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Abstract
We consider Ising models on the hypercube with a general interaction matrix J , and give a polyno-
mial time sampling algorithm when all but O(1) eigenvalues of J lie in an interval of length one, a
situation which occurs in many models of interest. This was previously known for the Glauber dy-
namics when all eigenvalues fit in an interval of length one; however, a single outlier can force the
Glauber dynamics to mix torpidly. Our general result implies the first polynomial time sampling
algorithms for low-rank Ising models such as Hopfield networks with a fixed number of patterns
and Bayesian clustering models with low-dimensional contexts, and greatly improves the polyno-
mial time sampling regime for the antiferromagnetic/ferromagnetic Ising model with inconsistent
field on expander graphs. It also improves on previous approximation algorithm results based on
the naive mean-field approximation in variational methods and statistical physics.

Our approach is based on a new fusion of ideas from the MCMC and variational inference
worlds. As part of our algorithm, we define a new nonconvex variational problem which allows
us to sample from an exponential reweighting of a distribution by a negative definite quadratic
form, and show how to make this procedure provably efficient using stochastic gradient descent.
On top of this, we construct a new simulated tempering chain (on an extended state space arising
from the Hubbard-Stratonovich transform) which overcomes the obstacle posed by large positive
eigenvalues, and combine it with the SGD-based sampler to solve the full problem.

1. Introduction

An Ising model is a probability distribution on the hypercube {±1}n of the form

pJ,h(σ) =
1

Z
exp

(
1

2
⟨σ, Jσ⟩+ ⟨h, σ⟩

)
where the normalizing constant Z is known as the partition function. The closely related problems
of estimating the partition function Z and sampling from the Ising model are fundamental computa-
tional problems, both due to their central theoretical significance as well a plethora of applications—
see for example Mezard and Montanari (2009); Talagrand (2010); Wainwright and Jordan (2008);
Jerrum and Sinclair (1996); Hinton (2012); Murphy (2012). While computing the partition function
Z exactly is #P-hard (Jerrum and Sinclair, 1993), and approximating it is NP-hard (see e.g., Sly
and Sun (2012); Galanis et al. (2016)), a vast amount of work has been done to understand and
characterize situations where this task is computationally tractable.
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One of the dominant approaches in both theory and practice to sample from such models is
the Glauber dynamics or Gibbs sampler. This is a Markov chain that at each step, resamples the
spin of one coordinate from its conditional distribution. In general, this chain is expected to mix
under appropriate assumptions on the weakness of the interactions in the model (e.g., presence of
correlation decay, or uniqueness of the corresponding Gibbs measure on the tree). In certain special
cases, the point at which the Glauber dynamics stops mixing rapidly is also exactly where sampling
becomes hard: famously, this is the case for the antiferromagnetic Ising model on the worst-case
d-regular graph (see e.g., Sly and Sun (2012); Chen et al. (2020)). However, this is not the case in
general—there are many examples where Glauber dynamics fails to mix but other methods succeed
to approximate the partition function and/or sample; see e.g., Jerrum and Sinclair (1993); Borgs
et al. (2020); Risteski (2016); Guo and Jerrum (2017) for a few examples.

Variational methods are the main alternative to MCMC (Markov Chain Monte Carlo) methods
in practice. In general, variational methods attempt to reduce to problem of computing the partition
function to solving an optimization problem—see e.g., Wainwright and Jordan (2008); Mezard and
Montanari (2009) for further background. Importantly, the strengths and limitations of variational
methods are complementary to those of Glauber dynamics. Unlike Markov chain methods, varia-
tional methods are usually based on solving for an approximation of the true distribution, and hence
may only achieve a comparatively crude approximation to the true distribution—a successful vari-
ational approximation may only output a distribution with KL divergence or Wasserstein distance
o(n) as opposed to o(1) for the output of a rapidly mixing Markov chain. On the other hand, varia-
tional methods often work in both high and low-temperature settings and are closely related to text-
book methods for solving low-temperature models, such as the Ising model on a high-dimensional
lattice, the Curie-Weiss model, and the Sherrington-Kirkpatrick model (Talagrand, 2010; Mezard
and Montanari, 2009; Parisi and Shankar, 1988).

To give a concrete example with strong theoretical guarantees, the naive mean-field approxi-
mation, which corresponds to approximating the Gibbs measure by a (small mixture of) product
measure(s), is probably the most well-known variational method. It has been established that this
approximation is in various senses accurate whenever the interaction matrix J has quantitatively low
rank (more precisely, when ∥J∥2F =

∑
i λi(J)

2 = o(n)): see Basak and Mukherjee (2017); Eldan
(2018); Eldan and Gross (2018); Eldan (2020); Augeri (2021) for a few of the works in this area.
This condition essentially covers all of the main examples of Ising models where the mean-field
approximation is known to be accurate, and for these models it covers both low and high temper-
ature regimes (i.e., both strong and weak couplings). Correspondingly, there are approximation
algorithms connected with the naive mean-field approximation (Risteski, 2016; Jain et al., 2018a,b,
2019) which approximate logZ within o(n) additive error in subexponential time under this as-
sumption (with improving runtime as the rank decreases, and with roughly matching computational
lower bounds).

In this work, we seek to achieve the best of both worlds and combine the strengths of Glauber
dynamics and variational inference. Recently, it was shown (Eldan et al., 2020; Anari et al., 2021)
that the Glauber dynamics rapidly mix whenever the eigenvalues of J all lie within an interval of
length 1, which is tight due to the example of the Curie-Weiss model (Levin and Peres, 2017).
Our main result shows that by using a more sophisticated algorithm, we can sample in polyno-
mial time from any Ising model with a constant number of eigenvalues outside of this interval,
a situation which occurs in many examples of interest. To state our result, first note that with-
out loss of generality, we can recenter the bulk of the eigenvalues to [0, 1] by adding a multiple
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of the identity to J . We provide an algorithm that samples from an Ising distribution with d+
eigenvalues bigger than 1 − 1/c, c ∈ (1,∞], and d− negative eigenvalues −λ1, . . . ,−λd− in time
(n ∥J∥op)

O(d+)eO(c(λ1+···+λd−)), as well as (multiplicatively) approximate the partition function.

In the special case of low-rank Ising models where the naive mean-field approximation is accu-
rate, this gives a roughly comparable runtime to the previous approximation algorithms for estimat-
ing logZ (e.g., Jain et al. (2019)), while allowing us both to approximate Z much more accurately
(within an arbitrary multiplicative factor) and also to sample; see Remark C.5 for further discussion.
Our result also allows us to sample from models which are genuinely high-rank, for example the
SK model with ferromagnetic interactions in the regime where the bulk has diameter at most 1 (see
Section 3) in which case the naive mean-field approximation is known to be very inaccurate (see
e.g., Thouless et al. (1977); Jain et al. (2019)). Our general result also continues a long tradition
of seeking fixed-parameter tractable algorithms for optimization problems that are “approximately”
low rank (Frieze and Kannan, 1996; Oveis Gharan and Trevisan, 2013).

Our techniques take inspiration from both variational and MCMC approaches. We describe
them in detail later (see Section 2), but at a high-level our result is based on two key innovations: (1)
for positive outlier eigenvalues, a rigorous version of the popular simulated annealing (Lovász and
Vempala, 2006) and tempering heuristics (Marinari and Parisi, 1992), based in part on a decomposi-
tion of the measure into a mixture of high-temperature Ising models using the Hubbard-Stratonovich
transform (Hubbard, 1959), and (2) for negative eigenvalues, a sampling approach based on impor-
tance sampling combined with the efficient solution of a related fixed point equation, which is done
by constructing an appropriate (nonconvex) variational problem and running stochastic gradient de-
scent. The key ideas behind both steps are clean and we believe the techniques may be useful for
solving other sampling problems of interest.

In addition to this, we provide representative applications of our results to a diverse set of
tasks: First, we give an algorithm to sample Ising models (antiferromagnetic or ferromagnetic,
and potentially with inconsistent external fields) on expander graphs up to inverse temperature
β = O(1/λ) where λ is the second largest eigenvalue. This is outside the tree uniqueness regime;
note that on general graphs, antiferromagnetic Ising is NP-hard past this threshold (Sly and Sun,
2012). Also, even when the model is ferromagnetic, inconsistent external fields make the sampling
problem #BIS-hard in general1. Relatedly, we give the first results for sampling high-temperature
Sherrington-Kirkpatrick models with strong ferromagnetic interactions.

We also show how to sample from a Hopfield network (Hopfield, 1982) with a fixed number of
patterns in polynomial time. As an example Bayesian statistics application, we show how to sample
from posteriors of mixtures of two Gaussians with symmetric means in fixed dimension. This
provides complementary results to (Mou et al., 2019), who consider the same setting in an arbitrary
dimension, but instead consider an easier task: sampling from the so-called power posterior of such
a mixture—which is derived by weighing the prior substantially more in the Bayes formula for the
posterior. More generally, we show how to sample from a regime of a more sophisticated clustering
model (the Contextual Stochastic Block Model) with low-dimensional contexts.

1. Our results work in an expanded “high temperature” regime; in contrast algorithms for different #BIS-hard problems
work in a low temperature regime by expanding around the ground states (Jenssen et al., 2020; Chen et al., 2021), so
these approaches should be naturally complementary when they both apply.
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1.1. Main results

Suppose that J is a symmetric matrix. We are interested in computing the partition function ZJ,h

and sampling from the distribution PJ,h over {±1}n given by

pJ,h(σ) =
exp

(
1
2 ⟨σ, Jσ⟩+ ⟨h, σ⟩

)
ZJ,h

, where ZJ,h =
∑

σ∈{±1}n
exp

(
1

2
⟨σ, Jσ⟩+ ⟨h, σ⟩

)
. (1)

Our main theorem is the following.

Theorem 1.1 Let c ∈ (1,∞], ε ∈ (0, 1). Suppose that J is a symmetric matrix such that (1) J has
d+ eigenvalues that are greater than 1− 1

c , and (2) its negative eigenvalues are −λ1, . . . ,−λd− .

1. There is an algorithm (Algorithm 3) that with probability≥ 1−e−n, gives a eε-multiplicative
approximation to ZJ,h in time O

(
(∥J∥op n)

O(d++1)eO(c(λ1+···+λd− ))/ε2).

2. There is an algorithm (Algorithm 4) to sample from a distribution ε-close in TV-distance to

PJ,h in time
(
∥J∥op n log

(
1
ε

))O(1+d+)
eO(c(λ1+···+λd− )).

Note that we can take c = ∞ in the theorem; in this case we assume that J has no negative eigen-
values, i.e., J is positive semi-definite, and we get the simpler bounds O

(
(∥J∥op n)

O(d++1)
/
ε2
)

and
(
∥J∥op n log

(
1
ε

))O(1+d+)
. Excluding the dependence on ∥J∥op, for large positive eigenvalues

the runtime only depends on the number of eigenvalues, but for negative eigenvalues, the runtime
depends on their magnitude.

When there are n large eigenvalues, our runtime guarantee is similar to brute force2; see (Jain
et al., 2019) for discussion of why this should be unavoidable under the Exponential Time Hypoth-
esis (ETH). In the extreme case where there is just a single very large negative eigenvalue, it turns
out the problem is also computationally hard. This arises from the discrete nature of the hypercube
{±1}n and stands in strong contrast to intuition from sampling continuous distributions, where very
strong log-concavity is not an obstacle to efficient sampling. We prove the following negative re-
sult; see the full theorem (Theorem H.1) for a stronger runtime lower bound for estimating logZ,
conditional on the ETH.

Theorem 1.2 (Theorem H.1) Let β ≥ 1 be arbitrary and fixed. For any a = (a1, . . . , an) ∈ Zn,
define the Ising model with probability mass function pa : {±1}n → [0, 1] given by pa(σ) ∝
exp

(
−βn⟨a, σ⟩2

)
. If there exists a polynomial time randomized algorithm to approximately sample

within TV distance 1/2 from Ising models of this form for any a1, . . . , an, then NP = RP.

2. Overview of techniques

This section has two parts: in the first, we recall some basic tools which we will use in our analysis.
In the second, we give a full overview of our algorithm and the proof of our main result.

2. Note however, that Theorem 1.1 only gives nontrivial guarantees when d+ = o
(

n
logn

)
; it is an interesting question

whether one can remove the logn factor.
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2.1. Technical toolkit

Sampling from Ising models with bounded spectral diameter. As a basic ingredient, we use the
following guarantee for Glauber dynamics on Ising models (see also Bauerschmidt and Bodineau
(2019); Eldan et al. (2020)):

Theorem 2.1 ((Anari et al., 2021, Theorem 12)) Let J ∈ Rn×n be a symmetric matrix satisfying
0 ⪯ J ≺ In, h ∈ Rn arbitrary. Then we have that:

1. The Poincaré and modified Log-Sobolev constants of PJ,h are at most n(1− ∥J∥op)
−1.

2. For any ϵ > 0, the discrete-time Glauber dynamics mixes to ϵ total variation distance of PJ,h

in O(n log(n/ϵ)/(1− ∥J∥op)) steps.

See Appendix A.2 for the definition of the Poincaré and modified log-Sobolev constant.

Hubbard-Stratonovich transform. The component of our algorithm which handles positive spike
eigenvalues makes use of the multivariate version of the classical Hubbard-Stratonovich transform
(Hubbard, 1959). This transform is commonly used in the analysis of quantum and statistical
physics systems and in large deviation theory; for a few examples see (Talagrand, 2010; Bovier
and Picco, 1998; Bauerschmidt and Bodineau, 2019; Hsu et al., 2012). The statement is given by
Lemma 2.2 below; it is very useful despite its simplicity.

Lemma 2.2 Let X ∈ Rm×n be a matrix with d-dimensional column space V . Let σ ∈ Rn. Then
for any γ > 0,

exp

(
γ2

2
∥Xσ∥2

)
=

(
1

2πγ2

)d/2 ∫
V
exp

(〈
X⊤µ, σ

〉
− 1

2γ2
∥µ∥2

)
dµ.

Proof We complete the square to find that(
1

2πγ2

)d/2 ∫
V
exp

(〈
X⊤µ, σ

〉
− 1

2γ2
∥µ∥2

)
dµ

=

(
1

2πγ2

)d/2

exp

(
γ2

2
∥Xσ∥2

)∫
V
exp

(
− 1

2γ2
∥∥µ− γ2Xσ

∥∥2) dµ = exp

(
γ2

2
∥Xσ∥2

)
using the formula for the normalizing constant of a Gaussian distribution.

2.2. Proof overview

The proof of our main result, Theorem 1.1, combines two modular algorithmic ideas: a grid par-
titioning and simulated annealing/tempering strategy which handles the large positive eigenvalues,
and an optimization and rejection sampling based strategy which handles the negative ones.

We briefly comment on the relation between our techniques and those used in the aforemen-
tioned literature on naive mean-field approximation, which do not seem as useful for sampling. In
all of those works (algorithmic or non-algorithmic), the primary goal is to estimate logZ within an
additive error which is small compared to n, but essentially always ω(1) as n → ∞. The main
reason for this is that the naive mean-field approximation is simply not accurate to O(1) additive
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error even in relatively basic examples (see e.g., Eldan (2020)). On the other hand, in almost all of
those works (and also for Dense Max-CSP, e.g. Frieze and Kannan (1996)) the techniques used are
general as far as the form of the distribution concerned: e.g., they can handle a log-likelihood which
is not a quadratic function but a higher-order polynomial. Our analysis is based on decomposing
the spectrum of the interaction matrix, which only seems to makes sense in the Ising case.

2.2.1. LARGE POSITIVE EIGENVALUES: DECOMPOSITION AND SIMULATED TEMPERING

Here we describe our method for sampling from Ising models with large positive eigenvalues. For
simplicity, we describe the algorithm when the interaction matrix J is positive semidefinite and
return to the general case later.

Warmup: Curie-Weiss model and generalizations. To motivate our approach, we start with a
special case: sampling from a rank-one Ising model of the form pww⊤,0(σ) ∝ e⟨w,σ⟩2/2. This means
the interaction matrix is simply ww⊤. A classical example of such a distribution is the Curie-Weiss
model, in which case w = β1/

√
n where β ≥ 0 is referred to as the inverse temperature. It is

well known (Ellis, 2006; Talagrand, 2010) that the Curie-Weiss model exhibits symmetry breaking
in its low temperature phase β > 1: the distribution becomes close to supported on two clusters of
points, one with 1

n

∑
i σi ≈ y and an opposite one with 1

n

∑
i σi ≈ −y where y is a nontrivial (i.e.,

nonzero) solution of the fixed point equation y = tanh(βy). Because Glauber dynamics becomes
trapped in one of the clusters, it will not mix (Levin and Peres, 2017).

There are many alternative algorithms to sample from the Curie-Weiss model. For example, the
random variable

∑
i σi is an integer between −n and n and it is straightforward to write down its

distribution under the Curie-Weiss model explicitly, letting us sample it; this can also be used with
a Markov chain decomposition theorem to show mixing up to phase (Madras and Zheng, 2003).
However, this approach which works well for the Curie-Weiss model does not generalize nicely
— for a typical vector w, ⟨w, σ⟩ will take on 2n many different values! There are multiple ways to
provably sample from ferromagnetic Ising models which apply to Curie-Weiss (Jerrum and Sinclair,
1993; Guo and Jerrum, 2017), but we need to also sample from non-ferromagnetic ones.

We now explain an approach that will generalize nicely to rank-one models and beyond. We
first describe this as a method to compute the partition function Z, and explain sampling at the end
of this section. By applying the Hubbard-Stratonovich transform (Lemma 2.2), we have

Z =
∑

σ∈{±1}n
e⟨w,σ⟩2/2 =

1√
2π

∫
R
e−y2/2

∑
σ∈{±1}n

ey⟨w,σ⟩dy =
2n√
2π

∫
R
e−y2/2

n∏
i=1

cosh(ywi) dy.

This is a one-dimensional integral: it’s over an infinite domain, but the term e−y2/2 ensures that
larger values of y contribute only a negligible amount to the integral. Hence, we only need to
perform an integral over a bounded region which can be done using Riemann summation.

The general case: decomposition and integration. We now consider the much more general
case of a positive semidefinite matrix J . We do not want to restrict ourselves to low-rank J , but
rather J which have a smaller large number of eigenvalues greater than 1. For this reason, we only
apply the Hubbard-Stratonovich transform over the large eigenspaces of J .

To do this, let c > 0 be an arbitrary small constant. Using the spectral decomposition of J , we
can decompose J = J⊥ + J∥ so that J⊥ and J∥ are both positive semidefinite, ∥J⊥∥op ≤ 1 − c,
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and J∥ spans the eigenspaces of J above 1− c, which we denote as V ∥ with dimension d. Let J∥ =
X⊤X be an arbitrary factorization; then by an analogous application of the Hubbard-Stratonovich
transform (Lemma 2.2) we have

Z =
∑

σ∈{±1}n
exp

(
1

2

〈
σ, J⊥σ

〉
+ ⟨h, σ⟩

)
exp

(
1

2
∥Xσ∥2

)

=

(
1

2π

)d/2 ∑
σ∈{±1}n

exp

(
1

2

〈
σ, J⊥σ

〉
+ ⟨h, σ⟩

)∫
V ∥

exp

(〈
X⊤µ∥, σ

〉
− 1

2

∥∥∥µ∥
∥∥∥2) dµ∥

=

(
1

2π

)d/2 ∫
V ∥

exp

(
−1

2

∥∥∥µ∥
∥∥∥2) ∑

σ∈{±1}n
exp

(
1

2

〈
σ, J⊥σ

〉
+
〈
h+X⊤µ∥, σ

〉)
dµ∥. (2)

We see the resulting integral is now over a d-dimensional subspace; just like the example, the in-
tegrand has a damping term exp

(
−1

2

∥∥µ∥∥∥2) which allows us to truncate it to a bounded domain
while changing the integral by only a small amount. Each of the integrands involves a sum over
exponentially many σ ∈ {±1}n, but we can recognize this sum as the partition function of an Ising
model with interaction matrix J⊥. Since J⊥ has no large eigenvalues, and we can sample from
this class of models using Glauber dynamics (Theorem 2.1), we can approximate the correspond-
ing partition function using a relatively standard reduction from sampling to integration (see e.g.,
Bezáková et al. (2008); this reduction is via a form of simulated annealing, not to be confused with
the related but different concept of simulated tempering described later). Finally, using Riemann
summation to actually compute the integral gives the estimate of Z.

The simulated tempering chain: sampling with exponentially small error. In principle, given
the previous result for approximating the partition function, we could apply standard reductions
from approximate counting to sampling in order to approximately sample from the Ising model.
This would be quite suboptimal, because the running time of such an algorithm would depend
polynomially on the error parameter ϵ (desired total variation distance to the true distribution).
In comparison, MCMC methods, when they work, generally depend logarithmically on the error
parameter ϵ and we would like our algorithm to have this property too.

To achieve the desired logarithmic dependence on 1/ε, we construct a new Markov chain. The
first step is to observe that the formula (2) we derived comes with a simple probabilistic inter-
pretation: it can be understood as a decomposition of the original Ising model into a mixture of
high-temperature Ising models with additional external field X⊤µ∥. The associated joint distribu-
tion over the pair (σ, µ∥) is

p(σ, µ∥) ∝ exp

(
1

2

〈
σ, J⊥σ

〉
+
〈
h+X⊤µ∥, σ

〉
− 1

2

∥∥∥µ∥
∥∥∥2) . (3)

With this understanding, all we need to do is construct a Markov chain which can sample quickly
on the joint (σ, µ∥) space. However, a standard Metropolis-Hastings sampler has the same issue
as the original Glauber dynamics: the joint distribution in (σ, µ∥) space is multimodal just like the
original distribution.

The key to solving this problem is to use a faster chain based on simulated tempering (Mari-
nari and Parisi, 1992). We actually define the Markov chain on a further expanded state space of
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(ℓ, σ, µ∥) where ℓ is an additional temperature variable, so that the chain mixes to a distribution
which conditional on the temperature ℓ being at its “coldest” setting is the desired distribution. The
point is that the chain mixes rapidly at the “hottest” temperature, which combined with a choice of
temperature schedule where distributions at adjacent distributions have constant overlap, provides
a bridge between the different modes at the colder temperature. We actually consider a variant of
simulated tempering where we approximately equalize the probability for each grid cell so that they
will all be visited—this can be thought of as a Markov chain analogue of grid search—with a final
step of importance sampling to attain the right probabilities.

Simulated tempering is a beautiful idea, but it isn’t always guaranteed to work: indeed, Mari-
nari and Parisi (1992) proposed their original simulated tempering chain exactly for the purpose of
sampling from Ising models, but it does not come with a mixing time guarantee (and obviously, no
sampling method will work for Ising models which are computationally hard to sample (Sly and
Sun, 2012)). In our setting, we can establish a Poincaré inequality and prove rapid mixing by us-
ing a Markov chain decomposition theorem (Madras and Randall, 2002; Ge et al., 2018). Such a
decomposition theorem allows us to conclude fast mixing once we show mixing within each grid
cell as well as a “coarse-grained” chain where each grid cell is considered as a single state. Mixing
within each grid cell is immediate from the fact that for fixed µ∥, Glauber dynamics for p(σ, µ∥)
mixes rapidly, and mixing of the coarse-grained chain follows from equalization of the probabilities
of grid cells and overlap of distributions at adjacent temperatures.

2.2.2. LARGE NEGATIVE EIGENVALUES: NONCONVEX VARIATIONAL PROBLEM AND

IMPORTANCE SAMPLING.

Warmup example. To explain our method of handling large negative eigenvalues, it helps to
start with a much easier special case of the argument. Consider p−ww⊤,0(σ) ∝ e−⟨w,σ⟩2/2 for
σ ∈ {±1}n, i.e., a rank one Ising model with interaction matrix −ww⊤. We claim that we can
sample from P−ww⊤,0 using rejection sampling: (1) first, sample σ0 ∼ Uniform({±1}n), and
then (2) with probability e−⟨w,σ0⟩2/2 output σ = σ0, and otherwise restart with step (1). From
the definition, it’s clear that this process draws a sample from P ; the only concern is how long it
takes. The runtime is a geometric random variable with parameter p = Eσ0e

−⟨w,σ0⟩2/2 and using
Jensen’s inequality we have p ≥ e−Eσ0 ⟨w,σ0⟩2/2 = e−∥w∥2/2. Hence, the expected runtime is
1/p = exp(∥w∥2/2) (constant time provided ∥w∥ = O(1)).

This is an artificially simple example because: (1) the Ising model we considered had no positive
eigenvalues, and (2) there was no external field. In all of the cases of serious interest, rejection
sampling from the uniform distribution has extremely bad runtime (exponential in dimension n).
However, generalizing this example leads us naturally to a more sophisticated algorithm which
works more generally.

The general importance sampling argument and fixed point equation. The actual problem we
need to solve is this: sample from an Ising model with external field h and interaction matrix J
with the following structure: J = J+ − J− with 0 ⪯ J+ ⪯ 1 − 1

c and 0 ⪯ J− with small trace.
(We use the previous annealing argument to eliminate any larger positive eigenvalues.) We will let
Q(σ) ∝ e

1
2
⟨σ,Jσ⟩+⟨h,σ⟩ denote the Ising model we ultimately want to sample from.

To have any hope of succeeding with the rejection sampling approach, we need a smart proposal
distribution. Since we have a sampler for the Ising model PJ+,h(σ) ∝ e

1
2
⟨σ,J+σ⟩+⟨h,σ⟩, this would

be an obvious choice of proposal distribution. However, this is a bad idea: the distribution pJ+,h
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and the target distribution many be concentrated around different regions3, in which case rejection
sampling will perform poorly. A smarter choice is to consider a tilted proposal distribution with
additional external field λ ∈ Rn, i.e., an Ising model of the form PJ+,h+λ(σ) ∝ e

1
2
⟨σ,J+σ⟩+⟨h+λ,σ⟩.

Then the relative density satisfies dQ
dPJ+,h+λ

(σ) ∝ e−
1
2
⟨σ,J−σ⟩−⟨λ,σ⟩ and if we specifically consider

tilts of the form λ = −J−µ, we can complete the square to write

dQ

dPJ+,h−J−µ
(σ) =

1

Z(µ)
e−

1
2
⟨σ−µ,J−(σ−µ)⟩

where Z(µ) := EPJ+,h−J−µ
[e−

1
2
⟨σ−µ,J−(σ−µ)⟩] is the normalizing constant. Note that Z(µ) ≤ 1

since J− is positive semidefinite. To lower bound Z(µ), analogous to the “warmup example,” we
can apply Jensen’s inequality, which gives

logZ(µ) ≥ −EPJ+,h−J−µ
[⟨σ − µ, J−(σ − µ)⟩/2] = −⟨J−,EPJ+,h−J−µ

[(σ − µ)(σ − µ)⊤]⟩. (4)

For arbitrary µ, the right hand side of this inequality does not seem particularly tractable. However,
if were fortunate enough to choose µ which is a solution of the fixed point equation

µ = EPJ+,h−J−µ
[σ] (5)

then on the right hand side of (4), the term EPJ+,h−J−µ
[(σ−µ)(σ−µ)⊤] (4) is simply a covariance

matrix. Because PJ+,h−J−µ is an Ising model with all eigenvalues lying in an interval of length
1 − 1

c , its covariance matrix is bounded in operator norm by c (Eldan et al., 2020). Hence by the
matrix Hölder inequality, we have logZ(µ) ≥ −⟨J−,EPJ+,h−J−µ

[(σ−µ)(σ−µ)⊤]⟩ ≥ −cTr(J−).
Provided such a µ exists, this lets us perform importance sampling with expected running time
ecTr(J−), by using PJ+,h−J−µ as the proposal distribution, which we can sample from using Glauber
dynamics by Theorem 2.1.

Solving the fixed point equation: variational argument and nonconvex SGD. There is only
one problem remaining: how do we find a solution of the fixed point equation (5), or even know
that one exists? To show existence, we use what is known as a variational argument: we construct a
functional G(µ) and prove that (1) any critical point of G solves our desired equation (5), and (2) G
has at least one global minima, hence at least one critical point. This strategy is quite familiar in the
context of variational inference (e.g., constructing BP fixed points (Mezard and Montanari, 2009)),
as well as in other fields in mathematics like classical mechanics and PDEs (Evans, 2010).

In our case, we can first assume J− is strictly positive definite without loss of generality (by
adding a small copy of the identity to J−, which preserves the distribution and only slightly increases
the trace). Then we consider the functional

G(µ) := logEPJ+,h
[e⟨µ,−J−σ⟩] +

1

2
⟨µ, J−µ⟩. (6)

Differentiating, we obtain

∇G(µ) = −J−EPJ+,h−J−µ
[σ] + J−µ (7)

3. For a concrete example, suppose J+ = 0, J− = 11⊤/n and h = 1. Then by explicit calculation, it can be shown
that mean without the J− term is much further from zero than with the J− term included.
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and because J− is invertible, this means that∇G(µ) = 0 iff µ solves the fixed point equation (5).
To show there exists a global minimizer of G(µ), we observe that G(0) = 0 and by Hölder’s

inequality that G(µ) ≥ −∥J−µ∥1 + ⟨µ, J−µ⟩/2 ≥ −
√
n∥J−∥op∥µ∥ + ⟨µ, J−µ⟩/2. The first

negative term grows at most linearly in ∥µ∥, whereas the second positive term grows quadratically
in ∥µ∥ because J− is positive definite. Thus, for all µ with ∥µ∥ sufficiently large, we must have that
G(µ) > 0. Hence the infimum of G must be achieved within a compact ball around 0, and so G has
at least one global minima and at least one critical point.

Now that we have shown that a fixed point exists, there is a clear way to make this argument
constructive: run stochastic gradient descent to try to minimize G(µ), starting from zero. Based on
(7), we can indeed compute a stochastic gradient of G provided we can sample from PJ+,h−J−µ,
which we do via Glauber dynamics (Theorem 2.1). While SGD is not guaranteed to find the global
minimum, we can use the result of Ghadimi and Lan (2013) to guarantee that SGD at least finds an
approximate critical point, which is sufficient.

The general case: Positive and negative eigenvalues. We now describe how to combine the
techniques to deal with general case when J = J+ − J− can have both positive and negative
eigenvalues. In the PSD case, we computed the partition function for (3) over a grid of µ∥’s. We
cannot include the negative definite part in J⊥, but we know from our variational argument that we
can approximate pJ⊥−J−,h+X⊤µ∥ with pJ⊥,h+X⊤µ∥+f(µ∥) for some f(µ∥) we can compute; hence
we run the annealing and tempering argument on these distributions instead, with a final step of
importance/rejection sampling to bring us back to pJ⊥−J−,h+X⊤µ∥ .

3. Applications

Our results specialize to give new sampling guarantees for a many models of interest. All of these
are Ising models, so in each application we will describe the particular interaction matrix which
arises and the resulting runtime guarantee. In all of the applications, the behavior in the presence of
an external field h ∈ Rn is of interest (for example, in the Hopfield network to preferentially weight
the distribution towards a particular memory) and we automatically handle this case.

Hopfield Network with a fixed number of patterns. The Hopfield network is a neural model
of associative memory (Hopfield (1982), see also Pastur and Figotin (1977, 1978); Little (1974))
which has been hugely influential and extensively studied. In particular, for rigorous mathematical
results see the textbooks by Bovier and Picco (1998); Talagrand (2010). Formally, given patterns
η1, . . . , ηm ∈ {±1}n the Hopfield network at inverse temperature β is the Ising model with interac-
tion matrix J = β

2n

∑m
v=1 ηvη

⊤
v . This is thought of as a “Hebbian” learning rule because for each

memory ηv and neurons (coordinates) i and j, the term (ηv)i(ηv)j is positive if (ηv)i = (ηv)j and
negative otherwise. Therefore if J is thought of as the “wiring” of the neurons, then for each pattern
all of the neurons which “fire together,” i.e., have the same spin, are “wired together”.

Most of the interest in this model has been in the case of low/zero-temperature, which means
the parameter β is large. Glauber dynamics (Gibbs sampling) has long been considered as a nat-
ural dynamics for the Hopfield network. Informally, the patterns stored in the network serve as
“attractors” which trap the dynamics. This is interesting as in a sense it means the network exhibits
memory; however, from the sampling perspective this means that the vanilla Glauber dynamics are
not expected to mix in the most interesting regime of this model.

10
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When the number of patterns m is fixed (a regime which has been rigorously studied in e.g.,
Gentz and Löwe (1999); Bovier and Picco (1998); Talagrand (2010)), we obtain the first polynomial
time sampling algorithm for the Gibbs measure of this model that works for any fixed β > 0. Based
on the rigorous results in this model (see Bovier and Picco (1998); Talagrand (2010)), when each
pattern is independently sampled ηi ∼ Uniform({±1}n) and β > 1 the distribution will be almost
entirely supported on 2m clusters corresponding to each of the patterns {±ηi}mi=1 and so ordinary
Glauber dynamics will not mix rapidly. (This should not be too difficult to formally prove given
their results, though we did not do this.) Note that our sampling results apply to arbitrary patterns ηi,
not just the commonly studied case where the patterns are uniformly random from the hypercube.

Antiferromagnetic and Ferromagnetic Ising Model on expanders and random graphs. Sup-
pose that A is the adjacency matrix of a graph; then the antiferromagnetic Ising model at inverse
temperature β has interaction matrix J = −βA. It is known that for worst-case graphs of maximum
degree d, that polynomial time sampling is only possible for β = O(1/d) (Sly and Sun (2012), in
fact the precise threshold is known as a function of d). However, this should be far from tight in
other cases of interest, such as on a uniformly random d-regular graph: in this model, it is known
that the symmetry breaking phase transition is at scaling β = Θ(1/

√
d) (see Coja-Oghlan et al.

(2020) and references within) and we would expect the sampling regime of the model to be similar.
Based on our main result, we can indeed recover the correct scaling in the random d-regular

graph setting, as a special case of a much more generic result about spectral expanders. Let λ =
max{|λ2(A)|, |λn(A)|}; then our results give a polynomial time sampler whenever βd = O(log n)
(so that our algorithm is polynomial time) and provided βλ < 1. For example, in the case of a
Ramanujan graph of degree d we have λ ≤ 2

√
d− 1 and so we can sample in polynomial time

whenever β < 1
2
√
d−1

, which is a dramatic improvement over O(1/d). Because of Friedman’s
Theorem, we know the same result holds for the a uniformly random d-regular graph since it will
be almost-Ramanujan (Friedman, 2008). Note that it is the presence of the “trivial” eigenvalue
λ1 which prevents the result from being deduced from the pre-existing works (e.g., Eldan et al.
(2020)) which can handle related models (diluted d-regular SK model) without outlier eigenvalues.
Our result also applies analogously if there are a couple of outlier eigenvalues, e.g., on bipartite
expanders.

A completely analogous consequence of our theory is for the case of ferromagnetic Ising models
on expanders, where we have J = βA. In this case, the famous result of Jerrum and Sinclair
(Jerrum and Sinclair, 1993) proves that sampling is possible when the external field h is consistent
i.e., hi ≥ 0 for all i. However, when the signs of the external fields hi are allowed to disagree,
sampling from the ferromagnetic Ising model is #BIS-Hard (Goldberg and Jerrum, 2007). So our
result also implies sampling algorithms for the ferromagnetic Ising model with inconsistent external
field on expanders up to larger inverse temperatures than were previously known.

Sherrington-Kirkpatrick Model with Ferromagnetic Interaction. The Sherrington-Kirkpatrick
model is one of the most famous spin glass models, and the SK model with ferromagnetic interac-
tions is a natural variant which exhibits a combination of ferromagnetic and spin glass behaviors—
see e.g., Chen (2014); Comets et al. (1999); Talagrand (2010) for rigorous probabilistic analysis of
this model. The interaction matrix J is given by Jij = β1

n + β2Wij where W is a matrix sampled
from the Gaussian Orthogonal Ensemble (so Wij ∼ N(0, 1/n)). Since ∥W∥op ≤ 2(1 + o(1)) with
high probability by classical results in random matrix theory (Anderson et al., 2010), we are able to
sample in polynomial time from this model for any fixed β1, as long as β2 < 1/4.

11
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Posterior in Low-Dimensional Gaussian Mixture Model. A basic clustering problem in Bayes-
ian statistics is posterior inference in the two-component (symmetric) Gaussian mixture model.
More specifically, we will consider that we have data points b1, . . . , bn ∈ Rp and we want to sample
from the posterior under the following Bayesian model: u ∼ N(0, Ip/p), v ∼ Uniform({±1}n)
are the latent cluster assignments and independently bi ∼ N(vi

√
µ/n u, Ip/p). In other words,

we posit that the data points were generated by a balanced mixture of two spherical Gaussians with
means ±

√
µ/n u and u itself is sampled from a Gaussian distribution. (For simplicity, we assumed

that the data is scaled and centered so that the variance of the components is Ip/p; the scalings here
are chosen in part to maintain consistency with the next example.) In this case, the posterior on
the cluster assignments v is given by p(v | b) ∝ exp

(
pµ

2n(1+µ)⟨vv
⊤, BB⊤⟩

)
where B ∈ Rn×p

is the matrix with rows bi. (See Appendix G for the derivation.) Note that this is an Ising model
with J = pµ

2n(1+µ)BB⊤ and the rank of J is at most p. Hence, our main result lets us sample from
this distribution (posterior in the Gaussian Mixture Model) in polynomial time in fixed dimension
p. In the case of a balanced mixture, the posterior will always be bimodal due to the symmetry
of swapping the two cluster assignments, and so Glauber dynamics would not be expected to mix.
(Also, our algorithms works for general data points b1, . . . , bn in which case the posterior can be
an arbitrary positive semidefinite Ising model of rank p — in particular, it could be a Hopfield
network and have even more than two modes.) In fact, the Hubbard-Stratonovich transform and our
algorithm as a whole has a natural interpretation in terms of searching over the latent vector u in this
case (see Appendix E). Finally, we note that this example can be easily generalized to asymmetric
mixture (mixing weights not 50/50); this just changes the prior, which results in an external field in
the (Ising model) posterior.

Remark 3.1 Importantly, the posterior sampling result we establish does not rely on the data being
a typical sample from the posited Bayesian model. This is useful because in many machine learning
and statistics applications the data is not exactly generated from the posited model, and nevertheless
sampling from the posterior is very useful. On the other hand, if the data is indeed generated from
the model (i.e., well-specified) then posterior sampling lets us compute the Bayes-optimal estimator
of quantities of interest, e.g., compute Pr(vi = vj | B) in the GMM example which is the Bayes-
optimal estimate of 1(vi = vj), the indicator that i and j are from the same component.

Posterior in Low-Dimensional Contextual SBM. The contextual stochastic block model (Desh-
pande et al., 2018) is a more complex version of the previous GMM model in which the cluster
structure is also reflected in the community structure of a graph. We consider the low-dimensional
version of this model where the dimension of the contexts p is small—this is morally related to, but
different from, the spiked Wishart model with side information, see e.g., Montanari and Venkatara-
manan (2021). For simplicity, we describe the Gaussianized version of this model below, though
our results also apply analogously to the original SBM version.

The generative model is v ∼ Uniform({±1}n), u ∼ N(0, Ip/p), W is a GOE matrix, i.e., a
symmetric matrix where independently Wij ∼ N(0, 1/n) for i < j and Wii ∼ N(0, 2/n), and
Z ∈ Rn×p is a matrix with iid N(0, 1/p) entries. Then we observe

A =
λ

n
vv⊤ +W, B =

√
µ

n
vu⊤ + Z, u ∼ N(0, Ip/p).

Informally, words Aij is some indication of whether vi and vj are likely to agree, and rows of B
are context/feature vectors in Rp from a mixture of two spherical gaussians with means ±

√
µ/n u,

12
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where each gaussian corresponds to one community assignment. In this model, the posterior (see
Appendix G for the derivation) is p(v | A,B) ∝ exp

(
λ
2 ⟨vv

⊤, A⟩+ pµ
2n(1+µ)⟨vv

⊤, BB⊤⟩
)

, so it is

an Ising model where the interaction matrix is the weighted sum of A and BB⊤. We can sample
from this using our result as long as the dimension p is fixed (since BB⊤ is rank at most p) and
provided λ∥A∥op < 1/2. Note that if A is actually generated from the model, then ∥A∥op ≤
2(1 + on→∞(1)) due to well-known results on spiked Wigner matrices (see Perry et al. (2018) and
references within) in which case we would have mixing for λ < 1/4. Like our previous application,
the sampler works fine with any context matrix B.
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László Lovász and Santosh Vempala. Simulated annealing in convex bodies and an O∗(n4) volume
algorithm. Journal of Computer and System Sciences, 72(2):392–417, 2006.

Neal Madras and Dana Randall. Markov chain decomposition for convergence rate analysis. Annals
of Applied Probability, pages 581–606, 2002.

Neal Madras and Zhongrong Zheng. On the swapping algorithm. Random Structures & Algorithms,
22(1):66–97, 2003.

Enzo Marinari and Giorgio Parisi. Simulated tempering: a new Monte Carlo scheme. EPL (Euro-
physics Letters), 19(6):451, 1992.

Marc Mezard and Andrea Montanari. Information, physics, and computation. Oxford University
Press, 2009.

Andrea Montanari and Ramji Venkataramanan. Estimation of low-rank matrices via approximate
message passing. The Annals of Statistics, 49(1):321–345, 2021.

Wenlong Mou, Nhat Ho, Martin J Wainwright, Peter L Bartlett, and Michael I Jordan. Sam-
pling for Bayesian mixture models: MCMC with polynomial-time mixing. arXiv preprint
arXiv:1912.05153, 2019.

Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

Shayan Oveis Gharan and Luca Trevisan. A new regularity lemma and faster approximation al-
gorithms for low threshold rank graphs. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, pages 303–316. Springer, 2013.

Giorgio Parisi and Ramamurti Shankar. Statistical field theory. Physics Today, 41(12):110, 1988.

16



SAMPLING APPROXIMATELY LOW-RANK ISING MODELS:MCMC MEETS VARIATIONAL METHODS

Leonid A Pastur and Alexander L Figotin. Exactly soluble model of a spin glass. Sov. J. Low Temp.
Phys, 3(6):378–383, 1977.

Leonid Andreevich Pastur and AL Figotin. Theory of disordered spin systems. Theoretical and
Mathematical Physics, 35(2):403–414, 1978.

Amelia Perry, Alexander S Wein, Afonso S Bandeira, and Ankur Moitra. Optimality and sub-
optimality of pca i: Spiked random matrix models. The Annals of Statistics, 46(5):2416–2451,
2018.

Andrej Risteski. How to calculate partition functions using convex programming hierarchies: prov-
able bounds for variational methods. In Conference on Learning Theory, pages 1402–1416.
PMLR, 2016.

Allan Sly and Nike Sun. The computational hardness of counting in two-spin models on d-regular
graphs. In 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science, pages
361–369. IEEE, 2012.
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Overview of Appendix

The Appendix includes complete proofs of all of the main results. We set out notations and def-
initions in Appendix A. Appendix B formalizes the argument for handling negative outlier eigen-
values. Appendix C gives the proof of the part of Theorem 1.1 for estimating the partition func-
tion, and Appendix D gives the proof for sampling. Appendix E provides a re-interpretation of the
Hubbard-Stratonovich transform in terms of Gaussian mixture posteriors, and Appendix F contains
supporting technical lemmas for the previous sections. Appendix G contains additional calculations
related to the examples. Finally, we prove the computational hardness results in Appendix H.

Appendix A. Notation and definitions

A.1. Notation

For a set I ⊆ A, we let I · c := {cx : x ∈ I}; for instance, Ẑ ∈ Z · [12 , 2] means 1
2Z ≤ Ẑ ≤ 2Z.

We will often omit subscripts and superscripts for probability distributions; when we need to be
precise, we will indicate the variables as superscripts (for example, pσ,µ, pσ|µ). We use a lowercase
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letter p to denote the probability density functions and an uppercase letter P to denote the corre-
sponding probability measure. All probability densities are with respect to the uniform measure on
the hypercube and Lebesgue measure on Rn. When we write ∝, the constants of proportionality do
not depend on the variables to the left of the conditioning.

We collect here some notation used in the paper for easy reference.

Probability distributions and partition functions.

pJ,h(σ) =
1

ZJ,h
exp

(
1

2
⟨σ, Jσ⟩+ ⟨h, σ⟩

)
ZJ,h =

∑
σ∈{±1}n

exp

(
1

2
⟨σ, Jσ⟩+ ⟨h, σ⟩

)

pσ,µ
∥

J∥,J⊥,h
∝ pJ⊥,h+X⊤µ∥(σ) exp

(
−n

2

∥∥∥µ∥
∥∥∥2)

= exp

(
1

2

〈
σ, J⊥σ

〉
+
〈
h+X⊤µ∥, σ

〉
− n

2

∥∥∥µ∥
∥∥∥2)

pσ,y
J∥,J⊥,h

(σ, y) = pσ,µ
∥

J∥,J⊥,h
(σ,Qy)

ZJ∥,J⊥,h(µ
∥) = ZJ⊥,h+X⊤µ∥ exp

(
−n

2

∥∥∥µ∥
∥∥∥2)

ZJ∥,J⊥,h =

∫
V ∥

ZJ∥,J⊥,h(µ
∥) dµ∥

Decomposing J .

J = J+ − J−

J+ =
1

n
XX⊤

J∥ =
1

n
X⊤P ∥X

J⊥ =
1

n
X⊤P⊥X = J+ − J∥

J⊥
all = J⊥ − J−

V = subspace of Rn spanned by eigenvectors of J+ with eigenvalues > 1− 1

c
Q = n× d matrix whose columns are an orthogonal basis for V

Probability distributions, partition functions, and partition function estimates from anneal-
ing/tempering.

GriddL,η =

{
−L+

1

2
η,−L+

3

2
η, . . . , L− 1

2
η

}d

µ(y∗) = approximate critical point of G(u) = logEσ∼P
J⊥,X⊤Qy∗

[e−⟨u,J−σ⟩] +
1

2
⟨u, J−u⟩

h(y∗) = µ(y∗) +X⊤Qy∗ + h
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B(y∗) = hypercube with sides parallel to the standard axes, centered at y∗ with side length η

pℓ,y∗ = pβℓJ⊥,h(y∗) where βℓ =
ℓ− 1

n

pM+1(σ, y
∗) =

∫
B(y∗) exp

(
1
2

〈
σ, J⊥

allσ
〉
+
〈
X⊤Qy + h, σ

〉
− n

2 ∥y∥
2
)
dy∫

[−L,L]d
∑

σ∈{±1}d exp
(
1
2

〈
σ, J⊥

allσ
〉
+ ⟨X⊤Qy + h, σ⟩ − n

2 ∥y∥
2
)
dy

gℓ(σ) = exp

(
1

2
(βℓ+1 − βℓ)

〈
σ, J⊥σ

〉)
= exp

(
1

2n

〈
σ, J⊥σ

〉)
, 1 ≤ ℓ ≤M − 1

gM (σ) = gM,y∗(σ) =
exp

(
−1

2 ⟨σ, J−σ⟩
)

exp (⟨µ(y∗), σ⟩)

∫
B(y∗)

exp
(〈

X⊤Q(y − y∗), σ
〉
− n

2
∥y∥2

)
dy

Ẑℓ(y
∗) = estimate for Zℓ(y

∗)

Ẑ(y∗) = ẐM+1(y
∗)

Zℓ(y
∗) = ZβℓJ⊥,h(y∗)

Rℓ(y
∗) =

Zℓ(y
∗)

Ẑℓ(y∗)

qℓ,y∗ =
Zℓ(y

∗)

Ẑℓ(y∗)
pℓ,y∗

pst
ℓ (σ, y) =

Ẑℓ(y
∗)

∑
y∈GriddL,η

Rℓ(y)


−1

exp

(
1

2

〈
σ, J⊥σ

〉
+ ⟨h(y∗), σ⟩

)
.

A.2. Background on Markov chains

Let P be a measure on some space Ω and T be the transition kernel of the “natural” Markov chain
associated with P , e.g., Glauber dynamics (Algorithm 1) when P is defined on the hypercube
Ω = {±1}n. The Poincaré and modified log-Sobolev constants of P are defined as

CP(P ) = sup

{
VarP (f)

EP (f, f)
: f : {±1}n → R,VarP (f) ̸= 0

}
CMLS(P ) = sup

{
2EntP (f)

EP (f, log f)
: f : {±1}n → R≥0,EntP (f) ̸= 0

}
where EntP (f) = EP [f log f ]− EP [f ] logEP [f ], and

EP (f, g) = EP [f · LP g]
where LP f = (id− T )f.

In particular, for Glauber dynamics on {±1}n,

(LP f)(σ) =
1

n

n∑
i=1

(EP [f(x)|x−i = σ−i]− f(σ)) .

Here, for σ ∈ {±1}n, σ−i ∈ {±1}n−1 denotes all coordinates except the ith one. Note that some
texts use instead the reciprocal of CP, CMLS, or do not include the 1

n .
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We also define the Cheeger constant of the Markov chain by

Φ = min
A⊆Ω,P (A)≤ 1

2

Q(A,Ac)

P (A)

where Q(A,B) =

∫
A
T (x,B)P (dx).

Appendix B. Sampling with negative definite spikes using a variational argument

The proof of the following result gives a generic algorithm which, given sampling access to a dis-
tribution P and its tilts, samples from any distribution Q which is reweighted by a negative definite
quadratic form with small trace. As stated, the result applies to any distribution supported on a

√
n-

radius sphere, not just discrete distributions on the hypercube. In fact, when −J is strictly negative
definite, the exact same argument applies not just to distributions on the sphere, but supported on
any compact set.

Theorem B.1 Suppose we are given a sampling oracle for a distribution P supported on the sphere
{x : ∥x∥ =

√
n} and all of its tilts

dPλ

dP
(x) ∝ e⟨λ,x⟩.

Also, suppose that for any λ the covariance matrix of Pλ is upper bounded in spectral norm by M .
Then for any J ⪰ 0 and ε > 0, if we define the reweighted measure

dQ

dP
(x) ∝ e−⟨x,Jx⟩/2,

then there exists an algorithm which with probability at least 1− δ, outputs λ ∈ Rn such that

log
dQ

dPλ
(x) ≤M Tr(J) + ε

with runtime and oracle complexity polynomial in n, 1/ε, M , log(1/δ), and ∥J∥op.

Specializing this result to the case of Ising models gives the following algorithmic result.

Corollary B.2 Suppose that J is an arbitrary symmetric matrix and decompose J = J+ − J−
where both J+, J− are positive semidefinite and suppose that ∥J+∥op ≤ 1− 1

c for c > 0. Let h ∈ Rn

be arbitrary, and define Q(σ) ∝ exp(12⟨σ, Jσ⟩+⟨h, σ⟩) and Pλ(σ) ∝ exp(12⟨x, J+x⟩+⟨h+λ, x⟩).
There exists an algorithm which with probability at least 1− δ, outputs λ ∈ Rn such that

log
dQ

dPλ
(σ) ≤ cTr(J−) + ε

with runtime and oracle complexity polynomial in n, 1/ε, M , log(1/δ), and ∥J−∥op.

Proof This follows by applying Theorem B.1 with δ′ = δ/2. First, we recall from Eldan et al.
(2020) (as a consequence of the Poincaré inequality) that we can take M = 1

1−∥J+∥op
≤ c where M

is the upper bound on the spectral norm of the covariance matrix of Pµ as defined in Theorem B.1. If
we supposed we had access to an exact sampler from each of the distributions Pµ, this would imply
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the result. Since we instead will implement each sampling call with a Markov chain (the Glauber
dynamics) which can draw samples extremely close to the distribution Pµ, the actual result follows
by coupling these outputs to a hypothetical process which has exact samples.

More precisely, from Theorem 2.1 we can draw a sample from any of the distributions Pλ in
polynomial time in the sense that for any ε > 0, with poly(n, log(1/ε)) time we can generate a
sample with total variation distance at most ε. If q is the maximum number of queries made by
the algorithm from Theorem 2.1, then by taking ε = δ/2q and using the union bound, we can with
probability at least 1 − δ/2 couple all of the outputs of the Markov chains invoked at every oracle
call with samples from the true distribution Pλ. Therefore, with total probability at least 1− δ, the
algorithm which uses Markov chain samplers will output λ satisfying the guarantee of Theorem B.1.
This proves the result.

We now proceed to the proof of Theorem B.1. In the algorithm and analysis, we will use the
fact that stochastic gradient descent with an appropriate step size schedule is able to find approxi-
mate critical points of smooth functions (a stronger and more explicit result is given in the original
statement in Ghadimi and Lan (2013), see also Allen-Zhu (2018)).

Theorem B.3 (Corollary 2.5 of Ghadimi and Lan (2013)) Suppose that f is a differentiable func-
tion which is L-smooth with respect to the Euclidean norm ∥ · ∥ in the sense that for all x, y

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥.

Let f∗ := infx f(x) and define

Df :=

√
2(f(x1)− f∗)

L
.

Then there exists a polynomial time algorithm (2-RSG, the two-phase randomized stochastic gradi-
ent algorithm) which given oracle access to (identical, independent copies of) a stochastic gradient
oracle g such that E[g(xt) | xt] = ∇f and E[exp(∥g(xt)∥2/σ2) | xt] ≤ 1 and ε > 0, with proba-
bility at least 1− δ outputs x such that ∥∇f∥ ≤ ε using poly(Df , log(1/δ), σ, L, 1/ε) runtime and
oracle calls.

Proof [Proof of Theorem B.1] First, we can assume J ⪰ ε/Mn without loss of generality by adding
(ε/Mn)I to J , which does not change the measure Q and increases the trace by just ε/M . (This
only changes the final guarantee by an additional additive ε, which can be trivially corrected by
dividing ε by 2.)

The key idea of the proof is a variational argument. Define the functional

G(µ) := logEP [e
⟨µ,−JX⟩] +

1

2
⟨µ, Jµ⟩

and observe that its derivative can be expressed in terms of the tilted measure P−Jµ:

∇G(µ) = −JEP−Jµ
[X] + Jµ.

Now observe that for any µ,

dQ

dP−Jµ
(x) ∝ e−⟨x,Jx⟩/2+⟨Jµ,x⟩ ∝ e−

1
2
⟨x−µ,J(x−µ)⟩
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and so
dQ

dP−Jµ
(x) =

1

Z
e−

1
2
⟨x−µ,J(x−µ)⟩

where
Z := EPJµ

[e−
1
2
⟨X−µ,J(X−µ)⟩].

From the definition and the fact that J is psd, we have Z ≤ 1. Also, by Jensen’s inequality

Z = EPJµ
[e−

1
2
⟨X−µ,J(X−µ)⟩] ≥ exp

(
−EPJµ

[
1

2
⟨X − µ, J(X − µ)⟩

])
.

Observe that if Σ := EPJµ
[XX⊤]− EPJµ

[X]EPJµ
[X]⊤ then

EPJµ
[(X − µ)(X − µ)⊤] = EPJµ

[XX⊤]− EPJµ
[X]µ⊤ − µEPJµ

[X]⊤ + µµ⊤

= Σ+ EPJµ
[X]EPJµ

[X]⊤ − EPJµ
[X]µ⊤ − µEPJµ

[X]⊤ + µµ⊤

= Σ+ (EPJµ
[X]− µ)(EPJµ

[X]− µ)⊤

so

logZ ≥ −1

2
⟨EPJµ

[(X − µ)(X − µ)⊤], J⟩

= −1

2
⟨Σ+ (EPJµ

[X]− µ)(EPJµ
[X]− µ)⊤, J⟩

≥ −1

2
∥Σ∥op Tr(J)−

1

2
∥JEPJµ

[X]− Jµ∥2∥EPJµ
[X]− µ∥2

= −1

2
∥Σ∥op Tr(J)−

1

2
∥∇G(µ)∥2∥EPJµ

[X]− µ∥2.

Note that the final lower bound can be maximized if we can find a critical point of G. We next argue
that such a critical point exists.

Note that G(0) = 0 by definition and because we reduced to the case J ⪰ (ε/Mn)I ,

G(µ) ≥ logEP [e
⟨µ,−JX⟩] + (ε/2Mn)∥µ∥22

≥ −∥Jµ∥1 + (ε/2Mn)∥µ∥22 ≥ −∥J∥op∥µ∥2
√
n+ (ε/2Mn)∥µ∥22, (8)

which is positive provided ∥µ∥2 > 2Mn3/2∥J∥op/ε. Hence the global minimum of G must be
attained somewhere on the compact set K = {µ : ∥µ∥2 ≤ 2Mn3/2∥J∥op/ε}. At this point, we
have proved the existence of a critical point. We next show that one can be approximately found
with stochastic gradient descent initialized at zero, by checking the assumptions of Theorem B.3.

By the invertibility of J , any solution of the equation 0 = ∇G(µ) = −JEPJµ
[X]+Jµ satisfies

µ = EPJµ
[X] and hence µ ∈ [−1, 1]n and ∥µ∥2 ≤

√
n. In particular the global minimum satisfies

this, so combined with (8) we have

inf
µ

G(µ) ≥ inf
r≤

√
n
[−r
√
n∥J∥op + (ε/2Mn)r2] > −Mn2

2ε
∥J∥2op

Since
∇2G(µ) = −JEPJµ

[XX⊤]J + J
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we have that ∥∇2G(µ)∥op ≤ M∥J∥2op + ∥J∥op =: L which means that G(µ) is L-smooth with
respect to the Euclidean norm. Recalling that∇G(µ) = −JEPJµ

[X]+Jµ, we see that if x ∼ PJµ,
which we have a sampling oracle for by assumption, then g(µ) := −J(x − µ) is a stochastic
gradient oracle for G(µ) satisfying ∥g(µ)∥ ≤ ∥J∥op∥x − µ∥ ≤ 2∥J∥op

√
n. This means that all of

the assumptions of Theorem B.3 are satisfied and we can find an ε-approximate critical point of G
using poly(n, ∥J∥op,M, 1/ε) runtime and calls to the sampling oracle. Outputting λ := −Jµ gives
the result.

Remark B.4 The variational argument in the proof is partially inspired by, thought different from,
some previous arguments in the variational methods literature; for example, the construction of
Belief Propagation fixed points using the Bethe free energy, and variants of this argument which
arise from the Thouless-Anderson-Palmer and naive mean-field free energy (see e.g., Mezard and
Montanari (2009); Wainwright and Jordan (2008)). As with all such variational arguments, the key
idea is to construct a solution to a fixed point equation by writing it as the gradient of a well-behaved
functional. To make a more explicit connection with that literature, consider the special case where
P is a product measure on the hypercube {±1}n, so P (σ) ∝ e⟨h0,σ⟩ for some h0 ∈ Rn encoding the
bias of each coordinate. Then the equation∇G(µ) = 0 is equivalent to−Jµ = −J tanh(h0−Jµ)
and because J is invertible, it simplifies to the fixed-point equation

µ = tanh(h0 − Jµ).

This is almost the same as the naive mean-field fixed point equation, except that in that case, the
diagonal of J must be zeroed out whereas in our case they are not. Relatedly, G(µ) is not the same
as the naive mean-field free energy corresponding to Q, and the positive definiteness of J is not
needed to solve the naive mean-field equations but plays a key role in our variational argument.

Appendix C. Estimating the partition function

In this section, we develop and analyze an algorithm for computing the partition function Z.

Application of the Hubbard-Stratonovich transform. Based on the Hubbard-Stratonovich trans-
form, we can easily prove the following Theorem. (We warn the reader that the notation has a couple
minor cosmetic differences from the Technical Overview, with the goal of minimizing ambiguity.)

Theorem C.1 Let J ∈ Rn×n be a symmetric matrix, and write J = 1
nX

⊤X − J− for X ∈ Rm×n

and J− negative semi-definite.
Let V ⊆ Rm be a subspace. Let P ∥ and P⊥ be the projections onto V and V ⊥. Let J∥ =

1
nX

⊤P ∥X and J⊥ = J − J∥. Then

ZJ,h =
( n

2π

)d/2
ZJ∥,J⊥,h where ZJ∥,J⊥,h =

∫
V ∥

ZJ⊥,h+X⊤µ∥ exp

(
−n

2

∥∥∥µ∥
∥∥∥2) dµ∥.

Note that in the special case that V = Rm and J− = O, this gives a decomposition of the prob-
ability measure in terms of product distributions in a similar manner to (Bovier and Picco, 1998;
Bauerschmidt and Bodineau, 2019).

23



KOEHLER LEE RISTESKI

Proof [Proof of Theorem C.1] We decompose J = J⊥ + J∥ and apply Lemma 2.2 to X ← P ∥X
with γ2 = 1/n:

ZJ,h =
∑

σ∈{±1}n
exp

(
1

2
⟨σ, Jσ⟩+ ⟨h, σ⟩

)

=
∑

σ∈{±1}n
exp

(
1

2

〈
σ, J⊥σ

〉
+ ⟨h, σ⟩

)
exp

(
1

2n

∥∥∥P ∥Xσ
∥∥∥2)

=
( n

2π

)d/2 ∑
σ∈{±1}n

exp

(
1

2

〈
σ, J⊥σ

〉
+ ⟨h, σ⟩

)∫
V ∥

exp

(〈
X⊤P ∥µ∥, σ

〉
− n

2

∥∥∥µ∥
∥∥∥2) dµ∥

=
( n

2π

)d/2 ∫
V ∥

ZJ⊥,h+X⊤µ∥ exp

(
−n

2

∥∥∥µ∥
∥∥∥2) dµ∥,

as desired.

We can define an associated probability distribution on {±1}n×V with ZJ∥,J⊥,h as its partition
function:

pσ,µ
∥

J∥,J⊥,h
(σ, µ∥) ∝ exp

(
1

2

〈
σ, J⊥σ

〉
+
〈
h+X⊤µ∥, σ

〉
− n

2

∥∥∥µ∥
∥∥∥2) .

Choosing an orthogonal linear transformation Q : Rd → V , we will also define the distribution
pσ,y
J∥,J⊥,h

(σ, y) = pσ,µ
∥

J∥,J⊥,h
(σ,Qy). In Appendix E, we will interpret pσ,y

J∥,J⊥,h
as the posterior of a

Gaussian mixture model after seeing samples given by the columns of X .

Estimating the partition function. For a PSD matrix A, let rankτ (A) denote the number of
eigenvalues of A that are ≥ τ . Note that rank1(A) ≤ ∥A∥2F . For ease of exposition, we first prove
the theorem when in the case where J has no negative eigenvalues.

Theorem C.2 Let ε, δ ∈ (0, 1). Suppose J is PSD. With probability ≥ 1− δ, Algorithm 3 outputs
an eε-multiplicative approximation to ZJ,h,

e−εZJ,h ≤ ẐJ,h ≤ eεZJ,h,

in time (∥J∥op n)
O(rank1(J)+1)O

(
log
(
1
δ

)
/ε2
)
.

Given a probability distribution p on {±1}n, we can define the Markov chain in Algorithm 1.
For σ ∈ {±1}n, we let σ(i) = (σ1, . . . ,−σi, . . . , σn) denote σ but with the ith coordinate flipped.

Algorithm 1: Glauber dynamics on {±1}n

Input: Query access to probability distribution p(σ) on {±1}n, up to constant of
proportionality; number of steps T .

for 1 ≤ t ≤ T do
Choose a random coordinate i, and set σ ← σ(i) with probability p(σ(i))

p(σ(i))+p(σ)
.

end

The following lemma gives fast mixing of Glauber dynamics for the Ising model, when the
spectral norm of the interaction matrix is at most 1.

24



SAMPLING APPROXIMATELY LOW-RANK ISING MODELS:MCMC MEETS VARIATIONAL METHODS

Lemma C.3 Suppose J ∈ Rn×n is symmetric and PSD with ∥J∥op ≤ 1. Then the modified log-
Sobolev constant CMLS for PJ,h is at most e1/2n2, and the mixing time is bounded by O(n2 log n).

Proof For a symmetric matrix with diagonalization A = UDU⊤, let D≤τ denote D with the entries
≥ τ replaced by τ , and A≤τ := UD≤τU

⊤. By Theorem 2.1, the modified log-Sobolev constant for

pJ≤1− 1
n
,h(σ) ∝ exp

(
1

2

〈
σ, J≤1− 1

n
σ
〉
+ ⟨h, σ⟩

)

is bounded by n

(
1−

∥∥∥J≤1− 1
n

∥∥∥
op

)−1

= n2. Since

log

(
pJ,h(σ)

pJ≤1− 1
n
,h(σ)

)
− log

(
ZJ≤1− 1

n
,h

ZJ,h

)
=

1

2

〈
σ, (J − J≤1− 1

n
)σ
〉

∈ 1

2

∥∥∥J − J≤1− 1
n

∥∥∥
2
n · [0, 1] ⊆

[
0,

1

2

]
, (9)

by the Holley-Stroock perturbation lemma, the modified log-Sobolev constant for pJ,h is bounded
by e1/2n2.

Finally, the exchange property holds for pJ,h by (Anari et al., 2021, Lemma 37), so by (Anari
et al., 2021, Lemma 36), the mixing time is bounded by O((n+ CMLS) log n) = O(n2 log n).

Lemma C.3 implies that Glauber dynamics gives an efficient algorithm for sampling in our
setting. To obtain an algorithm for partition function estimation, we use simulated annealing. Sim-
ulated annealing is a generic method to obtain an algorithm for estimating a partition function∫
Ω q dω, given access to sampling oracles for a sequence of distributions pℓ ∝ qℓ such that (a)
q1 is known, (b) for each ℓ, pℓ and pℓ+1 are “close,” and (c) pM+1 ∝ q.

Lemma C.4 Let 0 < ε < 1. Suppose that pℓ, 1 ≤ ℓ ≤ M + 1 are distributions on Ω, and that in
Algorithm 2 we are given sampling oracles for p̃ℓ, 1 ≤ ℓ ≤M such that the following hold for each
1 ≤ ℓ ≤M .

1. (Variance bound)
VarPℓ

(gℓ(x))

(EPℓ
gℓ(x))2

≤ σ2.

2. (Bias bound)
∣∣∣EPℓ

gℓ(x)− E
P̃ℓ
gℓ(x)

∣∣∣ ≤ ε
4M .

Then taking N ≥ 320σ2M
ε2

and R ≥ 32 log
(
1
δ

)
, with probability 1 − δ, the output Ẑ satisfies

Ẑ ∈ [e−ε, eε] · Z.

The proof is standard and given in the appendix.
We can now give the algorithm and proof of Theorem C.2. We show that a non-adaptive tem-

perature schedule of length O(n) is sufficient for partition function estimation. Note that a shorter
schedule of length O(

√
n log n log log n) is possible, and can be found in n polylog(n) total queries

to approximate sampling oracles at the different temperatures (Štefankovič et al., 2009), but we use
a non-adaptive schedule for simplicity. Coordinate-wise sampling is also possible, but we will need
a sequence of distributions at different temperatures for our sampling algorithm.
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Algorithm 2: Simulated annealing for partition function estimation
Input: Sampling oracles for p̃ℓ (approximations to pℓ ∝ qℓ) for 1 ≤ ℓ ≤M (distributions on

Ω), for example, Glauber dynamics (Algorithm 1); Z1 =
∫
Ω q1 dω; number of samples

N ; number of trials R.
Output: Estimate of

∫
Ω qℓ dω for each 1 ≤ ℓ ≤M + 1.

Let gℓ(x) :=
qℓ+1(x)
qℓ(x)

.
for 1 ≤ r ≤ R do

Let Ẑr
1 = Z1.

for 1 ≤ ℓ ≤M do
Obtain samples x1, . . . , xN ∼ p̃ℓ.
Let Ŷℓ = 1

N

∑N
k=1 gℓ(xk).

Let Ẑr
ℓ+1 = Ẑr

ℓ Ŷℓ.
end

end
for 2 ≤ ℓ ≤M + 1 do

Let Ẑℓ be the median of
{
Ẑr
ℓ : 1 ≤ r ≤ R

}
.

end

Proof [Proof of Theorem C.2] We may assume ε ≥ 2−n. Set the temperature schedule as βℓ = ℓ−1
n

for 1 ≤ ℓ ≤ n+1. Let M = n+1 be the length of the temperature schedule. We set parameters as

suggested in Algorithm 3. Then the total time complexity of the algorithm is O
((

2L
η

)d
MNRT

)
times the complexity of each Markov chain step, which gives complexity O

(
(∥J∥op + 1)nd

)d
·

O

(
poly(n) log( 1

εδ )
ε2

)
= (∥J∥op n)

O(rank1(J)+1)O
(
log
(
1
δ

)
/ε2
)
.

Recall that we define the distribution pσ,y
J∥,J⊥,h

(σ, y) = pσ,µ
∥

J∥,J⊥,h
(σ,Qy). We now fix a particular

y∗, and write for short gM = gM,y∗ .

Choice of ratios gℓ. Define ZJ∥,J⊥,h(µ
∥) := ZJ⊥,h+X⊤P ∥µ∥ exp

(
−n

2

∥∥µ∥∥∥2). We first compute

EpM gM =
1

ZJ⊥,h(y∗)

∑
σ∈{±1}n

exp

(
1

2

〈
σ, J⊥σ

〉
+
〈
X⊤Qy∗ + h, σ

〉)

·
∫
B(y∗)

exp
(〈

X⊤Q(y − y∗), σ
〉
− n

2
∥y∥2

)
=

1

ZJ⊥,h(y∗)

∑
σ∈{±1}n

∫
B(y∗)

exp

(
1

2

〈
σ, J⊥σ

〉
+
〈
X⊤Qy + h, σ

〉
− n

2
∥y∥2

)
dy

=

∫
B(y∗) ZJ∥,J⊥,h(Qy) dy

ZJ⊥,h(y∗)
.
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Algorithm 3: Approximating partition function of Ising model. (Steps in italics are only
needed in presence of a negative definite spike.)

Input: Ising model (J, h), cutoff L, discretization η dividing evenly into L, desired accuracy ε,
failure probability δ, number of samples N , number of trials R, steps to run Markov
chains T , threshold c ∈ (1,∞].

Output: Approximation of partition function ZJ,h.

Suggested parameters: L = Θ(
√
∥J∥op + 1), η ≤ 1

ndL+2n
√

∥J∥opd
, N = Θ

(
M
ε2

)
where

M = n+ 1, R = Θ
(
log
(
(L/η)d

δ

))
, and T = Θ

(
n2 log

(
n
ε

))
. Take c =∞ if J is PSD.

If ε ≤ 2−n, calculate ZJ,h by brute force.
Let J = J+ − J− where J+ and J− are positive semi-definite and negative semi-definite,
respectively, with column spaces intersecting only in 0.

Factor J+ = 1
nXX⊤ for X ∈ Rn×n.

Let V denote the subspace of Rn spanned by the eigenvectors of J+ with eigenvalues > 1− 1
c .

Let P ∥ and P⊥ the projections to V and V ⊥. Let Q ∈ Rn×d be the matrix with columns that
are an orthonormal basis for V .

Let J∥ = X⊤P ∥X
n and J⊥ = X⊤P⊥X

n .

for y∗ ∈ GriddL,η :=
{
−L+ 1

2η,−L+ 3
2η, . . . , L−

1
2η
}d do

Let µ(y∗) be an approximate critical point of
G(u) = logEσ∼P

J⊥,X⊤Qy∗
[e−⟨u,J−σ⟩] + 1

2 ⟨u, J−u⟩, found using stochastic gradient
descent (Theorem B.2/B.3) with sampling oracle given by Glauber dynamics for
PJ⊥,X⊤Qy∗+h. (If J− = O, let µ(y∗) = 0.)

Let B(y∗) denote the hypercube with sides parallel to the standard axes, centered at y∗ with
side length η.

Apply Algorithm 2 to the Ising model, with sampling algorithm given by running Glauber
dynamics for T steps, for the following sequence of distributions (1 ≤ ℓ ≤M = n+ 1):

pℓ = p ℓ−1
n

J⊥,h(y∗)

gℓ(σ) = exp

(
1

2n

〈
σ, J⊥σ

〉)
, 1 ≤ ℓ ≤ n

gM,y∗(σ) =
exp

(
−1

2 ⟨σ, J−σ⟩
)

exp (⟨µ(y∗), σ⟩)

∫
B(y∗)

exp
(〈

X⊤Q(y − y∗), σ
〉
− n

2
∥y∥2

)
dy

where h(y) = µ(y) +X⊤Qy + h,

and initial partition function

Z1 = ZO,h(y∗) = 2n
n∏

i=1

cosh (⟨xi, Qy∗⟩+ hi)

to get estimates Ẑℓ(y
∗) for 1 < ℓ ≤M + 1. Let Ẑ(y∗) := ẐM+1(y

∗).
end

Return Ẑ =
(

n
2π

) d
2
∑

y∗∈GriddL,η
Ẑ(y∗).
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Hence

Z1

M∏
ℓ=1

EPℓ
gℓ = ZO,h(y∗)

M−1∏
ℓ=1

Zβℓ+1J⊥,h(y∗)

ZβℓJ⊥,h(y∗)
·

∫
B(y∗) ZJ∥,J⊥,h(Qy) dy

ZJ⊥,h(y∗)
=

∫
B(y∗)

ZJ∥,J⊥,h(Qy) dy.

Variance of gℓ. With gℓ(σ) = exp(12(βℓ+1 − βℓ)σ
⊤J⊥σ) = exp

(
1
2nσ

⊤J⊥σ
)
, we bound

gℓ(σ) ≤ exp

(
1

2n
· n
)

= e1/2,
EPℓ

g2ℓ
(EPℓ

gℓ)2
≤ EPℓ

g2ℓ ≤ e. (10)

We also need to check the variance of

gM (σ) = exp
(
−n

2
∥y∗∥2

)∫
B(y∗)

exp
(〈

X⊤Q(y − y∗), σ
〉
+

n

2

(
∥y∗∥2 − ∥y∥2

))
dy

Note that
∥∥∥X⊤P ∥X

n

∥∥∥
op
≤ ∥J∥op, so

∥∥P ∥X
∥∥

op ≤
√
n ∥J∥op. We check how much the exponent can

vary on B(y∗):∣∣∣〈X⊤Q(y − y∗), σ
〉
+

n

2

(
∥y∗∥2 − ∥y∥2

)∣∣∣ ≤ ∥y − y∗∥
(∥∥∥P ∥Xσ

∥∥∥+ n

2
∥y∗ + y∥

)
≤ η

2

√
d
(√

n ∥J∥op
√
n+ nL

√
d
)
≤ 1

2
(11)

when η ≤ 1
ndL+2n

√
∥J∥opd

. This makes EpM
[gM (σ)2]

EpM
gM (σ)2

≤ e as well. We note gM can be easily

evaluated since it can be written as a product of integrals of a Gaussian on an interval.

Bias of Egℓ. For the approximate sampling oracle, we let p̃ℓ be the distribution after running
Glauber dynamics for Θ

(
n2 log

(
n
ε

))
steps (for an appropriate choice of constant). Then by Theo-

rem C.3 and (10),
∣∣∣EPℓ

gℓ(σ)− E
P̃ℓ
gℓ(σ)

∣∣∣ ≤ dTV(Pℓ, P̃ℓ) · e1/2 ≤ ε
4M .

Using Lemma C.4. By Lemma C.4 with δ replaced by δ
(L/η)d

, using a union bound, we obtain

that with probability≥ 1− δ, for all y∗ ∈ GriddL,η, Ẑ(y∗) ∈ [e−
ε
2 , e

ε
2 ] ·
∫
B(y∗) ZJ∥,J⊥,h(Qy) dy and

so ∑
y∗∈GriddL,η

Ẑ(y∗) ∈ [e−
ε
2 , e

ε
2 ] ·

∑
y∗∈GriddL,η

∫
B(y∗)

ZJ∥,J⊥,h(Qy) dy = [e−
ε
2 , e

ε
2 ] ·
∫
∥y∥∞≤L

ZJ∥,J⊥,h(Qy) dy.

Error from cutoff. We would like to estimate ZJ∥,J⊥,h =
∫
Rd ZJ∥,J⊥,h(Qy) dy, so it remains to

show that at least e−
ε
2 of the probability mass of p(σ, y) is contained in {±1}n× [−L,L]d. For this,

it suffices to fix σ, and show that P (y ̸∈ [−L,L]d|σ) ≤ ε
2 . We have by Lemma E.2(3) that

pJ∥,J⊥,h(y|σ) =
( n

2π

)d/2
exp

−n

2

∥∥∥∥∥Qy −
∑n

i=1 σiP
∥xi

n

∥∥∥∥∥
2
 .

Using
∥∥X⊤P ∥∥∥

2
≤
√

n ∥J∥op, we get∥∥∥∥∥
∑n

i=1 σiP
∥xi

n

∥∥∥∥∥ ≤
∥∥∥∥∥X⊤P ∥

n

∥∥∥∥∥
2

√
n ≤

√
∥J∥op.
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Hence taking L = Ω
(√
∥J∥op + 1

)
= Ω

(√
∥J∥op +

√
log
(
n
ε

)
/n
)

, we have

P (y ̸∈ [−L,L]d) ≤
n∑

i=1

P (yi ̸∈ [−L,L]) = n · ε

2n
=

ε

2
. (12)

Putting everything together and using Theorem C.1, we have with probability ≥ 1− δ that( n

2π

) d
2

∑
y∗∈GriddL,η

Ẑ(y∗) ∈ [e−ε, e
ε
2 ] · ZJ∥,J⊥,h.

C.1. Estimation with positive and negative spikes

We now analyze Algorithm 3 when there are negative spikes to prove Theorem 1.1(1).
For y∗ ∈ GriddL,η, Algorithm 3 uses Corollary B.2 to find µ(y∗) such that

log

(
dPJ+,X⊤Qy∗+h

dPJ,X⊤Qy∗+h+µ(y∗)

)
≤ cTr(J−) + 1. (13)

Let J⊥
all = J⊥ − J− = J − J∥. We first calculate

EPM
gM =

1

ZJ⊥,h(y∗)

∑
σ∈{±1}n

exp

(
1

2

〈
σ, J⊥σ

〉
+ ⟨h(y∗), σ⟩

)
exp

(
−1

2 ⟨σ, J−σ⟩
)

exp (⟨µ(y∗), σ⟩)

·
∫
B(y∗)

exp
(〈

X⊤Q(y − y∗), σ
〉
− n

2
∥y∥2

)
dy

=
1

ZJ⊥,h(y∗)

∑
σ∈{±1}n

∫
B(y∗)

exp

(
1

2

〈
σ, (J⊥

all − J−)σ
〉
+
〈
X⊤Qy + h, σ

〉
− n

2
∥y∥2

)
dy

(14)

=

∫
B(y∗) ZJ∥,J⊥,h(Qy) dy

ZJ⊥,h(y∗)

as before.
We now bound Eg2M

(EgM )2
. First we bound

gM (σ) =
exp

(
−1

2 ⟨σ, J−σ⟩
)

exp (⟨µ(y∗), σ⟩)

∫
B(y∗)

exp
(〈

X⊤Q(y − y∗), σ
〉
− n

2
∥y∥2

)
dy

=
exp

(
1
2

〈
σ, J⊥

allσ
〉
+
〈
X⊤Qy∗ + h, σ

〉)
exp

(
1
2 ⟨σ, J⊥σ⟩+ ⟨h(y∗), σ⟩

) ·
∫
B(y∗)

exp
(〈

X⊤Q(y − y∗), σ
〉
− n

2
∥y∥2

)
dy

≤ exp (cTr(J−) + 1)
ZJ⊥

all ,X
⊤Qy∗+h

ZJ⊥,h(y∗)
exp

(
−n

2
∥y∗∥2

)
ηde1/2
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using (13) and (11). Next, again using (11), we bound

EPM
gM (σ) =

∑
σ∈{±1}n

exp
(
1
2

〈
σ, J⊥

allσ
〉
+
〈
X⊤Qy∗ + h, σ

〉)
ZJ⊥,h(y∗)

·
∫
B(y∗)

exp
(〈

X⊤Q(y − y∗), σ
〉
− n

2
∥y∥2

)
dy

≥
ZJ⊥

all ,X
⊤Qy∗+h

ZJ⊥,h(y∗)
exp

(
−n

2
∥y∗∥2

)
ηde−1/2

Hence

EPM
g2M

(EPM
gM )2

≤ exp(2cTr(J−) + 4),

and this is the extra multiplicative error we incur in estimation. The rest of the estimates in the proof
are the same as before.

The above concludes the proof of our main result for computing the partition function. We
now briefly discuss the performance of this algorithm under the “naive mean field” assumption
∥J∥2F = o(n) referenced in the introduction and introduced in (Basak and Mukherjee, 2017).

Remark C.5 Suppose we want to bound the performance of the algorithm from Theorem 1.1 in
terms of Frobenius norms. This will be very wasteful compared to the original statement, but is
useful for comparison.

For simplicity, we can make the common assumption that the diagonal of J is zero, which means
that the sum of the eigenvalues of J is zero. Then we can choose the interval [−1/3, 1/3] as the
interval of length at most one in the application of the Theorem. The runtime for estimating logZ
to additive ε error will be at most

O

(
(∥J∥op n)

O(d++1)eO(λ1+···+λd−− d−/3)

ε2

)

where −λ1, . . . ,−λd− are the eigenvalues of J below −1/3. Now clearly we have
∑d−

i=1 λi ≤∑d−
i=1 3λ

2
i ≤ 3∥J∥2F and d+ ≤ 3∥J∥2F . So we have a crude bound on the runtime as

O

(
(n∥J∥op)

O(∥J∥2F )

ε2

)
.

In particular, provided ∥J∥2F = o(n/ log(n)) we have that this is subexponential time. So the result
works up to almost the same subexponential time regime as the algorithm in the work (Jain et al.,
2019) when specialized to the setting of Ising models. Depending on the precise properties of J , the
precise runtime of the new algorithm could be faster or slower than the algorithm of (Jain et al.,
2019), but the approximation error for this one is much stronger (additive error ε to logZ).
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Appendix D. Sampling

We now turn to the problem of generating samples from the model; for the reader, note that this
section builds on results and uses notation from the previous section on partition function estimation.

By choosing y∗ ∈ GriddL,η =
{
−L+ 1

2η,−L+ 3
2η, . . . , L−

1
2η
}d with probability propor-

tional to Ẑ(y∗) estimated by Algorithm 3 and then sampling from P σ,y

J∥,J⊥,h
restricted to {±1}n ×

B(y∗), we can obtain an algorithm for sampling of the same order of complexity as in Theorem C.2.
In this section, we give an algorithm that only has logarithmic dependence on ε and prove Theo-
rem 1.1(2).

Let Zℓ(y
∗) := ZβℓJ⊥,h(y∗) for 1 ≤ ℓ ≤ M and ZM+1(y

∗) :=
∫
B(y∗) ZJ∥,J⊥,h(Qy) dy. Denote

the approximately normalized probabilities

qℓ,y∗ =
Zℓ(y

∗)

Ẑℓ(y∗)
pβℓJ⊥,h(y∗)

where βℓ =
ℓ−1
n . Overloading notation, we will also write pℓ,y∗ for pβℓJ⊥,h(y∗). Note that we can

compute the ratios of different qℓ,y∗’s, as we have qℓ,y∗(σ) ∝ 1

Ẑℓ(y∗)
exp

(
1
2

〈
σ, βℓJ

⊥σ
〉
+ ⟨h(y∗), σ⟩

)
.

We define a Markov chain on an expanded state space {1, . . . ,M} × GriddL,η × {±1}n, where
the first index denotes the “temperature” of the distribution. This is similar to a simulated temper-
ing chain (Marinari and Parisi, 1992), with two types of moves: between temperatures and within
temperatures. However, there are two differences with a standard simulated tempering chain:

1. We use a different normalizing constant Ẑℓ(y
∗) for each value of y∗, in order to make sure

the stationary distribution is roughly uniformly distributed over the y∗ ∈ GriddL,η.

2. Within any temperature other than the highest one, we do not allow moves that change y∗.

Finally, we do simulated tempering on the space GriddL,η × {±1}n rather than [−L,L]d × {±1}n
for convenience; this adds an extra rejection sampling step at the end where we compare the distri-
butions on {y∗}× {±1}n and on B(y∗)×{±1}n, similar to the final ratio gM in partition function
estimation.

We need the modifications for technical reasons to make our proof work; it is an interesting
question whether a more standard simulated tempering chain would work. Our proof strategy is
based on a Markov chain decomposition theorem similar to Ge et al. (2018), which we will now
introduce.

Given a Markov chain on Ω, we define two Markov chains associated with a partition of Ω.

Definition D.1 (Madras and Randall (2002)) For a Markov chainM = (Ω, T ), and a set A ⊆
Ω, define the restriction ofM to A to be the Markov chainM|A = (A, T |A), where

T |A(x,B) = T (x,B) + 1B(x)T (x,A
c).

(In words, T (x, y) proposes a transition, and the transition is rejected if it would leave A.)
Suppose the unique stationary measure ofM is P . Given a partition P = {Aj : j ∈ J}, define

the projected Markov chain with respect to P to beMP
= (J, T

P
), where

T
P
(i, j) =

1

P (Ai)

∫
Ai

∫
Aj

T (x, dy)P (dx).

31



KOEHLER LEE RISTESKI

Algorithm 4: Simulated tempering on {1, . . . ,M + 1} × GriddL,η × {±1}n

Input: Ising model (J, h), steps to run Markov chain T (suggested Θ(n4d log(n ∥J∥op /ε)).

Run Algorithm 3 to obtain partition function estimates Ẑℓ(y
∗) for 1 < ℓ ≤M + 1 = n+ 2.

Let ℓ = 1. Draw y∗ ∈ GriddL,η =
{
−L+ 1

2η,−L+ 3
2η, . . . , L−

1
2η
}d, and then draw

σ ∼ P
σ|y
O,h(y∗)(·|y

∗).

for 1 ≤ t ≤ T do
With probability 1

4 , if ℓ ̸= M , set ℓ← ℓ+ 1 with probability min
{

qℓ+1,y∗ (σ)
qℓ,y∗ (σ)

, 1
}

.

With probability 1
4 , if ℓ ̸= 1, set ℓ← ℓ− 1 with probability min

{
qℓ−1,y∗ (σ)
qℓ,y∗ (σ)

, 1
}

.

With probability 1
2 , begin

if ℓ = 1 then
With probability 1

2 , reselect a random y∗ ∈ GriddL,η, and then draw

σ ∼ P
σ|y
O,h(y∗)(·|y

∗).

end

Choose a random coordinate i, and set σ ← σ(i) with probability qℓ,y∗ (σ
(i))

qℓ,y∗ (σ
(i))+qℓ,y∗ (σ)

.

end
end
if ℓ = M then

Draw U ∼ Uniform([0, 1]).
if U ≤ (4emax ẐM+1(y

∗) exp(cTr(J−) + 1))−1ẐM (y∗)gn+1,y∗(σ) then
Return σ.

end
end
If failed to return sample, re-run the procedure.

(In words, T (i, j) is the “total probability flow” from Ai to Aj .) We omit the superscript P when it
is clear.

The following theorem lower-bounds the gap of the original chain in terms of the gap of the
projected chain and the minimum gap of the restricted chains.

Theorem D.2 (Madras and Randall (2002)) LetM = (Ω, T ) be a Markov chain with stationary
measure P . Let P = {Aj : j ∈ J} be a partition of Ω such that P (Aj) > 0 for all j ∈ J . Then

1

2
Gap(MP

)min
j∈J

Gap(M|Aj ) ≤ Gap(M) ≤ Gap(MP
).

We can now prove our main theorem for sampling.
Proof [Proof of Theorem 1.1(2)] LetM be the simulated chain in Algorithm 4. Below, we condi-
tion on the event that all the Ẑℓ(y

∗) are 2-multiplicative approximations of Zℓ(y
∗), that is, Ẑℓ(y

∗) ∈
[12 , 2]·Zℓ(y

∗). As in the proof of Theorem C.2, if we choose the failure probability to be O
(

ε
M

( η
2L

)d),

by Lemma C.4 and a union bound—this time applied to the estimates at all levels Ẑℓ(y
∗)—this event

happens with probability 1−O(ε).
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We let P st denote the stationary measure for the simulated tempering chain, and P st
ℓ denote the

measure restricted to {ℓ} × GriddL,η × {±1}n.
We use Theorem D.2 with the partition given by Aℓ,y∗ = {ℓ} × {y∗} × {±1}n. The restric-

tionM|Aℓ,y∗ is a lazy version of the Glauber dynamics chain for Pℓ,y∗ (that is, with all transition
probabilities halved, or multiplied by 1

4 in the case ℓ = 1), which has Poincaré constant bounded by
O(n2) by Lemma C.3.

First, note that by construction with the Metropolis-Hastings acceptance ratio, the stationary
distribution satisfies

p((ℓ, y∗)) ∝ Rℓ(y
∗) :=

Zℓ(y
∗)

Ẑℓ(y∗)
. (15)

For the projected chain, we use Lemma F.3. We check each of the conditions.

1. To bound the “bottleneck ratio”, note that for k < ℓ, letting pj(y
∗) = p(y∗|j) = p((j,y∗))∑

y∈Gridd
L,η

p((j,y))

pk(y
∗)

pℓ(y
∗)

=
Rk(y

∗)/
∑

y∈GriddL,η
Rk(y)

Rℓ(y∗)/
∑

y∈GriddL,η
Rℓ(y)

≥ 1

4

using the fact that the Ẑj(y) are 2-multiplicative approximations, so that Rj(y
∗) ∈ [12 , 2] for

each j, y∗.

2. From (15), we have p((ℓ,y∗))
p((ℓ,y∗)) ∈ [14 , 4]. Note that for ℓ, ℓ± 1 ∈ [M ],

pℓ±1,y∗(σ)

pℓ,y∗(σ)
= exp(⟨σ, (βℓ±1 − βℓ)Jσ⟩)

Zℓ(y
∗)

Zℓ±1(y∗)
= Θ(1)

because the ratio of individual terms in Zℓ,y∗ and Zℓ±1,y∗ is Θ(1). Hence

T ((ℓ, y∗), (ℓ± 1, y∗)) =
∑

σ∈{±1}n
min

{
Ẑℓ(y

∗)/Zℓ(y
∗)

Ẑℓ±1(y∗)/Zℓ±1(y∗)
·
pℓ±1,y∗(σ)

pℓ,y∗(σ)
, 1

}
pℓ,y∗(σ)

≥ 1

4

∑
σ∈{±1}n

min

{
pℓ±1,y∗(σ)

pℓ,y∗(σ)
, 1

}
pℓ,y∗(σ)

= Ω(1) = Ω

(
p((ℓ± 1, y∗))

p((ℓ, y∗))

)
where we used the fact that Ẑℓ(y

∗) are 2-multiplicative approximations. We also note

T ((1, y∗), (1, z∗)) ≥ 1

4

( η

2L

)d
.

Hence, condition 1 of Lemma F.3 holds with constant Dhigh and Dadj.

3. Finally, for any 1 ≤ ℓ ≤M ,

P
(
{ℓ} × GriddL,η × {±1}n

)
=

∑
y∈GriddL,η

Rℓ(y)∑M
ℓ=1

∑
y∈GriddL,η

Rℓ(y)
≥ 1

4M
.
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Hence by Lemma F.3, the Poincaré constant of M is O(M2) = O(n2). Since M|Aℓ,y∗ have
Poincaré constant bounded by O(n2) for each y∗, noting the spectral gap is the inverse of the
Poincaré constant and using Lemma D.2, we get that the Poincaré constant ofM is CP = O

(
n2 · n2

)
=

O
(
n4
)
. For the mixing time, note that the starting distribution is the restriction of the stationary

distribution to {1}×GriddL,η ×{±1}n, which has at least 1
4M of the mass. Hence the time until the

distribution is ε-close to the stationary distribution (and all restrictions to {ℓ} × GriddL,η × {±1}n,
1 ≤ ℓ ≤M are ε-close) is O

(
CP log

(
M
ε

))
.

Let PM+1 be the probability measure on {±1}n×GriddL,η with probability mass function given
by

pM+1(σ, y
∗) =

∫
B(y∗) exp

(
1
2

〈
σ, J⊥

allσ
〉
+
〈
X⊤Qy + h, σ

〉
− n

2 ∥y∥
2
)
dy∫

[−L,L]d
∑

σ∈{±1}d exp
(
1
2

〈
σ, J⊥

allσ
〉
+ ⟨X⊤Qy + h, σ⟩ − n

2 ∥y∥
2
)
dy

;

that is, it is obtained from restricting pσ,y
J⊥

all ,X
⊤Qy+h

(σ, y) to {±1}n × [−L,L]d and then rounding y

to the nearest grid point. Except for the fact that this measure is restricted to [−L,L]d, this is the
distribution we wish to sample from. We also know that

pst
M (σ, y) =

ẐM (y∗)
∑

y∈GriddL,η

RM (y)


−1

exp

(
1

2

〈
σ, J⊥σ

〉
+ ⟨h(y∗), σ⟩

)
.

In terms of pM+1(σ,y)
pst
M (σ,y)

, the acceptance ratio in Algorithm 4 is given by

(4e max
y∗∈GriddL,η

ẐM+1(y
∗) exp(cTr(J−) + 1))−1ẐM (y∗)gn+1,y∗(σ)

= (4e max
y∗∈GriddL,η

ẐM+1(y
∗) exp(cTr(J−) + 1))−1 ·

∫
[−L,L]d ZJ∥,J⊥

all ,h
(Qy) dy∑

y∈GriddL,η
RM (y)

· pM+1(σ, y
∗)

pst
M (σ, y∗)

(16)

This is a constant times pM+1(σ,y
∗)

pst
M (σ,y∗)

, so it is the correct rejection sampling ratio. We need to show

that this is always at most 1, and give a lower bound for the coefficient of pM+1(σ,y)
pst
M (σ,y)

.

1. Ratio is at most 1: We first consider

pM+1(σ, y
∗)

pst
M (σ, y∗)

=
pJ⊥

all ,X
⊤Qy∗+h(σ)

pJ⊥,h(y∗)(σ)p
st
M (y∗)

· pM+1(σ|y∗)pM+1(y
∗)

pJ⊥
all ,X

⊤Qy∗+h(σ)

=
pJ⊥

all ,X
⊤Qy∗+h(σ)

pJ⊥,h(y∗)(σ)
RM (y∗)∑

y∈Gridd
L,η

RM (y)

· pM+1(σ|y∗)
pJ⊥

all ,X
⊤Qy∗+h(σ)

∫
B(y∗) ZJ∥,J⊥,h(Qy) dy∫
[−L,L]d ZJ∥,J⊥,h(Qy) dy

≤ 2 ·

 ∑
y∈GriddL,η

RM (y)

 exp(cTr(J−) + 1) · pM+1(σ|y∗)
pJ⊥

all ,X
⊤Qy∗(σ)

∫
B(y∗) ZJ∥,J⊥,h(Qy) dy∫
[−L,L]d ZJ∥,J⊥,h(Qy) dy
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where we used the guarantee obtained from Corollary B.2. We also note

pM+1(σ|y∗)
pJ⊥

all ,X
⊤Qy∗+h(σ)

∝
∫
B(y∗)

exp
(〈

X⊤Q(y − y∗)
〉
− n

2
∥y∥2

)
dy

∈ exp
(
−n

2
∥y∗∥2

)
· [e−1/2, e1/2]

by (11); hence, because probabilities integrate to 1, the ratio is bounded by e. Combining
with (16), we obtain that the acceptance ratio is bounded by

1

2
·

∫
B(y∗) ZJ∥,J⊥,h(Qy) dy

maxy∗∈GriddL,η
ẐM+1(y∗)

≤ 1

2
·

∫
B(y∗) ZJ∥,J⊥,h(Qy) dy

1
2 maxy∗∈GriddL,η

ZM+1(y∗)
≤ 1.

2. Lower bound for coefficient: The reciprocal of the coefficient is

4e
max ẐM+1(y

∗)∫
[−L,L]d ZJ∥,J⊥

all ,h
(Qy) dy

exp(cTr(J−) + 1) ·
∑

y∈GriddL,η

RM (y)

≤ 4e · exp(cTr(J−) + 1) · 2 max
y∗∈GriddL,η

∫
B(y∗) ZJ∥,J⊥

all ,h
(Qy) dy∫

[−L,L]d ZJ∥,J⊥
all ,h

(Qy) dy
· 2
(
2L

η

)d

≤ 16 exp(cTr(J−) + 2)

(
2L

η

)d

.

Thus we can apply Lemma F.2 with C = 16 exp(cTr(J−)+2)
(
2L
η

)d
. Replacing ε with ε

C , we get

that the distribution restricted to {M}×GriddL,η ×{±1}n after running for Ω
(
CP log

(
MC
ε

))
steps

is ε
4C close to P st

M in TV-distance. By Lemma F.2, an accepted sample will be ε
2 close to PM+1.

Finally, because L was chosen large enough so that P (y ̸∈ [−L,L]d) ≤ ε
4 as in (12), we conclude

that the marginal distribution of σ is ε-close to PJ,h. The expected number of trials until acceptance
will be O(CM) = O(n exp(cTr(J−))(2L/η)

d).

Appendix E. Interpreting the Hubbard-Stratonovich transform as as Gaussian
mixture posterior

In this Appendix, we discuss at length the properties of the Hubbard-Stratonovich transform and
its possible interpretation as a Gaussian mixture model posterior. For the most part (and unlike all
of the other appendices in this paper) this discussion is pedagogical, though some simple formulas
stated here are used elsewhere in the paper.

Throughout this section, we consider the case when J is positive semi-definite (PSD). In this
case, we can write J = 1

nX
⊤X for X ∈ Rd×n, for d = rank(J) ≤ n. Let x1, . . . , xn be the

columns of X; we will re-interpret the Hubbard-Stratonovich transform as giving the posterior of a
Gaussian mixture model after seeing samples x1, . . . , xn. (The precise model is a very slight variant
of the Gaussian mixture model described in the main text and applications sections.) We consider
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the following augmented model, which is a density on {±1}n × Rd:

pX,h(σ, µ) =
1

Z
joint
J,h

n∏
i=1

exp

(
−1

2
∥σixi − µ∥2 + hiσi

)
(17)

where Z
joint
J,h =

∫
Rd

∑
σ∈{±1}n

exp

(
−1

2
∥σixi − µ∥2 + hiσi

)
dµ. (18)

(As we will see below, Z joint
J,h does not depend on the choice of X .) Note this can be interpreted as

the posterior distribution for a Gaussian mixture model (with two components, symmetric around 0
with identity covariance) p(x|µ) ∝ exp

(
−1

2 ∥x− µ∥2
)
+ exp

(
−1

2 ∥x+ µ∥2
)

with uniform prior

on µ and prior on σ given by pprior(σ) ∝ e⟨h,σ⟩, where σ represents the class assignments (to the
Gaussian with mean µ or mean −µ).

We summarize the connection in this lemma. We will drop the subscripts J, h when they are
clear.

Lemma E.1 Consider the distribution pX,h(σ, µ) in (17) and let J = 1
nX

⊤X . The following hold:

1. The marginal distribution of σ is pJ,h(σ) (in (1)).

2. The marginal distribution on µ is

p(µ) ∝ e−
n
2
∥µ∥2

n∏
i=1

cosh(⟨xi, µ⟩+ hi).

3. The conditional distribution of σ given µ is a product distribution,

p(σ|µ) ∝
n∏

i=1

exp (σi(⟨xi, µ⟩+ hi)) .

4. The conditional distribution of µ given σ is a Gaussian distribution,

p(µ|σ) =
( n

2π

)n
2
exp

(
−n

2

∥∥∥∥µ− ∑n
i=1 σixi
n

∥∥∥∥2
)
.

5. The partition functions are related via

Z
joint
J,h =

(
2π

n

)n/2

exp
(
−n

2
Tr(J)

)
ZJ,h.

As a consequence, to sample from p(σ), it suffices to sample µ from the above distribution, and
then sample µ conditional on µ (which is immediate).

We calculate the Hessian of − ln p(µ):

−∇2 ln p(µ) = nI −
n∑

i=1

xix
⊤
i +

n∑
i=1

(1− sech2(⟨xi, µ⟩+ hi))xix
⊤
i .

36
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Note that this is convex (and hence p(µ) is log-concave) when J = 1
n

∑n
i=1 xix

⊤
i ⪯ I . This obser-

vation can be used to infer an efficient sampling algorithm for pJ,h by first drawing a sample from
p(µ) (using algorithms for log-concave sampling such as Langevin dynamics (Durmus et al., 2019))
and then drawing from p(σ|µ), as observed in Bauerschmidt and Bodineau (2019). This gives an al-
ternative algorithm to the Glauber dynamics (which mix rapidly under the same assumption (Anari
et al., 2021)), albeit one which is not as fast.

We note that our decomposition is similar, but slightly different from the decomposition in Bauer-
schmidt and Bodineau (2019). Both approaches decompose pJ,h as a log-concave mixture of prod-
uct distributions when J ⪯ I . Our approach has the advantage that when J has a few large eigen-
values (eigenvalues greater than 1), the distribution on µ is still log-concave in the other directions.
We note the log-concave decomposition technique was used extensively in analysis of the Hopfield
model (Bovier and Picco, 1998; Talagrand, 2010).
Proof

1. The marginal distribution of σ is

1

Z
joint
J,h

∫
Rd

n∏
i=1

exp

(
−1

2
∥σixi − µ∥2 + hiσi

)
dµ =

1

Z
joint
J,h

∫
Rd

exp

(
−1

2

n∑
i=1

∥σixi − µ∥2 + hiσi

)
dµ

=
1

Z
joint
J,h

∫
Rd

exp

−n

2

∥∥∥∥µ− ∑n
i=1 σixi
n

∥∥∥∥2 + 1

2n

n∑
i,j=1

σixix
⊤
j σj −

1

2

n∑
i=1

∥xi∥2 + ⟨h, σ⟩

 dµ

=
1

Z
joint
J,h

(
2π

n

)n/2

exp

(
−1

2
∥X∥2F

)
exp

(
1

2
σ⊤
(
XX⊤

n

)
σ + ⟨h, σ⟩

)
, (19)

where the last line uses the fact that the integral of exp
(
−n

2 ∥µ− µ0∥2
)

is a fixed normaliz-

ing constant, for any µ0. Finally, we use J = 1
nXX⊤.

2. This follows from factoring the product,

p(µ) ∝
∑

σ∈{±1}n

n∏
i=1

exp

(
−1

2
∥σixi − µ∥2 + hiσi

)
∝

n∏
i=1

∑
σi=±1

exp

(
−1

2
∥σixi − µ∥2 + hiσi

)

∝ e−
1
2
∥µ∥2

n∏
i=1

∑
σi=±1

eσi(⟨xi,µ⟩+hi) ∝ e−
n
2
∥µ∥2

n∏
i=1

cosh(⟨xi, µ⟩+ hi).

3–4. These follow directly by noting p(σ|µ) ∝ p(σ, µ) for fixed µ, and p(µ|σ) ∝ p(σ, µ) for fixed
σ.

5. This follows from comparing normalizing constants in (19).

Lemma E.1 gives a decomposition of pJ,h into a mixture of product distributions pJ,h(σ) =∫
Rd p(σ|µ)p(µ) dµ. We can instead only condition on the projection of µ to a rank-d subspace V

and obtain a decomposition in terms of rank-(n − d) Ising models. We will choose the rank-d
subspace to contain the eigenvectors of J with large eigenvalue.
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We define the distribution pX,h,V (σ, µ
∥, µ⊥) on {±1}n × V × V ⊥ by pX,h,V (σ, µ

∥, µ⊥) =
pX,h(σ, µ

∥ + µ⊥).

Lemma E.2 Consider the distribution p(σ, µ∥, µ⊥). Let P ∥ and P⊥ be the projections onto V and
V ⊥, respectively and let J∥ = 1

nX
⊤P⊥X , J⊥ = J − J∥.

1. The joint distribution of (σ, µ∥) is given by

p(σ, µ∥) =
1

Z
joint
J,h

(
2π

n

)(n−d)/2

exp
(
−n

2
Tr(J)

)
· exp

(
1

2

〈
σ, J⊥σ

〉
+
〈
X⊤P ∥µ+ h, σ

〉
− n

2

∥∥∥µ∥
∥∥∥2) .

2. The distribution of σ given µ∥ is

p(σ|µ∥) = pJ⊥,h+X⊤µ∥(σ) ∝ exp

(
1

2

〈
σ, J⊥σ

〉
+
〈
h+X⊤µ∥, σ

〉)
.

3. The distribution of µ∥ given σ is Gaussian,

p(µ∥|σ) =
( n

2π

) d
2
exp

−n

2

∥∥∥∥∥µ∥ −
∑n

i=1 σiP
∥xi

n

∥∥∥∥∥
2
 .

4. Let ZJ∥,J⊥,h :=
∫
µ∥∈V ZJ∥,J⊥,h(µ

∥) dµ∥ where

ZJ∥,J⊥,h(µ
∥) : = ZJ⊥,X⊤P ∥µ+h exp

(
−n

2

∥∥∥µ∥
∥∥∥2 dµ∥

)
(20)

=
∑

σ∈{±1}n
exp

(
1

2

〈
σ, J⊥σ

〉
+
〈
X⊤P ∥µ+ h, σ

〉
− n

2

∥∥∥µ∥
∥∥∥2) . (21)

Then we have

Z
joint
J,h =

(
2π

n

)d/2

exp
(
−n

2
Tr(J⊥)

)
ZJ∥,J⊥,h. (22)

Proof
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1. We integrate p(σ, µ∥, µ⊥) along V ⊥ and complete the square in µ⊥; integrating gives a(
2π
n

)(n−d)/2 normalizing constant:

p(σ, µ∥) =

∫
µ⊥∈V ⊥

p(σ, µ∥, µ⊥) dµ⊥

=
1

Z
joint
J,h

∫
µ⊥∈V ⊥

exp

(
−1

2

n∑
i=1

(∥∥∥σiP⊥xi − µ⊥
∥∥∥2 + ∥∥∥σiP ∥xi − µ∥

∥∥∥2)+ ⟨h, σ⟩

)
dµ⊥

=
1

Z
joint
J,h

∫
µ⊥∈V ⊥

exp

(
− 1

2

(
n
∥∥∥µ⊥

∥∥∥2 − n∑
i=1

σi

〈
µ⊥, P⊥xi

〉
+

n∑
i=1

∥∥∥P⊥xi

∥∥∥2
+

n∑
i=1

∥∥∥σiP ∥xi − µ∥
∥∥∥2)+ ⟨h, σ⟩

)
dµ⊥

=
1

Z
joint
J,h

∫
µ⊥∈V ⊥

exp

(
− n

2

∥∥∥∥∥µ⊥ − 1

n

n∑
i=1

σiP
⊥xi

∥∥∥∥∥
2

+
1

2n

∥∥∥∥∥
n∑

i=1

σiP
⊥xi

∥∥∥∥∥
− 1

2

n∑
i=1

∥∥∥P⊥xi

∥∥∥2 − 1

2

n∑
i=1

(∥∥∥P ∥xi

∥∥∥2 − 〈X⊤P ∥µ, σ
〉
+
∥∥∥µ∥

∥∥∥2)+ ⟨h, σ⟩

)
dµ⊥

=
1

Z
joint
J,h

(
2π

n

)(n−d)/2

exp

(
1

2

〈
σ,

X⊤P⊥X

n
σ

〉
− 1

2
∥X∥2F +

〈
X⊤P ∥µ+ h, σ

〉
− n

2

∥∥∥µ∥
∥∥∥2)

Finally, we rewrite in terms of J⊥ by using J⊥ = 1
nX

⊤P⊥X .

2. This follows from fixing µ∥ in the joint probability density and expanding.

3. This follows from fixing σ in the joint density, expanding, and completing the square in µ∥.

4. This follows from setting the integral of the joint density equal to 1.

Finally, we note that although the interpretation as a Gaussian mixture posterior only makes
sense when J is positive semi-definite, the decomposition still works for general symmetric J , as
we can multiply the distribution by exp

(
−1

2 ⟨σ, J−σ⟩
)
. We note that combining Lemma E.1, part

5, with Lemma E.2, part 4, gives us Theorem C.1 in the PSD case.

Appendix F. Technical lemmas for partition function estimation and sampling

In this section, we collect some technical lemmas we will need for analyzing our algorithms for
partition function estimation and sampling.

F.1. Simulated annealing

For partition function estimation, we use the following lemma, which roughly says that when the
variance of some random variables are close to 1, then the variance is additive under multiplication.
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Lemma F.1 ((Ge et al., 2020, Lemma B.2), cf. Dyer and Frieze (1991)) Let Yℓ, ℓ = 1, . . . ,M
be independent variables and let Y ℓ = EYℓ. Assume there exists η > 0 such that ηM ≤ 1

5 and

EY 2
ℓ ≤ (1 + η)Y

2
ℓ ,

then for any ε > 0

P

(∣∣Y1 · · ·YM − Y 1 · · ·Y M

∣∣
Y 1 · · ·Y M

≥ ε

2

)
≤ 5ηM

ε2
.

Proof [Proof of Lemma C.4] Let Yℓ = EPℓ

qℓ
pℓ

=
∫
Ω qℓ+1∫
Ω qℓ

. By Lemma F.1 with η = σ2

N ,

P

(
M∏
ℓ=1

Yℓ ̸∈ [eε/2, eε/2] ·
M∏
ℓ=1

Y ℓ

)
≤ P


∣∣∣∏M

ℓ=1 Yℓ −
∏M

ℓ=1 Y ℓ

∣∣∣∏M
ℓ=1 Y ℓ

≥ ε

4

 ≤ 80ηM

ε2
≤ 1

4
. (23)

Now we consider the bias. We have

E
P̃ℓ
gℓ(x) ∈

[
1− ε

4M
, 1 +

ε

4M

]
· EPℓ

gℓ(x) ⊆ [e−
ε

2M , e
ε

2M ] · EPℓ
gℓ(x).

Taking a product, we obtain

Z1

M∏
ℓ=1

Y ℓ ∈
[
e−

ε
2 , e

ε
2

]
· Z. (24)

Putting together (23) and (24), we obtain that for any r,

P
(
Ẑr ̸∈ [e−ε, eε]Z

)
≤ 1

4
.

The algorithm takes the median in order to boost this probability. As the median of R independent
runs, Ẑ will fail to be contained in [e−ε, eε] · Z only if at least half of the Ẑr’s fail to be contained
in [e−ε, eε] · Z. By the Chernoff-Hoeffding bound, this happens with probability at most δ when
R ≥ 32 log

(
1
δ

)
.

F.2. Rejection sampling

The following bounds the TV-error and expected running time for rejection sampling, given an
inexact oracle for the proposal distribution.

Lemma F.2 Suppose that P and Q are probability measures on Ω such that dP
dQ ≤ C everywhere.

Suppose we have an oracle which gives samples from Q̃, with dTV(Q̃,Q) ≤ ε
2C . Consider the fol-

lowing rejection sampling algorithm: draw x ∼ Q̃, and accept with probability 1
C

dP
dQ(x); otherwise

repeat the process. Let P̃ be the resulting measure. Then dTV(P̃ , P ) ≤ ε, and the number of oracle
calls is a geometric random variable with success probability at least 1

2C (and hence expected value
at most 2C).
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Proof Let A ⊆ Ω be measurable. First, we note that P̃ (A) =

∫
A

dP
dQ

dQ̃∫
Ω

dP
dQ

dQ̃
. To calculate dTV(P̃ , P ),

we break up the difference as

P̃ (A)− P (A) =

(∫
A

dP
dQ dQ̃∫

Ω
dP
dQ dQ̃

−
∫
A

dP

dQ
dQ̃

)
+

(∫
A

dP

dQ
dQ̃−

∫
A

dP

dQ
dQ

)

≤

(∫
A

dP
dQ dQ̃∫

Ω
dP
dQ dQ̃

(
1−

∫
Ω

dP

dQ
dQ̃

))
+

(∫
A

dP

dQ
dQ̃−

∫
A

dP

dQ
dQ

)
Next note that ∣∣∣∣∫

Ω

dP

dQ
dQ̃− 1

∣∣∣∣ ≤ ∣∣∣∣∫
Ω

dP

dQ
dQ̃−

∫
Ω

dP

dQ
dQ

∣∣∣∣ ≤ CdTV(Q, Q̃) ≤ ε

2
.

Hence,

|P̃ (A)− P (A)| ≤
∣∣∣∣∫

Ω

dP

dQ
dQ̃− 1

∣∣∣∣+ dTV(Q̃,Q)

∥∥∥∥dPdQ
∥∥∥∥
∞
≤ ε

2
+

ε

2C
C = ε,

so dTV(P̃ , P ) ≤ ε. Finally, we check that the acceptance probability is∫
Ω

1

C

dP

dQ
dQ̃ ≥

∫
Ω

1

C

dP

dQ
dQ− 1

C
· CdTV(Q, Q̃) ≥ 1

C
− ε

2C
≥ 1

2C
.

F.3. Spectral gap of a projected chain

We use the following to bound the Poincaré constant of the projected Markov chain arising in the
analysis of simulated tempering. A similar analysis appears in the proof in Ge et al. (2018).

Lemma F.3 Let S be a countable set. Consider a reversible Markov chain on [L] × S with sta-
tionary distribution P and transition kernel T satisfying the following conditions. Let Pℓ(j) =
P ((ℓ, j))/P ({ℓ} × S).

1. (Bounded bottleneck ratio) For k < ℓ, Pk(j)
Pℓ(j)

≥ γ.

2. (Transitions at highest temperature and between adjacent temperatures) We have

T ((ℓ1, i1), (ℓ2, i2)) ≥


P1(i2)
Dhigh

, ℓ1 = ℓ2 = 1, i1 ̸= i2
1

2Dadj
min

{
P ((ℓ±1,i1))
P ((ℓ,i1))

, 1
}
, i1 = i2, ℓ1 ̸= L, ℓ2 = ℓ1 ± 1

3. (Lower bound of probability for each level) For each ℓ, P ({ℓ} × S) ≥ r
L .

Then the following hold.

1. (Cheeger constant) The Cheeger constant satisfies Φ ≥ γr
2Lmax{Dhigh,Dadj} .
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2. (Poincaré constant) The associated Dirichlet form satisfies a Poincaré inequality with con-
stant CP ≤

8L2 max{Dhigh,Dadj}2
γ2r2

.

Proof Let Q(x,B) denote P (x)T (x,B) and Q(A,B) denote
∑

x∈A P (x)T (x,B). Note Q(A,B) =

Q(B,A) by reversibility. Let Aℓ denote the sets such that A =
⋃L

ℓ=1{ℓ} × Aℓ, i.e., Aℓ is the ℓth
layer of A.

To prove the bound on the Cheeger constant, for each A, it suffices to bound either Q(A,Ac)
P (A) or

Q(Ac,A)
P (Ac) . Without loss of generality, we suppose that P1(A1) ≤ 1

2 . For each j, let ℓj denote the
smallest ℓ such that (ℓ, j) ∈ A. To lower bound Q(A,Ac), we consider the contributions from n
such that ℓj > 1 and ℓj = 1 separately.

1. ℓj > 1: We have

Q((ℓj , j), A
c) ≥ P ((ℓj , j))T ((ℓj , j), (ℓj − 1, j))

≥ P ((ℓj , j))
1

2Dadj
min

{
P ((ℓj − 1, j))

P ((ℓj , j))
, 1

}
=

1

2Dadj
min{P ((ℓj − 1, j)), P ((ℓj , j))}

≥ γr

2LDadj
P ([ℓj , L]× {j}).

2. ℓj = 1: Note A1 = {j : ℓj = 1}. We will bound Q({1} × A1, A
c) by looking at transitions

within {1} × S. We have

Q({1} ×A1, A
c) ≥

∑
j∈A1

P ((1, j))T ((1, j), {1} ×Ac
1)

≥
∑
j∈A1

P ((1, j))
P ({1} ×Ac

1)

Dhigh

≥ 1

2Dhigh

∑
j∈A1

P ((1, j)) =
1

2Dhigh
P ({1} ×A1)

≥ γr

2LDhigh
P ([L]×A1).

Adding the two parts,

Q(A,Ac) ≥ γr

2Lmax{Dadj, Dhigh}
P

 ⋃
j:ℓj>1

[ℓj , L]× {j}

 ∪ ([L]×A1)


≥ γr

2Lmax{Dadj, Dhigh}
P (A).

The bound on the Poincaré constant follows immediately from Cheeger’s inequality: the spectral
gap of the chain is at least 1

2Φ
2, and the Poincaré constant is the inverse of the spectral gap.
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Appendix G. Additional material related to examples

We give here the derivation of the posterior for the contextual SBM. Because we chose consistent
notations between problems, the derivation of the posterior for the Gaussian mixture model is simply
the special case of this argument where λ = 0 (so there is no graph/spiked Wigner information).

Posterior derivation in contextual SBM. Under the Gaussian contextual stochastic block model,
we have

p(A,B | u, v) ∝ exp

(
−n

4

∥∥∥∥λnvv⊤ −A

∥∥∥∥2
F

− p

2

∥∥∥∥√µ

n
vu⊤ −B

∥∥∥∥2
F

)

∝ exp

(
λ

2
⟨vv⊤, A⟩ − n

4
∥A∥2F + p

√
µ/n⟨vu⊤, B⟩ − p

2
∥B∥2F −

p

2
µ∥u∥2

)
(note we dropped the term ∥vv⊤∥2F since it is a constant) and so

p(u, v | A,B) = p(A,B | u, v)p(u, v)/p(A,B)

∝ exp

(
λ

2
⟨vv⊤, A⟩+ p

√
µ/n⟨B⊤v, u⟩ − p

2
(1 + µ)∥u∥2

)
.

Integrating over u, we have that the posterior distribution is

p(v | A,B) ∝
∫

exp

(
λ

2
⟨vv⊤, A⟩+ p

√
µ/n⟨B⊤v, u⟩ − p

2
(1 + µ)∥u∥2

)
du

=

∫
exp

(
λ

2
⟨vv⊤, A⟩ − p

2
(1 + µ)

∥∥∥∥u− 1

1 + µ

√
µ

n
B⊤v

∥∥∥∥2 + pµ

2n(1 + µ)
∥B⊤v∥2

)
du

∝ exp

(
λ

2
⟨vv⊤, A⟩+ pµ

2n(1 + µ)
∥B⊤v∥22

)
∝ exp

(
λ

2
⟨vv⊤, A⟩+ pµ

2n(1 + µ)
⟨vv⊤, BB⊤⟩

)
This is an Ising model without external field.

Appendix H. Computational hardness of sampling from rank-one models with large
spike

Using the subset sum/number partitioning problem, we will show that sampling and (even crudely)
approximating logZ from negative-definite rank-one models is NP-hard. The NP-hard problem
we start with is given integers a1, . . . , an, determining whether there exists a partitioning into two
sets such that the sum is equal. Equivalently, we seek to determine if there exists a sign vector
σ ∈ {±1}n such that ∑

i

aiσi = 0.

This is not the first time this problem is connected to statistical physics—see e.g., discussion in
Borgs et al. (2001); Gamarnik and Kızıldağ (2021).
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Theorem H.1 Let β ≥ 1 be arbitrary and fixed. For any a = (a1, . . . , an) ∈ Zn, define the Ising
model with probability mass function Pa : {±1}n → [0, 1] given by

Pa(σ) =
1

Z
exp

(
−βn⟨a, σ⟩2

)
If there exists a polynomial time randomized algorithm to approximately sample within TV distance
1/2 from Ising models of this form for any a1, . . . , an, then NP = RP. Furthermore, for β ≥
2 log(2), it is NP-hard to approximate the log partition function/free energy logZ of such a model
within an additive error of βn

2 , and under the Exponential Time Hypothesis (ETH), it is impossible
to do so in subexponential time in the presence of an external field b ∈ Zn, i.e., for models of the
form

Pa,h(σ) =
1

Z
exp

(
−βn⟨a, σ⟩2 + ⟨b, σ⟩

)
.

Proof Let a1, . . . , an be an instance of the number partitioning problem. Consider the Ising model
with probability mass function Pa : {±1}n → [0, 1] given by for β ≥ 1

Pa(σ) =
1

Z
exp

(
−βn⟨a, σ⟩2

)
,

where Z is the normalizing constant (partition function) so that the distribution has normalizing
constant 1. Note that this is an Ising model with interaction matrix −2βnaaT , which is negative
definite and rank one as promised. If there exists at least one solution

∑
i aiσi = 0 then

Pr
σ∼P

(∑
i

aiσi ̸= 0

)
=

∑
σ:
∑

i aiσi ̸=0 e
−βn⟨a,σ⟩2∑

σ∈{±1}n e
−βn⟨a,σ⟩2 ≤ 2ne−βn

where we used that because the ai are integers, if
∑

i aiσi ̸= 0 then ⟨a, σ⟩2 ≥ 1, and also that if there
exists a solution

∑
i aiσi = 0 then the denominator is at least 1. Thus, except with exponentially

small probability in n, a sample from P will be a solution to the subset sum problem. In particular,
it follows that a polynomial time (approximate) sampling algorithm implies NP = RP.

Similarly, observe that if there exists a solution to the subset sum instance then logZ ≥ 0
whereas if there does not exist a solution, then logZ ≤ n[log(2)−β] < −βn

2 , which establishes the
NP-hardness of approximating logZ. The last statement in the Theorem follows because solving
subset sum in time 2o(n) is known to be ETH-hard (see discussion in Abboud et al. (2022)), and the
general subset problem (deciding if there exists σ so that

∑
i aiσi = b) can be directly encoded as

minimizing
(⟨a, σ⟩ − b)2 = ⟨a, σ⟩2 − 2b⟨a, σ⟩+ b2,

which by the same argument as above implies that approximating logZ for the distribution Pa,h

with h = 2bβna is ETH-hard.
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