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—— Abstract

Loss minimization is a dominant paradigm in machine learning, where a predictor is trained to
minimize some loss function that depends on an uncertain event (e.g., “will it rain tomorrow?”).
Different loss functions imply different learning algorithms and, at times, very different predictors.
While widespread and appealing, a clear drawback of this approach is that the loss function may
not be known at the time of learning, requiring the algorithm to use a best-guess loss function.
Alternatively, the same classifier may be used to inform multiple decisions, which correspond to
multiple loss functions, requiring multiple learning algorithms to be run on the same data. We
suggest a rigorous new paradigm for loss minimization in machine learning where the loss function
can be ignored at the time of learning and only be taken into account when deciding an action.

We introduce the notion of an (£, C)-omnipredictor, which could be used to optimize any loss in
a family £. Once the loss function is set, the outputs of the predictor can be post-processed (a simple
univariate data-independent transformation of individual predictions) to do well compared with
any hypothesis from the class C. The post processing is essentially what one would perform if the
outputs of the predictor were true probabilities of the uncertain events. In a sense, omnipredictors
extract all the predictive power from the class C, irrespective of the loss function in L.

We show that such “loss-oblivious” learning is feasible through a connection to multicalibration,
a notion introduced in the context of algorithmic fairness. A multicalibrated predictor doesn’t aim
to minimize some loss function, but rather to make calibrated predictions, even when conditioned
on inputs lying in certain sets ¢ belonging to a family C which is weakly learnable. We show that a
C-multicalibrated predictor is also an (£, C)-omnipredictor, where £ contains all convex loss functions
with some mild Lipschitz conditions. The predictors are even omnipredictors with respect to sparse
linear combinations of functions in C. As a corollary, we deduce that distribution-specific weak
agnostic learning is complete for a large class of loss minimization tasks.

In addition, we show how multicalibration can be viewed as a solution concept for agnostic
boosting, shedding new light on past results. Finally, we transfer our insights back to the context of
algorithmic fairness by providing omnipredictors for multi-group loss minimization.
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Omnipredictors

1 Introduction

In machine learning, it is well-known that the best classifier may depend heavily on the
choice of a loss function, and therefore correctly modeling the loss function is crucial for
success in many applications. Modern machine learning libraries such as PyTorch, Tensorflow,
and scikit-learn each offer a choice of over a dozen loss functions. However, this poses a
challenge in applications where the loss is not known in advance or multiple losses may
be used. For motivation, suppose you are training a binary classifier to predict whether a
person has a certain medical condition (y = 1), such as COVID-19 or some heart condition,
given their attributes x. The cost for misclassification may vary dramatically, depending
on the application. For an infectious disease, the question of whether an individual should
be allowed to go out for a stroll is different than whether a person should be allowed to go
to work in a nursing home. Similarly, deciding on whether to advise a daily dose of aspirin
carries very different risks than recommending cardiac catheterization. Furthermore, medical
interventions that may be developed in the future may carry yet other, unforeseen, risks and
benefits that may require retraining with a different loss function.

We adopt the following problem setup: we are given a distribution D on X x ) where X
is the domain and Y is the set of labels (for example Y can be {0,1} or [0,1]). On each z,
we take an action ¢(z) € R, and suffer loss ¢(y, t(x)) which depends on the label y and the
action ¢(x). We will refer to the function ¢ : X — R which maps points in the domain to
actions as the hypothesis. Our goal is to find a hypothesis that minimizes Ep[{(y,(x))] in
comparison to some reference class of hypotheses.! We will refer to a function f which maps
X to probability distributions over ) as a predictor. The goal of a predictor is to model the
conditional distribution of labels y|x = « for every point in the domain.

A classic example of different optimal hypotheses for different loss functions is the ¢
vs. 1 losses which are minimized by the mean and median respectively. Consider a joint
distribution D on X x [0, 1], where x € X is a set of attributes (given) and y € [0, 1] is an
outcome. Consider an x such that the corresponding y is uniform in [0.8, 1] with probability
0.6 and 0 with probability 0.4. In this case, to minimize the expected fo loss £(y,t) = (y —t)?
you would set t(x) = 0.45, whereas to minimize the expected ¢; loss £(y,t) = |y — t| you
would set ¢(z) = 0.83. Not only is ¢ different for the two losses, you cannot learn one from the
other. In other words, learning to minimize the £5 loss looses information that is necessary
to minimize the ¢; loss and vice versa.

The phenomenon that there is no simple way to get one loss-minimizing predictor from
another is not unique to /3 vs. ¢ losses. Consider the distribution illustrated in Figure 1,
which is known as a nested halfspace [20]. Consider a common and simple family of loss
functions where £(y,t) = ¢,y — t| where y € {0,1} and ¢p,c1 > 0 are the costs of false
positives and false negatives respectively. Even for linear classification, as the ratio ¢o/cq
varies, a different direction is optimal. The standard ML approach of minimizing a given loss
would require separate classifiers for each loss. There is no clear way to infer the optimal
classifier for one set of costs from the classifier for another; applying standard post-processing
techniques, such as Platt Calibration [32] or Isotonic Regression [40], to the predictions so
that Prly = 1|t = z] &~ 2z will not fix the issue since the optimal direction is different.

1 Such a loss function that is the expectation of a loss for individual examples is called a decomposable
loss in the literature.
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Figure 1 Binary classification with target function Prly = 1[z] = %L— for z € [0.1, 1]%. As can

be seen from the level sets, the direction of the optimal linear classifier varies depending on the cost
of false positives and negatives. This example is learned to near optimal loss for any loss with fixed
costs of false-positives and false-negatives by an omnipredictor for the class C = {x1,x2}.

1.1 Omnipredictors: one predictor to rule them all

This paper advocates a new paradigm for loss minimization: train a single predictor that
could later be used for minimizing a wide range of loss functions, without having to further
look at the data. Why should such predictors exist, and are they computationally tractable?
One source of optimism is that the ground-truth predictor f* does allow exactly that.

First consider the case of Boolean labels, and let D denote a distribution on X x {0,1}
(our results also apply to real-valued outcomes). We define f*(z) = Ey.plylz] € [0,1]
to be the conditional expectation of the label for x. The value ¢(z) which minimizes the
loss Ey |, [((y,t(x))] depends only on f*(x). Furthermore, as long as £ is smooth and easy
to compute, ¢ can easily be computed from f*. We denote the univariate post-processing
function that optimizes loss ¢ given true probabilities by &} : [0,1] — R. So for example for
la(y,t) = (y — t)?, we have kj (p) = p and for ¢, (y,t) = |y —t|, k; (p) = L(p > 1/2).

For every loss function ¢, the composition of f* and k; minimizes the loss ¢, even
conditioned on complete knowledge of D. The connection between perfect predictors and
choosing the optimal action is well understood and plays an important role in the Statistics
literature on proper scoring rules and forecasting (cf. [35]). But learning f* from samples
from D is information-theoretically and computationally impossible in general. The natural
approach is to learn a model f for f* and then compose k; with f. Common instantiations
of this approach (such as using logistic regression to model f) do not yield particularly strong
guarantees in the realistic non-realizable setting where f* does not come from the class
of model distributions (see the further discussion in Section 2). Our main conceptual
contribution is to introduce the notion of Omnipredictors, which provide a framework
to derive strong rigorous guarantees using this composition approach even in the non-realizable
setting.

The goal of an omnipredictor is to learn a predictor f that could replace f* for the
purpose of minimizing any loss from a class £ compared to some hypothesis class C. For a
family £ of loss functions, and a family C of hypotheses ¢ : X — R, we introduce the notion
of an (£,C)-omnipredictor, which is a predictor f: X — [0, 1] with the property that for
every loss function ¢ € L, there is a post-processing function k; such that the expected loss
of the composition ky o f measured using £ is almost as small as that of the best hypothesis
ceC.
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1.2 Omnipredictors for convex loss minimization

Omnipredictors can replace perfect predictors for the sake of minimizing loss in £ compared
with the class C. In this sense they extract all the predictive power of C for such tasks. The
key questions are of efficiency and simplicity: how strong a learning primitive do we need
to assume to get an omnipredictor for £,C, and how complex is the predictor. The main
result of this paper is that one can efficiently learn simple omnipredictors for broad
classes of loss functions and hypotheses, from weak learning primitives.

Our main result

We show that for any hypothesis class C, a weak agnostic learner for C is sufficient to efficiently
compute an (£, C)-omnipredictor where £ consists of all decomposable convex loss functions
obeying mild Lipshcitz conditions; it includes popular loss functions such as the £, losses
for all p, the exponential loss and the logistic loss. Weak agnostic learnability captures a
common modeling assumption in practice, and is a well-studied notion in the computational
learning literature [4, 22, 19, 10]. The weak agnostic learning assumption says that if there
is a hypothesis in C that labels the data reasonably well (say with 0-1 loss of 0.7), then we
can efficiently find one that has a non-trivial advantage over random guessing (say with 0-1
loss of 0.51). In essence, our main result derives strong optimality bounds for a broad and
powerful class of loss functions starting from a weak optimality condition for the 0-1 loss.

Perhaps surprisingly, our results are obtained not via the machinery of convex optimization,
but by drawing a connection to work on fairness in machine learning, specifically the notion of
multicalibration [16]. Multicalibration is a notion motivated by the goal of preventing unfair
treatment of protected sub-populations in prediction; it does not explicitly consider loss
minimization. We draw a connection to omnipredictors using a covariance-based recasting
of the notion of multicalibration, that clarifies the connection of multicalibration to the
literature on boosting [23, 18, 19]. A multicalibrated predictor satisfying this definition can
be computed by a branching program, building on existing work in the literature on boosting
[30, 23, 18] and multicalibration [14]. This new connection shows that the well-known
boosting by branching programs algorithms [25, 30] yield multicalibrated predictors and can
in fact be used to derive strong guarantees for a broad family of convex loss functions.

The post-processing function k, used in our positive results is essentially k; with small
modifications. As the example in Figure 1 demonstrates, even in natural cases, an (£,C)-
omnipredictor cannot be a function in C; in other words, the learning task we solve is
inherently not proper.

Omnipredictors for larger classes

An advantage of our covariance-based notion of multicalibration is that it is closed under
linear combinations. We use this to show that any multicalibrated predictor for C is in fact
an (£, Ling)-omnipredictor where Line consists of linear combinations of functions in C. We
give negative results for slightly larger classes, showing that a multicalibrated predictor for C
is not necessarily an omnipredictor for the class Thre which consist of thresholds of functions
in C. Similarly, it need not be an omnipredictor for the class C but with non-convex loss
functions. This shows that the connection between multicalibration and omnipredictors that
we present is fairly tight.
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Omnipredictors for multi-group loss minimization

A very recent line of research defines multi-group notions of loss minimization [5, 33].2
Multi-group loss minimization is well motivated from the point of view of fairness as it
guarantees that no sub-population’s loss is sacrificed for the sake of global loss minimization.
Say we have a collection of sub-populations 7 and hypotheses P and seek to take actions
such that for every set T' € T, our actions can compare with the best hypothesis in P € P for
that sub-population T'. Indeed, one may wish to vary the loss function for various subgroups:
say in a medical scenario where different age-groups are known to react differently to the
same treatment.

We derive strong multi-group loss minimization guarantees using the closure of
multicalibration under conditioning on subsets in C. We show that in the scenario above, a
multicalibrated predictor for T x P ={T - P,T € T, P € P} gives an (£, P)-omnipredictor
for every sub-population T" € 7. Hence given a sub-population T" € 7 and a loss ¢ € L,
the predictions of the omnipredictor can be post-processed to be competitive with the best
hypothesis from P for that loss function ¢ and sub-population T

Omnipredictors for real-valued labels

We extend the notion of omnipredictors to the setting where the labels come from an arbitrary
subset )Y C R. Our primary interest is in multi-class prediction where J = [k] and the
bounded real-valued setting where ) = [0, 1]. We show that omnipredictors can be learned

in this setting, for similar families of loss functions, again assuming weak learnability of C.

We also show a stronger bound for the ¢5 loss than what the general theorem implies.

1.3 Multicalibration and agnostic boosting

One of our contributions in this work is to formalize and leverage the connections between
multicalibration and the literature on agnostic boosting. We propose a covariance-based
recasting of the notion of multicalibration, inspired by the literature on boosting [18, 19]. We
show that this definition has several advantages, for instance it implies some general closure
properties for multicalibration. In the other direction, our work suggests multicalibration
as a solution concept for agnostic boosting. By specializing our main result on
omnipredictors to the ¢; loss, we derive a new proof of the classic result of [21] on agnostic
learning. We elaborate on these connections in this subsection.

A covariance-based formulation of multicalibration

Calibration has been well-studied in the statistics literature in the context of forecasting [7]. It
was introduced to the algorithmic fairness literature by [28]. In the setting of Boolean labels,
we are given a distribution D on X x {0, 1} of labelled examples, and wish to learn a predictor
f X —[0,1], where f(x) is our model for Ep[y|z]. The predictor f is (approximately)
calibrated if for every value v in its range we have that Pr[y = 1|f(x) = v] &~ v. This means
that the prediction f(z) can be interpreted as a probability that is correct in expectation
over individuals in the same level set of f. By itself, calibration is a very weak property, both
in terms of fairness as well as in terms of accuracy. This motivated [16] to introduce the
notion of multicalibration that asks for f to be calibrated on a rich collection of subgroups C
rather than just a few protected sets.

2 The notion of loss in [33] is more general than in this paper and includes global functions of loss rather
than the expectation of loss on individual elements. See further comparison in Section 2.
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We draw a connection to omnipredictors by introducing a covariance-based recasting
of the notion of multicalibration, that clarifies the connection to the literature on boosting
[18, 23, 19]. Prior definitions consider multicalibration for a family C of sets or equivalently
Boolean functions ¢ : X — {0, 1}, whereas we allow arbitrary real-valued functions. Rather
than work with predictors, we define multicalibration for partitions, inspired by the recent
work of [14] in the unsupervised setting. A partition S = {Si,...,Sn} of the domain
is a collection of disjoint subsets whose union is X. Intuitively, we want these sets to
be (approximate) level sets for f*. We let D, denote the distribution D conditioned on
x € S;. The partition S gives a canonical predictor fS where for each z € S;, we predict
fS(z) = Ep,[y]- In analogy to boosting (see, e.g., [18, 23, 19]), we phrase multicalibration
in terms of the covariance® between c(x) and y conditioned on each state S; of the partition.
We say that S is a-multicalibrated for C if for every i € [m] and ¢ € C,

ngv[c(x), vl < a. (1)

In reality, we will weaken the definition to only hold in expectation under D rather than
require it for every state of the partition, but we ignore this distinction for now. While
our definition is formulated differently, we show that it matches the original definition
when C consists of Boolean functions (see the full version of the paper). This lets us adapt
existing algorithms in the literature [30, 18, 14] to give an efficient procedure to compute
multicalibrated partitions, assuming a weak agnostic learner for the class C. Working with
covariance which is bilinear lets us derive powerful closure properties for multicalibration.
For instance, if f is multicalibrated with respect to C it is also multicalibrated (with some
deterioration in parameters) with respect to the class Line of (sparse) linear combinations of
C. We also show that conditioning on sets in C preserves multicalibration.

Agnostic boosting from multicalibration

The problem of agnostically learning a class C is, given samples from a distribution D on
X x {0,1}, find a binary classifier f : X — {0,1} whose classification error aka 0-1 loss
defined as err(f) = Prp[f(x) # y] is not much larger than that of the best classifier from C.
The boosting approach to agnostic learning is to start from a weak agnostic learner, which
only guarantees some non-trivial correlation with the labels, and boost it to obtain a classifier
that agnostically learns C [4, 22, 10].

Our work suggests multicalibration as a solution concept for agnostic boosting. Indeed,
our definition of multicalibration based on covariance parallels that of [18, 23], who use
covariance as a splitting criterion. Hence when the algorithms of [30, 18, 23] terminate, they
have found a multicalibrated partition. Viewed in this light, our results show that these
algorithms give a broad and powerful guarantee beyond just 0-1 loss: they are competitive
with sparse linear combinations over C in optimizing a large family of convex, Lipschitz
loss functions (with a simple post-processing step). While AdaBoost or Logistic regression
are known to minimize the exponential and logistic loss respectively over sparse linear
combinations of C [37], no similar result was known for algorithms based on branching
programs [30, 18, 23].

Let us now focus on 0-1 loss. Since 0-1 loss for Boolean functions equals ¢; loss, our
results apply to it. We show that for any multicalibrated partition S, the predictor kg, o f
is competitive not just with the best classifier in C, but with the best classifier in the larger

3 Recall that Cov(z122] = E[z122] — E[z1] E[z2]
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class H of functions that are approximated (in ¢;) by linear combinations of C. This lets
us re-derive the classic result of [21] on agnostic learning. While not a new result, we feel
that our treatment clarifies and unifies existing results (see the full version of the paper). It

strengthens known results on the noise-tolerant boosting abilities of such programs [23, 22].

Further, we show examples where err(k, o f€) is markedly better than any linear combination
of C, showing that multicalibration is a stronger solution concept than those considered
previously.

1.4 Technical overview: Omnipredictors from multicalibration

Let £:{0,1} x R — R be a loss function that takes a label y € J) and an action ¢t € R as
arguments. A hypothesis ¢ : X — R which prescribes an action for every point in the domain
suffers a loss of Ep[{(y,t(x)]. Our main technical result states that if S is multicalibrated,
then f° is an (£, C)-omnipredictor where £ consists of all convex losses satisfying some mild
Lipschitz conditions. Here for simplicity, we make the stronger assumption that the loss
£(y,t) is convex and Lipschitz everywhere as a function of ¢. We do not assume anything
about the relation between £(0,¢) and £(1,1).

We sketch how multicalibration leads f¢ to be an omnipredictor, emphasizing intuition
over rigor. We will argue that the loss Ep[l(y,k;(fS(x))] is not much more than
Ep[l(y,c(x))] for any ¢ € C. We fix a state S; € S and analyze the loss suffered by
¢(x) under D; as follows.

1. Reduction to predicting two values: In general, ¢(z) could take on many values
under D;. However, since the goal is to minimize Ep, [((y, ¢(x))], we can pretend that ¢
takes only two values, Ep, |y—o[c(x)] whenever y = 0 and Ep, y—;[c(x)] whenever y = 1
(we say pretend since the actions taken can only depend on z and not on y). By the
convezity of the loss functions, this can only reduce the expected loss.

2. Reduction to predicting one value: A consequence of multicalibration, which follows
from the definition of covariance, is that conditioning on the label y = b does not change
the expectation of ¢(x) much. Formally for b € {0,1},

Prly =] | B_ [e(x)] - Blcx)]| < a. (2)

Since the loss functions £(b, ) are Lipschitzin t for b € {0, 1}, we can replace Ep,|y—p[c(x)]
with Ep, [c(x)] with only a small increase in the loss. At this point, we have reduced to
the case where ¢ predicts the constant value Ep,[c¢(x)] under D;.

3. The best value: Let Ep,[y] = p;, thus y is distributed as a Bernoulli random variable
with parameter p;. Thus, the best single value to predict is & (p;), which is the minimizer
of the expected loss p;£(0,t) + (1 — p;)¢(1,t). But we defined fS(x) = p; for all x € S;, so
ki (pi) = ki (£°(x))-

We conclude that post-processing the predictions f€ by the function &} is nearly as good

as any ¢ € C for minimizing expected loss under D for any convex, Lipschitz loss function ¢

(up to an additive error that goes to 0 with ). Hence f€ is an (£,C)-omnipredictor. As

a consequence, having a weak agnostic learner for C suffices to learn a predictor that can

minimize any such loss function competitively to predictors in C, even without knowing the

loss function in advance.
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1.5 Organization of this paper

We survey related work in Section 2, and set up notation in Section 3. We define the notion
of omnipredictors in Section 4. We introduce our notion of multicalibration in Section 5
and derive closure properties for it in Section 5.2. We prove our main result on (£,C)-
omnipredictors for binary labels (Theorem 19) in Section 6, along with the extensions to
Line (Corollary 21), and its application to multi-group loss minimization (Corollary 22).
Section 6.3 shows that multicalibration for C does not yield omnipredictors for thresholds
of C or for non-convex losses. The full version of the paper [13] has further results. It also
presents applications of our results to agnostic learning, including an example showing that
multicalibration can give stronger guarantee than OPT(Lin¢). The full version presents the
extension to the real valued setting, where we derive a stronger bound for ¢5 loss. The full
version also gives a detailed discussion of how our definition compares to previous definitions.
Finally, the full version presents the algorithm for computing multicalibrated partitions.

2 Related work

While the notion of an omnipredictor is introduced in this work, our definitions draw on
two previous lines of work. The first is the notion of multicalibration for predictors that
was defined in the work of Hebert-Johnson et al. [16].* A detailed discussion of how our
definitions of multicalibration compare to previous definitions appears in the full version of
the paper [13]. The other is work on boosting by branching programs of Mansour-McAllester
[30], which built on Kearns-Mansour [25] and the notion of correlation boosting [18, 23].

Group fairness and multicalibration

While multicalibration was introduced with the motivation of algorithmic fairness, it has been
shown to be quite useful from the context of accuracy when learning in an heterogeneous
environment. This was done both experimentally [27, 1] and in real-life implementations [2].
From a theoretical perspective, it has been shown in [16] that post-processing a predictor
to make it multicalibrated cannot increase the ¢o loss. This was extended to showing some
optimality results of multicalibrated predictors with respect to ¢2 and even log-loss [12, 26].
Multicalibrated predictors are also connected to loss minimization through the notion of
outcome-indistinguishability [9] in the work of [33]. Outcome indistinguishability shows
that a multicalibrated predictor is indistinguishable from the true probabilities predictor
in a particular technical sense. In [33] this is used to create a predictor that can be used
to minimize a rather general and potentially global notion of loss even when restricted to
sub-groups. The proof constructs a family of distinguishers, for a fixed loss function, such
that if there exists a subset on which the predictor doesn’t minimize the loss function then
one of the predictors can distinguish the predictor from the true-probabilities predictor
in the sense of outcome indistinguishability. The main way in which all of these results
are different from what we show is that they do not seek to simultaneously allow for the
minimization of such a rich family of loss functions. In the case of [33], since the result goes
through outcome indistinguishability, to minimize a loss with respect to a class C, a predictor
needs to be multicalibrated with respect to a different class that relies on the loss function
and incorporates the reduction from multicalibration and outcome indistinguishability. In

4 See also [24], who in parallel with [16] introduced notions of multi-group fairness.
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contrast, our result addresses minimization of a family of losses that may not be known at
the time of learning, and we assume the learnability of C alone. Convexity of the losses plays
a key role in our upper bounds.

Agnostic boosting

Our work is closely related to work on boosting via branching programs [25, 30, 23, 18].

Indeed, the splitting criterion used in the work of Kalai [18] is precisely that Cov[c(x),y] > o
for some ¢ € C, for the task of learning generalized linear models. The okay learners in the
work of [23] are also based on having non-trivial Covariance with the target. Our results show
that upon termination, these algorithms yields an approximately multicalibrated partition;
hence we can view multicalibration as a solution concept for the output of Boosting by
Branching Program family of algorithms. It was known that these algorithms have stronger

noise tolerance properties than potential based algorithms such as AdaBoost, see [23, 22].

Our results significantly strengthen our understanding of the power of these algorithms,
showing that they give guarantees for a broad family of convex loss functions, and not just
0-1 loss.

Naive instantiations of the composition approach

The obvious attempt to building omnipredictors would be to learn a model f for f* using a
model family F such as logistic regression, and then compose it with the right post-processing
function k; for a given loss £. In the context of binary classification, for certain families of
non-decomposable accuracy metrics (including F-scores and AUC), it is shown in [31, 8] that
this approach gives the best predictor for the hypothesis class C of binary classifiers derived
by thresholding models from F.

These results can be seen as a form of omnipredictors, but with strong restrictions on £
and C. Their results do not apply to the decomposable convex losses we consider; indeed
it seems unlikely that the output of logistic regression can give reasonable guarantees for
say the exponential loss or squared loss, even with post-processing. More importantly, our
results hold for arbitrary classes C that are weakly agnostically learnable. For any such class,
we show how to construct a model f which is an omnipredictor. In contrast, their results
prove optimality for a rather limited hypothesis class C derived from the model family F.

Condtional density estimation

For real-valued y € R, an omnipredictor solves the problem of Conditional Density Estimation
(CDE) [15]. While CDE is recognized as an important problem in practice and a number of
CDE algorithms have been proposed, it has received little attention in the computational
learning theory literature. The notion of omnipredictor is related to the statistical notion
of a sufficient statistic, which is a statistic that captures all relevant information about a
distribution.

Surrogate loss functions for classification

There is a large literature in statistics which shows that a convex surrogate loss function (with
certain properties) can be used instead of the hard to optimize 0-1 loss, and any hypothesis
¢ € C which minimizes the surrogate loss will also minimize the original 0-1 loss with respect
to C [29, 38, 3]. There are also similar results for the multi-class 0-1 loss [39], and in the
asymmetric setting when the false positive and false negative costs are known [36]. However,
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this line of work is quite different from ours, crucially an (£, C)-omnipredictor optimizes not
just for a single loss but for any loss in the family £ (such as different false positive and
false negative costs, we recall that as Fig. 1 shows this cannot be achieved with a single
hypothesis from C).

3 Notation and Preliminaries

Let D denote a distribution on X x ). The set X represents points in our space, it could be
continuous or discrete. The set ) represents the labels, we will typically consider Y = {0, 1},
Y =[k] or Y =][0,1]. We use (x,y) ~ D where x € X,y € Y to denote a sample from D.
We use boldface for random variables. For any S C X, let D(S) = Pryxp[x € S]. We will
use y ~ Ber(p) to denote sampling from the Bernoulli distribution with parameter p.

Let C = {c: X — R} be a collection of real-valued hypotheses on a domain X, which
could be continuous or discrete. The hypotheses in C should be efficiently computable, and
the reader can think of them as monomials, decision trees or neural nets. We will denote

€l = maxle(@)].

A loss function ¢ takes a label y € Y, an action ¢ € R and returns a loss value £(y, t).
Common examples are the ¢, losses ¢,(y,t) = |y — t|? and logistic loss ¢(y,t) = log(1 +
exp(—yt)). The problem of minimizing a loss function £ is to learn a hypotheses h : X — R
such that the expected loss ¢p(h):=Ep[l(y, h(x))] is small. Let £ = {¢:Y xR — R} denote
a collection of loss functions.

A partition S = {S1, ..., S} of the domain X, is a collection of disjoint subsets whose
union equals X, we refer to m as its size. We refer to each S; as a state in the partition.
Given a partition S = {S1,..., S} of the domain X, define the conditional distribution D;
over S; x Y as D; = D|x € S;.

A (binary) predictor is a function f : X — [0,1], where f(z) is interpreted as the
probability conditioned on z that y = 1. We define the ground truth predictor as f*(z) :=
Eply|x = z|. For general label sets ), let P()) denote the space of probability distributions
on Y. Define the ground truth predictor f*: X — P(Y) where f*(z) is the distribution of
ylz. A predictor is a function f : X — P()) which is intended to be an approximation of f*.

We denote by g o h the composition of functions.

3.1 Nice loss functions

We say £: )Y x R — R is a convex loss function, if ¢(y,t) is a convex function of ¢ for every
y € Y. Note that in the binary setting, our formulation allows for binary classification with
different false-positive/negative costs, e.g., £(y,t) = ¢, |t —y| where ¢y and ¢; are the different
costs. A function f : R — R is said to be B-Lipschitz over interval I if | f(¢t)— f(¢')] < Blt—1t/|
for all ¢,t’ € I. We say the function is B-Lipschitz if the condition holds for I = R. While
assuming the loss is B-Lipschitz is sufficient for us, we can work with a weaker notion that
only requires the Lipschitz property on a sufficiently large interval. This weaker notion
covers most commonly used loss functions such as the exponential loss that are not Lipschitz
everywhere. Also, we will define loss functions in the setting of labels that come from ). In
this section though, we will focus on the case Y = {0, 1}.

» Definition 1. For B,e > 0, a convez loss function £:Y x R — R is (B, €)-nice if there is
a closed interval I = I, C R satisfying:
1. (B-Lipschitzness) For ally, ¢(y,t) is B-Lipschitz in t over Iy:

Yy e Y, t,t' € I, [€(y,t) — Ly, t")| < BJt —1'|.



P. Gopalan, A. T. Kalai, O. Reingold, V. Sharan, and U. Wieder

2. (e-optimality) Fory € Y, I, contains an e-optimal minimizer of £(y,t):

. - '
inf U(y,t) < inf £(y. 1) +e

Let L(B,¢€) be the set of all (B, €)-nice functions.

Observe that if a function is B-Lipschitz on R, then it is (B,0)-nice with I, = R.
For a closed interval I = [, d] define the function

cift<e
clip(t,I) =< tifc<t<d
difd<t.

We use some simple facts about this function without proof, the first is a simple consequence
of e-optimality and convexity.

» Lemma 2. If ¢ is (B, €)-nice, then £(y,clip(t, Is)) < (y,t) + €. The function clip(t, I;) is
1-Lipschitz as a function of t.

Here are a few examples of nice loss functions:

Binary classification with different false-positive/negative costs, e.g., £(y,t) = Kyly — t|
where ko # k1 are the different costs. Here I, = [0, 1], B = max(kg, #1),€ = 0.

The ¢, losses for p > 1:

Cp(y, t):=ly — t|”

take Iy = [0,1], B =p,e = 0.
The exponential loss £(y,t) = e(!=2)t Here, for any ¢ > 0, we can take I, =
[—In(1/€),In(1/€)] and B = 1/e.

The logistic loss £(y,t) = log(1 4 exp((1 — 2y)t)). Here we take Iy =R, B =1 and ¢ = 0.

The hinge loss £(y,t) = max (0,1 + (1 — 2y)t). Here we take Iy =R, B =1 and € = 0.
It is worth noting that only for exponential loss did we need ¢ > 0.

4  Omnipredictors

In this section, we define our notion of Omnipredictors. Our definitions are simpler for the
case of binary labels where ) = {0, 1}, hence we present that case first. Recall that for a
predictor h, £p(h) is the expected loss of h under D.

» Definition 3 (Omnipredictor). Let C be family of functions on X, and let L be a family of
loss functions. The predictor f: X — [0,1] is an (L,C,§)-omnipredictor if for every £ € L
there exists a function k : [0,1] — R so that

fp(k o f) < Inelélfp(c) + 0.

The definition states that for every loss ¢, there is a simple (univariate) transformation
k of the predictions f, such that the composition k o f has loss comparable to the best
hypothesis ¢ € C, which is chosen tailored to the loss £.

Setting aside efficiency considerations, it is easy to show that f* is an omnipredictor for
every C, L.

» Lemma 4. For every C, L, the ground-truth predictor f* is an (L,C,0)-omnipredictor.
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Proof. By the definition of omnipredictors, given an arbitrary loss function £ : {0,1} xR — R,
our goal is to find &k} : {0,1} — R so that

* < . )
to(ki o f) < min_ (5(c) (3)
Define the function k; : [0,1] — R which minimizes expected loss under the Bernoulli
distribution:

k;(p) =argmin  E [{(y,t)] = argminpl(1,t) + (1 — p)€(0,¢). (4)
teR  y~Ber(p) teR
If there are multiple minima we break ties arbitrarily. Conditioned on x = z, y ~ Ber(f*(x)),
so k;(f*(z)) € R is the value that minimizes the expected loss. Hence for every = € X,

E [ty ke (f @) < E [y, c(x))].

D|x=x - Dl|x=z
Equation (3) follows by averaging over all values of z. <

Note that the function k; depends on ¢ but is independent of the distribution D. For
instance, for the ¢ loss, {1(y,t) = |y — t|, we have kj (p) = 1(p > 1/2). For the £y loss
ly(y,t) = (y — t)?, we have kj, (p) = p. While Definition 3 does not place any restrictions on
the post-processing function k, in our upper bounds, we will choose k& which is very close to
the function k* above. Our upper bounds will be efficient for (convex) functions ¢ such that
a good approximation to k* can be be approximated efficiently. Our lower bounds will hold
for arbitrary k.

Finally, a natural family of predictors arising from partitions plays a key role in our
results.

» Definition 5. Given a partition S of X of size m, let Ep,[y] = p; € [0,1] for i € [m]. The
canonical predictor for S is fS(x) = p; for all x € S;.

The canonical predictor simply predicts the expected label in each state of the partition. Since
f¢ is constant within each state of the partition, it can be viewed as a function f¢:S — R.
This view will be useful in our results.

Omnipredictors for general Y

Consider the setting where we are given a distribution D on X x Y for ) C R, hence the
labels can take on real values. We are primarily interested in the real-valued setting of
Y =10,1], and the multi-class setting where ) = [].

Given a state S; in a partition S, let P; € P()) denote the distribution of y under D;.
The canonical predictor fS : X — P()) is given by f(x) = P; for all z € ;.

We now define the notion of an omnipredictor. The main difference from the binary case
is that the predictor now predicts a distribution in P(}), so the post-processing function k
maps distributions to real values.

» Definition 6. Let C be family of functions on X, and let L be a family of loss functions
£:Y xR —=R. The predictor f: X — P(Y) is an (L,C,§)-omnipredictor if for every £ € L
there exists a function k : P(Y) — R so that

gp(k o f) < min gp(c) + 0.

ceC
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5 Multicalibration

In this section, we present our definitions of multicalibration. We first consider the case of
binary labels, and then extend it to the multi-class and real-valued settings. Due to space
limitations, the proofs are to be found in the full version of the paper. Given real-valued
random variables z1, zo from a joint distribution D, we define

Covlza, 23] = Elz172] — Elz1] Blzs] = E [1(2 — Elz])|.

We will use the fact that covariance is bilinear. The following identity will be useful for
Boolean y.

» Corollary 7. For random variables (z,y) ~ D where'y € {0,1},

) Ela]) = yiy = 0] (Bl - Bl )

C =Prly=1
oviny] =ity = 1] Bl- B

Dly=1

5.1 Multicalibration via covariance

In this section, we define multicalibration for the binary labels setting where Y = {0,1}. We
build on a recent line of work [16, 17, 27, 14]. A detailed discussion of how our definitions
compare to previous definitions is presented in the full version of the paper. The following
definition is a generalization of the notion of a-multicalibration to real-valued ¢, and in the
setting of partitions.

» Definition 8. Let D be a distribution on X x{0,1}. The partition S of X is a-multicalibrated
for C, D if for every i € [m] and ¢ € C, the conditional distribution D; = D|x € S; satisfies

[Covle(x).¥]| < a. (6)

A consequence of this definition is that for each D;, conditioning on y does not change the
expectation of ¢(x) by much. Formally, by Equation (5), for ¢ € [m] and b € {0,1},

Prly =]

W B eb0] - Ele()]| <. ™

i

Definition 8 requires a bound on the covariance for every distribution D;. This might be
hard to achieve if D(S;) is tiny, and hence we hardly see samples from D; when sampling
from D. This motivated a relaxed definition called («, 5)-multicalibration in [16, 14]. We
propose a different definition for which it is also easy to achieve sample efficiency. Rather

than requiring the covariance be small for every i, we only require it to be small on average.

Let i ~ D denote sampling (the index of) a set from the partition S according to D so that
Pr[i = i] = D(S;).

» Definition 9. The partition S of X is a-approximately multicalibrated for C,D if for every
ceC,

E C <a. 8
E |Covlet).v]| < 0

The next lemma shows that approximate multicalibration implies closeness to (strict)
multicalibration under the distribution D. The proof is by applying Markov’s inequality to
Definition 9.
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» Lemma 10. If S is a-approximately multicalibrated for C,D, then for every c € C and
B el01]

e’
Py |legvicto.v] = 5] < (9)

This lemma shows that being a-approximately multicalibrated is closely related to the
notion of («, 8)-multicalibration in [16, 14], which roughly says that the a-multicalibration
condition holds for all but a g fraction of the space X. Conversely, one can show that
(o, B)-multicalibration gives (a + f||C|| ., )-approximate multicalibration. We find the single
parameter notion of a-approximate multicalibration more elegant. It is also easy to achieve
sample efficiency, since as the next lemma shows, it only requires strong conditional guarantees
for large states.

» Lemma 11. Let the partition S be such that for all i € [m] where

!
D(S) > 5= (10)
2m |Cl|
it holds that for every c € C,
Covle(x).v]| < 5. (11)

Then S is a-approximately multicalibrated for C,D.

Approximate multicalibration implies that for an average state in the partition,
conditioning on the label does not change the expectation of ¢(x) much. The proof follows
by plugging Equation (5) in the definition of approximate multicalibration.

» Corollary 12. If S is a-approzimately multicalibrated for C, D, then for c € C and b € {0,1},

()] = E[e(x)]

i~D | D; D;|y=b

-

E{Hbzﬂ

] <a. (12)

Extension to the multi-class setting

In the multi-class setting ) = [I], so that [ = 2 is exactly the Boolean case considered above.
We use 1(y = j) to denote the indicator of the event that the label is j. The following
definition generalizes Definition 9:

» Definition 13. Let D be a distribution on X x [I] where | > 2. The partition S of X is
a-approximately multicalibrated for C,D if for every ¢ € C and j € [l], it holds that

B, ||ogvieta. 16— )| <. 13)

Extension to the bounded real-valued case

We now consider the setting where ) is a bounded interval, by scaling we may consider
Y =[0,1]. For interval J = [v,w] C Y, let 1(y € J) be the indicator of the event that y € J.

» Definition 14. Let D be a distribution on X x[0,1]. The partition S of X is a-approzimately
multicalibrated for C,D if for every ¢ € C and interval J C [0, 1], it holds that

B, ||cgvieoa. 1 e | <o (14)
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Computational efficiency

Given these new definitions, a natural question is about the computational complexity of
computing multicalibrated partitions. Following [16], this task can be accomplished efficiently
given a weak agnostic learner for the class C. We present a formal statement of this result
for the multi-class setting in the full version of the paper. The multi-class setting includes
the Boolean labels setting as a special case. For the purposes of omniprediction, we show in
the full version of the paper that the bounded real-valued setting reduces to the multi-class
setting. Due to space limitations, those results are to be found in the full version of this
paper. However, several of the ideas used in the algorithm and its analysis are present in
previous work, they are presented for completeness.

5.2 Some closure properties of multicalibration

In this section, we prove that approximate multicalibration is closed under two natural
operations on the class C and the distribution D:

1. Linear combinations of C: We take sparse linear combinations of the functions ¢ € C.

2. Conditioning D on a subset: We condition the distribution D on a subset X/ C X
whose indicator lies in the set C.
Again we prove these for the case ) = {0, 1}, but the extension to arbitrary ) is routine.

Multi-calibration under linear combinations

We will typically start with an approximately multicalibrated partition for a base class of
bounded or even Boolean functions, such as decision trees or coordinate functions. Since our
definition allows the functions ¢ to be real-valued and possibly unbounded, we can consider
functions arising from linear combinations over this base class. The motivation for this comes
from boosting algorithms like AdaBoost or Logistic Regression, where we take a base class of
weak learners, and then construct a strong learner which is a linear combination of the weak
learners [11, 34].

We will denote by Ling the set of all linear functions over C. We associate the vector
w = (wo, w1, ...) with the function g,, € Linc defined by g (2) = wo + >_; wjc;j(z) where
¢j € C and denote |[w[[1 = ;5 w; (note we have excluded wo). Let

Ling(W) = {gw € Line : |Jw|1 < W} (15)

be the set of all W-sparse linear combinations. The following simple claim shows that
multicalibration is closed under taking sparse linear combinations. The parameter o degrades
with the sparsity. The proof follows from linearity of covariance, and is given in the full
version of the paper.

» Lemma 15. For any W > 0, if S is a-approzimately multicalibrated for C, D, then it is
aW -approzimately multicalibrated for Ling (W), D.

Multi-calibration for sub-populations

Let T C X be a sub-population such that its indicator function belongs to C. Let D’ denote
the distribution D|x € T, where D'(x) = D(x)/D(T) Vx € T. Let 8’ = {S; N T} be the
partition of T induced by S. We will use D] for the distribution D’'|x € S, (which is the
same as D|x € S; since S} C T'), and will denote p; = Ep/[y]. Let C" C C denote the subset
of functions from C that are supported on T (functions that are 0 outside of T'). Note that
C’ is nonempty, since the indicator of T lies in it. The proof of the following result for the
sub-population 7" in the full version of the paper.
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» Theorem 16. If S is a-approximately multicalibrated for C,D, then S is a(l +
IC" || )/ D(X")-approxzimately multicalibrated for C',D’.

6 Omnipredictors for convex loss minimization

In this section we consider the setting of binary labels where Y = {0, 1}.

6.1 Post-processing for nice loss functions

Given an (B, €)-nice loss function, there is a natural post-processing of the canonical predictor
/¢ that we will analyze. Rather than choose the value k*(p) € R which minimizes expected
loss under Ber(p), we restrict ourselves to the best value from I,. This restriction only costs
us € by the e-optimality property.

» Definition 17. Given a nice loss function ¢, define the function ky : [0,1] — I, by

ke(p) =argmin  E  {(y,t). (16)
tel, y~Ber(p)

Given a partition S of X, define the £-optimized hypothesis hf X — Iy as
hi (@) = ke o 5 ().
Since ¢ is convex as a function of ¢, so is

E Uy, t) =pl(0,t) + (1 — p)l(1,t).

y~Ber(p)
Hence computing k; is a one-dimensional convex minimization problem, a classical problem
with several known algorithms [6]. Being able to compute an €’-approximate solution suffices
for us, we can absorb the € term into the error €, and pretend that ¢ is (B, e + €')-nice
instead.

We can view the hypothesis hf as a function mapping S to I, since it is constant on
each S; € S, and its range is Iy. A simple consequence of the definition is that it is the best
function in this class for minimizing expected loss.

» Corollary 18. For all functions h: S — Iy, {p(h3) < ¢p(h).

Proof. We sample i ~ D and then x,y ~ D; and show that the inequality holds conditioned
on every choice of i = 4. Since y ~ D; is distributed as Ber(p;),

to,(h) = | B [y k)] < B [0y, h(S)] = o, (1)

where the inequality is by Definition 17. |

6.2 Loss minimization through Multicalibration

Our main result in this section is the following theorem.

» Theorem 19. Let D be a distribution on X x {0,1}, C be a family of real-valued functions
on X and L(B,¢) be the family of all (B,€)-nice loss functions. If the partition S is «-
approzimately multicalibrated for C, D, then the canonical predictor f° is an (L,C,2aB + ¢)-
ommnipredictor.
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The following lemma is the key ingredient in our result. Informally it says that ¢ has
limited distinguishing power within each state of the partition. Specifically, that c(z) is
not much better at minimizing a loss than the function obtained by taking its conditional
expectation within each state of the partition S.

» Lemma 20. Given ¢ € L and c € C, define the predictor ¢: S — Iy by

i

¢(x) = clip (1];3 [e(x)], IZ) forz e S;.
We have
ép(E) < KD(C) + 2aB + €. (17)

B (B )|

Proof. By the convexity of ¢ we have

to(e) =Bllly.cc)| = B BB [fy.c(o] > E

By Lemma 2,

(v B o)) =t (vt (| B fetltr)) —e

Plugging this into Equation (18), we get

@)= B, B ¢ (van( B boLn))| - (19)

i~D y~D; x~D; |y

From the definition of ¢,

(@) = Bllv.20)] = B, B, |¢(v.ctiv (B [cGal.1r) ). (20)

i~nD y~D; x~D;

Subtracting Equation (19) from Equation (20) we get
¢p(C) — Ip(c) < iPD yPDi [€ (y, clip (xlﬂvi [e(x)], Ig)) -/ (y7 clip ()wlgiy[c(x)]7 Iz) >:| + e

(21)
Since ¢ is B-Lipschitz on I, and clip(t, Iy) is 1-Lipschitz as a function of ¢,
14 (y,clip < E [c(x)],Ig>) -/ <y,clip ( E [C(X)],Ig))
x~D; xNDily
< Belp ( B [C(X)]Je> ~ dlip ( B [C(X)]Je>‘
x~D; x~D; |y
<B|l E - E ‘ 22
<B| E [c(x)] xw,-|y[c(x)] (22)
Plugging this into Equation (21) gives
o < B
t@—to(c)—¢<BE E | E ()]~ B [c(x) (23)

—BE | Y Prly=0tl| E [(x)]- E [e(x)]

i~D be{O,l} D; x~D; XNDin
-5 Y B [odv=4| B[]~ B[]
be{0,1}

<B Z a = 2aB,
be{0,1}
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where the last inequality follows by the multicalibration condition (Equation (7)). <

As a consequence we can now prove Theorem 19.

Proof of Theorem 19. Let hf = k¢ o fS be the f-optimized hypothesis. It suffices to show
that for any c € C

(p(h3) < £p(c) +2aB +e. (24)
For any c € C, we have
tp(h3) < £p(@) < fp(c) +2aB + ¢

where the first inequality is by Corollary 18, which applies since ¢ is a function mapping S
to Iy. The second is by Lemma 20. |

Consider the family Ling (W) of linear combinations over C of weight at most W. By
Lemma 15, § is aW-approximately multicalibrated for Ling(W). Applying Theorem 19, we
derive the following corollary.

» Corollary 21. Let D be a distribution on X x {0,1}, Ling(W) be linear functions in
C of with ||w|;, < W (see eq. 15) and L = L(B,€) be the family of all (B,e)-nice loss
functions. If the partition S is a-approximately multicalibrated for C,D, then f° is an
(L, Ling (W), 2aBW + €)-omnipredictor.

To interpret this, assume we have an (B, ¢)-nice loss function and we wish to have a
predictor that is within 2¢ of any function in Ling (W). Corollary 21 says that it suffices to
have an a-approximately multicalibrated partition where o« = ¢/2BW. Note that algorithms
for computing such partitions have running time which is polynomial in 1/, which translates
to running time polynomial in BW/e.

We derive a corollary for sub-populations follows from Theorem 19 and 16. For two
families of functions 7,P : X — R, we define their product as

TxP=A{c:clx)=T(x)P(z), T € T,P € P}

Note that in the case when T € T is binary-valued, 7 x P contains the restriction of every
P € P to the support of T

» Corollary 22. Let D be a distribution on X x{0,1}, T be a family of binary-valued functions
on X, P be a family of real-valued functions and L(B,¢) be the family of all (B,€)-nice
loss functions. Let the partition S be a-approximately multicalibrated for T x P,D. For
TeT,leta =al+]|P|)/D(T). Then the canonical predictor fS is an (L, P,2a/B + ¢)-
omnipredictor for the sub-population T .

To informally instantiate this for a simple case, let T, P be the class of decision trees of
depth dy and ds respectively. Let the partition S be multicalibrated with respect to decision
trees of depth dy + ds. If we now consider any sub-population 7" identified by decision trees of
depth d;, then the above result implies that the canonical predictor f° is an omnipredictor
for T, when compared against the class of decision trees of depth dy evaluated on T
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6.3 Limits for omnipredictors from multicalibration

Corollary 21 shows that multicalibration for C gives omnipredictors for Line. It is natural to
ask whether we can get omnipredictors for a richer class of functions using multicalibration
for C. A natural candidate would be thresholds of functions in C:

Thre = {1(ce(x) > v) : c€C,v € R}.

Another natural extension would be to relax the convexity condition for loss functions in L.
We present a simple counterexample which shows that multicalibration for C is insufficient
to give omnipredictors for both these classes. This shows that a significant strengthening of
the bound from Corollary 21 might not be possible.

» Lemma 23. There exists a distribution D, a set C : X — R of functions, and a 0-
multicalibrated partition S for C, D such that for any § < 1/4,
f¢ is not an (L, Thre, §)-omnipredictor for any L containing the {1 loss function.

£ isnot an (L,C,d)-omnipredictor for any L containing the (non-convex) loss function
(y,t) = |y — 1(t = 0)].

Proof. Let D be the distribution on {0,1}® x {0,1} where x ~ {0,1}? is sampled uniformly
and y = ]l(Z?Zl x; = 0 mod 2) is the negated Parity function. Let C = {)_, w;z; — wo}
be all affine functions. We claim the trivial partition S = {{0,1}3} is 0O-multicalibrated for
C,D. This is because every x; is independent of y, so their covariance is 0. By linearity of

expectation, the same is true for all functions in C. Thus f°(z) = 1/2 for every z € {0,1}3.

Now consider the ¢; loss. A simple calculation shows that for every k : {0,1} — R,
(1(ko f$,D) > 1/2. In contrast h(x) = 1(z, + 29 + 23 > 1.5) € Thre gives ¢, (h, D) = 1/4,
since it gets the two middle layers correct. This proves part (1).

To deduce part (2), let £(y,t) = |y — 1L(¢t > 0)| and g(x) = x1 + x2 + 3 — 1.5 € C. Note
that

1/4= (0, D) = ElJh(x) — yI] = E[[1(9(x) > 0) - y|] = El¢(y.g(x))] = (9, D).
In contrast, for any & : [0,1] — R, it follows that ¢(k o fS,D) > 1/2. <

In part (2), the loss function |y — 1(¢ > 0)| is not Lipshcitz or differentiable in ¢. We can
ensure both these conditions by replacing it with the sigmoid function, which still preserves

the correlation with parity, at the cost of some reduction in § for which the bound holds [18].
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