV

operation. This, however, will need to be done for every CAS

to be executed and, as such, this approach is limited to smaller

list sizes, since RECVs can only perform 16 scatters.

For this use-case, we introduce two offload variations. The

first, referred to simply as RedN, uses the implementation

in Fig. 12. The second uses an additional break statement

between R4 and R5 to exit the loop in order to avoid executing

any additional operations.

5.3.1 Results

Fig. 13 shows the latency of one-sided and two-sided variants

against RedN at various linked list ranges — where range rep-

resents the highest list element that the key can be randomly

placed in. The size of the list itself is set to a constant value of

8. We setup the linked list to use key and value sizes of 48 bits

and 64 bytes, respectively, and perform 100k list traversals for

each system. The requested key is chosen at random for each

RPC. In the variant labelled “RedN”, we do not use breaks

and assume that all 8 elements of the list need to be searched.

RedN outperforms all baselines for all list ranges until 8 —

providing up to a 2× improvement. RedN (+break) executes

a break statement with each iteration and performs worse than

RedN due to the extra overhead of checking the condition

of the break. However, using a break statement increases the

offload’s overall efficiency since no unneeded iterations are

executed after the key is found — using an average of 30

WRs across all experiments. Without breaks, RedN will need

to execute all subsequent iterations even after the key-value

80 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

64 1K 4K 16K 64K

Value Size (B)

L
a
te

n
c
y
 (

u
s
)

0
1
0

2
0

3
0

4
0

5
0

RedN One−sided Two−sided (VMA)

Figure 14: Memcached get latencies with different IO sizes.

pair is found/returned and it uses more than 65% more WRs.

As such, while RedN is able to provide better latencies, using

a break statement is more sensible for longer lists.

5.4 Use Case: Accelerating Memcached

Based on our earlier experience offloading remote data struc-

ture traversals, we set out to see: 1) how effective our afore-

mentioned techniques are in a real system, and 2) what are

the challenges in deploying it in such settings. Memcached

is a key-value store that is often used as a caching service

for large-scale storage services. We use a version of Mem-

cached that employs cuckoo hashing [24]. Since Memcached

does not natively support RDMA, we modify it with ∼700

LoC to integrate RDMA capabilities, allowing the RNIC to

register the hash table and storage object memory areas. We

also modify the buckets, so that the addresses to the values

are stored in big endian — to match the format used by the

WR attributes. We then use RedN to offload Memcached’s get

requests to allow them to be serviced directly by the RNIC

without CPU involvement. We compare our results to various

configurations of Memcached.

To benchmark Memcached, we use the Memtier bench-

mark, configure it to use UDP (to reduce TCP overheads

for the baselines), and issue 1 million get operations using

different key-value sizes. To create a competitive baseline

for two-sided approaches, we use Mellanox’s VMA [9]—a

kernel-bypass userspace TCP/IP stack that boosts the per-

formance of sockets-based applications by intercepting their

socket calls and using kernel-bypass to send/receive data. We

configure VMA in polling-mode to optimize for latency. In

addition, we also implement a one-sided approach, similar to

the one introduced in section 5.2.

Fig. 14 shows the latency of gets. As we can see, RedN’s

offload for hash gets is up to 1.7× faster than one-sided and

2.6× faster than two-sided. Despite the latter being configured

in polling-mode, VMA incurs extra overhead since it relies

on a network stack to process packets. In addition, to adhere

to the sockets API, VMA has to memcpy data from send and

receive buffers, further inflating latencies—which is why it

performs comparatively worse at higher value sizes.

5.5 Use Case: Performance Isolation

One of the benefits of exposing the latent turing power of

RNICs is to enforce isolation among applications. CPU con-

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

Number of clients

L
a
te

n
c
y
 (

u
s
)

● ●
●

●

●

●
●

●

●

●

1 2 4 8 16

●

●

RedN Avg.

RedN 99
th

−%ile

Two−sided Avg.

Two−sided 99
th

−%ile

Figure 15: Memcached get latencies under hardware contention

with varying numbers of writer-clients.

tention in multi-tenant and cloud settings can lead to arbitrary

context switches, which can, in turn, inflate average and tail

latencies. We explore such a scenario by sending background

traffic to Memcached using one or more writer (clients). These

writers generate set RPCs in a closed loop to load the Mem-

cached service. At the same time, we use a single reader

client to generate get operations. To stress CPU resources

while minimizing lock contention, each reader/writer is as-

signed a distinct set of 10K keys, which they use to generate

their queries. The keys within each set are accessed by the

clients sequentially.

We can see in Fig. 15 that, as we increase the # of writers,

both the average and 99th percentile latencies for two-sided

increase dramatically. For RedN, CPU contention has no im-

pact on the performance of the RNIC and both the average

and 99th percentiles sit below 7 µs. At 16 writers, RedN’s 99th

percentile latency is 35× lower than the baseline.

This indicates that RNIC offloads can also have other useful

effects. Service providers may opt to offload high priority

traffic for more predictable performance or allocate server

resources to tenants to reduce contention.

5.6 Use Case: Failure Resiliency

We now consider server failures and how failure is affected

by RNICs. Table 6 shows failure rates of server software and

hardware components. NICs are much less likely to fail than

software components—NIC annualized failure rate (AFR) is

an order of magnitude lower. Even more importantly, NICs

are partially decoupled from their hosts and can still access

memory (or NVM) in the presence of an OS failure. This

means that RNICs are capable of offloading key system func-

tionality that can allow servers to continue operating despite

OS failures (albeit in a degraded state). To put this to the test,

we conduct a fail-over experiment to explore how RedN can

enhance a service’s failure resiliency.

Process crashes. We look into how we can allow an RNIC to

continue serving RPCs after a Memcached instance crashes.

We find that this is not simple in practice. RNICs access

many resources in application memory (e.g., queues, doorbell

records, etc.) that are required for functionality. If the process

hosting these resources crashes, the memory belonging to

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 81

References

[1] Agilio CX SmartNICs. https://www.netronome.

com/products/agilio-cx/.

[2] Catapult. https://www.microsoft.com/en-us/

research/project/project-catapult/.

[3] Cavium-Xpliant. https://www.openswitch.net/

cavium/.

[4] ConnectX series. https://www.mellanox.com/

products/ethernet/connectx-smartnic.

[5] Dynamically Connected (DC) QPs. https:

//docs.mellanox.com/display/rdmacore50/

DynamicallyConnected(DC)QPs.

[6] ibv_modify_qp_rate_limit(3) - Linux man page.

https://man7.org/linux/man-pages/man3/ibv_

modify_qp_rate_limit.3.html.

[7] Intel Ethernet 800 Series Network Adapters.

https://www.intel.com/content/www/us/en/

products/docs/network-io/ethernet/network-

adapters/ethernet-800-series-network-

adapters/e810-cqda1-100gbe-brief.html.

[8] Intel Optane DC Persistent Memory - Product

Brief. https://www.intel.com/content/dam/

www/public/us/en/documents/product-briefs/

optane-dc-persistent-memory-brief.pdf.

[9] LibVMA. https://github.com/Mellanox/libvma/

wiki/Architecture.

[10] LiquidIO II SmartNICs. https://www.marvell.

com/products/ethernet-adapters-and-

controllers/liquidio-smart-nics/liquidio-

ii-smart-nics.html.

[11] Mellanox BlueField. https://www.mellanox.com/

products/bluefield-overview.

[12] Mellanox PCX. https://github.com/Mellanox/

pcx/tree/master/config.

[13] Mellanox store. http://store.mellanox.com/.

[14] NetFPGA platform. https://netfpga.org/.

[15] RDMA RFC. https://tools.ietf.org/html/

rfc5040.

[16] rsocket(7) - Linux man page. https://linux.die.

net/man/7/rsocket.

[17] Stingray. https://www.broadcom.com/products/

ethernet-connectivity/smartnic.

[18] M. K. Aguilera, N. Ben-David, R. Guerraoui,

V. Marathe, and I. Zablotchi. The Impact of RDMA on

Agreement. arXiv preprint arXiv:1905.12143, 2019.

[19] T. E. Anderson, M. Canini, J. Kim, D. Kostić, Y. Kwon,

S. Peter, W. Reda, H. N. Schuh, and E. Witchel. Assise:

Performance and Availability via NVM Colocation in a

Distributed File System. In 14th USENIX Symposium on

Operating Systems Design and Implementation (OSDI

20), 2020.

[20] O. Cardona. Towards Hyperscale High Per-

formance Computing with RDMA, 2019.

https://pc.nanog.org/static/published/

meetings/NANOG76/1999/20190612_Cardona_

Towards_Hyperscale_High_v1.pdf.

[21] S. Dolan. mov is Turing-complete. Cl. Cam. Ac. Uk,

pages 1–4, 2013.

[22] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson.

FaRM: Fast remote memory. In 11th USENIX Sympo-

sium on Networked Systems Design and Implementation

(NSDI 14), pages 401–414, 2014.

[23] H. Eran, L. Zeno, M. Tork, G. Malka, and M. Silberstein.

NICA: An Infrastructure for Inline Acceleration of Net-

work Applications. In 2019 USENIX Annual Technical

Conference (USENIX ATC 19), pages 345–362, 2019.

[24] B. Fan, D. G. Andersen, and M. Kaminsky. MemC3:

Compact and concurrent memcache with dumber

caching and smarter hashing. In 10th USENIX Sympo-

sium on Networked Systems Design and Implementation

(NSDI 13), pages 371–384, 2013.

[25] M. Gabbrielli and S. Martini. Programming Languages:

Principles and Paradigms, page 145. Undergraduate

Topics in Computer Science. Springer London, 2010.

[26] A. Kalia, M. Kaminsky, and D. G. Andersen. Using

RDMA efficiently for key-value services. In ACM SIG-

COMM Computer Communication Review, volume 44,

pages 295–306. ACM, 2014.

[27] M. Kazhamiaka, B. Memon, C. Kankanamge, S. Sahu,

S. Rizvi, B. Wong, and K. Daudjee. Sift: resource-

efficient consensus with RDMA. In Proceedings of the

15th International Conference on Emerging Networking

Experiments And Technologies, pages 260–271, 2019.

[28] D. Kim, A. Memaripour, A. Badam, Y. Zhu, H. H. Liu,

J. Padhye, S. Raindel, S. Swanson, V. Sekar, and S. Se-

shan. Hyperloop: group-based NIC-offloading to ac-

celerate replicated transactions in multi-tenant storage

systems. In Proceedings of the 2018 Conference of the

ACM Special Interest Group on Data Communication,

pages 297–312, 2018.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 83

[29] B. Li, T. Cui, Z. Wang, W. Bai, and L. Zhang. Socks-

Direct: Datacenter sockets can be fast and compatible.

In Proceedings of the ACM Special Interest Group on

Data Communication, pages 90–103. 2019.

[30] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam,

E. Chen, and L. Zhang. KV-Direct: High-Performance

In-Memory Key-Value Store with Programmable NIC.

In Proceedings of the 26th Symposium on Operating

Systems Principles, pages 137–152, 2017.

[31] M. Liu, T. Cui, H. Schuh, A. Krishnamurthy, S. Peter,

and K. Gupta. Offloading distributed applications onto

SmartNICs using iPipe. In Proceedings of the ACM

Special Interest Group on Data Communication, pages

318–333. 2019.

[32] M. Liu, S. Peter, A. Krishnamurthy, and P. M.

Phothilimthana. E3: Energy-Efficient Microservices

on SmartNIC-Accelerated Servers. In 2019 USENIX

Annual Technical Conference (USENIX ATC 19), pages

363–378, 2019.

[33] Y. Lu, J. Shu, Y. Chen, and T. Li. Octopus: An RDMA-

enabled distributed persistent memory file system. In

2017 USENIX Annual Technical Conference (USENIX

ATC 17), pages 773–785, 2017.

[34] Mellanox RDMA Aware Networks Programming User

Manual. https://www.mellanox.com/related-

docs/prod_software/RDMA_Aware_Programming_

user_manual.pdf.

[35] C. Mitchell, Y. Geng, and J. Li. Using One-Sided

RDMA Reads to Build a Fast, CPU-Efficient Key-Value

Store. In 2013 USENIX Annual Technical Conference

(USENIX ATC 13), pages 103–114, 2013.

[36] P. M. Phothilimthana, M. Liu, A. Kaufmann, S. Peter,

R. Bodik, and T. Anderson. Floem: A Programming

System for NIC-Accelerated Network Applications. In

13th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 18), pages 663–679, 2018.

[37] M. Poke and T. Hoefler. Dare: High-performance State

Machine Replication on RDMA Networks. In Pro-

ceedings of the 24th International Symposium on High-

Performance Parallel and Distributed Computing, pages

107–118. ACM, 2015.

[38] A. Rosenbaum. Multiprocess Sharing of RDMA Re-

sources, 2018. https://openfabrics.org/images/

2018workshop/presentations/103_ARosenbaum_

Multi-ProcessSharing.pdf.

[39] D. Sidler, Z. Wang, M. Chiosa, A. Kulkarni, and

G. Alonso. StRoM: Smart Remote Memory. Proceed-

ings of the Fifteenth EuroSys Conference, 2020.

[40] A. K. Simpson, A. Szekeres, J. Nelson, and I. Zhang.

Securing RDMA for High-Performance Datacenter Stor-

age Systems. In 12th USENIX Workshop on Hot Topics

in Cloud Computing (HotCloud 20), 2020.

[41] C. Wang, J. Jiang, X. Chen, N. Yi, and H. Cui. APUS:

Fast and Scalable Paxos on RDMA. In Proceedings

of the 2017 Symposium on Cloud Computing, pages

94–107, 2017.

[42] X. Wei, Z. Dong, R. Chen, and H. Chen. Deconstructing

RDMA-enabled distributed transactions: Hybrid is bet-

ter! In 13th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 18), pages 233–251,

2018.

[43] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen. Fast in-

memory transaction processing using RDMA and HTM.

In Proceedings of the 25th Symposium on Operating

Systems Principles, pages 87–104, 2015.

[44] J. Yang, J. Izraelevitz, and S. Swanson. Orion: A dis-

tributed file system for non-volatile main memory and

RDMA-capable networks. In 17th USENIX Confer-

ence on File and Storage Technologies (FAST 19), pages

221–234, 2019.

[45] D. Y. Yoon, M. Chowdhury, and B. Mozafari. Dis-

tributed lock management with RDMA: decentralization

without starvation. In Proceedings of the 2018 Inter-

national Conference on Management of Data, pages

1571–1586, 2018.

[46] T. Ziegler, S. Tumkur Vani, C. Binnig, R. Fonseca, and

T. Kraska. Designing distributed tree-based index struc-

tures for fast RDMA-capable networks. In Proceedings

of the 2019 International Conference on Management

of Data, pages 741–758, 2019.

84 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Appendix A Turing completeness sketch

To show that RDMA is turing complete, we need to establish

that RDMA has the following three properties:

1. Can read/write arbitrary amounts of memory.

2. Has conditional branching (e.g., if & else statements).

3. Allows nontermination.

Our paper already demonstrates that these properties can

be satisfied using our constructs but, for completeness, we

also analogize our system with x86 assembly instructions

that have been proven to be capable of simulating a Turing

machine. Dolan [21] demonstrated that this is in fact possible

using just the x86 mov instruction. As such, we need to prove

that RDMA has sufficient expressive power to emulate the

mov instruction.

A.1 Emulating the x86 mov instruction

To provide an RDMA implementation for mov, we first need

to consider the different addressing modes used by Dolan [21]

to simulate a Turing machine. The addressing mode describes

how a memory location is specified in the mov operands.

Table 7 shows a list of all required addressing modes, their

x86 syntax, and one possible implementation for each with

RDMA. R operands denote registers but, since RDMA op-

erations can only perform memory-to-memory transfers, we

assume these registers are stored in memory. For simplicity,

we only focus on mov instructions used to perform loads but

note that stores can be implemented in a similar manner.

For immediate addressing, the operand is part of the in-

struction and is passed directly to register Rdst . This can be

implemented simply using an WRITEIMM which takes a con-

stant in its immediate parameter and writes it to a specified

memory location (register Rdst in this case). To perform more

complex operations, indirect allows mov to use the value of

the operand as a memory address. This enables the dynamic

modification of the address at runtime, since it depends on

the contents of the register when the instruction is executed.

To implement this, we use two write operations with door-

bell ordering (refer to §3.1 for a discussion of our ordering

modes). The first WRITE changes the source address attribute

of the second WRITE operation to the value in register Rsrc.

This allows the second WRITE operation to write to register

Rdst using the value at the memory address pointed to by

Rsrc. Lastly, indexed addressing allows us to add an offset

(Ro f f) to the address in register Rsrc. This can be done by

simply performing an RDMA ADD operation between the

two writes with doorbell ordering, in order to add the offset

register value Ro f f to Rsrc. This allows us to finally write the

value [Rsrc +Ro f f] to Rdst . With these three implementations,

we showcase that RDMA can in fact emulate all the required

mov instruction variants.

A.2 Allowing nontermination

To simulate a real Turing machine, we need to also satisfy

the code nontermination requirement. In the x86 architecture,

this can be achieved via an unconditional jump [21] that loops

back to the start of the program. For RDMA, this can also

be achieved by having the CPU re-post the WRs after they

are executed. While this is sufficient for Turing completeness

it, nevertheless, wastes additional CPU cycles and can also

impact latency if CPU cores are busy or unable to keep up

with WR execution. As an alternative, RedN provides a way

to loop back without any CPU interaction by relying on WAIT

and ENABLE to recycle RDMA WRs (as described in §3.4).

Regardless of which approach is employed, RDMA is capable

of performing an unconditional jump to the beginning of the

program. This means that we can emulate all x86 instructions

used by Dolan [21] for simulating a Turing machine.

Addressing mode x86 syntax RedN equivalent

Immediate mov Rdst , C

Indirect mov Rdst , [Rsrc]

Indexed mov Rdst , [Rsrc + Ro f f]

Table 7: Addressing modes for the x86 mov instruction and their RDMA implementation in RedN.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 85

