
Policy Caches with Successor Features

Mark Nemecek 1 Ronald Parr 1

Abstract
Transfer in reinforcement learning is based on the
idea that it is possible to use what is learned in one
task to improve the learning process in another
task. For transfer between tasks which share tran-
sition dynamics but differ in reward function, suc-
cessor features have been shown to be a useful rep-
resentation which allows for efficient computation
of action-value functions for previously-learned
policies in new tasks. These functions induce poli-
cies in the new tasks, so an agent may not need to
learn a new policy for each new task it encounters,
especially if it is allowed some amount of subop-
timality in those tasks. We present new bounds
for the performance of optimal policies in a new
task, as well as an approach to use these bounds to
decide, when presented with a new task, whether
to use cached policies or learn a new policy.

1. Introduction
When an agent learns to perform a set of separate tasks,
one might hope that what the agent learns in one task will
improve learning in subsequent tasks. This is called transfer,
and the improvement may take different forms. Ultimately,
the benefit of transfer is a reduction in the number of samples
or amount of time required for the agent to reach a desired
level of performance in the new task. When collecting
samples is an expensive process – as is true for many real-
world problems – such a reduction can be a large boon.
While this impact is often considered during the training of
a new policy, we will show that it also applies when an agent
can avoid learning a new policy entirely because those it has
previously cached are sufficient to meet the performance
requirement.

The extent to which transfer is realized in practice or ana-
lyzed in theory depends largely upon the relationship be-
tween the tasks involved. We consider transfer between
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tasks which vary in their reward functions, but where the
dynamics remain the same. Although limited in scope, this
range of changes can induce drastically different optimal
behaviors. For example, a change in the reward function for
a driving task could change the optimal policy from a safe
driving policy that avoids collisions to a demolition derby
style policy that seeks them out. While real-world scenarios
may not include such a wide range of behaviors, it is quite
reasonable to expect that an agent will be confronted with
changing costs or rewards that reflect differing priorities
or circumstances over the lifetime of the agent. Even if
the change in reward function is clearly communicated, the
adequacy of previous policies for the new task may not be
obvious. The question we address in this paper is: When
presented with a new task (reward function), can policies
from previous tasks suffice, or should we learn a new policy?

To answer this question, we build upon earlier work of Bar-
reto et al. (2017), which assumes that the reward function
can be decomposed into a linear combination of features,
and uses successor features (SFs), an extension of the suc-
cessor representation (Dayan, 1993), to learn Q-values that
are parameterized by the reward weights. This permits effi-
cient computation of the Q-values for a known policy under
the reward function from a new task, regardless of which
task was used to learn the policy. Although Barreto et al.
used successor features with Generalized Policy Improve-
ment (GPI) to provide a lower bound on the value of reusing
previous policies in a new task, they did not provide a strong
bound on the gap between this and the optimal policy for
the new task, leaving little practical guidance on when it
would be worth learning a new policy for the new task. Our
work addresses this limitation.

Hunt et al. indirectly include an upper bound for the optimal
soft Q-function in a new task (Hunt et al., 2019) through
their Theorem 3.2 under the assumption that the new reward
function is a convex combination of the base reward func-
tions. As soft Q-learning approaches hard-max Q-learning
in the limit as the temperature parameter goes to zero, in-
tuition might suggest that their theorem would apply in
the same way, but this is not the case. Additionally, their
approach requires estimating the function C1

b , which cor-
rects for the divergence between policies, for each new task.
While this can be done off-policy with the same samples
used to estimate the base soft Q-functions, this is not neces-
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sarily any easier than learning a new Q-function directly and
becomes more challenging as the number of base policies
increases. They experiment with a heuristic that allows them
to learn just one C1 function and approximate any other
efficiently, but it relies on strong assumptions and doesn’t
apply when there are more than two base policies.

Our first contribution is to address these limitations by pre-
senting a new upper bound on the hard-max Q-function of
the optimal policy for a new task when that task is a conical
combination of previous tasks. This result is similar to the
bound from Hunt et al., but we prove that it applies to hard-
max Q-functions and generalizes to conical combinations.
This bound can be calculated efficiently for a given state
and action using cached successor features.

Our second contribution is a method by which an agent can
decide whether to learn a new policy when presented with
a novel task. Based on the assumption that the agent has
cached successor features for a set of known reward func-
tions, this method uses our new upper bound to determine
if policies from the existing cache suffice based on a given
performance threshold, or if it is worth learning a new policy.
This method does not require estimating a corrective func-
tion. Our experimental results show how the bounds tighten
as policies are added to the cache, illustrating the trade-off
between using cached policies and growing the cache, and
demonstrating that significant storage and computational
savings are possible with a given performance requirement.

2. Background
A Markov Decision Process (MDP) is as a 5-tuple
(S,A, P,R, �) with state space S; an action space A; a
Markovian transition model P , where P (s0|s, a) is the prob-
ability of transitioning to state s0 after taking action a in
state s; a reward function R(s, a) which is the reward for
taking action a in state s; and discount factor � 2 [0, 1), ap-
plied to future rewards. We assume WLOG that all rewards
are non-negative and bounded since shifting a reward func-
tion by a constant does not alter the optimal policies. Policy
⇡ maps states to actions, ⇡(s) denoting the action to take
in state s. For any policy, an MDP is reduced to a Markov
Reward Process with transition probabilities corresponding
to those for the policy-specified action in the MDP.

A value function V ⇡(s) is the expected total discounted re-
ward for starting in state s and performing actions according
to ⇡. The action-value function Q⇡(s, a) gives the value
of taking action a from state s and following ⇡ afterwards.
The goal of a learning agent is to learn the optimal policy
⇡⇤ which maximizes the expected future reward from each
state. We can express the optimal value function V ⇤ and

action-value function Q⇤ via the Bellman equation as:

V ⇤(s) = max
a

h
R(s, a) + �

X

s0

P (s0|s, a)V ⇤(s0)
i

Q⇤(s, a) = R(s, a) + �
X

s0

P (s0|s, a)max
a0

Q⇤(s0, a0)

In a reinforcement learning setting, the agent does not have
access to P or R. Experience is collected by acting in the
environment and usually takes the form of a set of tuples,
(s, a, r, s0). The agent can then use these samples to learn a
policy for the environment by, for example, using a model-
based approach where it attempts to learn the underlying
MDP or a model-free approach where it learns a value or
action-value function directly and extracts a policy from it.

In many useful domains, the state space is too large (or
possibly infinite). An exact, tabular representations of the
value function may be intractable, and such problems can
only be solved approximately. Error may be introduced in
several ways, such as the use of a function approximator
which is insufficiently expressive, or being unable to train on
enough samples. The difference between a value function
V and an approximation Ṽ is the approximation error, ✏:

✏(s) = |V (s)� Ṽ (s)|

The underlying idea of transfer learning for reinforcement
learning (Taylor & Stone, 2009) is that through learning to
perform well in one or more tasks, the learning process for
a new task should be improved in some way, typically by
reducing the amount of training in the new task required to
reach a given level of performance. As shown in Section
5, an agent may even be able to avoid learning a new pol-
icy entirely if it can determine that its cached policies are
sufficiently good for the novel task. While there are many
notions of transfer, we focus on the case where the differ-
ence between tasks lies solely in their reward functions, i.e.,
the dynamics and other aspects of the environment remain
the same. We build upon the previous work of Barreto et al.
(2017), described in more detail in the next section. More
distantly related work is discussed in section 7.

3. Successor Representation and Successor
Features

The successor representation (SR) (Dayan, 1993) encodes
the expected, discounted, cumulative sum of future state
visitations under a given policy. In the tabular case, the
transition function is a matrix P⇡, and the reward function
is a vector r. The value function for a policy decomposes
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into the product of the SR, ⇤⇡ , and the reward vector.

V ⇡ = r + �P⇡r + (�P⇡)2r + · · ·
= (I � �P⇡)�1r
= ⇤⇡r

Successor features (SFs) (Barreto et al., 2017) have been
proposed as a generalization to the successor representation.
SFs assume that the reward function can be decomposed into
a linear combination of features, r(s, a, s0) = �(s, a, s0)T w,
where �(s, a, s0)T is a row vector of features and w is the
weights, changing the representation from one based on state
visitation to one based on feature occurrences. Using this as-
sumption, successor features  ⇡(s, a) are derived from the
action-value function for a given policy ⇡, Q⇡(s, a), which
we can write as the expected sum of discounted rewards
starting from timestep t. Here, rt represents the reward re-
ceived, while St and At are random variables representing
the state and action taken at t, respectively.

Q⇡(s, a) = E⇡
⇥ 1X

i=t

�i�tri+1|St = s,At = a
⇤

= E⇡
⇥ 1X

i=t

�i�t�Ti+1w|St = s,At = a
⇤

=  ⇡(s, a)T w

In the tabular case, i.e., where the reward features �(s, a, s0)
are a one-hot vector in R|S|2|A|, the SFs become the dis-
counted sum of transition occurrences, thus extending the
SR concept from state space to state-action-next-state space.
The reward weights w can also be factored out from the
Bellman equation for the action-value function in order
to define a new Bellman equation where the reward fea-
tures take the place of the rewards themselves. This al-
lows us to apply any RL method to learn the SFs. Where
�(s, a) = E[�(s, a, s0)], this equation is:

 ⇡(s, a) = �(s, a) + �
X

s0

P (s, a, s0) ⇡(s0,⇡(s0))

4. Bounds on Policy Cache Performance
Methods such as GPI (Barreto et al., 2017) give guidance
on how to construct a policy for a new task that is no worse,
and possibly better, than any previously stored policy. Such
composite policies, however, are unlikely to be optimal. Suc-
cessor features make it easy to compute a lower bound on the
performance of an existing policy in a new task and previous
work by Hunt et al. (2019) allows for an easily-computed
upper bound for soft Q-functions, if the value functions for
known policies in the new task are available. However, this
does not extend to hard-max Q-learning, which we discuss
further in Section 7. In this section, we present a similar

upper bound for hard-max Q-functions by making direct use
of successor features. Our result applies to combinations
that we term positive conical combinations, which are coni-
cal combinations where the sum of the weights is positive.
Since conical combinations only require that the weights
are non-negative, these generalize convex combinations.

Let T be a set of tasks which differ only in their reward
functions. For any task i 2 T , let ri be the reward function,
⇡i be an optimal policy for ri, and let V ⇡i

j be the value
function for policy ⇡i executed in task j. As ⇡i is an optimal
policy for task i, it follows that the value under ⇡i in task i
is at least as good as under any other policy ⇡j :

V ⇡i
i � V

⇡j

i 8i, j 2 T

Let ⇤⇡i be a matrix with each row corresponding to a state
s 2 S, and each column corresponding to a successor fea-
ture. Thus, each row corresponds to a row vector of suc-
cessor features for a state under ⇡i: ⇤⇡i(s) =  ⇡i(s,⇡i(s))
and is analogous to the relationship between V ⇡i and Q⇡i .

Definition 1. An approximate successor features matrix
⇤̃⇡i differs from the exact matrix ⇤⇡i by a state-wise error
matrix �⇡i = ⇤̃⇡i � ⇤⇡i .

Definition 2. If wj is the weight vector for task j, then the
approximate value function matrix induced by ⇤̃⇡i in task j
is the column vector Ṽ ⇡i

j = ⇤̃⇡iwj .

Definition 3. The state-wise approximation error of Ṽ ⇡i
j is

the column vector ✏⇡i
j = |Ṽ ⇡i

j � V ⇡i
j | = |�⇡iwj | where

| · | denotes the element-wise absolute value.

We now consider a task R with reward function rR =P
i2T ↵iri such that ↵i � 0 and

P
i2T ↵i > 0, i.e., rR

is a positive conical combination of the reward functions
of the tasks in T . The proof of the theorem below (see ap-
pendix) provides an alternate derivation of the lower bound
from Barreto et al., but does not improve upon it, while the
upper bound is more general than those offered in Hunt et al.
(2019) and applies to hard-max Q-learning.

Theorem 1. If ⇡R is an optimal policy under rR and rR
is a positive conical combination, i.e., ↵i � 0 and ↵ =P

i2T ↵i > 0, then

max
i2T

⇥
Ṽ ⇡i
R (s)� ✏⇡i

R (s)
⇤


V ⇡R
R (s) 

X

i2T
↵iṼ

⇡i
i (s) +

X

i2T
↵i✏

⇡i
i (s)

Proof. See appendix.

Theorem 1 turns out to be quite powerful in practice because
the optimality of a value function for a particular reward
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function significantly constrains the value function for other
reward functions with similar weights. Using the informa-
tion contained in the corresponding value functions allows
us to avoid the 1

1�� factor that is often found in value func-
tion bounds, as this can be quite large for � close to 1. The
bound presented in Theorem 2 from Barreto et al. (2017) is
not far from the best that can be done when only the reward
functions are known (see appendix) but, as shown in Figure
2(c), it can be quite loose compared to our bound.

5. Policy Cache Construction
Although Barreto et al. (2017) showed that SFs are useful
for transfer between tasks, in their experiments a new set
of SFs was learned for each task and stored in a cache for
continued use. As each set of SFs corresponds to a policy,
this can be thought of as storing policies in a policy cache.
However, for large SF models or a large number of tasks,
this could be space-prohibitive. Instead, Theorem 1 can
provide guidance on whether to use existing policies, or
create a new one.

We start with a set of base tasks defined by a set of reward
feature weights, and assume all subsequent tasks have re-
wards within the conical hull of the initial set. Algorithm 1
uses Theorem 1 to decide if the current policy cache is suf-
ficient, given a performance threshold. If the gap between
the upper and lower bounds is small enough for a given
state, then we know that the value of the best policy in the
cache must be within some small factor of the value for the
optimal policy. If the agent is given the starting state distri-
bution or can approximate it based on previous experience,
it can calculate the expected size of the gap for that state
distribution. With that information, the agent decides if the
performance of the existing policy cache is sufficient.

Algorithm 1 LearnNewPolicy?
Input: policy cache ⇧, set of old reward weights W , new
reward weights wnew, start state s, threshold ⌘
ub = CalcUpperBound(⇧,W,wnew, s)
lb = max ⇡2⇧[maxa  ⇡(s, a)Twnew]
ratio = (ub� lb)/|lb|
return (ratio > ⌘)

Algorithm 2 CalcUpperBound
Input: policy cache ⇧, set of old reward weights W , new
reward weights wnew, start state s
V = {WT

i  
⇡(s,⇡(s)) |  ⇡ 2 ⇧}

vars, objectiveV alue = SolveLP (V,W,wnew)
return objectiveV alue

Once an additional policy has been added to the cache be-
yond those for the base tasks, any subsequent task may not

be a unique conical combination of previous tasks for which
policies are stored. Therefore, we use a linear program in
Algorithm 2 to find the valid combination which minimizes
the upper bound. For this LP, the variables are the coeffi-
cients ↵i, W is the set of reward weight vectors for the tasks
in which the policies in the cache were learned, wnew is
vector of reward weights for the new task, m is the number
of policies in the cache, and s is the start state:

minimize
mX

i=1

↵iV
⇡i
i (s)

subject to
mX

i=1

↵iWi = wnew

↵i � 0, i = 1, ...,m

6. Experimental Results
We demonstrate this new method in three environments.
Two of them, Gridworld and Reacher, involving the agent
interacting with objects. The former is a discrete gridworld
which involves collecting objects before reaching a goal,
and the latter is a robotic arm simulation which requires
touching targets scattered within reach of the arm. The
remaining environment, Terrainworld, is based around a
grid where each cell contains “terrain” which regulates the
reward for moving to that cell.

In our experiments, the reward features are provided to the
agent. We train the agent on each task independently in
order to avoid the confounding effect of training using an
ensemble approach such as GPI.

As described in Algorithm 1, the agent starts with a policy
cache containing policies for each of the base tasks for the
given environment and when presented with each subse-
quent task, calculates the upper and lower bounds at the
start state using the current policy cache and compares them.
If the size of the gap exceeds threshold ⌘, then a new policy
is added to the cache.

As a matter of experimental convenience for the results be-
low, the policies for all tasks were learned ahead of time,
allowing us to compute these graphs quickly as “thought
experiments” for different values of ⌘. In practice, an
agent would need to compute the policies as needed when
a new task is presented, a potentially costly step that our
method would help the agent avoid in many cases. By pre-
computing the policies we are able to consider different
values of ⌘ and approximate expectations over many dif-
ferent permutations of tasks in a computationally efficient
manner. If we did not pre-compute these policies for our
experiments, the graphs would look the same; it would just
take much longer to produce them.

If the max weight assigned to any base task in the conical
combination is known in advance, it may be desirable to
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normalize the weights so that all subsequent tasks can be ex-
pressed as convex combinations of the base tasks. While not
required by the theory, this upper bounds the suboptimality
of any subsequent task by bounding the right hand side of
Theorem 1. It also helps normalize results across domains
by establishing a common scale. For these reasons, we focus
on convex combinations of base tasks in our experiments.

6.1. Gridworld

In our first environment, inspired by Barreto et al. (2017),the
underlying navigation problem is a discrete grid with an
absorbing goal state. Although the grid used in our exper-
iments, shown in Figure 1(a), is not large, the state space
grows exponentially with the number of objects. The reward
function for a task is defined by assigning a value to each
object. The agent has four actions available: moving left,
down, right, and up. For these experiments, all actions are
deterministic and attempting to move into a wall (or the
edge of the grid) causes the agent to stay in place.

The grid is constructed with four sections, each of which
contains three paths of equal length which can be traversed
in a forward direction (closer to the goal cell) and on each
path lies an object which can be picked up. This structure
means that there is a region around each object which is
rarely traversed by an optimal policy for a task unless that
object has a positive reward in that task. This allows for a
large number of different optimal policies to be induced by
the selection of reward weights.

For the 12 base tasks, a reward of 1.0 is received for reach-
ing the goal and a reward of 2.0 is received for picking up
one of the objects. Subsequent tasks were generated by
creating a convex combination of the base task reward func-
tions. In particular, we used the 1573 equal-weight convex
combinations which include two to five (inclusive) of the
base tasks. We computed the SFs for each of these tasks
and then simulated what would happen when an agent used
our method to choose whether to learn a new policy to add
to its cache when presented with a new task given different
values of ⌘. Our results are averaged over 10000 different
permutations of the generated tasks.

We used a tabular representation for the SFs and computed
them using modified policy iteration (MPI). This approach
was chosen to focus on the policy cache construction prob-
lem rather than the SF learning problem, as the approxima-
tion error is essentially zero. Results for additional experi-
ments, one with an image-based representation and one with
engineered features, are included in the appendix. These
experiments involve training a neural network from samples
to approximate the SFs, but demonstrate the benefits of our
method even when there is some approximation error.

Figure 2(a), shows the values of the start state for each task

under the learned optimal policy as well as the upper and
lower bounds for several chosen thresholds, including the
case where the agent learns a policy for every task, which
is equivalent to ⌘ = 0.0. The upper bound shows little
movement for ⌘ > 0.2, while the lower bound shows most
of its movement for ⌘ > 0.2. The different sensitivity to
⌘ arises because different factors are driving the upper and
lower bounds. The lower bound is driven empirically by the
diversity of policies required to achieve good performance
in the range of tasks for the domain. Once a critical mass of
good policies is achieved, the lower bound may not improve
much by adding more policies. In contrast, the upper bound
is driven more geometrically. It is influenced by the slope
of the value function (magnitude of the successor features)
and the distance in weight space of the new tasks from the
weights of tasks with corresponding cached policies. Thus,
the upper bounds can be more sensitive to sparse coverage
of weight space by the cached policies.

To quantify the reduction in policy cache size due to the
chosen threshold, in Figure 2(b) we show the number of
policies added to the cache as a function of the number
of tasks experienced for several different thresholds. The
“all policies” line represents the case where a new policy is
cached for all tasks. The ⌘ = 0.1 line demonstrates that
an agent that generates new policies only when there is a
chance of doing 10% better than an existing policy avoids
computing new policies about 2

3 of the time.

Figure 2(c) compares our upper bound to that which one
can calculate using Theorem 2 of Barreto et al. (2017). For
our bound, we use the curve for the policy cache built with
⌘ = 0.1 and the Barreto et al. curve is calculated using
the reward weights from all previously-encountered tasks.
Our bound is significantly tighter and the gap between them
dwarfs the gap between our upper and lower bounds.

6.2. Terrainworld

Our second environment, Terrainworld, is related to Grid-
world, but instead of picking up objects, the agent traverses
different types of “terrain” that have been assigned to each
cell. Each cell contains a combination of one or more of
the available terrain types and there is a reward feature for
each terrain type. Since every cell has terrain, these reward
features are very dense, unlike those in Gridworld. In Figure
1(b), the numbers are bitmasks where each bit corresponds
to one of the seven terrain types. The reward features for
each cell are the coefficients of the equal-weight convex
combination of the terrain types indicated by the bits set
to one in the bitmask. As a metaphor, we can think of the
reward features as indicating the terrain present in each cell
and the reward weights as indicating the performance of a
vehicle in each terrain type. The start cell is marked with X
and the goal cell with Y.
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(a) GridWorld with start (S), walls (W),
goal (G), objects (other letters)

(b) Terrainworld with numbers indicating
terrain types

(c) Reacher with red active and black inac-
tive targets

Figure 1. Environment Visualizations
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Figure 2. Data for the GridWorld environment, 10000 runs

The seven base tasks each assign a weight of -1 to one of the
seven terrain types and a weight of 0 to the goal. Subsequent
tasks assign some combination of the coefficients 1 and 30
to each base task. Exhausting the possible combinations
of this form results in 128 generated tasks. Our results are
averaged over 5000 permutations of these generated tasks.
Like Gridworld, we used a tabular representation for the
SFs computed with MPI.

As before, we show the bounds in Figure 3(a) as a function
of the number of experienced tasks. In this environment, the
bounds tighten at a much greater rate and by a much greater
magnitude as more tasks are experienced than occurred in
Gridworld. This can be attributed to a larger gap between the
optimal policy and the worst performing cached policies in
a new task as well as the smaller number of optimal policies
across all tasks (relative to the total number of tasks) – an
agent is much more likely to have already cached a policy
that is nearly-optimal for a new task. These characteristics
make it appear as if there is little change in the bounds as
⌘ increases, but the change is still large beyond ⌘ = 0.25
compared to the gap between the bounds.

The results for cache growth shown in Figure 3(b) show that
there is a drastic reduction in the number of cached policies
even when little suboptimality is allowed via small values
of ⌘. Allowing a factor of just 0.01 reduces the number of
cached policies by about 1

3 , and a greater effect occurs with
larger ⌘. This tells us that there is a lot of redundancy in
the set of optimal policies for all tasks in this environment
and we can significantly reduce an agent’s computation and
storage needs by weakening the guarantee on an agent’s
performance by a small amount.

6.3. Reacher

Our last environment, shown in Figure 1(c), is a modifica-
tion of “Reacher-v2” from OpenAI Gym (Brockman et al.,
2016), which is similar to the environment used by Barreto
et al. (2017). The agent controls a two-part arm by applying
torque to the two joints, and reward values can be assigned
to “tapping” each of the 12 targets for the first time, which
requires the end effector to be moving slowly when it comes
in contact with the target.
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(b) Cache size for different thresholds, mean and std. dev.

Figure 3. Data for the Terrainworld environment, 5000 runs

The two-dimensional action space was discretized into nine
actions such that the agent can apply full clockwise, full
counterclockwise, or no torque to each joint. The state
representation consists of the sine and cosine of the two
joint angles, the velocity of the end effector along the x-
and y-axes, and the target inventory, which tracks which
targets have already been tapped. The inventory is discrete,
but adds an exponential factor in the number of objects to
the size of the state space. The reward features are 12 delta
functions indicating a tap of the corresponding target to
which potential-based shaping (Ng et al., 1999) is applied
based on the negative distances to the targets. Additionally,
one feature for the norm of the control values is included,
as an energy cost is incurred based on this norm.

We used a neural network to approximate the SFs, which
were trained using stochastic gradient decent in a version
of SFQL (Barreto et al., 2017) which was modified to train
arbitrary neural network models and only operates with
one set of SFs, i.e., GPI was not used in training. More
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Figure 4. Data for the Reacher environment, 5000 runs

detail on hyperparameters, network structures, and training
procedures are in the appendix.

For this domain, there are 12 base tasks, which each assign
a reward of 1 to a single target, plus 286 additional tasks,
which were convex combinations of the base tasks. These
were generated in a combinatorial manner by generating a
convex combination with equal weights on a subset of the
base tasks. We limited the generated tasks to those using
two or three base tasks, which corresponds to two or three
“active” targets, so 286 tasks are enough to exhaust the set of
valid combinations of these sizes. This ensured that many
different optimal policies were induced across tasks. The
results were averaged over 5000 different permutations of
the tasks.

The results in the Reacher domain show a somewhat dif-
ferent pattern to the Gridworld results. Like in Gridworld,
the upper bounds in Figure 4(a) are greatly affected by the
choice of ⌘ and loosen significantly as ⌘ increases, but in
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contrast the lower bounds remain close to the same. This
difference is largely the result of the gap between the best
base task policy and the optimal policy being much smaller,
something that is visible in hindsight that but that is not
visible to an agent, which has no way of knowing where
the next policy will lie in the gap between the upper and
lower bounds. While this shows less room to loosen the
lower bound with increasing ⌘, the upper bound remains
sensitive to ⌘ in this case, demonstrating a tradeoff between
the number of policies and the guaranteed performance of
the policy cache. The learned policy value curve is nearly
horizontal, but this does not imply that all tasks have equal
value; it is the result of taking the mean over many different
permutations of the same set of tasks. In Figure 4(b), we can
again see how the policy cache grows based on the choice
of performance threshold.

7. Related Work
Hunt et al. consider a similar form of novel task, and their
results indirectly include an upper bound in their Theorem
A.1 (and 3.2) (Hunt et al., 2019) which is very similar to
ours, if one drops the C term. However, while soft Q-
learning approaches hard-max Q-learning in the limit as the
temperature parameter goes to 0, their theorem cannot be
extended to hard-max Q-functions in the same way. We
can show this with a simple counterexample: Suppose the
value of lim↵!0+ C1

w (s, a) could be calculated for a set
of hard-max Q-function-based policies with substantially
different values, and suppose that the equality in Theorem
A.1 held, which would mean that the value of the C term
is not 0. Now suppose that the reward functions for all of
the tasks were scaled by a positive constant, k. In that case,
the corresponding optimal Q-functions would also be scaled
by k. However, since the optimal hard-max policies do not
change due to such a scaling, and the C term is based only
on the policies themselves and not the reward functions,
the C term would not change with the scaling and thus the
equality could not continue to hold. While it is intuitive to
think that one could still drop the C term to get an upper
bound on the hard-max Q-function, this is not supported by
the Hunt et al. proof. Our Theorem 1 uses a different proof
technique that covers the common hard-max case, as well
as positive conical combinations.

Our bounds in Theorem 1 are similar to those shown by Parr
(1998) where the value of a state is dependent on a policy
and a value vector which gives values for some subset of the
states in the MDP. Here, however, we perform this analysis
in a different setting in the context of SFs.

Bayesian Policy Reuse (Rosman et al., 2016), is superficially
similar to our work in that it maintains a collection of stored
policies that can be reused on similar tasks. The focus of that
work, however, is efficient evaluation of the stored policies

on new tasks that differ in unknown ways from known tasks.
Our approach assumes that the new task differs in a known
way, and establishes suboptimality bounds that influence
when to add new policies.

Abel et al. (2018) consider how to use previous policies
or value functions to jumpstart learning in a new problem.
Their focus is on how to select or combine previous policies
to improve initial performance and potentially reduce the
number of samples needed to achieve optimal performance
on a new problem. Unlike our work, they do not provide
bounds on the suboptimality with respect to the optimal
policy for the new task.

In terms of the types of tasks, the -AND- composition of
Van Niekerk et al. (2019) is most similar to our experiments.
In that case, they consider composition of base tasks which
differ in their absorbing sets, and the composed task ter-
minates after all objects are collected. However, they do
not calculate their bounds in practice, which would require
an expensive expectation to get the C function (a measure
of divergence between policies), nor do they selectively
learn new policies. Our approach uses the actual approx-
imate value function which is calculated efficiently using
the stored successor feature approximators and the reward
weights for the new task.

Lipschitz Lifelong RL from Lecarpentier et al. (2021) fo-
cuses on reducing sample complexity and involves a related
upper bound, but solving the necessary sample-based fixed
point equations to approximate their pseudometric for a
novel task requires an amount of computation similar to
solving the MDP. Our approach does not focus on sample
complexity, but leverages successor features to provide eas-
ily computable bounds for a novel task with no samples from
that task (or a small number if the start state distribution is
unknown).

8. Discussion and Future Work
We have demonstrated empirically that our approach can
be combined with function approximation. Although our
bounds include approximation error, our experiments as-
sume low approximation error and don’t include approx-
imation error when deciding whether to grow the cache.
One approach to estimating this could be through Monte
Carlo estimates of the successor features of the initial state
distribution. This would be done once for each policy by
executing each in the task for which it was learned.

Universal Successor Feature Approximators (USFAs)
(Borsa et al., 2019) offer the potential to have a parame-
terized set of successor features generalize across tasks. If
the USFAs generalize well, this could obviate policy caches,
but a question remains about whether such generalization
can be guaranteed. It may be possible to extend our work to
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USFAs to create a method for determining when the USFAs
are sufficient to guarantee a certain level of performance in
a new task or if they need to be trained on the new task.

Inverse RL (IRL) methods typically make the same assump-
tion that the reward function can be decomposed into a linear
combination of features. Some of the insights gained in this
line of work may also apply to IRL.
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