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Robert Bartnik Collection

It is a great pleasure to comment on three articles [2, 1, 3] that Robert Bartnik wrote [2, 1]
and co-authored [3]. These results have had immense impact on various levels. The following
describes a selection.

R. Bartnik. The mass of an asymptotically flat manifold. Comm. Pure Appl.
Math. 39 (1986). 661-693.

In this article [2], R. Bartnik proved that the mass of an asymptotically flat n-manifold is a
geometric invariant, and that the positive mass theorem holds for n-dimensional spin manifolds.
The condition of admitting a spin structure is naturally satisfied for oriented 3-manifolds.

The positive mass theorem states that for an asymptotically flat manifold with non-negative
scalar curvature the total mass is non-negative. For obvious physical reasons, this is one of the
major theorems in general relativity.

Not only did Bartnik generalize the celebrated positive mass theorem, proven by R. Schoen
and S.-T. Yau [9, 10] and independently by E. Witten [11], to allow for more general decay
conditions and higher dimensions, but he also established the independence of the ADM mass
from the coordinate system. Thereby, he generalized the ADM mass to manifolds of much
slower decay. In particular, for 3-manifolds (M, g), the decay conditions roughly are |g — d| =
o(r_%), |0g| = o(r_%). Independently, P.T. Chrusciel gave a different proof of the invariance of
the ADM mass in [8].

Clearly, one of the great achievements in Bartnik’s article lies in extending the positive mass
theorem. At the same time, the result on the invariance of the mass cannot be overestimated.
In particular, from a physical point of view, it is crucial that the ADM mass is unambiguously
defined and independent from the choice of coordinates.

The spaectimes that I constructed in my work [4, 5, 6], generalizing D. Christodoulou’s and
S. Klainerman’s proof of the nonlinear stability of Minkowski spacetime, obey the above loose
decay conditions. Therefore, Bartnik’s [2] version of the positive mass theorem applies rather
than the original ones.

The results in [2] marked important breakthroughs to include much more general isolated
gravitating systems. Many crucial mathematical theorems with direct physical applications in
general relativity and astrophysics build on these results.

R. Bartnik. Existence of maximal surfaces in asymptotically flat space-times.
Comm. Math. Phys. 94. (1984). 155-175.

R. Bartnik, P.T. Chrusciel, N. O’Murchadha. On Mazxzimal Surfaces in Asymp-
totically Flat Spacetimes. Comm. Math. Phys. 130. (1990). 95-109.

R. Bartnik proved [1] the existence of maximal hypersurfaces in asymptotically flat space-
times, then together with P.T. Chrusciel and N. O’Murchadha generalized [3] these results.

Maximal hypersurfaces are spacelike submanifolds of a Lorentzian manifold which locally
maximize the induced volume functional. They are characterized by the vanishing of the mean



extrinsic curvature k = 0.

The original results [1] were established for asymptotically flat spacetimes obeying a certain
barrier condition. The article [3] pushed the asymptotic decay conditions so far as to include
situations where the metric decays to the flat one at a rate 7= for a > 0. In [3] the authors
also proved the existence of almost maximal hypersurfaces, that is slices on which the trace of
the extrinsic curvature has compact support. - The latter is especially useful in dealing with
challenging topologies.

These results have had enormous impact in general relativity. Perhaps the most important
feature of the constant mean curvature (CMC) hypersurfaces is their uniqueness property. In
cosmological spacetimes, the CMC foliations k = const. yield a canonical choice of a global time
function. Similarly, maximal hypersurfaces, thus & = 0, parametrized by the time at infinity
serve that purpose in asymptotically flat spacetimes.

As the constraint equations in general relativity simplify considerably when choosing k = 0
(respectively when k = const.) these results have enabled the construction of large classes of
initial data for the Einstein equations. In particular, when k£ = 0, the momentum constraint
becomes conformally invariant.

In [7] D. Christodoulou and S. Klainerman proved the global nonlinear stability of Minkowski
spacetime for maximal initial data, & = 0, obeying certain smallness conditions, establishing a
breakthrough. Thereby the structure equations of the time-foliation together with the condition
that the surfaces are maximal give rise to an elliptic system of equations for the parameters
of the foliation. The authors ensure that the time function is unique by stipulating that the
lapse function of the foliation approaches 1 at infinity on each level set. Here, Bartnik’s original
theorem [1] applies. And most generalizations of [7] make use of [1].

The situation is different for my generalizations [4, 5, 6] of [7]. In particular, these spacetimes
feature much slower decay properties. The latter are included in the work [3] by Bartnik,
Chruéciel and O’Murchadha. Again, the maximal time foliation puts the equations in a good
form, simplifying the proof tremendously.

The spacetimes constructed in these stability proofs also yield insights into large data be-
havior. The smallness of the initial data was required to establish existence and uniqueness
of solutions. However, the main behavior along null hypersurfaces towards future null infinity
remains largely independent from the smallness assumptions. Therefore, they provide excellent
playgrounds to study gravitational radiation. Many of the results that I have proved and co-
authored about gravitational waves and their memory build on the afore-mentioned works using
a maximal time foliation.

Further important applications extend to numerical relativity, and a multitude of geometric
achievements.

The articles [1, 3] have opened up whole new alleys of research. They pushed forward hugely
the knowledge in general relativity as well as geometric analysis.
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