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The systematic mapping of physical protein-protein interactions (PPIs) in
the cell has proven extremely valuable in deepening our understanding of pro-
tein function and biology. In species like yeast and human where a large network
of experimentally determined PPIs exists, this network information has proven
valuable for downstream inference tasks in understanding functional genomics
and biological pathway analysis [11,9,2,4,3]. However, despite the introduction of
high-throughput methods [5,7,8,10,12] to assay PPIs, in many non-model organ-
isms the number of experimentally determined PPIs can be nearly nonextant.
This motivates our study of computational methods to predict PPIs in such
species from easily-attainable sequence data alone.

Here, we introduce a new deep learning method, D-SCRIPT (Deep Sequence
Contact Residue Interaction Prediction Transfer), for determining if two proteins
interact physically in the cell, based on their amino acid sequences. D-SCRIPT,
like other recent successful deep learning methods PIPR and DPPI [?,6], belongs
to the class of methods that perform PPI prediction from protein sequence alone.
The advantage of a sequence-based approach is that the input sequence data
is almost always available, due to the enormous advances in low-cost genome
sequencing. Our key conceptual advance is a well-matched combination of input
featurization and model architecture design. This fusion allows the model to
be trained solely from sequence data, supervised with only a binary interaction
label, and yet produce an accessible intermediate representation that captures
the structural mechanism of interaction between the protein pair. Our design
enables D-SCRIPT to offer a combination of advantages that have hitherto been
unavailable simultaneously: broad applicability, interpretability, and high cross-
species accuracy.

The D-SCRIPT model consists of two stages (Figure 1): generation of a rich
feature representation for each protein sequence separately, then prediction of
interaction based on these features, where the model is trained end-to-end across
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Fig. 1. D-SCRIPT architecture overview. The pretrained language model gener-
ates features for each individual protein, which are then reduced to low-dimensional
embeddings. These embeddings are combined to compute a sparse inter-protein con-
tact map, and a customized max-pooling operation is used to predict probability of
interaction.

both stages. The first stage is accomplished by using the pre-trained protein lan-
guage model from Bepler & Berger [1] followed by a projection module, where
the model learns low-dimensional protein embeddings. A key innovation of D-
SCRIPT is in our design of a structurally-aware second stage that encodes a
physical model of protein interaction: we predict two proteins to interact only if
there exists a short sequence of residues in the first protein that is highly com-
patible with a short sequence of residues in the second. In the contact module,
the stacked representations of pairs of residues are projected into a lower dimen-
sional space, and the low-dimensional embeddings are used to compute a sparse
contact map which predicts the locations of contacts between protein residues.
Finally, the interaction module uses a customized max-pooling operation on the
contact map to predict the probability of interaction between the proteins.

We compared D-SCRIPT with PIPR [?], a best-performing state-of-the-art
method for sequence-based human PPI prediction. We trained each model on
38,345 human PPIs and evaluated it using PPI data sets from H. sapiens and five
other model organisms (M. musculus, D. melanogaster, C. elegans, S. cerevisiae,
and E. coli). While D-SCRIPT under-performs PIPR in same-species (human)
PPI prediction (0.516 vs. 0.844 AUPR), it significantly outperforms PIPR cross-
species and maintains a high performance across all species, even those which are
highly evolutionarily distant from human (0.547 vs. 0.352 average AUPR across
five model species). In fact, its AUPR in these species remains comparable to
that seen in human cross-validation, while PIPR’s AUPR drops off significantly
in other species. An investigation of the intermediate stages of the model shows
that D-SCRIPT substantially models the physical process of protein interaction.

Full manuscript and software available at: http://dscript.csail.mit.edu

http://dscript.csail.mit.edu
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