
Reconstruction on Trees and Low-Degree Polynomials

Frederic Koehler∗
Stanford University

fkoehler@stanford.edu

Elchanan Mossel†
Massachusetts Institute of Technology

elmos@mit.edu

Abstract

The study of Markov processes and broadcasting on trees has deep connections
to a variety of areas including statistical physics, graphical models, phylogenetic
reconstruction, Markov Chain Monte Carlo, and community detection in ran-
dom graphs. Notably, the celebrated Belief Propagation (BP) algorithm achieves
Bayes-optimal performance for the reconstruction problem of predicting the value
of the Markov process at the root of the tree from its values at the leaves.
Recently, the analysis of low-degree polynomials has emerged as a valuable tool
for predicting computational-to-statistical gaps. In this work, we investigate the
performance of low-degree polynomials for the reconstruction problem on trees.
Perhaps surprisingly, we show that there are simple tree models withN leaves and
bounded arity where (1) nontrivial reconstruction of the root value is possible with
a simple polynomial time algorithm and with robustness to noise, but not with any
polynomial of degree N c for c > 0 a constant depending only on the arity, and
(2) when the tree is unknown and given multiple samples with correlated root
assignments, nontrivial reconstruction of the root value is possible with a simple
Statistical Query algorithm but not with any polynomial of degree N c. These
results clarify some of the limitations of low-degree polynomials vs. polynomial
time algorithms for Bayesian estimation problems. They also complement recent
work of Moitra, Mossel, and Sandon who studied the circuit complexity of Belief
Propagation. As a consequence of our main result, we are able to prove a result
of independent interest regarding the performance of RBF kernel ridge regression
for learning to predict the root coloration: for some c′ > 0 depending only on
the arity, exp(N c′) many samples are needed for the kernel regression to obtain
nontrivial correlation with the true regression function (BP). We pose related open
questions about low-degree polynomials and the Kesten-Stigum threshold.

1 Introduction

Understanding the computational complexity of random instances has been the goal of an extensive
line of research spanning multiple decades and different research areas such as cryptography, high-
dimensional statistics, complexity theory, and statistical physics. In particular, this includes work
on satisfiability and refutation of random constraint satisfaction problems and on computational-
to-statistical gaps. In much of this work, evidence for computational hardness is indirect because
there are well-known barriers to proving hardness from classical worst-case assumptions such as
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NP-hardness (Feigenbaum and Fortnow 1993; Akavia et al. 2006; Bogdanov and Trevisan 2006;
Applebaum et al. 2008).

Recently, low-degree polynomials have emerged as a powerful tool for predicting computational-to-
statistical gaps. Computational-to-statistical gaps are situations where it is impossible for polyno-
mial time algorithms to estimate a desired quantity of interest from the data, even though compu-
tationally inefficient (“information-theoretic”) algorithms can succeed at the same task. Heuristics
based on low-degree polynomials have especially been used in the context of Bayesian estimation
and testing problems and partially motivated by connections with (lower bounds for) the powerful
Sum-of-Squares proof system. More specifically, a recent line of work (e.g. Hopkins and Steurer
2017; Hopkins 2018; Kunisky et al. 2019; Bandeira et al. 2020; Gamarnik et al. 2020; Holmgren
and Wein 2020; Wein 2020; Bresler and Huang 2021; Mao and Wein 2021) showed that a suitable
“low-degree heuristic” can be used to predict computational-statistical gaps for a variety of prob-
lems such as recovery in the multicommunity stochastic block model, sparse PCA, tensor PCA,
the planted clique problem, certification in the zero-temperature Sherrington-Kirkpatrick model, the
planted sparse vector problem, and for finding solutions in random k-SAT problems. Furthermore,
it was observed that the predictions from this method generally agree with those conjectured us-
ing other techniques (for example, statistical physics heuristics based on studying BP/AMP fixed
points, see e.g. Decelle et al. 2011; Deshpande and Montanari 2015; Mohanty et al. 2021). Some
of the merits of the low-degree polynomial framework include that it is relatively easy to use (e.g.
compared to proving SOS lower bounds), and that low degree polynomials capture the power of the
“local algorithms” framework used in e.g. (Gamarnik and Sudan 2014; Chen et al. 2019) as well as
algorithms which incorporate global information, such as spectral methods or a constant number of
iterations of Approximate Message Passing (Wein 2020).

In this work, we investigate the power of low-degree polynomials for the (average case) reconstruc-
tion problem on trees. We define the model and results in the next sections, but first give an informal
summary. The goal for reconstruction on trees is to estimate the value of the Markov process at the
root given its value at the leaves (in the limit where the depth of the tree goes to infinity), and two
key parameters of the model are the arity of the tree d and the magnitude of the second eigenvalue
λ2 of the broadcast chain. Importantly, when d|λ2|2 > 1 it is known (Kesten and Stigum 1966) that
nontrivial reconstruction of the root is possible just from knowing the counts of the leaves of differ-
ent types, whereas when d|λ2|2 < 1 such count statistics have no mutual information with the root
(but more complex statistics of the leaves may) Mossel and Peres 2003. This threshold d|λ2|2 = 1
is known as the Kesten-Stigum threshold (Kesten and Stigum 1966) and it plays a fundamental role
in other problems, such as algorithmic recovery in the stochastic block model (Abbe 2017) and
phylogenetic reconstruction (Daskalakis et al. 2006). Count statistics can be viewed as degree 1
polynomials of the leaves, which begs the question of what information more general polynomials
can extract from the leaves.

In this paper, we answer this question in the limit case λ2 = 0. Perhaps surprisingly, we find that
the Kesten-Stigum threshold remains tight in the sense that even polynomials of degree N c for a
small c > 0 are not able to correlate with the root label (Theorem 6), whereas computationally
efficient reconstruction is generally possible as long as d is a sufficiently large constant (Theorem 5)
and even when a constant fraction of leaves are replaced by noise. Building on the polynomial
lower bound, we prove superpolynomiallly (in fact, subexponentially) many samples are needed for
Gaussian Kernel Ridge Regression (KRR) to (weakly) learn to regression function which predicts
the root from the leaf colorations (Theorem 20). This gives a simple and natural model where KRR
provably fails that is outside the reach of existing lower bounds such as (Kamath et al. 2020).

We also consider an analogous question where the tree is unknown, and the algorithm has access to
m i.i.d. samples of the Markov process where the root is biased towards an unknown label Y ∗. In
this setting, polynomials of degree N c again fail to correlate with the label Y ∗, but we show that
a simple algorithm, straightforwardly implementable in the Statistical Query (SQ) model (Kearns
1998), can recover Y ∗ in polynomial time (Theorem 11). Together, these results show that low-
degree polynomials behave very differently in our setting than one might intuit based on previous
work in related settings, such as in random constraint satisfaction problems or the block model.
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1.1 Preliminaries

Notation. We use the standard notation Oa(·) to denote an upper bound with an implied constant
which is allowed to depend on a; the notation polya(·) is similar for denoting a bound which is poly-
nomial in its parameters. We let dTV (P,Q) denote the total variation distance between distributions
P and Q normalized to be in [0, 1] and we use I(X;Y | Z) for the conditional mutual information
of random variables X,Y conditional on Z; see (Cover 1999). Given a vector x and a subset of
coordinates S, we let xS denote the |S|-dimensional vector corresponding to elements of S.

Markov processes on trees. We consider Markov processes with state space Σ = [q] =
{1, . . . , q} where q ≥ 1 is the size of the alphabet. Let M : q × q be the transition matrix of a
time-homogeneous Markov chain on Σ, also referred to as the broadcast channel. For simplicity,
we always assume henceforth that M is ergodic (irreducible and aperiodic, see (Durrett 2019)) so it
has a unique stationary distribution πM . Let T = (V,E, ρ) be a rooted tree with vertex set V , root
ρ ∈ V , and where E is the set of directed edges (u, v) where u is the parent of v in the correspond-
ing tree. The broadcast process on tree T of depth ` with transition matrix M and root prior ν a
probability measure on [q] is given by

µ`,ν(x) := ν(xρ)
∏

(u,v)∈E

Mxu,xv .

When not otherwise indicated, ν is the stationary distribution for M . The probability measure µ is
a Markov Random Field on the tree T . This means that if A,B are subsets of the vertices of T and
all paths in T from A to B pass through a third set of vertices S, then XA and XB are conditionally
independent given XS . This is called the Markov property, see e.g. (Lauritzen 1996). In this paper,
we focus on the setting of complete d-ary trees (i.e. trees where every non-leaf node has d children,
and all leaf nodes are at the same depth). For the d-ary tree of depth ` ≥ 0, we let L be the set of
leaves of the tree, i.e. the set of vertices in the tree at depth `.

Definition 1. We say that reconstruction is possible on the d-ary tree with channel M if

inf
`≥1

max
c,c′∈[q]

dTV

(
Lµ`(XL | Xρ = c),Lµ`(XL | Xρ = c′)

)
> 0

where the notation Lµ(X|E) denotes the conditional law of X under µ given event E occurs, µ` is
the corresponding broadcast process on the depth ` tree with root ρ and L = L` is the set of leaves.

When reconstruction is possible, the Bayes-optimal estimate of the root given the leaves can be
computed in linear time by passing messages up the tree using the Belief Propagation algorithm
(Mezard and Montanari 2009); for our purposes, we will not need the explicit formula for BP, which
can be derived by applying Bayes rule, but refer the interested reader to the reference.

Given a matrix M , we let λ2(M) denote the second-largest eigenvalue of M in absolute value. The
Kesten-Stigum (KS) threshold on the d-ary tree is given by the equation d|λ2(M)|2 = 1. Building
upon the original work of (Kesten and Stigum 1966), it was shown that the KS threshold is sharp
for the problem of count reconstruction on trees (Mossel and Peres 2003): count reconstruction is
possible when d|λ2(M)|2 > 1 and impossible when d|λ2(M)|2 < 1.

Definition 2. Let C(x) := (#{i : xi = c})c∈[q] be the function which computes count statistics of
an input vector x with entries in [q]. We say that count-reconstruction is possible on the d-ary tree
with channel M if inf`≥1 maxc,c′∈[q] dTV (Lµ`(C(XL) | Xρ = c),Lµ`(C(XL) | Xρ = c′)) > 0
where the notation L(X|E) denotes the conditional law ofX given eventE, µ` is the corresponding
broadcast process on the depth ` tree and L = L` is the set of leaves on this tree.

Next, we define a notion of noisy reconstruction which plays an important role in this paper:

Definition 3. For ε ∈ (0, 1), we say that ε-noisy reconstruction is possible on the d-ary tree with
channel M if inf`≥1 maxc,c′ dTV (Lµ`(X ′L = · | Xρ = c),Lµ`(X ′L = · | Xρ = c′)) > 0 where X ′
is the ε-noisy version of the broadcast process values X , generated by independently for each vertex
v, setting (X ′L)v = (XL)v with probability 1− ε and otherwise sampling (X ′L)v from Uni([q])3.

3More generally, our results hold where the noise is from any full support distribution on [q].
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Note that in this definition, the law of X ′L | Xρ = c can equivalently be written as Lµ`(XL | Xρ =
c)Tε where Tε is the usual noise operator that independently resamples each coordinate of its input
vector with probability ε, see e.g. O’Donnell 2014; Hopkins 2018. Finally, we recall from (Janson
and Mossel 2004) the following standard definition: we say that robust reconstruction on the d-ary
tree with channel M is possible if ε-noisy reconstruction is possible for every ε ∈ (0, 1).

Low-degree polynomials and computational-statistical gaps. As discussed in the introduction,
low degree polynomials have been studied in a wide variety of contexts and settings. The recent
work (Schramm and Wein 2020) showed that a version of the low-degree polynomial heuristic can
predict the recovery threshold for natural Bayesian estimation problems, even when the recovery
threshold is below the detection/testing threshold. In the present work, we will use the following
key definition from their paper4

Definition 4 (Degree-D Maximum Correlation (Schramm and Wein 2020)). Suppose that (X,Y ) ∼
P where X is a random vector in RN and Y is a random variable valued in R. The degree-D
maximum correlation is defined to be

Corr≤D(P ) := sup
f∈R[X]≤D,EP [f(X)2]6=0

EP [f(X) · Y ]√
EP [f(X)2]

where R[X]≤D is the space of degree at most D multivariate polynomials in variables X1, . . . , XN

with real-valued coefficients.

As explained there, when the target label Y ∗ is a vector this definition can be applied with Y equal
to each of the coordinates of Y ∗. We note that we could rephrase our results in terms of a testing
problem (as in much of the prior work on the low-degree method), but the above definition is more
natural in our context (it avoids the need to introduce a “null distribution” Q). In what follows, we
omit the distribution P the expectation is taken over as long as it is clear from context.

Instead of referring to polynomial degree directly, we usually use the following more conve-
nient and equivalent definition. Suppose f is a function [q]n → R. We define the (Efron-
Stein) degree of f to be the minimal D such that there exist functions fS : [q]|S| → R so that
f(x) =

∑
S⊂[n],|S|≤D fS(xS). One such minimal choice of fS is the Efron-Stein decomposition

over Uni[q]n, see e.g. (O’Donnell 2014); this notion is also equivalent to the minimal degree poly-
nomial representing f where the variables are the one-hot encoding x 7→ (1(xi = c))i∈[n],c∈[q].

Reconstruction below the KS threshold. In this paper, we will largely consider the problem of
tree reconstruction with matrices M with λ2(M) = 0; these exactly correspond to Markov chains
which mix perfectly within a bounded number of steps. (There are many examples of such chains,
for concreteness we give a very small example below in Example 13). Obviously, for such a chain
M , d|λ2|2 = 0 for any value of d so such a model is always below the Kesten-Stigum threshold.
Nevertheless, based on general results from existing work we know that near-perfect reconstruction
of the root is possible (e.g. using Belief Propagation, which computes the exact posterior distribution
(Mezard and Montanari 2009)). This is true as long as d is sufficiently large, and even with a constant
amount of noise ε:
Theorem 5 (Mossel and Peres 2003, Theorem 22 below). Suppose M is a the transition matrix of
a Markov chain with pairwise distinct rows5 i.e. for all i, j ∈ [q] the rows Mi and Mj are distinct
vectors. Let δ ∈ (0, 1) be arbitrary. There exists d0 = d0(M, δ) and ε > 0 such that for all d ≥ d0,
ε-noisy reconstruction is possible on the d-ary tree and furthermore there exists a polynomial-time
computable function f = fM,` valued in [q] such that

max
c∈[q]

Pr(f(X ′L) 6= Xρ | Xρ = c) < δ

where X ′L is the ε-noisy version of XL (see Definition 3).

This exact statement does not appear in Mossel and Peres 2003 but follows from arguments pre-
sented there; for completeness, we include a proof in the appendix (Theorem 22). From the proof,
we can see that a very simple recursive estimator is enough to solve this problem.

4In our notation X and y are swapped compared to theirs, to match the convention in the broadcast process.
5This condition is needed to rule out the case of e.g. a rank one matrix M where reconstruction is clearly

impossible. See also (Mossel and Peres 2003) for a more complex and precise condition.
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1.2 Our Results

We study the power of low-degree polynomials for the problem of reconstructing the root of a
Markov process. We consider this question in the context of two very closely related versions of the
model which have both been extensively studied in the literature.

Reconstruction with a known tree. In this setting, the algorithm is given access to the leaf values
from a single realization of the Markov process, and the goal is to estimate the root (where we
are going to be interested in estimators which are low-degree polynomials of the leaves). The tree
structure is known and the estimator/polynomial is allowed to depend on this information directly.

Reconstruction with an unknown tree. In this setting, the data is still generated by a complete d-
ary tree but the tree (in other words, the true ordering of the leaves) is unknown to the algorithm.
This version of the model has been extensively studied due to close connections to the problem
of phylogenetic reconstruction in biology, see e.g. Felsenstein 2004; Daskalakis et al. 2006; Steel
2016. Because this task is more difficult information-theoretically6, the algorithm is given access to
m i.i.d. samples from the broadcast model; we give a more precise definition of the model below.

Results for reconstruction with a known tree. We consider the problem of tree reconstruction
with matrices M with λ2(M) = 0; these exactly correspond to Markov chains which mix perfectly
within a bounded number of steps. As discussed above in Preliminaries, while such models are
always below the Kesten-Stigum threshold for any value of the the arity d, under fairly weak condi-
tions on M the reconstruction problem is still solvable for d sufficiently large (Theorem 5). This is
true even with noise and with a very simple reconstruction algorithm. As our main result we show
that despite the algorithmic tractability of this problem, only very high degree polynomials are able
to get any correlation with the root, in the same sense as Definition 4.
Theorem 6 (Corollary 15 below). Let M be the transition matrix of a Markov chain on [q] and
suppose that 1 ≤ k ≤ q is such that Mk is a rank-one matrix. For any function f : [q]L → R of
Efron-Stein degree at most 2b`/(k−1)c of the leaves XL and any prior ν on the root,

E[f(XL) · (1(Xρ = c)− ν(c))] = 0.

Remark 7 (Tightness). For fixed k, this result is tight up to the base of the exponent. When M
satisfies the assumption of Theorem 5, there is a function on a constant-degree subtree to recover
the root and (by Fourier expansion) this is a polynomial of degree eO(`).

To interpret this result, observe that N = d`, so taking d a constant, the Theorem shows that poly-
nomials of degree even N c for an explicit constant c = c(d, k) > 0 fail to get any correlation with
the root label. In comparison, in the previously mentioned contexts in the low-degree polynomi-
als literature, the threshold for polynomials of degree O(logN) matches the conjectured threshold
for polynomial time algorithms (see e.g. Hopkins and Steurer 2017; Hopkins 2018; Kunisky et al.
2019) and polynomials of degree N c correspond to conjectural thresholds for subexponential time
algorithms (see e.g. Ding et al. 2019; Bandeira et al. 2020).

A consequence: subexponential sample complexity lower bound for the RBF kernel. As a
consequence of our main result, we can analyze the behavior of kernel regression methods in our
model. Kernel ridge regression is one of the canonical methods for solving supervised learning
problems, including classification problems (see e.g. Muthukumar et al. 2021). In many high-
dimensional settings, it is believed that the function learned using a standard kernel (e.g. Gaussian
or polynomial) is essentially a low-degree polynomial. Standard results in learning theory (Shalev-
Shwartz and Ben-David 2014) imply that kernel ridge regression with a Gaussian/RBF (Radial Basis
Function) kernel in N dimensions can learn a degree ` polynomial on the hypercube or sphere using
roughly O(N `) samples. Establishing lower bounds on KRR is generally much harder. In certain
particularly tractable settings (e.g. data from the uniform distribution on the hypercube) it has been
recently shown explicitly that kernel regression (only) learns a low-degree polynomial (Ghorbani
et al. 2021; Mei et al. 2021).

It seems plausible to guess that kernel ridge regression with a standard kernel will require subex-
ponentially many samples of (leaf label, root label) pairs in order to learn to predict the root. We

6Note that in the single-sample case (m = 1), the information available to the algorithm would only be
count statistics, which we know are insufficient for reconstruction below the KS threshold (Mossel 2004).
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Figure 1: RBF Kernel Ridge Regression (KRR, blue line) test error in squared loss for predicting the
root from leaves with data generated by broadcast operator Mλ2

:= (1− λ2)M0 + λ2I and varying
λ2. M0 is from (1), and it can be directly checked that λ2 is the second eigenvalue of Mλ2

. The tree
is 10-ary with depth 3, and the prior is ν = (0.5, 0.5, 0). RecMaj (orange dotted line) is a baseline
estimator which generalizes the one used in proof of Theorem 5. Consistent with Theorem 8, the
output of KRR fails to correlate with the root coloration when λ2 = 0 (since 0.25 is the null risk, the
squared loss for the optimal constant predictor), even though RecMaj correlates significantly with
the root for all values of λ2. In fact, KRR fails to correlate for all values of λ2 up to around 0.1,
suggesting that the failure of KRR and low-degree polynomials should extend beyond λ2 = 0.

are able to verify this prediction in the case of the popular RBF (Radial Basis Function) kernel. See
Section C.1.1 for formal notation and background on kernel ridge regression.

Theorem 8 (Theorem 20 below). Let M be the transition matrix of a Markov chain on [q] and
suppose that 1 ≤ k ≤ q is such that Mk = ππT is a rank-one matrix, and suppose that π has at
least two nonzero entries. Then the for any color c ∈ [q] and prior ν for the root coloration Xρ, the
following is true. Given m i.i.d. samples (x1, y1), . . . , (xm, ym) from the broadcast model on the
d-ary tree with N leaves and broadcast channel M , where xi is a one-hot encoded vector of leaf
colorations and yi = 1(Xρ = c)−ν(c) is the centered indicator of the leaf coloration, we have that
for any bandwidth σ ≥ 0 and ridge parameter λ ≥ 0, for w the output of ridge regression in RKHS
space with those parameters and feature map ϕ, that with probability at least 1− δ

Ex0,y0 [y0〈w,ϕ(x0)〉]√
Ex0,y0 [y20 ]

= O(
√

1/N)

provided that m/δ = O(eN
a

) where a = a(M,d) > 0 is independent of the depth of the tree.

This establishes a new and illustrative example where KRR performs poorly in high dimen-
sions, even though the ground truth is a relatively “simple” and the labels are closely related to
the structure of the input data. Note that the conclusion implies that E[(y0 − 〈w,ϕ(x0)〉)2] ≥
(1 − O(1/

√
N))E[y20 ], i..e. kernel ridge regression does not significantly outperform the constant

zero estimator (“null risk”) unless it is given at least a subexponential number of samples. Also, as
with Remark 7 this result is tight up to the power of the exponent c, since a subexponential degree
polynomial exists which predicts the root well and it can provably be learned with subexponential
number of samples by KRR (Shalev-Shwartz and Ben-David 2014).

In Figure 1, we test kernel ridge regression in a simulation in both the case λ2 = 0 and λ2 > 0:
consistent with our result, KRR fails to beat the null risk when λ2 = 0; interestingly, it also fails for
moderately small values of λ2 as well, which is related to the Open Problem we discuss later. In the
figure, KRR is performed using 2000 i.i.d. samples of (x, y) pairs with x the one-hot encoded leaf
colorations and y the centered indicator that the root color is 1, as in Theorem 8. Bandwidth and
ridge penalty are selected via grid search on a validation set. The results for the baseline (RecMaj)
are averaged over 16000 samples.
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Results for reconstruction with an unknown tree. Formally, we consider the following variant
of the generative model which is a variant of models in the phylogenetics literature. Briefly, in this
model we generate m i.i.d. realizations of the broadcasting model, where the tree is random and the
prior on the root is biased towards a random root label. We include a parameter ε ≥ 0 which can be
used to add noise to the final output the of model, just as above.
Definition 9 (ε-Noisy Repeated Broadcast Model on Random Tree). Let ` ≥ 1, d ≥ 2,m ≥ 1, q ≥
1, ε ≥ 0 and let M be a Markov chain on [q]. Define R = R`,d,m,M,ε by the following process:

1. Sample Y ∗ ∼ Uni([q]), and τ ∼ Uni(SN ) is a random permutation. Let T be the d-ary
tree on the set of leaves ordered by τ , so e.g. vertices τ(1) and τ(2) are siblings in T .

2. Sample X(1), . . . , X(m) i.i.d. from the ε-noisy broadcast process (see Definition 3) on
T with prior (2/3)δY ∗ + (1/3)Uni([q]) and transition matrix M , where δY ∗ is a delta
distribution on Y ∗. Let X = (X

(1)
L , . . . , X

(m)
L ).

The goal of the learning algorithm in the unknown tree model is this: given m samples of the leaves
of the broadcast process, encoded in X, reconstruct the root label Y ∗ which the prior is biased
towards7. We discuss the reasons for defining the model this way: 1. The permutation τ ensures
that the coordinates of X(i)

L behave in a symmetric way, or equivalently that the order of those
coordinates is not semantically meaningful; observe that if we omitted it, then the first d coordinates
would always be neighbors in the tree. This is standard in the phylogenetics literature (Steel 2016)
and this kind of symmetry is also assumed in the literature on low-degree polynomial hardness, see
e.g. discussion in Holmgren and Wein 2020; in sparse PCA this is analogous to how the support of
the planted sparse vector is chosen uniformly at random among size-k subsets. 2. The choice that
root assignments are drawn from a tilted/biased distribution is different from the previous literature
motivated by phylogenetics, where the root value is generally sampled fresh each time. This does
not have a significant effect on how the algorithms used to estimate the tree work. The reason for our
setup is to allow for straightforward comparison between SQ and low-degree polynomial models. If
the root value was sampled from an unbiased measure each time, it would not make sense for an SQ
algorithm to estimate it, since SQ has no concept of individual samples.

To be formal, we define the Statistical Query VSTAT oracle analogue ofR in the usual way (Feldman
et al. 2017). The oracle is defined conditional on Y ∗ and the tree T , so the order of leaves in the
tree will be consistent between different calls to the oracle. As a reminder, vector-valued queries are
implemented in the SQ model by querying each coordinate of the vector individually.
Definition 10 (V STAT (m) Oracle). Let Y ∗, τ , T , and M be as in Definition 9. Conditional on
Y ∗ = y∗ and the tree T = t, we define V STAT (m) to be an arbitrary oracle which given a query
function ϕ : [q]L → [0, 1], returns p + ζϕ where p := ER[ϕ(X(1)) | Y ∗ = y∗, T = t] where ζϕ is

arbitrary (can be adversarily chosen) such that |ζϕ| ≤ max

(
1
m ,
√

p(1−p)
m

)
.

We now state our results in this model. Just as in the known tree case, there is a relatively simple
algorithm which achieves nearly optimal performance in this setting when λ2(M) = 0 and d is
a large constant, and furthermore this algorithm can straightforwardly be implemented in the SQ
model described above. Establishing this requires proving a new result in tree reconstruction, since
(for example) the setting λ2(M) = 0 which we care about rules out the use of Steel’s evolutionary
distance (see e.g. Steel 2016; Moitra 2018) commonly used in reconstruction algorithms in phy-
logeny, as Steel’s distance is only well-defined for nonsingular phylogenies, and some kinds of tree
models with singular matrices are actually computationally hard to learn (Mossel and Roch 2005).
Theorem 11 (Theorem 30 below). Suppose M is a the transition matrix of a Markov chain with
pairwise distinct rows, i.e. for all i, j ∈ [q] the rows Mi and Mj are distinct vectors, and suppose
λ2(M) = 0. There exists d ≥ 1 and ε > 0 so that the following result holds true for the complete
d-ary tree with any depth ` ≥ 1. For any δ > 0, there exist a polynomial time algorithm with sample
complexity m = polyM (logN, log(1/δ)) from the ε-noisy repeated broadcast model (Definition 9)
which with probability at least 1− δ: 1) outputs the true tree T (equivalently, the true permutation
τ ), 2) outputs Ŷ such that Ŷ = Y ∗. Also, this algorithm can be implemented using a V STAT (m)
oracle with m = polyM (log(N/δ)) and polynomially many queries.

7We could also consider the model where the root label is always Y ∗. The soft bias we consider is nicer for
minor technical reasons, and seems natural given we allow to add noise elsewhere in the model.
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The lower bound for polynomials also applies here, just like in Theorem 6. Since it is very similar,
we leave the formal statement to the appendix (Theorem 27).

1.3 Further Discussion

Related work: complexity of reconstruction on trees. Our work follows a line of previous work
which identified the Kesten-Stigum threshold as a potential complexity barrier in the context of the
broadcast model on trees. The work (Mossel 2016) showed that algorithms that do not use cor-
relation between different features (named “shallow algorithms”) cannot recover phylognies above
the Kesten-Stigum threshold, where other (“deeper”) algorithms can do so efficiently; the motiva-
tion in (Mossel 2016) was to find simple data models where depth is needed for inference. More
standard complexity measures were studied in Moitra et al. 2020 who obtained a number of results
on the circuit complexity of inferring the root in the broadcast process. They conjectured that be-
low the Kesten-Stigum threshold, inferring the root is NC1-complete and proved it for one specific
chain satisfying λ2 = 0. Although there are some connections between low-degree polynomials and
certain circuit classes (Linial et al. 1993), the results of this work and (Moitra et al. 2020) are incom-
parable and the techniques for establishing the lower bound are very different. Finally, we note the
work (Jain et al. 2019) which studied the power of message-passing algorithms on finite alphabets:
they proved such algorithms fail to recover all the way down to the Kesten-Stigum threshold, even
in the simplest case of the binary symmetric channel with q = 2.

Message passing vs. low-degree polynomials. One of the attractive properties of the class of
low-degree polynomials is that it generally captures the power of a constant (or sufficiently slowly
growing) number of iterations of message-passing algorithms such as BP, AMP, and Survey Prop-
agation (see e.g. Bresler and Huang 2021 and Appendix A of Gamarnik et al. 2020), which is
interesting since a constant number of steps of these algorithms are indeed useful for many statisti-
cal tasks. On the other hand, in our models, belief propagation (which computes the exact posterior)
succeeds with high probability whereas low-degree polynomials fail. This is not a contradiction: in
our setting, BP requires Θ(logN) iterations for the messages to pass from the leaves to the root and
this is (as our main result shows) too large to simulate with low-degree polynomials.

SQ and Low-Degree Polynomials. The recent work (Brennan et al. 2021) established sufficient
conditions for predictions to match between the Statistical Query (SQ) and low-degree polynomial
heuristic, in a general setting. Nevertheless, in the unknown tree setting we consider above we
saw that SQ algorithms perform significantly better than low-degree polynomials. The results of
(Brennan et al. 2021) cannot be immediately applied to our setting, because we have phrased the
problem as an estimation problem instead of a testing (a.k.a. distinguishing) problem; however, this
is itself not the reason for the discrepancy as we could rephrase our problem in terms of testing the
color of the root. Instead, the reason seems to be due to the “niceness condition” needed for their
theory to apply. They show that the niceness condition will be satisfied for noise-robust problems
when the “null distribution” in the testing problem is a product measure. Our setup is indeed noise
robust (see Theorem 5). However, if we rephrased our problem as a testing one the null distribution
will be a graphical model (with no bias at the root) and not a product measure.

Recently there has also been interest in understanding lower bounds against kernel learning algo-
rithms (including polynomial kernels), in part motivated by connections to neural networks, and this
involves connections to the SQ framework. See e.g. (Kamath et al. 2020) and references within.
These methods can, for example, prove strong lower bounds against learning parities with kernel
ridge regression since parities have large SQ-dimension. See also (Koehler and Risteski 2018) for
another example where polynomial degree lower bounds were established for a Bayesian inference
task, though only polylogarithmic in the dimension.

Noise robustness and learning parities. It was shown in (Janson and Mossel 2004) that the KS
threshold is sharp for robust reconstruction, where we recall from above that (by definition) robust
reconstruction on the d-ary tree with channel M is possible if for all noise levels ε ∈ (0, 1), ε-noisy
reconstruction is possible. At first glance, this appears similar to the idea in the low-degree polyno-
mials literature that the model should be slightly noisy to rule out the example of learning parities
(which can be solved in the noiseless setting by Gaussian elimination, but not when there is noise).
In fact the two notions are quite different: the robust reconstruction result shows that reconstruction
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becomes impossible for large noise levels ε > ε∗ above a critical threshold ε∗, whereas for small
(but fixed) ε > 0 the ε-noisy reconstruction problem often remains solvable — see Theorem 5. Our
examples are fundamentally different to the parity example: (1) for the unknown tree version of our
model, we showed that the problem is solvable with an SQ oracle whereas parities are well-known
to be hard for SQ (Blum et al. 2003), (2) relatedly, the algorithms which solve our problems are
not “algebraic” in nature, and (3) our results hold irrespective of adding a small amount of noise,
whereas learning parities with any constant amount of noise is conjecturally hard (Valiant 2012).
Altogether, we can think of these results as suggesting a new, more nuanced picture of low degree
vs. robustness to noise. Whereas before the main dichotomy in the computational complexity of in-
ference literature has been between zero noise and any noise, in our model reconstruction algorithms
such as BP can tolerate a small amount of noise, but fail when the noise level crosses some critical
threshold. At least in our setting with |λ2(M)| = 0, low-degree polynomials appear to capture the
latter “large noise” behavior instead of the “small noise” difficulty of the problem.

Open Problem. What happens when λ2(M) 6= 0? It is natural to wonder if the Kesten-Stigum
threshold d|λ2|2 = 1 is sharp for low-degree polynomial reconstruction, analogous to how it is
sharp for robust reconstruction. Our main lower bound result (Theorem 6) is consistent with this
intuition. Also consistent with this intuition, our simulation result Figure 1 suggests that Kernel
Ridge Regression may continue to fail for small but nonzero values of λ2(M). See Appendix B for
a more formal statement and more discussion of this important question.

2 Technical Overview

The detailed proofs of all results are given in the Appendix. Here, we explain the high-level proof
ideas, which we believe are relatively clean and conceptual.Before proceeding, we give the following
concrete example of a Markov chain M0 with λ2(M0) = 0 and q = 3:

M0 =

[
0.5 0 0.5
0.25 0.5 0.25

0 1 0

]
, M2

0 =

[
0.25 0.5 0.25
0.25 0.5 0.25
0.25 0.5 0.25

]
. (1)

Since M2
0 is rank one, it must be the case that λ2(M0) = 0.

Failure of low-degree polynomials (Theorem 6). We want to show that any low-degree poly-
nomial f of the leaves of the broadcast tree fails to correlate with the root. In general, it may be
very difficult to compute the maximal correlation among all low-degree polynomials; what makes it
possible in our case is that the correlation is exactly zero. If c ∈ [q] is a color and ν is the prior at the
root, we want to show E[f(XL)(1(Xρ = c)− ν(c))] = 0. (Recall L is the set of leaves and XL the
leaf colorations.) The first step is to use linear of expectation to break f(X) into monomials: more
formally, if f(X) =

∑
|S|≤D fS(X) is the Efron-Stein decomposition for a polynomial of degree

D, then to show the goal it clearly suffices to show
E[fS(XL)(1(Xρ = c)− ν(c))] = 0.

Crucially, the monomial fS is a function which depends only on a set of at most D leaf colorations
XD. Therefore, the result follows if we can show those leaves by themselves are independent of
the root coloration. This is shown by performing an iterative trimming procedure on the minimal
subtree spanned by the root and the leaves in S: every time there is an isolated path of length k
(whereMk is rank one: k = 2 in the example above) all information is lost from the start of the path
to its end. Using this idea and some elementary combinatorics, we can prove that if |S| is small, the
trimming procedure will delete everything, and so the root is indeed independent of these leaves.

Failure of RBF Kernel Ridge Regression (Theorem 8.) This result builds on the low-degree
polynomials result. First, we show that if the bandwidth parameter in the kernel is taken too small,
then the output of Kernel Ridge Regression (KRR) is close to zero on a new test point and so it
fails to learn anything. Otherwise, we can directly show that any function with a substantial high
degree polynomial component has large RKHS norm. We can also construct an interpolator of the
training data which has much smaller RKHS norm, by showing that every training sample has a
small “fingerprint” which uniquely identifies it and is detectable with a low-degree polynomial. It
then follows that whatever the output of KRR is, it must have a small RKHS norm and cannot
correlate with the true regression function.
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Success of noise robust reconstruction using “high degree” algorithms (Mossel and Peres
2003). We briefly explain why noise robust reconstruction is possible with simple and compu-
tationally efficient algorithms. The key is to consider the case of a depth 1 tree: because the rows
of M are distinct, if the degree of the tree is a sufficiently large constant, then by the Law of Large
Numbers the empirical distribution of its children will be close to the row of M corresponding to
the state of the parent, letting us reconstruct the parent with say 99.9% probability of success. Given
this, it is not too hard to argue this argument works recursively and in the presence of a small ad-
versarial noise. Note that this algorithm recursively integrates global information on the tree across
multiple scales — in contrast, the lower bound used the fact that low-degree polynomials can only
aggregate information between small sets of variables in a limited (linear) way.

Unknown tree results (Theorem 11 and Theorem 27). The lower bound for low-degree poly-
nomials in this setting can be reduced to the previous low-degree polynomial lower bound, which
leaves proving that efficient (and SQ) algorithms can successfully solve this problem. Once we re-
construct the tree, we can run any algorithm for reconstructing the root given the leaves, e.g. the one
described just above or BP. As far as reconstructing the tree, we first explain how to reconstruct the
first layer. We prove that the joint distribution of any two leaves has enough information to tell us if
they are immediate neighbors, which determines the location of all of their parents in the tree (such
a test is easy to construct if we look at the generalized eigenvectors of M ). Now that the bottom
layer of the tree structure is determined, we use the fact that we have very good estimates of their
parents colorations using the algorithm described before. Crucially, since that algorithm’s accuracy
guarantee for reconstructing the internal node’s colors is very strong and does not decay as we go
further and further up the tree, we can indeed apply this argument recursively to get the whole tree.

Implementing this algorithmic approach in the SQ framework is straightforward: at the end of the
day it is based on computing the joint distributions of pairs of (estimated) vertex colorations, and
those are all averages over the data. On the other hand, note that this method very strongly relies
on the ability of an SQ algorithm to make adaptive queries, since the queries made are based on the
partially reconstructed tree structure, which is unknown to the algorithm before it starts.
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construction”. Proceedings of the thirty-eighth annual ACM symposium on Theory of computing,
pp. 159–168.

Applebaum, Benny, Boaz Barak, and David Xiao (2008). “On basing lower-bounds for learning
on worst-case assumptions”. 2008 49th Annual IEEE Symposium on Foundations of Computer
Science. IEEE, pp. 211–220.

Mezard, Marc and Andrea Montanari (2009). Information, physics, and computation. Oxford Uni-
versity Press.

Dembo, Amir and Ofer Zeitouni (2010). Large Deviations Techniques and Applications. Springer.
Artin, Michael (2011). Algebra. Pearson.
Decelle, Aurelien, Florent Krzakala, Cristopher Moore, and Lenka Zdeborová (2011). “Asymptotic
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A Organization of the Appendix

In the Appendices we give full proofs of all results; there is no dependence on the Technical
Overview as all the information there will be repeated here in more detail. In Appendix B we
state more formally the open problem described in the intro. In Appendix C we prove the results
for known trees: in particular, this includes the main lower bound result, which is the failure of
low degree polynomials for recovering the root; we also show how to deduce the RBF kernel lower
bound using this. This is also where the RecMaj algorithm from Figure 1 is formally explained.
In Appendix D we prove the results in the setting with an unknown tree; the main technical step is
showing how to reconstruct the tree when λ2 = 0 using a sample-efficient algorithm, which can be
straightforwardly implemented in SQ.

B Open Problem: General Broadcast Chains

Question 12 (Kesten-Stigum is sharp for Low-Degree Polynomials?). Suppose that d and transition
matrix M are such that d|λ2(M)|2 < 1, i.e. we are below the Kesten-Stigum threshold. Let DN be
an arbitrary function of N = d` such that DN = O(logN) as `→∞. Is it true that the degree-DN

maximum correlation between the broadcast process at the leaves XL and the root Xρ in the sense
of Definition 4 is asymptotically zero, i.e. lim inf`→∞ Corr≤DN = 0? Equivalently, is it true that

lim inf
`→∞

max
c∈[q]

sup
deg(f)≤DN ,E[f(XL)2]=1

Eµ` [f(XL)(1(Xρ = c)− ν(c))] = 0?

Here we make the common choice of looking at logN degree polynomials (see e.g. Hopkins and
Steurer 2017; Kunisky et al. 2019), but any degree is interesting.

With the same intuition, we ask if a similar result to Theorem 8, the lower bound for kernel ridge
regression, holds below the Kestum-Stigum threshold — see Figure 1 for related simulation results,
which support the failure of KRR for small values of λ2. We note that in our experiment the threshold
where KRR starts to work is much closer to dλ2 = 1. It is quite possible that this is a finite-depth
effect since the experiment was done with a relatively shallow tree. Of course, if the sharp threshold
is not the Kestum-Stigum threshold it would be extremely interesting to understand what the correct
threshold is as a function of the broadcast model parameters.

C Known Tree: Upper and Lower Bounds

In this section, we prove a lower bound for arbitrary markov chains M satisfying λ2(M) = 0.
From basic linear algebra (the existence of the Jordan Normal Form (Artin 2011)), we know that
λ2(M) = 0 if and only if Mk is a rank one matrix for some 1 ≤ k ≤ q, i.e. the Markov chain
mixes perfectly in a finite number of steps. For concreteness, we give an example of such a chain
with k = 2, q = 3 below.
Example 13 (Proof of Proposition 5, Mossel 2001). The following Markov chain on q = 3 states is
a simple example of a chain with λ2(M) = 0: we have

M =

[
0.5 0 0.5
0.25 0.5 0.25

0 1 0

]
, M2 =

[
0.25 0.5 0.25
0.25 0.5 0.25
0.25 0.5 0.25

]
.

C.1 Failure of Low-Degree Polynomials

Theorem 14. Let M be the transition matrix of a Markov chain on [q] and suppose that 1 ≤ k ≤ q
is such thatMk is a rank-one matrix. Let S be any subset of the leaves of the depth-` complete d-ary
tree T = (V,E, ρ) with root ρ and let (Xv)v∈V denote the broadcast process on T with channel M .
Let S be an arbitrary subset of the leaf nodes of this tree. If |S| < 2b`/(k−1)c, then I(Xρ;XS) = 0,
i.e. XS is independent of the root value Xρ.

Proof. Assume for contradiction that |S| < 2b`/(k−1)c and I(Xρ;XS) > 0. Let TS be the minimal
spanning subtree of T containing the root node ρ and all of the elements of S. (Equivalently, TS is
the union of all of the root-to-leaf paths to S.)
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Recall that in our convention, the edges of the tree T are directed from the parent to the child. We
say that TS contains an isolated length k directed path if there exists adjacent nodes u0, . . . , uk
contained in T with (ui, ui+1) ∈ E for all 0 ≤ i < k, and such that nodes u1, . . . , uk−1 all have
degree 2 in TS .

We show that we can reduce to the case where TS contains no isolated length k directed paths. Oth-
erwise, let u0, . . . , uk be as defined above and let Suk be the subset of S consisting of descendants
of uk (note that by the definition of TS , Suk is nonempty). Observe that

I(Xρ;XS) ≤ I(Xρ;XS , Xuk) = I(Xρ;XS\Suk , Xuk)

where the last equality follows by the Markov property (all nodes in Suk are descendants of uk, so
XSuk

is independent of the root value Xρ conditionally on XS\Su , Xuk ).

Next, by the chain rule for mutual information

I(Xρ;XS\Suk , Xuk) = I(Xρ;XS\Suk ) + I(Xρ;Xuk | XS\Suk ) = I((Xρ;XS\Suk )

where the last equality follows from the fact that

I(Xρ;Xuk | XS\Suk ) ≤ I(Xu0 , Xρ;Xuk | XS\Suk ) = I(Xu0 ;Xuk | XS\Suk ) = 0

where in turn the first equality follows from the Markov property (Xρ is independent of Xuk condi-
tional on Xu0

and XS\Suk ) and the second equality follows because by the Markov property,

XS\Suk → Xu0
→ Xuk

is a Markov chain where the rightmost channel has transition matrix Mk, a rank-one matrix, so the
conditional law of Xuk is the stationary measure of M regardless of the value of Xu0

, hence Xuk is
conditionally independent of Xu0

. Combining the above claims shows that

I(Xρ;XS) ≤ I(Xρ;XS\Suk )

where |S \ Suk | < |S|; by monotonicity of mutual information we in fact have

I(Xρ;XS) = I(Xρ;XS\Suk ).

Repeating this argument recursively reduces to the case where TS has no isolated length k paths.

Finally, if TS has no isolated length k paths then every internal node of TS is either: (a) at depth
at most k − 1, or (b) has an ancestor at graph distance at most k − 1 away with degree at least 3.
By induction, this implies that the number of nodes at depth `′ in TS is at least twice as large as the
number of nodes at depth `′ − (k− 1). Since S is the set of nodes in TS at depth `, this implies that

|S| ≥ 2b`/(k−1)c

which completes our proof by contradiction.

Corollary 15. In the setting of the previous Theorem, for any function f : [q]L → R of Efron-Stein
degree at most 2b`/(k−1)c of the leaves XL and any prior ν on the root,

E[f(XL) · (1(Xρ = c)− ν(c))] = 0.

Proof. By linearity of expectation and the Efron-Stein decomposition,

E[f(XL)Xρ] =
∑

S⊂L,|S|≤D

E[fS(XL) · (1(Xρ = c)− ν(c))]〉] = 0

where the last equality used the previous Theorem and the fact E[1(Xρ = c)] = ν(c).

C.1.1 A consequence: failure of RBF kernel regression with oracle tuning

Setting and notation. We consider the performance of RBF kernel ridge regression (with arbi-
trary/oracle hyperparameter selection) for predicting the color of the root given the color of the
leaves. As is customary, we encode the leaf vectors using a one-hot encoding, so the input to the
regression is a list of i.i.d. samples (xi, yi)

m
i=1 where xi is the vector of one-hot encoded leaves, i.e.

(xi)`,c = 1(X` = c), and for an arbitrary fixed color c, yi := 1(Xρ = c) − ν(c) is the centered
indicator that the root is colored c.
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Background on Kernel Ridge Regression. We remind the reader of some standard facts about
kernel ridge regression and the Gaussian/RBF kernel — see (Shalev-Shwartz and Ben-David
2014) for a reference. Given a kernel K(x, x′), training points x1, . . . , xm, and responses y =
(y1, . . . , ym), the kernel ridge regressor with ridge parameter λ is given by solving a linear equation

v = (K + λI)−1y

where Kij = K(xi, xj) is the kernel matrix, and the predicted response for a fresh data point x0 is
given by

ŷ0 :=

n∑
i=1

viK(xi, x0).

As is well-known, kernel ridge regression with ridge parameter λ is equivalent to solving the ridge
regression problem

arg min
w

n∑
i=1

(yi − 〈w,ϕ(xi))
2 + λ‖w‖22 (2)

with feature vectors ϕ(x) lying in a certain Hilbert space. Note that with this parameterization the
prediction for fresh data point x0 would just be ŷ0 = 〈w,ϕ(x0)〉 since w is in the Hilbert space. In
the case of the RBF kernel K(x, y) = e−‖x−y‖

2
2/2σ

2

, the corresponding feature map for x ∈ Rd is

ϕ(x) = e−‖x‖
2/2σ2

(
1

σ2(n1+···+nd)
xn1
1 · · ·x

nd
d√

n1! · · ·nd!

)
n1,...,nd≥0

(3)

so that K(x, y) = 〈ϕ(x), ϕ(y)〉. Note that ‖ϕ(x)‖ = 1 since K(x, x) = e0 = 1.

Proof of the lower bound. We now proceed to prove the subexponential RBF sample complexity
lower bound in our setting. For ψ an element of the RKHS, define the orthogonal projection operator
onto the space of degree J and higher polynomials P≥J by

(P≥Jψ)n1,...,nd
:=

{
0 if n1 + · · ·+ nd < J

ψn1,...,nd otherwise
.

From the definition, we first show that for large degree J and bandwidth σ not too tiny, P≥J is very
contractive when operating on feature embeddings ϕ(x).

Lemma 16. For any x ∈ Rd and ϕ(x) as defined in (3) with bandwidth parameter σ > 0,

‖P≥Jϕ(x)‖2 ≤ 1√
J

(
e‖x‖2

Jσ2

)J
Proof. First observe that

(‖x‖2/σ2)j

j!
=

∑
n1+···+nd=j

1

n1! · · ·nd!(σ2)2j
x2n1
1 · · ·x2ndd

by applying the multinomial theorem. Therefore,

‖P≥Jϕ(x)‖2 = e−‖x‖
2/σ2

∞∑
j=J

‖x‖2j

σ2jj!
= e−‖x‖

2/σ2 ‖x‖2J

σ2JJ !

∞∑
j=0

‖x‖2jJ !

σ2j(J + j)!
≤ ‖x‖

2J

σ2JJ !

and then the stated result follows from a nonasymptotic version of Stirling’s approximation.

Next, we prove that there exists a relatively low-degree and low-RKHS norm polynomial which
perfectly interpolates the training data, by showing that with high probability every sample has a
small and unique “fingerprint” given by looking at a small set of well-separated leaves.
Lemma 17. Let M be the transition matrix of a markov chain on [q] and suppose that 1 ≤ k ≤ q
is such that Mk = ππT is a rank-one matrix, and suppose that π has at least two nonzero entries.
Then if S is a set of leaves of distance at least 2k from each other andX1, . . . , Xm are i.i.d. random
vectors generated by the broadcast process with transition matrixM , the probability that there exists
i, j ∈ [m] such that (Xi)S = (Xj)S is at most

(
m
2

)
δ|S| where δ = δ(M) ∈ (0, 1) is a constant

depending only on M .
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Proof. First, let X,X ′ be independent samples of the leaves from the generative model and let
c = c(M) > 0 be such that the stationary distribution π has at least two entries of size at least c.
For S a set of leaves of distance at least 2k from each other, we have by the Markov property that
the entries of XS are independent from each other conditional on the values of the markov process
Xv for all vertices v at height k above the leaves; we see then that the conditional law of the leaves
XS is π⊗S which does not depend on Xv , so in fact the leaves XS are unconditionally distributed
according to the product measure π⊗S . Then by independence,

Pr(XS = X ′S) =
∏
i∈S

Pr(Xi = X ′i) ≤ (1− c)|S|

where in the last step we used that regardless of the value of Xi, X ′i has a probability at least c of
being different from it.

Lemma 18. For x ∈ {0, 1}d with
∑
i xi = p, and S ⊆ [d] and bS ∈ {0, 1}d arbitrary, there exists

w = w(p, S) of (Hilbert space) norm

‖w‖2 ≤ 2|S|ep/2σ
2

max
{

1, σ2|S|
}√
|S|!

such that
〈w,ϕ(x)〉 = 1(xS = bS).

Proof. Observe that
1(xS = bS) =

∏
i∈S

[bixi + (1− bi)(1− xi)]

which for fixed b, expands into a sum of at most 2|S| many monomials of degree at most |S| and
with coefficient 1. Representing this expanded polynomial in the RKHS, using (3), then leads to the
stated norm bound.

We show that the overlap between two independent samples of the leaves from the model concen-
trates exponentially with a subgaussian tail:
Lemma 19. Let M be the transition matrix of a markov chain on [q] and suppose that 1 ≤ k ≤ q
is such that Mk = ππT is a rank-one matrix. Then if XL, X

′
L are two independent random vectors

of leaf colorations generated by the broadcast process on the d-ary tree with N = |L| leaves and
xL, x

′
L are the corresponding one-hot encodings, we have that

Pr

(∣∣∣∣ 1

N
〈xL, x′L〉 − ‖π‖22

∣∣∣∣ > t

)
≤ 2e−cNt

2

where c = c(M,d) > 0 is a constant not depending on N .

Proof. First, observe that if N is smaller than dk, this bound can be proved trivially by shrinking
c, so henceforth we assume N is larger than this. By the law of total probability, it is sufficient to
prove the desired bound conditional on the colors XV , X

′
V where V is the set of vertices at height

k above the leaves, and similar to the proof of Lemma 17 we observe by the Markov property that
this makes the color of the set of children of any particular v ∈ V independent of the colors of all
non-children of v. This means that 〈xL, x′L〉 a sum of bounded independent random variables, and
because Mk = ππT we have that its expectation is ‖π‖22N , so the result follows immediately from
Hoeffding’s inequality (Vershynin 2018).

Theorem 20. Let M be the transition matrix of a markov chain on [q] and suppose that 1 ≤ k ≤ q
is such that Mk = ππT is a rank-one matrix, and suppose that π has at least two nonzero entries.
Suppose that m/δ ≤ ecN

ε

. Then given m i.i.d. samples (x1, y1), . . . , (xm, ym) from the broadcast
model on the d-ary tree with N leaves and broadcast channel M , we have that for any bandwidth
σ ≥ 0 and ridge parameter λ ≥ 0, for w the output of ridge regression in RKHS space with those
parameters, that with probability at least 1− δ

Ex0,y0 [y0〈w,ϕ(x0)〉]√
Ex0,y0 [y20 ]

= O(
√

1/N)

provided that m/δ = O(eN
ε

) where ε = ε(M,d) > 0 is independent of N (equivalently, indepen-
dent of the depth of the tree).
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Proof. As usual, we will use that N can be assumed larger than a fixed absolute constant without
loss of generality. The proof is via case analysis on the bandwidth parameter σ.

First we make an argument which covers the case of small bandwidth parameter σ. Note that for
any i, ‖xi‖2 = N almost surely since there are N leaves and each leaf is one-hot encoded. By
Lemma 19 and the union bound, with probability at least 1− δ/4 for any i 6= j in [m] we have

‖xi − xj‖22 = 2N − 2〈xi, xj〉 ≥ 2(1− ‖π‖22)N −OM,d(
√
N log(m/δ))

so
Kij = e−‖xi−xj‖

2
2/2σ

2

≤ exp
(

[−(1− ‖π‖22)N +OM,d(
√
N log(m/δ))]/σ2

)
.

It follows that there exists c2 = c2(M,d) > 0 such that if σ ≤ c2N
1/2−ε/4, then (K)ij ≤ e−N

ε/3

for i 6= j and so by Gershgorin’s disk theorem and the fact that the diagonal of K is all-ones,
‖K− I‖OP ≤ 1/N . Hence for the Kernel Ridge solution v = (K+λI)−1y we have ‖v‖ ≤ 2‖y‖ ≤
2
√
m.

Consider a fresh test set of independently sampled pairs of leaf and root colorations
(x′1, y

′
1), . . . , (x′ms, y

′
ms) where s := N log(2/δ). Observe by Hoeffding’s inequality that with

probability at least 1− δ/4,∣∣∣∣∣∣∣
1

ms

ms∑
i=1

 m∑
j=1

vjK(xj , x0)

2

− Ex0


 m∑
j=1

vjK(xj , x0)

2

∣∣∣∣∣∣∣ = O(

√
log(2/δ)/s)

where x0 is a fresh one-hot encoded vector of leaf colorations sampled from the same distribution
and where we used the fact that ‖v‖ ≤ 2

√
m and K(·, ·) ≤ 1 to show that over the randomness

of x0,
∣∣∣∑m

j=1 vjK(xj , x0)
∣∣∣ ≤ 2

√
m almost surely, which we used in order to apply Hoeffding’s

inequality. By repeating the argument used to show the off-diagonal entries of K are small, we have
with probability at least 1− δ/4

1

ms

ms∑
i=1

 m∑
j=1

viK(xj , xi)

2

≤ me−N
ε/2

,

hence by the triangle inequality we have with probability at least 1− δ that

Ex0

( m∑
i=1

viK(xi, x0)

)2
 ≤ me−Nε/2 +O(

√
log(2/δ)/s)

and recalling s = N log(2/δ) gives the result in this case.

Now we cover the remaining set of bandwidth parameters where σ > c2N
1/2−ε/4. By the combi-

nation of Lemma 17 applied with |S| = CM log(m/δ) and Lemma 18, we have that there exists w
such that for every xi

〈w,ϕ(xi)〉 = yi

and
‖w‖ ≤ (m/δ)C

′
M eN/4σ

2

σCM logm/δ
√

(CM logm/δ)!. (4)
It follows that the output of KRR with any ridge parameter λ ≥ 0 has norm at most the rhs of (4)
(otherwise, replacing the output with w would shrink the norm without decreasing the training error
in (2)). Next, by Lemma 16 we have that for any x and degree J

〈P≥Jw,ϕ(x)〉 = 〈w,P≥Jϕ(x)〉
≤ ‖w‖‖P≥Jϕ(x)‖

≤ ‖w‖ 1√
J

(
e‖x‖2

Jσ2

)J
= ‖w‖ 1√

J

(
eN

Jσ2

)J
so taking as in Corollary 15 J = 2b`/(k−1)c = N ε where this equation defines ε and using that

N/Jσ2 = N1−ε/σ2 = O(σ−ε/(1−ε/2)),
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we have that for any w satisfying (4),

|〈P≥Jw,ϕ(x)〉| ≤ ‖w‖(c3/σε/(1−ε/2))N
ε

≤ (m/δ)C
′
M eN

ε/2/4c2σCM logm/δ
√

(CM logm/δ)!(c3/σ
ε/(1−ε/2))N

ε

= O((1/σ)N
ε/2).

Since by Corollary 15 and Cauchy-Schwarz we have that

Ex0,y0 [y0〈w,ϕ(x0)〉] = Ex0,y0 [y0〈P≥Jw,ϕ(x0)〉] ≤
√
Ex0,y0 [y20 ]

√
Ex0,y0 [〈P≥Jw,ϕ(x0)〉2]

combining this with the bound on |〈P≥Jw,ϕ(x)〉| completes the proof.

C.2 Success of noise-robust reconstruction using non-low-degree algorithms

Above we saw that when |λ2(M)| = 0, very high degree polynomials are needed to get any es-
timate correlated with the root. Nevertheless, for “most” matrices M with |λ2(M)| = 0 and for
degree d sufficiently large as a function M there exists a simple recursive and noise-robust method
which witnesses the fact that reconstructing the root is possible. If one likes, this recursive function
can trivially be expressed as a polynomial: then it will be a very high-degree polynomial that is
nonetheless robust to noise.

The reason for the qualifier “most” in the discussion above is that there are some degenerate M for
which the task is clearly impossible: e.g. if M is rank one (so it does not depend on its input). There
are other similar examples, e.g. the chain on 3 states which deterministically transitions from state
1 to state 2, and such that at states 2 and 3 the chain flips a fair coin to transition to either state 2 or
3. With this clarified, we can now state the known positive result for reconstruction.
Theorem 21 (Theorem 6.1 of Mossel 2004). Suppose M is a the transition matrix of a Markov
chain with pairwise distinct rows, i.e. for all i, j ∈ [q] the rows Mi and Mj are distinct vectors.
Then there exists d0 = d0(M) such that for all d ≥ d0, reconstruction is possible on the d-ary tree.

A variant of the condition in this Theorem gives a tight characterization of Markov chains where
reconstruction is possible on the infinite d-ary tree for sufficiently large d, see Theorem 2.1 of
Mossel and Peres 2003.

By revisiting the proof of Theorem, we get the following slightly more precise result which we will
use in later sections. This result shows that for any desired accuracy δ, for sufficiently large degrees
d there exists a noise-tolerant estimator f which reconstructs the root correctly with probability at
least 1− δ uniformly of the color of the root.
Theorem 22 (Proof of Theorem 2.1 of Mossel and Peres 2003). Suppose M is a the transition
matrix of a Markov chain with pairwise distinct rows, i.e. for all i, j ∈ [q] the rows Mi and Mj

are distinct vectors. Let δ ∈ (0, 1) be arbitrary. There exists d0 = d0(M, δ), ε > 0 such that
for all d ≥ d0, ε-noisy reconstruction is possible on the d-ary tree and furthermore there exists a
polynomial-time computable function f = fM,` valued in [q] such that

max
c∈[q]

Pr(f(X ′L) 6= Xρ | Xρ = c) < δ

where X ′L is the ε-noisy version of XL (see Definition 3).

Proof sketch. As explained above, this result follows from examination of the proof of Theorem 2.1
in Mossel and Peres 2003. For the reader’s convenience, we summarize the main idea of the proof.

In the base case of a depth 1 tree, reconstruction of the root with probability at least 1− δ is possible
provided d is a suitably large constant, because by basic large deviations theory (Sanov’s Theorem
(Dembo and Zeitouni 2010)) the empirical distribution of the children will concentrate around the
row of M corresponding to the root label (which by assumption is distinct from all of the other
rows). This procedure is also robust to a small amount of noise, which handles the case where ε > 0
and in fact even if the ε proportion of children assigned labels by the noise process choose their
labels adversarially. When doing the induction, the result of the reconstruction process at lower
levels of the tree can therefore (by conditional independence) be modeled as the true values with a
small amount of adversarial noise and this allows the same argument to show that at each level each
vertex is recovered correctly with probability at least 1− ε (where we take ε := δ).
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Remark 23 (RecMaj in Figure 1). The RecMaj algorithm in Figure 1 corresponds to the algorithm
described in the above proof sketch: i.e. a recursive algorithm which to reconstruct the coloration of
a vertex, looks at the reconstructions of its children, takes the empirical distribution, and picks the
corresponding row of M which is closest in `2 norm.

C.3 Low-Degree Polynomials succeed above the KS threshold

The Kesten-Stigum threshold is the sharp threshold for count reconstruction defined earlier. The
definition of count reconstruction informally says that there is a nontrivial amount of mutual infor-
mation between count statistics at the leaves and the value of the Markov Random Field at the root.
To relate count reconstruction to low-degree polynomials, we use the following more precise result:

Lemma 24 (Proof of Theorem 1.4 of Mossel and Peres 2003). Suppose that d|λ2(M)|2 > 1. There
exist coefficients sc ∈ C for c ∈ [q] such that the random variable

S =
∑
c∈[q]

sc#{X` = c : ` ∈ L}

satisfies
E[S | Xρ = c] = vc

where v is an unit-norm eigenvector of M in its second-largest eigenspace, i.e. achieving ‖Mv‖ =
|λ2(M)|, and such that

E[|S|2 | Xρ = c] ∈ [A,B]

where 0 < A ≤ B are constants depending only on d and M (in particular, they are independent of
the depth of the tree).

As a consequence of this, we immediately obtain that low-degree polynomials (in fact, degree 1
polynomials) have nontrivial correlation with the root above the KS threshold, in the same sense as
Definition 4.

C.3.1 A Question: Bayes-Optimal Reconstruction

We saw above that degree-1 polynomials of the leaves are sufficient to achieve nontrivial correlation
with the root, provided that the model we consider is above the KS threshold. A natural question is
whether higher degree polynomials have a significant advantage over degree-1 polynomials for esti-
mating the value of the root. Relevant to this question, we recall the following result and conjecture
from Mossel et al. 2014 which concerns noise-robust recovery with the Binary Symmetric Channel
(equivalently, the Ising model on trees without external field):

Theorem 25 (Theorem 3.2 of Mossel et al. 2014). There exists an absolute constant C ≥ 1 such
that the following result is true. For θ ≥ 0 let

M =

[
(1 + θ)/2 (1− θ)/2
(1− θ)/2 (1 + θ)/2

]
and observe that λ2(M) = θ. If dθ2 > C, then for all ε < 1 and X ′L defined by the ε-noisy
broadcast model,

lim
`→∞

dTV (Lµ`(X ′L = · | Xρ = 1),Lµ`(X ′L = · | Xρ = 0))

= lim
`→∞

dTV (Lµ`(XL = · | Xρ = 1),Lµ`(XL = · | Xρ = 0))

in other words, if ε < 1 is fixed then in the limit of infinite depth the probability of reconstructing
the root correctly is the same as in the noiseless case ε = 0.

(Recall that the equivalence of the statement in terms of TV and in terms of maximum probability of
reconstructing the root follows from the Neyman-Pearson Lemma Neyman and Pearson 1933.) This
statement is conjectured to hold with C = 1 Mossel et al. 2014 and as explained there, is closely
related to Bayes-optimal recovery in the stochastic block model. Based on this, we ask the following
question:
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Question 26. Do polynomials of degree O(logN) achieve asymptotically Bayes-optimal recovery
with the above channel when dθ2 > 1? More precisely, does there exist a polynomial threshold
function f of degree O(logN) which asymptotically achieves

Pr(f(XL) = Xρ) = (1 + o(1)) Pr(sgn(E[Xρ | XL]− 1/2) = Xρ)

where the rhs is the error of the Bayes-optimal estimator.

It seems likely the answer to this question is positive. The reason for this is the following: (1) if the
conjectured strengthening of Theorem 25 is true, then it implies that the combination of a majority
vote up to some depth and ω(1) number of rounds of belief propagation achieves Bayes-optimal
recovery, and (2) a constant or very slowly growing number of rounds of belief propagation can be
simulated with low-degree polynomials (see Appendix of Gamarnik et al. 2020), and the threshold
used in the majority vote should also be approximable by polynomials. We state the conjecture with
O(logN) degree polynomials since this is informally considered to correspond to “polynomial time
algorithms” in the low-degree framework (Hopkins 2018; Kunisky et al. 2019), but based on the
above discussion it seems likely that a smaller degree than O(logN) is sufficient, e.g. any degree
going to infinity with N may be sufficient.

D Unknown Tree Setting

In this section, we show that for any channel M satisfying the conditions of Theorem 22, i.e. such
that for sufficiently large d reconstructing the root is possible (in the known tree setting/in the usual
sense), then in the unknown tree setting that a relatively simple algorithm succeeds at reconstructing
the root with a polynomial number of samples, and this algorithm can be straightforwardly imple-
mented in the SQ (Statistical Query) model with polynomial number of queries and error tolerance.

The key step in the algorithm for reconstructing the root is a method of reconstructing the tree, which
lets us reduce to the known tree setting. This kind of problem has previously been extensively studied
in the context of phylogenetic reconstruction with particular channels M coming from biology, and
for example algorithms with polynomial runtime and sample complexity are known in the case that
M is a nonsingular matrix (Mossel and Roch 2005). In the present context, we are very interested
in the case of singular matrices (e.g. those with λ2(M) = 0) so we cannot rely on existing results.

Model. We remind the reader that in the unknown tree setting, we are in the model of Definition 9.
This means that an unknown Y ∗ is sampled from Uni([q]), and the algorithm seeks to reconstruct
Y ∗ given access to m i.i.d. samples X(1)

L , . . . , X
(m)
L of the leaves generated by the broadcasting

process with root prior (2/3)δY ∗ +(1/3)Uni([q]), i.e. the root is biased/tilted towards the unknown
Y ∗. When we say the tree is “unknown” in this model, it means that the algorithm is not given a
priori knowledge of the true order of the leaves, e.g. the algorithm does not know at the beginning
whether coordinates 1 and 2 of X(1)

L correspond to siblings or to leaves far apart in the tree (this is
completely analogous to the situation in phylogenetic reconstruction Steel 2016). In the definition
of this model, this is modeled by shuffling the order of the leaves by an unknown permutation τ ;
note that this order is kept consistent between each sample.

D.1 Failure of low-degree polynomials

Theorem 27. Let M be the transition matrix of a Markov chain on [q] and suppose that 1 ≤ k ≤ q
is such that Mk is a rank-one matrix. If c ∈ [q] is arbitrary and f is a polynomial with Efron-Stein
degree strictly less than 2b`/(k−1)c, then

ER[f(X)(1(Y ∗ = c)− 1/q)] = 0

where R is as defined in Definition 9.

Proof. Let ν(c) = 1/q for c ∈ [q] denote the prior on Y ∗.

By linearity of expectation and the definition of Efron-Stein degree, it suffices to show the result
for functions f of the form fS1(X

(1)
L ) · · · fSm(X

(m)
L ) where

∑
i |Si| < 2b`/(k−1)c, where each
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fSi(X
(i)
L ) is a function only of the coordinates of its input in Si. Since the samples X(1), . . . , X(m)

are conditionally independent given the value of Y ∗, we have

ER

[(
m∏
i=1

fSi(X
(i)
L )

)
(1(Y ∗ = c)− ν(c))

]

= ER

[
E

[(
m∏
i=1

fSi(X
(i)
L )

)
(1(Y ∗ = c)− ν(c)) | Y ∗

]]

= ER

[(
m∏
i=1

E[fSi(X
(i)
L ) | Y ∗]

)
(1(Y ∗ = c)− ν(c))

]

= ER

[(
m∏
i=1

E[fSi(X
(i)
L )]

)
(1(Y ∗ = c)− ν(c))

]
= 0

where in the first equality we used the law of total expectation, in the second equality we used the
aforementioned conditional independence, in the third equality we crucially used that by Theorem 14
the low-degree polynomial fSi(X

(i)
L ) is independent of the root value and thus Y ∗, and in the last

step we used that Y ∗ ∼ ν by definition.

D.2 Reconstruction Algorithm

For c ∈ [q], let e(c) or ec denote the qth standard basis vector in Rq . In both cases, the vector is a
column vector.
Lemma 28. Suppose that ν is a probability measure on [q] and ν(c) > 0 for all c ∈ [q], then there
exists a constant α = α(M,ν) > 0 such that the following is true. Let (Xu)u ∼ µ for u ∈ V
be defined by the broadcasting process on T = (V,E, ρ) with prior ν at the root and channels
corresponding toM : q×q the transition matrix of an ergodic Markov chain. Then µ(Xu = c) > α
for all u ∈ V .

Proof. Under the assumptions, there exists some β > 0 such that ν = βπM + (1 − β)ν′ for ν′ a
probability measure. Because πM is the stationary distribution and the marginal law at any vertex u
is νMk for some k ≥ 0, it follows that µ(Xu = c) > βπM (c) ≥ minc βπM (c) =: α > 0.

Lemma 29. Suppose that u, v are two descendants of node w at graph distance k from w and
random variables Xu, Xv, Xw follow the Markov process on trees µ with transition matrix M :
q × q. Then

E[e(Xu)e(Xv)
T ] = (Mk)TΠwM

k

where Πw : q× q is a diagonal matrix with entries the marginal law of Xw, i.e. (Πw)cc = µ(Xw =
c) for c ∈ [q].

Proof. Using the law of total expectation and using by the Markov property that Xu and Xv are
conditionally independent given Xw, we have

E[e(Xu)e(Xv)
T ] = E[E[e(Xu) | Xw]E[e(Xv)

T | Xw]] = E[(eTXwM
k)T (eTXwM

k)] = (Mk)TΠwM
k

where in the last equality we used the definition of Πw and the definition of the broadcast process in
terms of the transition matrix M .

Based on this, we can recursively reconstruct the tree when the degree is sufficiently large. We note
that for other channels like the BSC channel, tree reconstruction methods often handle internal nodes
u by computing majorities of the nodes under them, which gives an unbiased estimate of the spin
Xu, but this technique is not applicable in our setting (it’s unclear that unbiased estimators exist).
Nevertheless, we show that applying the estimator from Theorem 22 can be used in a similar way,
provided the degree d is sufficiently large.
Theorem 30. Suppose M is a the transition matrix of a Markov chain with pairwise distinct rows,
i.e. for all i, j ∈ [q] the rows Mi and Mj are distinct vectors. If |λ2(M)| > 0, additionally
suppose that the prior on the root of the tree is the stationary distribution of M . There exists

22



d ≥ 1 and ε > 0 so that the following result holds true for the complete d-ary tree with any
depth ` ≥ 1. For any δ > 0, there exist a polynomial time algorithm with sample complexity
m = polyM (logN, log(1/δ)) from the ε-noisy repeated broadcast model (Definition 9) which with
probability at least 1− δ:

1. outputs the true tree T (equivalently, the true permutation τ )

2. outputs Ŷ such that Ŷ = Y ∗.

Also, this algorithm can be implemented in the Statistical Query (SQ) model using a V STAT (m)
oracle with m = polyM (log(N/δ)) and polynomial number of queries.

Proof. Given that the algorithm can correctly output the true tree T , the fact that it outputs the
correct root label follows straightforwardly from Theorem 22 by using the algorithm specified in
that result to estimate the root in each sample, and then taking the majority vote over those samples
(which will succeed with high probability provided we take Ω(log(2/δ)) samples due to Hoeffding’s
inequality), and this can approach can also clearly be implemented in the SQ model (the SQ query
is the robust reconstruction function of the leaves which outputs a vector, so we take the expectation
of this and look at the largest entry of this vector). In the remainder of the proof, we show how to
correctly output the true tree T with high probability.

We first prove the result in the case that λ2(M) 6= 0 and afterwards describe how to modify the
argument straightforwardly when λ2(M) = 0. Let ϕ be a right eigenvector such that Mϕ = λ2ϕ.
We start by describing the algorithm which computes the estimated tree T̂ from the bottom up: let
α = α(M, δ) > 0 be a parameter to be set later. Let Ê[·] denote the expectation over the empirical
distribution of m samples, so for any function f we have Ê[f(X)] = 1

m

∑
i f(X(i)).

1. Base case: for all leaves u 6= v define g(u, v) := |〈ϕ, Ê[e(Xu)e(Xv)
T ]ϕ〉|. Let gmax =

maxu 6=v g(u, v) and set u, v to be neighbors in T̂ iff g(u, v) ≥ gmax − α. This constructs
the first layer of the tree T̂ .

2. Recursive case: suppose that we have reconstructed the first s ≥ 1 layers of the tree (from
the bottom), and the current layer of the tree has more than one element. For each pair of
internal nodes u, v at the current level of the tree, let Su, Sv be the set of leaves under these
nodes and let gs(u, v) := |〈ϕ, Ê[e(fM,`−s(XSu))e(fM,`−s(XSv ))T ]ϕ〉| where fM,`−s is
as defined in Theorem 22. Let gmax = maxu6=v g(u, v) and set u, v to be neighbors in T̂
iff g(u, v) ≥ gmax − α. This constructs the next layer of the tree T̂ .

We now need to show that with total probability at least 1−δ, T̂ = T . First we consider the behavior
of the base case; for simplicity, we first describe the argument when ε = 0. Observe that if u and v
are siblings in T at depth ` then by Lemma 29

〈ϕ,E[e(Xu)e(Xv)
T ]ϕ〉 = |λ2|2〈ϕ,Π`−1ϕ〉

where Π`−1 is a diagonal matrix encoding the marginal law of Xw for any w at depth ` − 1, and
similarly, if u and v are not siblings then they are at graph distance at least 4 in T so

〈ϕ,E[e(Xu)e(Xv)
T ]ϕ〉 ≤ |λ2|4〈ϕ,Π`−1ϕ〉

which is smaller by a factor of |λ2|2. (Note, here we are using the fact that in the case |λ2| > 0,
we additionally assumed the prior at the root is stationary and so the marginal law at every depth
in the tree is the stationary distribution.) Observe that by Hoeffding’s inequality and the union
bound we have that with probability at least 1 − δ/n that in the base case step, every entry of the
matrix Ê[e(Xu)e(Xv)

T ] for every pair of leaves u 6= v is within additive error O(
√

log(n/δ)/m)
of its expectation. It follows from this and Lemma 28 that if α = (1/CM )(|λ2|2 − |λ2|4) for CM
a sufficiently large constant depending only on M , ε is sufficiently small with respect to α, and
m = ΩM (log(n/δ)) then in the base case the algorithm computes neighbors correctly. Observe
that at each layer, if the algorithm has correctly reconstructed T in all previous layers then the sets
Su for all nodes u in this layer are deterministic functions of T , and hence so are the queries the
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algorithm makes to Ê. By a similar application of the union bound and Hoeffding’s inequality as
well as Theorem 22 and the assumption that d is sufficiently large with respect to M it follows that
the algorithm succeeds at all subsequent layers as well.

Note that provided we take ε > 0 is sufficiently small, we can show the base case of the argument
will still succeed by using the triangle inequality, and the inductive step in the argument will succeed
because of Theorem 22.

Finally, in the case that λ2(M) = 0, we let ϕ be a generalized eigenvector such that Mϕ 6= 0 but
M2ϕ = 0. Note that such a vector must exist because, 0 is an eigenvalue of algebraic multiplicity
q − 1 as M is ergodic and λ2 = 0, and because our assumption on M rules out the case that M is
rank one, so it’s Jordan normal form must have at least one Jordan block with size at least 2 and this
corresponds to the existence of such a generalized eigenvector ϕ. Now observe for such a ϕ that if
u, v are siblings in T at depth ` then

〈ϕ,E[e(Xu)e(Xv)
T ]ϕ〉 = 〈Mϕ,Π`−1Mϕ〉

which by Lemma 28 is lower bounded by a constant C ′M > 0, while if u, v are not siblings,

〈ϕ,E[e(Xu)e(Xv)
T ]ϕ〉 = 0.

Setting α = C ′M/2 and defining the remaining constants similarly to above ensures the algorithm
succeeds, by the same argument.

Note that in both the case λ2(M) 6= 0 and λ2(M) = 0, the algorithm is implemented by taking the
expectation of certain functions over the samples, so it is straightforwardly implementable with SQ
queries by replacing the empirical expectation with the VSTAT oracle.
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