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Abstract

Sparse linear regression with ill-conditioned Gaussian random covariates is widely
believed to exhibit a statistical/computational gap, but there is surprisingly little
formal evidence for this belief. Recent work has shown that, for certain covariance
matrices, the broad class of Preconditioned Lasso programs provably cannot suc-
ceed on polylogarithmically sparse signals with a sublinear number of samples.
However, this lower bound only holds against deterministic preconditioners, and
in many contexts randomization is crucial to the success of preconditioners. We
prove a stronger lower bound that rules out randomized preconditioners. For an
appropriate covariance matrix, we construct a single signal distribution on which
any invertibly-preconditioned Lasso program fails with high probability, unless it
receives a linear number of samples. Surprisingly, at the heart of our lower bound
is a new robustness result in compressed sensing. In particular, we study recov-
ering a sparse signal when a few measurements can be erased adversarially. To
our knowledge, this natural question has not been studied before for sparse mea-
surements. We surprisingly show that standard sparse Bernoulli measurements
are almost-optimally robust to adversarial erasures: if b measurements are erased,
then all but O(b) of the coordinates of the signal are identifiable.

1 Introduction

Random-design sparse linear regression (SLR) is a fundamental problem in high-dimensional statis-
tics and learning theory. The simplest formulation of this problem is the following: given indepen-
dent covariates X1, ..., X,, drawn from an n-variable Gaussian distribution with zero mean and
positive-definite covariance 3, and responses y; = (X;, w*) for some unknown k-sparse signal w*
(i.e. with at most k£ nonzero entries), the goal is to recover w*. While there are more complex mod-
els (e.g. with noise or non-Gaussian distributions), we are proving lower bounds, so the simplified
model only makes our results stronger.

Information-theoretically, for any positive-definite covariance X, it’s possible to recover w™* exactly
from only O(klogn) samples (X;,y;). (Again, this is a special case of more general results for
the noisy setting.) However, the algorithm which achieves this sample complexity is computation-
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ally inefficient — it has time complexity O(n*). Significant effort has gone into polynomial-time
sample-efficient algorithms for sparse linear regression, under as weak conditions on the covariates
as possible [22, 16, 44, 15, 13, 21, 20, 14, 18, 12, 45, 53, 48, 38, 47, 11, 46]. Essentially all of
these algorithms are variations on one of two fundamental methods: ¢; regularization (most notably,
the Lasso program [44]), and greedy variable selection (most notably, Orthogonal Matching Pursuit
[45]). Moreover, both of these methods seem to hit the same fundamental barrier: they require that
> is in some sense well-conditioned. The most basic assumption enabling efficient algorithms is a
bound on the condition number Apax (X)/Amin(X), and this assumption has been weakened (to e.g.
the Restricted Isometry Property [15], the Compatibility Condition [48], or Weak Submodularity
[18]) but not eliminated. This barrier, and the lack of algorithmic techniques which evade it, suggests
that sparse linear regression with general positive-definite > may exhibit a computational/statistical
gap: that is, sample-efficient signal recovery may be computationally hard.

Preconditioned Lasso. Recent work [32] provided the first computationally-efficient and sample-
efficient algorithm for a broad class of ill-conditioned covariance matrices Y (specifically, covari-
ance matrices of Gaussian Graphical Models with low treewidth such as Gaussian time-series data).
The algorithm was a generalization of Lasso via an initial preconditioning step; while precondition-
ing has been enormously impactful for efficiently solving linear systems [39], it has only recently
been applied to sparse linear regression. The algorithmic results of [32] raise an obvious question:
can preconditioning close the statistical/computational gap for ill-conditioned sparse linear regres-
sion? Or is the gap inherent?

The answer is unclear. The basic obstacle is that no “candidate” hard instances of random-design
sparse linear regression are known: nearly all examples on which Lasso provably fails can be trivially
fixed by preconditioning [53, 23, 17, 46, 31]. The exception is the lower bound in [32], which
provides a limited negative answer to the first question: there is a covariance matrix X such that
any deterministic preconditioner fails (see Section 1.1 for a concrete statement). They showed that
for each preconditioner, there exists a specific bad signal on which it fails, where the signal chosen
depends heavily on the preconditioner.

This suggests the tantalizing possibility that any ill-conditioned SLR problem can be solved by
applying randomized preconditioning. This way, the signal can no longer be chosen adversarially
based on the preconditioner. Indeed, numerical linear algebra is full of situations where randomized
maps are useful precisely for this reason, including the JL embedding and other dimension reduction
methods, algorithms based on random metric embeddings, and the famous Nystrom method for
low rank approximation and preconditioning (see e.g. [56, 51, 42]). Also, it was observed in [31,
32] that randomized preconditioners (or, roughly equivalently, trying a class of preconditioners)
can be used to solve SLR problems in various cases where we do not currently know of a fixed
deterministic preconditioner that works. Given this context, we need to ask the following question:
can randomized preconditioning close the statistical/computational gap?

Our result. We give a near-complete negative answer to this revised question: for a carefully-
chosen ¥ and distribution over the unknown signal w*, any randomly-preconditioned Lasso program
with invertible preconditioners fails (see Section 2 for a more concrete statement).

Broader context on statistical/computational gaps. Random-design sparse linear regression is
very interesting among high-dimensional statistics problems, in that there is essentially no evi-
dence for its conjectured statistical/computational gap; while SLR with worst-case covariates (i.e.
not drawn from a distribution) has been proven computationally hard under standard worst-case
complexity-theoretic assumptions [37, 57, 30, 28], no such hardness is known for random-design
SLR.’ In contrast, problems as diverse as sparse PCA [7], average-case RIP certification [55],
planted dense subgraph [10], robust sparse mean estimation [8], and negative-spike sparse PCA
[8] have provably statistical/computational gaps under (variants of) the Planted Clique conjecture.

Why isn’t sparse linear regression on this list? One possibility is that there is no statisti-
cal/computational gap; in this case, our results imply that new algorithmic techniques beyond pre-

5This is when X is invertible. If ¥ is not invertible the task would be learning the concept/regression
function, i.e. outputting any @ so that (0 — w)T (& — w) = 0. If required to output a k-sparse predictor
and ¥ is not invertible, the problem is NP hard with infinitely many samples [29] as it’s equivalent to finding a
sparse solution of linear equations.



conditioning are needed, and our hard instances provide a natural testing ground for new techniques.
But another potential explanation is the current dearth of conjecturally-hard instances of random-
design sparse linear regression. Reductions from Planted Clique (and other techniques for proving
average-case lower bounds) either explicitly or implicitly involve constructing distributions over the
unknown concept class which encapsulate (to some degree) the hardness of the original problem. For
instance, sparse PCA is conjecturally hard even when the planted sparse direction is drawn uniformly
at random from k-sparse vectors with nonzero entries +1/ vk [36, 9]. Similarly, non-reduction
based lower bounds like Statistical Query lower bounds® are typically derived against the uniform
distribution over a finite set of concepts [27]. Thus, it is problematic that for sparse linear regression,
no such distribution has even been hypothesized: i.e., a family (2,,, D,,)nen Where X, describes
an n X n covariance matrix, and D,, describes a distribution over k(n)-sparse n-dimensional sig-
nals, specifying a model which seems to encapsulate some of the difficulty of random-design SLR.
While it would certainly be necessary that the covariance matrices X, are ill-conditioned, there are
also natural families of ill-conditioned covariate distributions which lead to tractable instances (e.g.
[32, 31]), so such a property is by no means sufficient.

Our main result provides a family of covariance matrices and signal distributions which is hard
at least for all preconditioned Lasso algorithms (this was not accomplished by [32], because they
constructed a different signal for each preconditioner). Thus, our work can be viewed as a necessary
first step towards average-case computational hardness of ill-conditioned sparse linear regression.

1.1 The Preconditioned Lasso

Perhaps the canonical method to solve sparse linear regression problems is by solving a convex
program known as the Lasso [44]. In our noiseless setting, it reduces to the basis pursuit program
we  argmin  |w, .
weR™: Xw=y

This program is well-studied, and it’s known to succeed with high probability with O(k logn) sam-
ples when X is well-conditioned [54], but it also is known to fail if X is ill-conditioned [23, 17, 31].
In the context of ill-conditioned SLR, the class of programs known as the Preconditioned Lasso
[32] is significantly more powerful. Informally, these algorithms apply some change-of-basis to
“condition” the covariates before solving the basis pursuit program. Formally:

Definition 1. For an invertible n x n matrix S (which we think of as an arbitrary function of X that
however cannot depend on the samples), the S-preconditioned Lasso on data (X;,y;) applies the
transformation X; — S~1X;, solves the basis pursuit to get an estimate 9, and returns  := S 9.
This corresponds to solving the convex program

wE argmin ||STw||1. (1)
weR™: Xw=y

Preconditioned Lasso obviously generalizes the Lasso, and it works for SLR tasks where applying
the Lasso directly will fail badly. For example, whenever the covariates come from autoregressive
time series data (e.g. random walk or AR(1)) the sparse linear regression problem can be solved
nearly optimally via Preconditioned Lasso, even though the covariates are likely to be heavily cor-
related. More generally, any covariance matrix with low-treewidth dependency structure induces an
SLR model that is tractable via Preconditioned Lasso, even if the matrix is arbitrarily ill-conditioned
[32]. Due to this generality, examples that are provably hard against the Preconditioned Lasso are
much more difficult to obtain, and much more interesting. Concretely, prior to the present work, the
only known hardness result against the Preconditioned Lasso was the following statement:’

Theorem 1.1 (Informal theorem statement from [32]). For any n > 0, there is a positive-definite
covariance matrix ¥ : nxXn such that for any preconditioner S, there exists some polylog(n)-sparse
signal w* which S-preconditioned Lasso with probability 1 — o(1) fails to recover, when given o(n)
independent samples X; ~ N(0,%) and y; = (X;, w*).

SRelatedly, for realizable regression problems there is a general computationally inefficient algorithm which
makes a smaller number of SQ queries [49].

"To be more precise, Theorem 1.1 and the definition of Preconditioned Lasso actually apply to all rectan-
gular n X s preconditioners, not just invertible preconditioners (note that Program 1 is still defined, though it
no longer corresponds to a change-of-basis). However, most algorithms applying Preconditioned Lasso in the
literature use invertible preconditioners [31, 32]. Moreover, restricting to invertible preconditioners does not
improve the failure probability achievable by the techniques in [32].



This provides a converse to the algorithmic results of [32], which show that for certain covariance
matrices, there is a preconditioner that works for all signals. However, the limitation of Theorem 1.1
is that the hard signal depends on the preconditioner: unpacking the proof of Theorem 1.1 only
gives a signal distribution on which any preconditioner fails with probability (1/n). Thus, the
lower bound is extremely weak if we allow for randomization in the choice of preconditioner, which
is how preconditioners are often applied in other contexts.

2 Main Results

In this paper, we eliminate that limitation and provide a single signal distribution which is provably
impossible to precondition. That is, we construct a covariance matrix and a sparse signal distribution
under which Preconditioned Lasso with any invertible, randomized change-of-basis must fail with
high probability, unless a linear number of samples are given.

Theorem 2.1 (Theorem E.3 of the Appendix). Let n > 0. There is a positive-definite covariance
matrix ¥ : n X n and a distribution D over polylog(n)-sparse signals with the following property:
for any invertible randomized preconditioner S, if we draw w* ~ D, then S-preconditioned Lasso
fails to recover w* with probability at least 1 — o(1), when given o(n) independent samples X; ~
N(0,%) and y; = (X;,w*).

In fact, the full version of Theorem E.3 is even stronger: it shows that even if we fix a family of
poly(n) different preconditioners, they will all fail on a problem instance sampled from our distri-
bution with probability 1 — o(1). This allows us to rule out an even larger class of algorithms: for
example, the algorithm used in [31] for solving jointly walk-summable SLR instances adaptively se-
lects one out of n possible (invertible) preconditioners before running the Preconditioned Lasso, and
our lower bound shows that this strategy and variants are provably defeated by our new construction.

Additionally, we can extend our result to show hardness against rectangular n x s preconditioners.
For technical reasons we only achieve a failure probability of 1/2 — o(1), and require a bound on
the preconditioner size. Nonetheless, at this failure probability and with poly-logarithmically sparse
signals, we can rule out all polynomially-sized preconditioners.

Theorem 2.2 (Theorem E.10 of the Appendix). Let n > 0. There is a positive-definite covariance
matrix ¥ : nxXn and a distribution D over k-sparse signals, for any k > log12 (n), with the following
property: for any randomized preconditioner S with at most exp(k/log*’(n)) columns, if we draw
w* ~ D, then S-preconditioned Lasso fails to recover w* with probability at least 1/2 — o(1), when
given o(n) independent samples X; ~ N (0, %) and y; = (X;, w*).

In both theorems, the probability is over the choice of preconditioner, the signal distribution, and the
random samples. Surprisingly, the key technique used to prove Theorem 2.1 and 2.2 is a positive
identifiability result in compressed sensing. We show that random sparse compressive design matri-
ces are robust to adversarial erasures. To prove our lower bounds, we will fix one such matrix M,
and we will define the covariance matrix ¥ = (M7 M + eI)~" for small € > 0; the robustness of
M will then imply important properties of .. Note that the final Gaussian SLR design matrix (with
independent rows drawn from N (0, X)) will be quite different from the erasure-robust design matrix
M. But first, we describe the application of such matrices M to compressed sensing, as we believe
it is of independent interest and a main contribution of this work.

2.1 Key Technique: Erasure-Robust Sparse Designs

In this section we describe the key technique that enables our main results, an erasure-robust sparse
design, and provide an independent motivation for this design from compressed sensing. At the end,
we provide intuition for how it connects back to hardness against Preconditioned Lasso.

There is a vast literature on sparse linear regression and compressed sensing. Many determinis-
tic conditions and stochastic models for the measurement matrix (also known as design matrix
or covariate matrix) have been demonstrated to imply that sparse signals can be recovered either
information-theoretically or algorithmically [54]. In noisy settings, the goal is usually either ap-
proximate recovery under an £, norm or prediction error (e.g. [14, 53]); exact support recovery with
some assumptions about the signal-to-noise ratio (e.g. [53]); or approximate support recovery under
distributional assumptions about the signal (e.g. [40]). However, in noiseless settings, the goal is



invariably exact recovery. This is obviously ideal. But in situations where the measurements are not
entirely controlled by the algorithm designer, exact recovery could be impossible. A natural goal is
then to try to recover part of the signal. To our knowledge, this notion of partial recovery of sparse
signals (i.e. due to shortcomings of the measurement matrix rather than due to noise) has received
essentially no attention; see Section 3 for a discussion of related notions.

Part of the reason may be that it’s not obvious what models for a compressive measurement matrix
exhibit the behavior that some but not all of the coordinates of a sparse signal are identifiable, besides
artificial examples where e.g. unconstrained variables are added to the system. Such examples do not
answer the question of whether partial recovery is possible under fundamentally weaker modelling
assumptions than total recovery.

Erasure-robustness. Our key technical contribution is a proof that partial recovery is possible in
a natural semi-random model. Specifically, we show that random sparse compressive measurement
matrices M are “erasure-robust”, by which we mean that if an adversary erases a small fraction of
the measurements (M;, z*), replacing them with question-marks, then most of the coordinates of the
sparse signal vector z* are still information-theoretically identifiable. Moreover, the identifiability
result is stable under additive measurement noise with polynomially small norm.

Adversarial erasures have been studied in compressing sensing before, and of course have also
been long and extensively studied in coding theory (see e.g. [35, 33, 24]). For random dense
compressive matrices, it’s known that deleting a small fraction of the measurements essentially
does nothing; the sparse signal is still totally recoverable with high probability [19, 52, 34]. But
for random sparse matrices (which in the absence of erasures do also enable total sparse recovery
[5]), no such robustness has been proven, because it’s not true: the adversary may simply delete
all measurements interacting with a particular coordinate, rendering that coordinate unidentifiable.
Given this, partial recovery is the best that can be hoped for. Our result implies that it is also
attainable, at least information-theoretically. Moreover, we achieve a nearly-tight bound on the
number of unidentifiable coordinates. Here is the informal statement:

Theorem 2.3 (Theorem C.14 of the Appendix). Let n,m > 0 satisfy n > m > O(log®n), and

let M be an m x n matrix with independent Bernoulli-p entries for p = @(log2 n)/m. With
high probability, the following holds. For any set of “deleted” equations B C [m] of size |B| <
O(m/ polylog(n)), there is a set C (the “unidentifiable coordinates”) of size |C| < 2|B| such that

[zcelly < poly(n) - [[Mpez|,,

Sor any O(m/ polylog(n))-sparse vector x € R™.

To make apparent the implication for compressed sensing, we state the following corollary:

Corollary 2.4. Ler M € {0,1}™*" be a fixed, known matrix for which the guarantee of Theo-
rem 2.3 holds. Let x* € R™ be an unknown k-sparse vector with k < O(m/ polylog(n)). Define
measurements y = Mx* + ) for some noise vector n with ||n|| ., < 6, but suppose that y undergoes
adversarial erasures. That is, we only observe y € R™ where

_ _[? ifieB
BT rie B

Sor an adversarially-chosen set B C [m)]. Then we can information-theoretically identify an estimate
i € R™ and a region of uncertainty C C [n] such that |%; — x;] < § - poly(n) for all i & C.
Moreover, the region of uncertainty is a function of B (not depending on x or y) and is bounded as

IC| < 2|B|.

In particular, the estimator is simply & = argmin,, | as,..o—5,. | _ <s l|Z[lo - The region of uncertainty

C' is any set C satisfying the guarantee of Theorem 2.3 with respect to B; it can be (inefficiently)
computed from B via brute-force computation of singular values of submatrices of M. Then, since
T — x* is 2k sparse, the guarantee of Theorem 2.3 gives that

1(& = 2%)cello < poly(n) - [[Mpe (& — %)l
< poly(n) - [|(Mpe# = §pe) + (pe — Mpea™)||o, < poly(n) -4

as claimed in the corollary.



Sparsity of the measurement matrix (and not just the signal) is well-studied in compressed sensing
and has various practical applications. For example, in scientific experiments it is often the case
that linearity of the response with respect to the covariates is a modelling assumption that’s only
reasonable for a sparse covariate vector [26]. Our result implies that even with a sparse measurement
matrix, adversarial erasures (due to e.g. experimental error) are not disastrous. (Note that in the
above theorem, each row of the measurement matrix is roughly (n log? n)/m sparse, which up to
logarithmic factors cannot be improved, even without erasures, since the measurement matrix must
have 2(n) nonzero entries).

Open question. Our results show that partial sparse recovery in this semi-random model is possible.
However, finding a computationally efficient algorithm is an interesting open problem.

Connection to lower bounds against Preconditioned Lasso. It may seem rather mysterious that
construction of an erasure-robust, “good” design matrix is the key ingredient in a distributional hard
example for a family of sparse recovery algorithms. The technical reasons for this connection are
deferred to the overview, but here we try to give some high-level intuition. First, for intuition, we
restrict our focus to sparse preconditioners, because dense preconditioners (morally) do not preserve
the sparsity of the unknown signal and therefore should not work. Now, if X is very ill-conditioned,
the preconditioner essentially needs to “fix” 3 by reweighting the different eigenspaces.

If we are allowed to construct the signal based on the preconditioner, then the preconditioner is
forced to be a good approximation for ¥ everywhere, with no bad directions. But from any good
measurement matrix, using the fact that it has dense kernel, we can construct a X so that no sparse
preconditioner can approximate 3 everywhere. This is the approach taken in [32] for Theorem 1.1.

In our case, we need to construct the signal distribution without knowing the preconditioner, so
the preconditioner is only forced to be a good approximation for X in most directions. Ruling out
sparse preconditioners then corresponds to a measurement matrix which has a density property even
if some of the rows are ignored (specifically, erasure-robustness). Sparsity of the measurement
matrix is needed so that the rows are valid sparse signals, and compressivity is needed so that ¥ is
ill-conditioned in many directions.

3 Related Work

Hard Examples for SLR. As we mentioned earlier, SLR with worst-case covariates is known
to be computationally hard under worst-case complexity-theoretic assumptions [37, 57, 30, 28].
However, for the random-design covariate model, there is no known reduction-based hardness, even
under average-case or cryptographic assumptions. We enumerate known restricted hardness results:

First, there is a large literature on when the Lasso and Basis Pursuit programs fail at sparse recovery,
even for random designs [53, 23, 17, 46, 31]. While these results do (technically speaking) prove
lower bounds against classes of algorithms, these classes are quite small; the constructed examples
are only proven to be hard for the Lasso and/or Basis Pursuit (at best, these programs have one meta-
parameter). In fact, as has been previously observed [58, 32], all of the “hard” examples provided
in the above works can be fixed by a simple change-of-basis.

Second, there is a more general lower bound against the class of convex programs solving least-
squares regression with coordinate-separable regularizers [58]. While this is a fairly broad class of
algorithms (incomparable with the Preconditioned Lasso), the result has two limitations. One is that
the constructed hard signals depend on the regularizer, so there is no single signal distribution that is
hard for the entire class. The other limitation is that, like in the previous works on hardness against
the Lasso, the hard example in [58] can be made easy for the Lasso by a simple change-of-basis.

Third, in [32], motivated by the latter limitation, covariance matrices are constructed such that for
any change-of-basis, there is a sparse signal (in the original basis) which causes the “preconditioned”
basis pursuit program to fail. However, as we have previously noted, this result is still limited by the
strong dependence of the signal on the preconditioner: it does not even rule out the possibility that
there are always two preconditioners so that every signal can be recovered by one of them.

Fourth, for isotropic random-design SLR (i.e. when ¥ = I), there has been work on identifying the
precise sample complexity of sparse recovery. In particular, there appears to be a constant-factor
gap between the sample complexities of algorithmic recovery and information-theoretic recovery.



Evidence has been given for this gap via the Overlap Gap Property [25], which implies the failure of
a restricted class of “stable” algorithms. However, this problem seems fundamentally different from
the problem we consider, where the hardness arises from the ill-conditioning of the covariates, and
the sample complexity gap is conjecturally exponential rather than a constant.

Partial sparse recovery. There are several other works in compressed sensing that use the ter-
minology of “partial” recovery. To our knowledge, these works all consider different settings from
ours; we explain the differences. First, in [3], partial sparse recovery refers to totally recovering a
signal that is only partially sparse (where the signal space is divided into two sets of coordinates, and
it’s known that the signal is sparse on the first set). Second, in [43], the goal is indeed to recover only
part of the support of the signal. However, their model is the Gaussian Sequence Model (i.e. where
the measurement matrix is the identity), where it is obvious that partial recovery is possible, because
there is no compression. Third, as discussed previously, one common goal in noisy models is partial
support recovery (see e.g. [40]). There, the goal is to estimate the support with few false positives
and false negatives, and the reason for error is simply that some coordinates of the signal may be
very small and therefore indistinguishable from noise. In contrast, partial identifiability occurs in our
setting even without noise, due to a weaker model for the measurement matrix. Moreover, proving
partial support recovery in the setting of [40] requires make strong probabilistic assumptions about
the signal, e.g. that the support is a uniform sparse set. In contrast, our results prove conditions
under which a measurement matrix enables partial recovery of arbitrary sparse signals.

4 Technical Overview

We start with a sketch of the proof of Theorem 1.1 from [32], which only achieves a failure proba-
bility of O(1/n), and which formally motivates the need for erasure-robust sparse designs. We then
sketch the proof of our main technical result that random sparse designs are erasure-robust. Finally,
we discuss how this result leads to stronger lower bounds against Preconditioned Lasso.

4.1 Lower Bounds via Sparse Designs.

The hard covariance matrix constructed in [32] to prove Theorem 1.1 is defined as ¥ = ©~! where
©=0+cland® = MTM , for a rectangular matrix M. Note that for small € > 0, this covariance
is very ill-conditioned, so long as M has non-trivial kernel. To prove that all Preconditioned Lasso
algorithms with m samples fail to recover k-sparse signals, these three properties are used:

1. The rows of M are k-sparse,
2. dimker M > 2m,

3. ker M is bounded away from all (n/k) log(n)-sparse vectors.

The first property is self-explanatory. One way to achieve the second property is if M has at most
n — 2m rows. And the third property, in compressed sensing, is essentially what a design matrix
needs to satisfy to information-theoretically enable (n/k) log(n)-sparse recovery. Thus, to show that
Q(n) samples are needed to recover polylog(n)-sparse signals, M must be a sparse, compressive
matrix which (as a design matrix) enables the recovery of n/ polylog(n)-sparse signals.

How do these properties imply that for every preconditioner S, there is a bad k-sparse signal? By
the first property, the rows of M are valid signals. For each row M, if it is not a bad signal for
S-preconditioned Lasso, then it can be shown to induce a certain constraint on S: namely, that every
column of S either has small magnitude or is nearly orthogonal to M;. So if none of the rows of M;
are bad signals, then every column of S either has small magnitude or lies near ker M, in which case
by the third property it must be (n/k)log(n)-dense. Roughly speaking, this structure can be used
together with the second property to show that a k-sparse signal with uniformly random support
causes the Preconditioned Lasso to fail.

A hard signal distribution? The above proof shows that for any preconditioner, either it fails
(with high probability) on a random k-sparse signal, or there exists some row of M on which it
fails. If we want a signal distribution that is uniformly hard, it’s therefore natural to equiprobably
pick either (a) a random row of M, or (b) a random k-sparse signal. But then the above proof only



implies that for this signal distribution, for any preconditioner, the Preconditioned Lasso fails with
probability £2(1/n). Moreover, it’s not clear whether the failure probability can be improved under
just the above assumptions: consider the case that for some preconditioner, just a few rows of M
are bad signals. Then the likelihood that one of these rows is chosen as the signal is only O(1/n).
Moreover, the columns of S are now only forced to be orthogonal to most rows of M, not all. As a
result, the columns may have large magnitude and yet fail to be dense, because for sparse matrices
like M, it’s possible to adversarially delete a few rows so that the kernel of the remaining rows
contains sparse vectors. This is an obstacle to proving that such a preconditioner must fail on a
sparse signal with uniformly random support.

To circumvent this obstacle, we need to show that a preconditioner S which has columns orthogonal
to most rows of M, but not all, still has useful structure. As we suggested earlier, this can be done
by reasoning about sparse compressive matrices under adversarial deletions.

4.2 Erasure-robustness

We will return to the lower bound problem in the next section of the overview, but for now focus on
the core technical result about partial recovery with adversarial erasures. Based on the discussion
after Theorem 2.3, we need to solve the following problem.

Let M be an m x n sparse random Bernoulli matrix with parameter p = ©(logn)/m. We want to
show that with high probability, M supports erasure-robust partial sparse recovery: that is, for any
set B C [m] of “bad equations”, there is a small set C' C [n] such that if x € R™ is 7-sparse, then

[zcell, < poly(n) - |Mpex|| -

Erasure-robustness: the exact case. For simplicity, in this proof sketch we start by considering
the exact case, where Mpcx = 0, and we want to show that either | supp(x)| > 7 or supp(x) C C.
Without erasures (i.e. B = (), this property follows for C' = () by the fact that the adjacency
graph of M is with high probability a unique-neighbor expander.® Concretely, because the graph is
a (1 — €)d expander for a small constant € > 0, any set S C [n] of size at most 7 := O(m/ log(n))
has at least (1 — O(e))d|S| unique neighbors in [m]. Moreover, if j € [m] is a unique neighbor of
supp(x) for some vector € R”, then M;x # 0. Thus, if Mz = 0 then supp(x) must have no
unique neighbors, so either | supp(x)| > 7 or z = 0.

However, this argument breaks down in the presence of adversarial erasures. All that can be said
is that if Mpeax = 0 then supp(z) must have no unique neighbors in B¢. By the unique neighbor
lower bound, it does follow that either | supp(x)| > 7 or |supp(x)| < O(|B|/d) — this can be
thought of as a kind of density amplification result for ker M p-, since it eliminates the possibility
of any vector in the kernel having an intermediate density. Unfortunately, this does not directly
imply erasure-robustness, because we need a single set C' that contains the supports of all sparse
vectors in ker M, not a different C' for each x. (For example, if we allow C' = supp(z) then the
result is not very interesting.) Moreover, it’s not clear that anything useful can be said about the
vertex set supp(x): certainly many vertices in supp(z) must be adjacent to “bad” equations, but it’s
conceivable that other vertices could be farther away. Pictorially, one possible case (of many) is that
B could be chosen as the set of “boundary” equations of a ball subgraph; then ker Mpg. certainly
contains a vector supported on the ball, which is not actually contained in the neighborhood of B.

Given the above obstacles, one approach is to show that although supp(z) may not be contained
in the neighborhood of B, it must be contained in a distance-r ball around B, for some small but
super-constant r. The argument is that if there is a vertex of supp(z) which is distance greater than r
from B, then by iteratively growing neighborhoods of the vertex until B is reached, the support must
have size at least d”, and a contradiction is reached if d" > |B|/d, because then B cannot contain
all unique neighbors of supp(z). Unfortunately, the constructed set C' (the distance-r ball around
B) then has size |B| - (d?)" ~ |B|?, since the distance metric is that two coordinates are adjacent if
they share an equation. This is much larger than the desired bound (O(|B|)) and in particular, too
large to use in our ultimate lower bound application.

In summary, to get the linear bound claimed in Theorem 2.3, we need a different argument. The key
idea is to exploit /inearity. We want to show that the union U of supports of all 7-sparse vectors in

8We note that this initial part of the argument (the case without erasures) is quite reminiscent of arguments
used in the analysis of LDPC codes (see e.g. [41]).



ker Mp.- has small size. We’ve seen that for any fixed z, there is a density amplification result: if
Mpex = 0 and z is | B|/d-dense, then 2 must be 7-dense. So take vectors (1), ... 2(") € ker Mp.
which are 7-sparse (and therefore | B|/d-sparse) and which cover U. Now observe that since (1)
and 2(?) are O(| B|/d)-sparse, any linear combination ¢;2(!) 4 cox(2) must be 2| B|/d-sparse. But
c12M +¢cox(?) € ker Mpe by linearity. Soif 2| B|/d < 7, then by the (contrapositive of the) density
amplification result, we in fact know that the sum is | B|/d sparse! Inductively, it follows that any
linear combination ¢; ™) + - -+ + ¢, z(™) is | B|/d-sparse. But for generic ¢y, . . ., ¢,, we have

supp(ciz® 4 - + ¢ z(™) = U supp(z)) = U.
i=1

This shows that in fact we can find a set C of size O(|B|/d) satisfying the desired property.

Erasure robustness: the general case. Note that the above argument was when Mpcx = 0. The
proof for the general case, when M . is small but not nonzero, uses the same insight with several
complications. First, we need a quantitative density amplification lemma which states that if M.z
is small and = has more than |B| coordinates with magnitude exceeding some threshold 4, then we
can trade off density for magnitude, i.e. find 7 coordinates with magnitude exceeding §/ poly(n).
To prove this without losing a superpolynomial factor on the threshold, we actually need the graph
to satisfy a stronger property than just expansion: we also need that for any two disjoint sparse sets
S, T C [n], the intersection of their neighborhoods has size only O(v/d - max(|S|, |T'|)). Note that
expansion would only give a bound of O(ed max(|S|,|T|)). Nonetheless, it can be proven that the
random sparse adjacency matrix of M satisfies the desired stronger property with high probability.

Second, the iterative addition procedure in the noiseless case requires a modification for the noisy
case; each addition causes the quantitative threshold to decay, and after n additions it would decay
by a factor superpolynomial in n. Instead, we add the vectors z(1), ..., 2(" recursively according
to a d-ary tree. This tree has depth only log, n, which allows the decay to be controlled to only a
poly(n) factor, proving Theorem 2.3.

4.3 Stronger lower bound via erasure-robustness

We now return to the problem of proving hardness against Preconditioned Lasso. Theorem 2.3
can be used to show that for an appropriately chosen M, if the number of rows of M that are bad
signals for S-preconditioned Lasso is at most n/ polylog(n), then there is a set C' C [n] of size
n/ polylog(n) such that each column of S is either n/ polylog(n)-dense, or has small magnitude
on coordinates outside the set C'. This is precisely the structure lemma we need for preconditioners
that succeed on most rows of M: it crucially allows for a nearly-linear number of rows of M that
are bad signals, although in exchange there is a set C of sublinear size where we cannot control the
columns of S (the corresponding structure lemma in [32] could not tolerate any bad rows). We also
show that in this situation, the number of dense columns of .S must be Q(n).

With these results, we can prove our lower bounds. First, to prove our lower bound against invertible
preconditioners (Theorem 2.1), we define a distribution over polylog(n)-sparse signals by taking w*
to be the sum of polylog(n) random rows of M, plus an infinitesimal uniformly random polylog(n)-
sparse vector. Under certain conditions, if at least one of the rows in the sum is a bad signal, then the
sum must also be a bad signal. With this amplification (at the cost of a polylog(n) factor in sparsity),
any invertible preconditioner must fail with probability 1 — o(1): either there are 2(n/ polylog(n))
bad rows of M, in which case the sum of the chosen rows is a bad signal with high probability, and
the infinitesimal perturbation does not affect the program failure. Or, S has many dense columns,
in which case ST w* is dense due to the perturbation. By a dimension-counting argument (which
crucially uses invertibility of S), this implies that there exists a feasible direction of improvement
for the program objective.

Extending the lower bound to rectangular preconditioners is more involved and involves generaliza-
tions of techniques from [32]. The factor of 1/2 in Theorem 2.2 arises because we are not able to
construct a single signal distribution that causes failure of both “incompatible” preconditioners (i.e.
for which more than n/ polylog(n) rows of M are bad signals) and “compatible” preconditioners
(for which at most n/ polylog(n) rows of M are bad signals, so the structure lemma applies) with
high probability. Instead, we take a mixture of the two cases’ hard distributions: either a sum of rows



of M, or a uniformly random sparse vector. Due to the lack of invertibility of the preconditioners,
the second case is no longer a simple dimension-counting argument. In [32], the proof crucially
relies on a “projection lemma” which states that if dim ker M > 2m, then any fixed direction is
unlikely to align with the span of the covariates. Since our structure lemma has no control over the
preconditioner columns in the subspace indexed by the set C, we prove a generalized projection
lemma which states that alignment is unlikely even on C'°. This yields Theorem 2.2.
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A Organization

In Appendix B, we discuss notation and collect important definitions, e.g. of erasure-robustness. In
Appendix C, we prove that random sparse compressive matrices are erasure-robust (Theorem 2.3).
In Appendix D, we prove the key structure lemma that connects erasure-robustness with lower
bounds against Preconditioned Lasso. In Appendix E, we then use this lemma together with our
result about erasure-robustness to construct example distributions that are provably hard against
Preconditioned Lasso algorithms (Theorem 2.1 and Theorem 2.2).

B Preliminaries

For vectors x,y we denote the inner product as (z,y) = 27'y. For a matrix M, we let span(M) and
ker(M) denote the row space and null space of M respectively. For a matrix M € R™*P, a vector
v € R™, and a subset U C [n], we say that My is the |U| x p matrix consisting of the rows of M
indexed by U’; similarly, vy consists of the entries of v indexed by U’; and the complement of U in [n]

is U¢ = U = [n] \ U. We use the standard notation for vector norms that [vll, = iz, |vi|p)1/p.

B.1 Preconditioners and the Preconditioned Lasso

Definition 2. For n,s € N, a preconditioner is a matrix S € R"** with ker(S7) = {0}. The
S-preconditioned-Lasso on samples (X, y) is the convex program

we argmin |[STwl], .
weR™: Xw=y

In our lower bounds, we will say that the S-preconditioned Lasso fails if the true signal vector w* is
not contained in the set of optimal solutions to the program (i.e. some other vector achieves strictly
smaller objective value). As a result, some restriction on ker(S7') is necessary, to rule out programs
with multiple (and therefore infinitely many) co-optimal solutions. In [32], it is only assumed that
S is not identically zero; this suffices for their purposes because they are allowed to pick the true
signal depending on S. However, we want an algorithm-independent distribution over signals. If
ST is nonzero in only a few directions, then it’s obviously impossible to cause the S-preconditioned
Lasso to fail (in our strong sense) with non-trivial probability without knowing S. Nonetheless such
a program is clearly not useful.

More to the point, any matrix S where ker(S7) is non-trivial can be perturbed infinitesimally (pos-
sibly by adding columns) so that ker(S7T) is trivial, but so that if the original program uniquely
recovered the true signal, then the new program still does so.

B.2 Supports, erasure-robustness, and quantitative density

Definition 3. For z € R™ and § > 0, define the J-support of z to be
supps(x) := {i € [n] : |z;] > 6}

We sometimes refer to supps () as a quantitative support of x with threshold 6. The support of z
is supp(z) := ||z||, = {i € [n] : |a;| > 0}.

Definition 4. Let M € R™>™ be a matrix. We say that M is (b, V', n, 7)-erasure-robust if for any
set B C [m] of size | B| < b, there is a set C' C [n] of size |C| < b’ with the following property: for
every x € R", either:

* [supp(z)| = [|lzjy > 7, or
* llzeelly, <nliMpez| .

If M satisfies this property, we say that it tolerates b erasures and sparsity level 7, with only &’
unidentifiable coordinates.

Definition 5. For any subspace V' C R"™ and vector x € R"™, the (Euclidean) distance from = to V'
is
dist(z, V) = in;f/ |z — v, = [|Projy . x|, .
ve
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T)-quantitatively dense if for any set

Definition 6. Let V' C R™ be a subspace. We say that V is (4, ,
< § ||z||,, it holds that ||zc< |, > 0 ||z]],-

C C [n] of size |C| < 7, for any x € R™ with dist(x, V)

B.3 Random Matrix Theory

We will use the following standard bound on the singular values of Gaussian random matrices.

Theorem B.1 (e.g. Corollary 5.35in [50]). Letn, N € N. Let A € RN X" pe a random matrix with
entries i.i.d. N(0,1). Then for any t > 0, it holds with probability at least 1 — 2 exp(—t>/2) that

\/N_\/E_tgo—min(A) SO—maJC(A) S \/N+\/ﬁ+t

Theorem B.2 (See e.g. Exercise 4.7.3 of [51]). Suppose X1,..., X ~ N(0,X)with¥ : n X na
positive definite matrix, t > 0 and m = Q(n+t2). Let 3 = % >, Xi X Then with probability at
least 1 — 2 exp(—t2/2),

(1-X << (1+6e%

with e = O(y/n/m + \/t?/m).
C Erasure-Robustness via Expanders

In this section, we construct a sparse and compressive measurement matrix M which satisfies
erasure-robustness with near-linear erasure tolerance and sparsity level, and so that the number
of unidentifiable coordinates is only a constant multiple of the number of erasures. In fact, we’ll
show that a sparse random Bernoulli matrix has the desired property with high probability, proving
Theorem 2.3 and also enabling our construction of a hard distribution family for Preconditioned
Lasso.

Recall that the erasure-robustness property is defined as follows: if B is an adversarially chosen
subset of indices of rows of M, then Mp. is still a good measurement matrix, meaning that any
sparse signal = can still be approximately recovered from noisy measurements Mpex + £, except
for the entries of « in a small set of input coordinates C' = C(B) that is independent of x. In our
construction, we will prove that |C'(B)| = O(|B]), which is nearly optimal because M is sparse, and
erasing all equations involving one particular coordinate of the signal clearly makes it impossible to
recover that coordinate.

Notation. Let n,m € N. Let M € {0,1}™*" be a binary matrix. The matrix M defines a
bipartite graph between a set of “equations” [m] and a set of “coordinates” [n]. For S C [n] and
E C [m], we can define neighborhoods

and
For S C [n], further define the “unique neighborhood” of .S to be

U(S) ={i € [m]:[|Mislly = 1}.

C.1 Deterministic Conditions for Erasure-Robustness

We start by proving that erasure-robustness holds whenever M satisfies certain deterministic condi-
tions. Throughout this section, we make the following assumption encapsulating the needed prop-
erties: approximate regularity, vertex expansion, and a bounded intersection property.

Assumption 1. For some d, k¥ € N and € > 0, suppose that M satisfies the following deterministic
conditions:

* (Degree bounds) For all i € [m] and j € [n],
IN()I < (1+e)d
and

IN'(i)] < (1 + €)(n/m)d.
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* (Expansion) For all S C [n] with | S| < k,
IN(S)| = (1= e€)d|S].

* (Bounded intersection) For all disjoint S, T C [n] with |S|, |T| < k,
Vd
IN) AN )] < Y max(s], 7))

Note that the first two conditions imply a weaker form of the bounded intersection property, with
2ed instead of v/d/8. However, we need the stronger bound to prove our result.

An immediate corollary of the first two conditions is a unique-neighbor lower bound.
Corollary C.1 (Folklore). Forall S C [n] with |S| <k,

[U(S)] = (1 =3e)d|S].

Proof. By the degree bound assumption, we have >~ .o [N(j)| < (1 + €)d|S|. Together with the
expansion assumption, it follows that } -, ¢ [N (j)| — [N(S)| < 2ed|S|. Every unique neighbor
counts once in both terms, and every non-unique neighbor counts at least twice in the first term but

only once in the second term. So there are at most 2ed|.S| non-unique neighbors, which means that
U(S)] > IN(S)] —2¢d|S| > (1 —3)d]S]. 0

Density amplification. For exact solutions x € R™ to Mpex = 0, it’s easy to see that the unique
neighbor lower bound implies a density amplification statement: if | supp(x)| > |B|/((1 — 3¢€)d)
and | supp(z)| < k, then by Corollary C.1, U(supp(x)) N B¢ must be nonempty, which contradicts
Mpgex = 0. Thus, |supp(z)| > |B|/((1 — 3¢)d) implies | supp(x)| > k.

For approximate solutions, i.e. when ||Mpex|| < d, this argument does not quite work: if some
equation ¢ € B¢ has a unique neighbor in supp(x), this is not necessarily a contradiction because
the value of z at that coordinate may be within the error tolerance §. Thus, we can only hope for
amplification if we have a lower bound on |supp, (z)|, the number of coordinates of x exceeding
some threshold v >> ¢ in magnitude. However, there is now another problem: even if some equation
has a unique neighbor in supp., (z), it may have many neighbors where z has magnitude just slightly
less than ~, so that these coordinates together cancel out the large coordinate. If this happens, then
that equation must neighbor both supp., (z) and supp., /2q)(®) \ supp, (z). Naively, we can use
expansion to bound the number of such equations by 2ed-| supp., (24 (z)|- However, combined with
the unique neighbor lower bound, this only shows that | supp.,, (24) (*)| > 2(1/€)-| supp, ()| —|B.
That is, density is amplified by a constant factor, but the threshold decays by a factor of 2d =
Q(logn).

This tradeoff is not good enough for our purposes (tolerating inverse-polynomial measurement er-
ror). The following lemma uses the bounded intersection property to prove a better tradeoft:

Lemma C.2 (One-step quantitative density amplification). Suppose that ¢ < 1/12 and d > 2. Let
z€R and § > 0. If | Mpez|, <9, then

| supps | > min (6\/@ suppygs x| — | Bl k) :

Proof. Let S = suppyys  and let T' = supps z \ S. If | suppgs x| > k then the claim holds, so
suppose that | supp;s | < k. On the one hand, by Assumption 1, we have that

INE) AN < Y a1, 7)) < L2 supp o,

On the other hand, we claim that U (S)\B C N(S)NN(T). Clearly U(S)\B C N(S), so itremains
to show inclusion in N(T'). Suppose that this is false. Then pick some ¢ € U(S) \ (BU N(T)).
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Since i € U(S), there is a unique j € S such that M;; = 1. Now

| M| > || = > | M|

J'#J
>25— Y 0

35 M, =1
> (1 —€)do.

The first inequality is by the triangle inequality. The second inequality uses j € S and the definition
of S; it also uses that any j'  j with M;;; = 1 satisfies j' ¢ T (since s ¢ N(T')) and j' ¢ S (since
J is the unique neighbor of 4 in S): thus j' & supp; z, so |z;/| < 0. The last inequality is by the
degree bound on 3.

But since € < 1—1/d, the resulting inequality | M;x| > (1 — €)dd contradicts the lemma assumption
that ||Mpex||, < J,since i ¢ B. So in fact the initial claim that

U(S)\ B C N(S) N N(T)

was true. As a result,

8| N(S)NN(T)| _ 8U(S)\ B
7 > 6v/d|S| - |B|

where the final inequality uses Corollary C.1 and the assumption that ¢ < 1/12. [

| supps | >

Recursively applying Lemma C.2 gives our quantitative analogue of the noiseless density amplifi-
cation: if ||Mpez|| is small (i.e. x approximately satisfies the “good” equations of M), then if
has at least | B| not-too-small entries, it must in fact have at least k& not-too-small entries. Moreover,
the threshold defining “not-too-small” only decays by a polynomial factor.

Corollary C.3 (Quantitative density amplification). Suppose that ¢ < 1/12 and d > 16. Let
f(n,d) = 2dn®. Letx € R" and § > 0. If |Mpex||, < 0, and |supp s, ¢5(x)| > |B|, then
| supps ()| > k.

Proof. For any ¢’ > § with | suppygs ()| > |B|, Lemma C.2 implies that
| supps: ()| > min (\/ 2d| suppays: ()], k‘) .

Let t € N be maximal subject to |Supp(aqys(z)| > |B|. Applying the inequality to all ¢’ €
{6,2d5, ..., (2d)* =15} gives that

| supp;(z)| > min((vV2d)", k).

But since | supp y(,, 45 ()| > |B|, we know that (2d)"** > f(n, d) = 2dn?, so (v2d)" > n. Thus,
| supp;(z)| = k. O

Bounding the union of supports. We’ve shown that if a single vector x has quantitative support
larger than |B| at some threshold, then we can amplify the density by decreasing the threshold (so
long as x is an “approximate solution”, i.e. ||[Mpez|| is sufficiently small). Ultimately, we want
to bound the union of the quantitative supports over all k-sparse vectors for which M ez is small.
The key step is the following lemma, which shows that adding quantitatively sparse approximate
solutions preserves quantitative sparsity (although we have to decrease the threshold by a factor
polynomial in the number of terms in the sum).

The lemma is proved recursively: we divide the terms into O(\/E) groups, apply the inductive
hypothesis to bound the supports of the group sums, and then add up the O(+v/d) sums. When there
are only O(\/&) terms, the proof is via Lemma C.2: if the sum has quantitative support larger than

| B|, then by amplification it must have quantitative support at least O(+/d|B|). But by the triangle
inequality, adding up r terms can only increase the quantitative support size by a factor of r. For an
appropriate choice of constants, this yields a contradiction, proving the desired claim.
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Lemma C4. Suppose that e < 1/12 and k > 4\/E|B| and d > 16. Let § > 0 be a threshold. Let
r < (V2d)! for some t € N. Let x1, ..., x, € R" satisfy | Mpea;|| ., < 0/V2d and |supps ;| <
|B| for all i € [r]. Then

-
Supp(zd)St/Qé‘in <|B].

i=1

Proof. We inducton ¢. If t = 0 then < 1, and the claim is trivial. Suppose ¢ = 1. For the sake of
contradiction, assume that

T
SUpPpP(24)3/2s Zl"z > |BJ.
i=1

We know that

< or/V2d < 6.

oo

T
MBc E Z;
i=1

So by Lemma C.2,

suppmézxi > min(6Vd|B| — |B|, k) > 4Vd|B|.

i=1

But
T T
supp zgs =i € | supps 2
i=1 i=1

by the triangle inequality and since r < v/2d: if some coordinate j € [n] is contained in none of the
sets suppg &, then |z;;| < é forall i € [r], so [>°_, @;;| < 76 < v/2d6. Now, the right-hand-side
set in the above inclusion has size at most |B|r < v/2d|B|, which contradicts the previous bound
we obtained on the size of the left-hand-side set. This proves the lemma statement for ¢ = 1.

Now suppose ¢ > 2. Suppose that the lemma holds for all 7 < (v/2d)!~!. Pick some z1,..., 7, €
R™ with 7 < (v/2d)*, satistying || Mpea;|| . < §/v2d and | supp; ;| < |B| for all i € [r]. Define

vectors y1, ...,y 5g € R" by yp = Zi?féﬁ)(t\;%)LI x;. By the inductive hypothesis applied to

each of these smaller sums, we have for all b € [v/2d] that
| SUPD (2g)3t—1)/26 Y| < | B.
Moreover for each b € [v/2d],
min(b(v2d)*~1,r)

IMpeyllo < S IMpers| < (V2d)"16/V2d < (2d)*¢D/25/V2d.
i=14(b—1)(v/2d)t—1

By the inductive hypothesis applied to y1, .. ., y, 55 with threshold (2d)3(t=1/25, we have that

V2d
SUpp (24)3t/25 Z Y| < |B‘
b=1

as desired. O

The previous lemma lets us bound the quantitative support of a sum of vectors. To show that this
bounds the union of the supports, we also need the following lemma, which is proved by the proba-
bilistic method.

Lemma C.5. Let § > 0. Let z1,...,z, € R" and let V = |J,_, supps z;. Then there is some

o € {—1,1}" such that
- Vi
Supps Z 0iZ;
i=1

> —.
-2
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Proof. Suppose we choose o uniformly at random. For any j € V, leta € [r] be such that |z,;| > 0.
For any o, if | o;x;;| < 6, then if we flip o, to obtain a sign vector ¢’, it’s necessary that
| > oixi;| > 4. Thus, conditioned on o, it holds that | )~ o;2;;| > ¢ with probability at least 1/2,
so unconditionally it holds with probability at least 1/2. Thus,

- V]
Egnf—1,1}~ |SUPPs Z oxi| > -
i=1
So there must exist at least one o € {—1, 1}" satisfying the desired inequality. O

We can now bound the union of the quantitative supports of sparse approximate solutions to
Mpex = 0, by picking n vectors whose quantitative supports cover the union, and adding them
up with the signs suggested by Lemma C.5.

Lemma C.6. Suppose that ¢ < 1/12 and |B| < k/(4\/d) and d > 16. Let § > 0. Define
S={r€R": | Mpez|, <6/V2dN|supps(x)| < |B[}
and define
C= U Suppg(n,d)é(x)
€S
where g(n,d) = (2nd)3. Then |C| < 2|B].

Proof. Since |C| < n, we can find x1,...,2, € R" such that C' = |Ji_, supp,,, 4)s(2i), and
|Mpex;|, < 0/v2d and |supps(x)| < |B| for all i € [n]. By Lemma C.5, there are some
O1y...,0, € {—1,1} such that

€l

> =

n
SUPDg(nd)5 ) _ Ol 2

i=1
Let ¢ be minimal so that n < (v/2d)*, and note that (v/2d)* < 2nd, so (2d)**/? < (2nd)® = g(n, d).
By Lemma C.4, which is applicable since | Mpeo;z;||,, < 0/v2d and |supps o;2;| < |B| for all
i € [n], we have that

n
SUPD(2a3t/26 D, 03| < | B

i=1

n
SUPDg(s, ) D Oiti| <
=1

It follows that |C| < 2|B]. O

From the above lemma, erasure-robustness of M is essentially immediate; it only remains to observe
that although we took the union of all approximate solutions with quantitative supports of size at
most | B, this is equivalent to taking the union of all approximate solutions with quantitative supports
of size less than k (for a slightly different threshold) due to density amplification.

Corollary C.7 (Erasure-robustness under Assumption 1). Suppose that ¢ < 1/12 and n,d > D,
for some universal constant Dy. For any b < k/d, the matrix M is (b, 2b, d*nS, k)-erasure-robust
(Definition 4). To restate: let B C [m] satisfy |B| < k/d. Then there is a set C C [n] with
|C| < 2|B)|, such that for any x € R", either:

o Jzcell, < d*n8 |Mpex| ., or

* |supp(x)| > k.

Proof. Pick arbitrary 6 > 0 and define S and C as in Lemma C.6, which guarantees that |C| < 2|B|.
For any z € R", pick some ¢ € R* such that | Mpecz|| < &§/f(n,d), where f(n,d) = 2dn®.
If | supps(cx)| > |B], then by Corollary C.3, [Supps f(,,.q)(cz)| > k. As aresult, | supp(z)| =
|supp(cx)| > k. Otherwise, we have |supps(cz)| < |B|. But we also know that ||Mpecz| <
6/f(n,d) < d/d. Thus, cx € S. As a result, by definition of C, we get suppy(,, q)s(cz) < C,

where g(n,d) = (2nd)3. Therefore |czce| . < g(n,d)d, so ||czce|l, < v/ng(n,d)d.
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If |Mpex|,, > 0, then we can choose ¢ = §/(f(n,d)| Mpez| ), in which case ||zce|, <
Vnf(n,d)g(n,d) ||Mpez| < d*nS for sufficiently large n,d. And if |Mpez|, = 0, then
we can choose ¢ arbitrarily large, so ||zce||, = 0. In either case, it holds that ||zcc|l, <
d*n® || Mpez|| . O

All that remains to prove Theorem 2.3 is showing that a random sparse binary matrix satisfies As-
sumption 1 with high probability. However, for the application to lower bounds against Precondi-
tioned Lasso, we also must recall the following result (essentially due to [6] and slightly generalized
in [32]), which states that under the degree bound and expansion assumptions, any vector in the
kernel of M must be quantitatively dense.

Lemma C.8 (Lemma 8.7 in [32]). Let x € R™ be such that Mz = 0. Let S C [n] with |S| < k. If
€ < 1/17, then

]l

< .
lesll, <5

C.2 Random unbalanced bipartite graph

In this section we show that a random sparse binary matrix satisfies Assumption 1 with high prob-
ability. Let n,d, m € N with d < m < n, and let p = d/m. Define a random matrix M € R™*"
with independent entries M;; ~ Ber(p).

The following result is folklore (see e.g. [1]):

32¢=2(logn)/m. It holds with probability at least 1 — 2/n that for all S C [n] with |S| < ¢/(2p),
IN(S)| = d(1 = €)[S].

Lemma C.9 (Expansion of a random bipartite graph). Let ¢ € (0,1). Suppose that p >

Proof. For1 <1 < €/(2p) let ¢; be the probability that there exists some S C [n] with |S| = [ and
IN(S)| < d(1 — €)|S|. To bound this probability, fix S C [n] with |S| = [. For any y € [m], we
have

Prlye N(S)l=1-(1—-p)' 21— P > pl— (p))* > (1 - ¢/2)pl

so long as 0 < pl < €/2. Thus, by the Chernoff bound,
Pr[|N(S)| < (1 — €)plm] < exp(—(¢/2)*(1 — €/2)plm/2) < exp(—e>plm/16).
By the union bound over sets of size [, if e2pm /16 > 2log n, we have that

q < (7) exp(—€*plm/16) < exp(llogn — e*plm/16) < exp(—Ilogn).

Finally, by a union bound over 1 <[ < ¢/(2p), the lemma holds with probability at least

€/(2p) €/(2p) 9
D SR S A
=1 =1 n
as claimed. O

We’ll also need the following simple result:

Lemma C.10 (Degree bounds). Let € € (0,1). Suppose that p > 6e=2(logn)/m. It holds with
probability at least 1 — 1/n that
IN(z)] <d(1+¢€)

for all x € [n]. Similarly, it holds with probability at least 1 — 1/n that |[N'(y)| < (n/m)d(1 + €)
Sforally € Im)].
Proof. Fix x € [n]. By the Chernoff bound,

PHIN()| > (1 + e)pm] < exp(—cpm/3).

Since e2pm/3 > 2logn, this bound is at most 1/n?. Union bounding over z € [n] completes the
proof of the first claim.
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Similarly, fix y € [m]. By the Chernoff bound,
Pr[[{z :y € N(x)}| > (1 + €)pn] < exp(—€°pn/3).

Since €2pn/3 > 2logn, this bound is at most 1/n?, and union bounding over y € [m] completes
the proof. O

To prove the last condition of Assumption 1, we need the following version of the Chernoff-
Hoeffding bound:

Lemma C.11 (Chernoff-Hoeffding). Let X1,..., X, be i.id. random variables with values in
{0,1}. Let p = E > X;. Then for any t > 0,

Pr

x> t] < exp(—tlog(t/ (se))

i=1

Now, the proof of the bounded intersection property is analogous to the proof of expansion.

Lemma C.12. Suppose that d > log2 n and n is sufficiently large. It holds with probability at least
1 — 2/m? that for all disjoint S, T C [n] with |S|,|T| < m/d?,

IN(S)NN(T)| < gmaXUSL |TY).
Proof. Fix1 <1< m?3/(n2d"). Let q; be the probability that some sets S, T" of size exactly [ violate
the inequality. Fix disjoint S, T C [n] with |S|,|T’| = [. For any ¢ € [m], we have that
Prli e N(S)| =1—(1—-p)' <pl.
Thus, since S and T are disjoint,
Prfi € N(S) N N(T)] < p*I.
Let D = Vd /8 > 3. By the Chernoff-Hoeffding bound (Lemma C.11), we get

— Dl
Pr[|N(S) N N(T)| > DI] < exp(—Dllog(Dl/(p*I>me))) < (pzﬁn e) |

By the union bound over sets .S, T of size [,

D\ reny2 2D D;D-2 2\l d2P1P 22\ !
@ = (pQZme) (T) < (pTm Py = ( mPD ) '

So long as I < m/d® and d > log® n, we have d*P1P—2n2 /mP < n?/(m2dP—%) < 1/m? for
large n. As a result, summing over [, we have

m/d> m/d?
S a< Y a/m?) < oym?
=1 =1

as claimed. O

Together, the above three lemmas immediately imply that the random matrix M satisfies Assump-
tion 1 with high probability.

Theorem C.13. Let n be an even positive integer that is sufficiently large. Let m,d € N with
d<m<mn,andlete € (0,1). Ifd > 32¢ 2logn and d > log® n, then with probability at least
1—4/n—2/m?, the random binary matrix M € R™*" withi.i.d. entries M;; ~ Ber(d/m) satisfies
Assumption 1 with sparsity parameter k = m/d® and error parameter e.

Putting together Theorem C.13 and Corollary C.7 immediately gives the following.

Theorem C.14. There are constants N, C with the following property. Let n,m € N withn > N.

Letp € (0,1) satisfy p > C(log® n) /m. Let M be the mxn random matrix with independent entries
M;; ~ Ber(p). Then with probability 1 — O(1/n) — O(1/m?), it holds that for all b < m/d?*, the
matrix M is (b, 2b, d*n®, m/d®)-erasure-robust.
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C.3 Properties of Final Construction

We can now prove the following existence result, which collects all the important properties of the
matrix M which we will use for our lower bound against Preconditioned Lasso: sparsity, quantitative
density of the kernel, erasure-robustness, and eigenvalue bounds.

Theorem C.15. Let n € N be an even number larger than some absolute constant ng. There
is a density parameter T = Q(n/log®n), n = O(nflog®n), b = Q(n/log®n), and a matrix
M € R™?*™ with the following properties:

1. The rows of M are O(log® n)-sparse

2. For any x € R™ with dist(x,ker M) < |z, /(12y/n), and any S C [n] with |S| < 7, it
holds that ||z s¢||, > ||zl /(2y/1).

3. Forany B C [n/2] with |B| < b, there is a set C C [n] with |C| < 2|B
x € R™, either

, such that for any

¢ Nlzoelly, < nl[Mpez||, or
* |supp(z)| > .

A

. HMTMHF < O(nlogn)

5. The smallest nonzero eigenvalue )\ of © satisfies A > Q(n‘5/ 2.

Proof. Lete =1/17andd = log® n. Let M € R™/?*™ be the random binary matrix with indepen-

dent entries M;; ~ Ber(2d/n). By Theorem C.13, M satisfies Assumption 1 with k = n/log®n
and error €, with probability at least 1 — 12/n. Let 7 = k. Claim (1) follows from the degree bound
condition.

To prove claim (2), let z € R™ with dist(z, ker M) < ||z||, /(12y/n), and let C' C [n] with |C| < k.
Let y = Projy., p; . Then My = 0, so ||yc||; < |lyl|; /3 by Lemma C.8. Therefore

1
lzcelly 2 llyeell, = NG ]l

> — lleell, = o5 =l
—Vn togym 2
> 2 [yl S ||
—3yn 12/ N2
> 2 [yl S [z
= 3yn "2 12y/m 2
> L |l

—2yn "

as desired.

Claim (3) follows from Corollary C.7 with b = k/d. Claim (4) follows from the degree bound
assumption, and claim (5) holds with probability at least 1/2 by results from random matrix theory
(Theorem 1.1 in [4]) , and the observation that A = o2, where o is the smallest singular value of
MT.

Thus, all claims hold with probability at least 1/2 — 12/n > 0, so in particular the desired matrix
M exists. 0

D Structure Lemma under Erasure-Robustness

In this section we show how erasure-robust sparse designs M can be used to construct a covariance
matrix ¥ so that preconditioners which are “compatible” with most rows of M (i.e. succeed at
recovery with non-trivial probability when the covariates are drawn from N (0, ) and the signal is
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the row of M) satisfy a useful structure lemma. Concretely, the covariance matrix we use to fool the
preconditioned Lasso is given by

=01, O:=0+el,, o=M"M

where € > 0 is polynomially small, so that 3 still has polynomial condition number. Ultimately, we
will instantiate M as the matrix constructed in the previous section, but for now we state our results
in generality. We will show that if M is erasure-robust and a preconditioner is compatible with most
rows of M, then the columns of the preconditioner are either dense or have small magnitude outside
a small set of coordinates. Moreover, we’ll show that the number of dense columns must be linear.

D.1 Failure on incompatible signals

To start with, we recall the weak compatibility coefficients a(*) and 3() from [32], which for any
fixed covariance matrix and preconditioner, provide a simple necessary condition for the success
of the (Preconditioned) Lasso. (We remind the reader that for fixed w*, there also exists a sharp
characterization of its failure/success due to Gordon’s theorem (see e.g. [2]), though the exact
characterization is not as easy to work with directly.)

Definition 7 (Weak S-Preconditioned Compatibility Condition [32]). We say that
(1) inf <'[U7 Z’LU>

a . =
x5k we Bo (k)\{0} HSTU}“?

where we let By (k) denotes the set of k-sparse vectors and
6(21,)3,m,k =sup{f € R:dimWyx g3 > 2m}

where
Wess = {w: w,Zw) > 657w},

and dim Wy s g is defined as the largest dimension of any subspace contained in Wy 5 3.
Remark 1. Since we only deal with invertible covariance matrices X in this paper, it always holds

that ag )S & > 0. Moreover, so long as S is not identically zero, a(zl )S ;. 18 finite. We also assume that

ST has trivial kernel, which implies that ﬂ(zl)s m. 18 finite. This assumption is essentially without
loss of generality; see Section B.1 for discussion.

In [32], it shown that if the ratio 5(zl)smk / 04(217 Sm.k exceeds a certain constant, then there is a
k-sparse signal such that the S-preconditioned Lasso with m samples fails with high probability.
However, this signal depends on S (specifically, it’s the signal for which C“(El,)s, 1 achieves the infi-
mum). Because we ultimately need to construct a signal distribution independent of .S, we need
a slightly more general statement which provides a condition under which a given signal causes
S-preconditioned Lasso to fail. Such a statement is in fact implicit in [32]:

Theorem D.1 ([32]). Let ¥ € R™ ™ be positive-definite and let S € R™**. Let m,k € N. If
w* € R" is a k-sparse signal with
1) )
(w*)"Sw* < =22 |5

18
then the S-preconditioned Lasso exactly recovers w* with probability at most exp(—Q(m)), from
m samples with independent covariates X1, ..., X, ~ N(0,X) and noiseless responses Y; =

<’LU*,XZ>

Proof. The proof of this result is implicit in (Theorem 6.5, [32]) and we include it for the reader’s
convenience. For convenience of notation let 3 = ﬂ(zl)s . and © = 71 We want to show that
with high probability, the S-preconditioned Lasso (1) fails to recover w*, i.e.

w* ¢ argmin ||STwH1
w: Xw=Xw*
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where X has rows X1,..., X, ~ N(0,X). We know that

(w)TSw* = a|[STw* 2

1

for some o < 3/18.

By definition of 3, there is a subspace U C R” of dimension 2m such that w” Yw > 3 HSTwH?

forall w € U. Let vy, ..., vay, € U form an orthonormal basis for U, and let V' € R™*2™ be the
matrix with columns v, ..., Uomy.

We construct v € R™ to satisfy Xw* = Xv and ||STv||, < [|STw*||, as follows. LetI' =
VTRV € R?™*2m_ The columns of V have no linear dependencies, and ¥ is symmetric positive-
definite, so I' is symmetric positive-definite. Thus, there is an invertible matrix N € R2mX2m gych
I' = NTN. Define
c=N"YXVN YT xuw* e R*™
and define v = V¢ € R"™. By construction we have v € U, so
2

UTZUZﬁHSTle. 2)

Second, note that
E(XVN HT(XVN )] =m(N"HTVISVYN T = m(N"HITN ! = mly,,.

Moreover, the rows of XV N ~! are independent and Gaussian. So in fact XV N ~! hasi.i.d. N(0,1)
entries. Thus, with probability 1 — exp(—Q(m)), we have o ((XVN~1)T) > \/m/3 since the

dimensions of (XV N~ are 2m x m (by Theorem B.1). Hence, o (XVN—Y)T) < 3//m.
We can conclude that

vIY0 = 'NTNe = (w)TXT(XVN-HT(XVNH) T Xw* < (9/m)(w)T XT Xw*. (3)
We can now check that HSTle < HSTle. Indeed, by Theorem B.2, (w*)T X7 Xw* <
2m(w* )T Xw* with probability at least 1 — exp(—£(m)), so

Is7ol, < /oo

9
</—(w)TXTXw*
_\/mﬂ(w) v

18

< \/E(w*)TEw*

18ax

S -
B

which produces the desired inequality as long as 5/a > 18.

Finally, since XV N~! is rank-m with probability 1, we have (XVN ") (XVN~—HT = [, and
thus

15" w"]l,

Xv=XVN YUXVN H Xw* = Xw* (4)
as desired. O]

D.2 Structure Lemma for compatible preconditioners

We now consider the case where the preconditioner does a good job of preconditioning the rows M,
so that Lasso can succeed with non-trivial probability for most such signals. Then very informally,
one would think this forces ¥ ~ SST, which by the construction of 3 will force S to be dense, and
hence the preconditioner will fail on basis vectors.

The following Lemma starts to make this intuition correct and precise. It shows that if the precon-
ditioner is compatible with most of the rows of M, then the “sparse part” of the preconditioner .S is
not too large. The “sparse part” is actually given not just by removing the dense rows of ST but also
by removing a small number &’ of columns of S7: this is inevitable because the assumption that the
preconditioner is compatible with most of the rows of M cannot imply something about all of the
columns of ST, and this is where erasure-robustness is crucially used.
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Lemma D.2 (Structure Lemma). Let M € R ™" and define © = MT M. Let )\ be the smallest

nonzero eigenvalue of ©. Let € > 0, and let O =0+el Let k,m,a,7,b,b',n > 0. Suppose that
M satisfies (b, V', n, T)-erasure-robustness (Definition 4).

Let S € R™*5. Suppose that

. b
Pr (MO 'M, <a ||STMi||f} <
i€[n—r] n—r
and define v = 5%131 S i m/a. Let

D:={ies]:[[(ST)llo>7}

be the set of T-dense columns of S (rows of ST ). There exists a subset of row indices C C [n] with
|C| <V such that the submatrix Scepe satisfies

> 1Sce

jeDe

w2 | Ml
VA

9 <

Proof. Let B C [n — 7] be the set of i € [n — 7] such that M7 O~ 'M; < « HSTMlHi By
assumption, |B| < b; let C := Cp C [n] be the set guaranteed by erasure-robustness, which indeed
satisfies |C'| < . For any i ¢ B, we have

1 = M3
Is7an)f? < Larre-tar, < 2l
@ A
where the last inequality is because M; € span ©. Expanding the ¢; norm as a sum, and summing
||STMZ-||1 over i € B, we have

; Mz 3/2
Z Z“(ST)j,MiH < nszB I ”2 < n ||MHF

e ien - vV« o VoN
Thus,
32| M|
> Mpe(8T)s ] € D ([Me(8T) |, < ="
jels] jels] Ao

As specified in the theorem statement, let D C [s] be the set of ¢ € [s] such that ||(ST)Z-H0 > T
Then for any i € D°, we have that ||(ST)ic- , <1 HMBU(ST)Z-HOO. Thus,

32 || M|
§ STy .|| < § Mpe(ST) . <w
Pt H( )JC 2 — njeDc H B ( )JHOO — //\CY
as claimed. O

As a consequence of the previous lemma, we can show that if the compatibility ratio is small then S
must have many dense columns (S7" has many dense rows).

Lemma D.3. In the setting of Lemma D.2, suppose that 1/ Bg}l Shm€ > n3/2n | M|z /V .
Then |D| >n —1r —b —2m.

)

6-1.5.km sufficiently

Proof. Suppose for contradiction that | D| < n—r—b'—2m. Pick some 8’ >
small that 1//B’e > n®/2y || M || » /v/Aa. Define
W = ker(S%) Nker(©) Nspan{e; : i € C°} C R™.
Then
dim(W) > n —|D| —r —|C| > 2m.
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For any w € W, we have
wTO® 'w > €71 |Projye, o wlls = €1 w3

since w € ker ©. On the other hand,

‘STw||1 Z 1((ST) )jsw (w € ker(S%))
jeD*
= Z |<(ST)jC%wCC>| (supp(w) C C°)
jeDe
< IS sce ]y lwlly (Cauchy-Schwarz)
jeDe
3/2
< % [lwll, - (Lemma D.2)

TV

) ~ 2
As a consequence, by choice of 5’, we have wT © 1w > 3’ HSTle . Therefore W C Wg 1 g 4,
contradicting the definition of 85_1 ¢ . - O

E Failure of the Preconditioned Lasso

In this section, we prove Theorems 2.1 and 2.2. We start by proving our lower bound against
invertible preconditioners. We then prove a key projection lemma and use it to prove the lower
bound against rectangular preconditioners.

E.1 Invertible Preconditioners

To construct a signal distribution which fails invertible preconditioners with probability 1 — o(1),
we’ll need to amplify the failure probability by adding together multiple signals. The following
lemma formalizes why this works in certain cases: a random combination of vectors where at least
one of them has large ¢; norm is very unlikely to have small ¢; norm.

Lemma E.1. Let D be a continuous distribution on R with density upper bounded by 1/2. Let
v1,...,0s € R"and let Zy, ..., Z; ~ D be independent random variables. Then

< d max ||vi1] < 0.
1€[t]

Proof. Without loss of generality assume that [|v; ||, = max;c [|v;]|;. Condition on Zy, ..., Z; 1

and define
t—1
Z Ziv; + zvg
i=1 1

For any z,2" with f(z) < ¢||v|; and f(2') < 0 |lvel; we have by the triangle inequality that
lzve — Z've|l; < 20 |Jug]|y, so |z — 2/| < 26. Since the density of D is upper bounded by 1/2, it
follows that 95

Pr{f(Z) < dllul,] < 5 =

which proves the claim. O

We know show that if M is a sparse compressive erasure-robust design matrix (e.g. as we con-
structed previously), then the covariance matrix 3 = (M7 M + eI)~! together with an appropriate
signal distribution describes a hard distribution family for (invertibly) Preconditioned Lasso.

Theorem E.2. Let n,r € N. Let M € R " " and € > 0. Define © = MTM and © = © + el.
Let )\ be the smallest nonzero eigenvalue of ©. Let k,m,«,7,1n,b,b',t > 0 and suppose that M
satisfies (b, b, n, T)-erasure-robustness and has k-sparse rows.

Suppose k > 2(n/7)log(n) and n — r — b’ > 3m. There is a distribution D on k(t + 1)-sparse
signals in R™ with the following property.
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Let S € R™ ™ be invertible. Suppose that
912 | M| Ve/X < 1. (5)

Then with probability at least 1 — exp(—tb/(n — 1)) — 1/n°C over true signals w* ~ D, it
holds that S-preconditioned Lasso fails with probability 1 — exp(—§2(m)) over independent sam-
ples X1,...,X,, ~ N(0,071): that is, w* is not a unique minimizer of HSTle subject to
Xw = Xw*.

Proof. Let D be the signal distribution where we draw independent and uniformly random indices
Ry,...,R: € [n — r] as well as independent Zy, Z1, ..., Z; ~ Unif([-1,1]), and draw w with
uniformly random k-sparse support and entries Unif([—1, 1]) on that support, and set the signal to
be

t
ZiMRg,
w* = Zov/ew + Z %R
i=1 \/ M}, ©71Mp,
Pick any invertible S € R"*". Define o = 8 /(72n192). We distinguish two cases.

6-1,5km

Case I: incompatible preconditioner. On the one hand, suppose that
b

n—r

Pr [Mi(:)_lMi <« HSTMZHﬂ >

i€n—r)

Then with probability at least

(L= =b/n=r)) > (1= /07

over the row indices Ry, ..., R;, there is some R; with

I15™ Mz,

2 1 ~_
| >~ Mg ©7 Mg,

Under this event, we have
|7 Mn ]y 1
max ———— > ——
1€[t] M%; 671MR1» \/&

so by Lemma E.1, it holds with probability at least 1 — 1/n°° over Zi, ..., Z; that HSTw* >

1
ﬁ. But by the triangle inequality, we have \/ (w*)T©~1w* < t+ vk < 2n (since ®T O~ 1w <
e ||@])3). Thus,

Pr |:||STw*||i > 1 (w*)Télw*] > (1 _ eftb/(nfr)) <1 _ 1) )

Ww* ~D 4n102 4 nb0

Moreover, for such w*, by choice of o and by Theorem D.1, the S-preconditioned Lasso recovers w*
with probability at most exp(—2(m)), from m independent samples X1, ..., X, ~ N(0,071).

Case II: compatible preconditioner. On the other hand, suppose that

b
n—r

Pr }[Mi(:)*lMi > a|sTal;] =

i€n—r

I
©-1,Skm

n3/2n||M || /v/Aa. So we can apply Lemma D.2 and Lemma D.3: there is a set D C [s] satisfying
|ID| >n—1r—0b —2m, and ||(ST)j||O > 7 forall j € D. Let U = supp(STw*). Then since the
support of w0 is uniformly random of size k > 2(n/7) log(n), we know that U D supp(STw@w) 2 D
with probability at least 1 — 1/n. Let V = {d € R™ : supp(STd) C U} and let z = sign(STw*).
We claim that there is some d € V with Xd = 0 but (d, Sz) # 0. Indeed, since ST is invertible,
it suffices to show that there is a vector f € R™ supported on U, such that (S~1X;, f) = 0 for all

By choice of « and the theorem assumptions, we know that 1/,/3 >
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i € [m], but (z, f) # 0. This holds because z is with probability 1 outside the span of the vectors
{(S71X;)u : i € [m]}, and the number of degrees of freedomis |U| > |D| > n—7r—b —2m > m.
We conclude that the desired direction of improvement d exists, so w™ is not a minimizer of the S-
preconditioned Lasso.

O

Remark 2. The term 1/n° in the probability of failure in Theorem E.2 and Theorem E.3 can be
replaced by 1/n’ for any particular £ if we modify the left hand side of (5) accordingly. All that
happens if we pick a larger £ is that to satisfy (5), we need to pick a correspondingly (polyno-

mially) smaller e which means that the covariance matrix of the data, > = O~ 1, becomes more
ill-conditioned. We stated the results with £ = 50 only to simplify the statements.

Finally, we instantiate the above theorem with the parameters of the design matrix M we constructed
in Theorem C.15.

Theorem E.3. Let n € N be sufficiently large. There is a matrix ¥ € R™ "™ with condition
number poly(n) such that the following holds. Let k € N with k > log®n. There is a distri-

bution D over O(k log? n)-sparse signals such that for any positive integer m < n/T7 and any
invertible preconditioner S € R™ ", with probability at least 1 — O(1/n°) over w* ~ D, the
S-preconditioned Lasso recovers w* with probability at most exp(—§(m)) from m independent
samples X1, ..., X, ~ N(0,X) with noiseless responses Y; = (X;, w™).

Proof. Let O be the matrix guaranteed by Theorem C.15. We check the conditions of Theorem E.2.
First, dim ker(©) > n/2. Second, A = Q(n~%/2). We can take b = n/(log® n), b’ = 2n/(log® n),
n = nSlog®n, and 7 = Q(n/log" n). We have |M||, < O(y/nlogn). Thus, we can take
€ = Q(n~"). We know that the rows of M are k-sparse. Let t = 2log® n.

Applying Theorem E.2, there is a distribution D over O(k log” n)-sparse signals such that for any
invertible preconditioner S € R™*™, with probability at least 1 — O(1/n°?) over w* ~ D, the
S-preconditioned Lasso recovers w* uniquely with probability exp(—$2(m)) from m samples, so
long as m < n/7 (so thatn — r — b’ > 3m). O

E.2 Projection Lemma

To extend our lower bound to rectangular preconditioners, we need Lemma E.6, a projection lemma
generalizing an analogous result from [32]. To prove it, we recall two lemmas which are essentially
taken from [32]; the second of these is the original projection lemma.

First, recall that our covariance matrix has the form Y= (:)’1, where © = © + €I for some PSD
matrix ©. The following lemma establishes that if € is sufficiently small relative to the smallest
nonzero eigenvalue of O, then the row span of the design matrix X is nearly orthogonal to all but
- -1

the top eigenspace of the covariance ¥ = (@) (i.e. the kernel of ©). In other words, by taking e
small enough the top eigenspace dominates, as expected.

Lemma E.4 ([32]). Let O € R™ " be a PSD matrix with minimum nonzero eigenvalue \. Let
e,m > 0andlet © = O +el. Let X1,..., X ~ N(0,071). Ifr := dimker © > 2m, then with
probability at least 1 — exp(—Q(m)) it holds that for all a € R™,

. ne
IProjpan e X all, < 4/ - [| X" all

where C'is an absolute constant, and where X : ' m X n is the matrix with rows X1, ..., Xpn.

Proof. The proof of this result is essentially contained in [32], and we repeat it to make this paper
self-contained. The statement of the lemma is basis-independent (e.g. does not depend on sparsity

of © or a), so we can assume without loss of generality that © is diagonal. Then O lis diagonal,
and we can choose a basis ordering such that the first 7 = dim ker © diagonal entries are each e~ 1.

Next, note that (X7') [, is a rxm matrix with i.i.d. N (0, ") entries, $0 omin (X 7)) > ce™1/2\/r
with probability at least 1 — exp(—£2(m)), for some constant ¢ > 0 (by Theorem B.1). On the other
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hand, since the entries of © . are bounded by 1/), we also have Omax(XT)pge) < Cy/n/A

[r]e[r]

with probability at least 1 — exp(—£(n)), for some constant C. This means that for any u € R™,

T n Cy/ne T C |ne o7
JOrTuyerl, < 04/ s < 25 [ ayg ), < 2l
But (X Tu)[r]c is precisely the projection of X 7w onto span ©. So this proves the lemma. O

- -1
The next lemma establishes that if the top eigenspace of the covariance ¥ = (@) has a dimension
significantly larger than the number of samples, then the row span of the design matrix X is unlikely
to align with any particular direction v (i.e. the projection of v onto the null space has large norm).
Informally, this is because the worst-case v to consider would be a vector in the top eigenspace
(since a lot of the energy of the samples is in this space), and a random lower-dimensional subspace
of the top eigenspace (corresponding to the samples) is not likely to contain any particular direction.
Lemma E.5 (Lemma 7.4 in [32]). Let O € R"*™ be a PSD matrix with minimum nonzero eigen-
value \. Let e,m > 0 and let © = © + el. Let X1,..., X ~ N(0,071Y). Ife < c\/n fora
sufficiently small absolute constant ¢ > 0, and r := dimker © > 2m, then for any fixed v € R",
we have

Pr [o"(I~ PJo > (o70)/8] 21— 5" — exp(~0(m)),

X1, Xom
where P = XT(X XT)~1X is the projection map onto span{ X1, ..., X, }, and where X : m xn
is the matrix with rows X1, ..., X,,. As an equivalent statement, it holds with probability at least

1—(4m)/(3r) — exp(—Q(m)) that

. 1
aé%fm [|lv— XTaH2 > WG lvlly -

Proof. The proof of this result is essentially contained in [32], and we repeat it to make this paper
self-contained.

The statement of the lemma is basis-independent (e.g. does not depend on sparsity of © or v), so we
can assume without loss of generality that © is diagonal. Then O lis diagonal, and we can choose
a basis ordering such that the first r = dim ker © diagonal entries are each ¢!, Let w = v[,) be
the first 7 coordinates of v. For i € [m] let Y; = (X;)},) be the first 7 coordinates of X;. Then
Y1,..., Y, are iid. N(0,e7'L.). Soif Py = YT (YYT)~'Y, then Py is projection onto an
isotropically random dimension-m subspace of R”. Hence,

2 m 2
E | Pywl; = [lwll;-

With probability at least 1 — 4m/(3r) we have || Pyw|3 < 3 |jw||3. So |lw — Pywl||5 > |[w|3 /4.
Now ||w — Pywl||, is the distance from w to the subspace span{Y1,...,Y,,}. For any vector in
span{Xy,..., X, }, its first r coordinates lie in span{Y7,...,Y},}, so the distance to v must be at
least ||w — Py wl|,. Thus,

2 2 1 2
lv=Poll; 2 llw = Prwly 2 7 [lwll; - (6)

Next, note that (X7)(,; is a rxm matrix with i.i.d. N (0, 1) entries, $0 oin (X)) > ce™1/2\/r
with probability at least 1 — exp(—£2(m)), for some constant ¢ > 0 (by Theorem B.1). On the other
hand, since the entries of (9[;]16 () are bounded by 1 /A, we also have oma ((X7)(e) < Cy/n/A

with probability at least 1 — exp(—£(n)), for some constant C. This means that for any u € R™,

7 e
<03l < R Nl

eV Ar

(X w) e

By assumption, ¢ < (¢/4C)2Ar/n, so that ||(XTu)e||, < [[(XTu)i]], /4. Now Pu lies in the
span of X1, ..., X,,, so there is some u € R™ with Pv = X Tu. This means that

| (Pv) e

1 1
o< 7 IPully < 5 ol
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So
v = Pully > ||(v = Pv)e

1
2 2 HU[T]“ 27 4 o]l -

Together with Equation 6, which states that [[v — Pv, > 3 ||vp H2 we get that |[v — Pul|5 >
2
g llvllz - -

Finally, we extend the previous lemma to show that projection of a fixed direction onto the null
space of the covariates has lower bounded norm even when restricted to a set of coordinates P with
sparse complement. We need an extra condition, that ker(©) is quantitatively dense (Definition 6),
meaning that there is no approximate solution u to the equation up = 0 near the top eigenspace of
¥ = ©71. Then we show that under the assumptions of the previous two lemmas, for any particular
vector up supported in P, the equation up = (X7 a)p is unlikely to have an approximate solutions
a. The proof is by contradiction: if the conclusion is false, then there is a positive probability
that if we sample two independent design X, X that: (1) there are approximate solutions a, a to
up = (XTa)p and up = ((X)Ta)p, (2) by Lemma E.4 both approximate solutions are near the
top eigenspace, and (3) by Lemma E.5 these two solutions are not well-aligned; combining (1-3)
gives that (X7a — (X)Ta)p is an approximate solution to (up) = 0 near the top eigenspace, which
is impossible.

Lemma E.6. There are absolute constants ¢, C > 0 such that the following holds. Let © € R™*™
be a PSD matrix with minimum nonzero eigenvalue \. Let € > 0 and §,n,7 > 0 and let © = © +€l.
Let m > C'logn. Suppose that ¢ < ¢§’°\/n, and v := dimker © > 2m, and ker(©) is (6,1, 7)-
quantitatively dense (Definition 6). Fix u € R™ and P C [n] with |P| > n—7. Then with probability
at least p = 1 — (4m)/(3r) — exp(—Q(m)) over independent X1, . .., X, ~ N(0,071), it holds
that

e
32

inf
a€R™

up — (XTa)pll, > o5 llupll,y -

Proof. Suppose that the claim is false. Then using that » = dim ker © < n we have
dm _ 1
m . T
lz)’(r [Ga e R™: ||(u—X a)p”2 < (n/32) luplly] > v > e
By Lemma E.4, we also have that

lir Ya € R™ : ||Projspan@ XTCLH2 <C % HXTaHQ] > 1 — exp(—Q(m)).

Since m > C'logn, for a sufficiently large constant C' the latter probability must exceed 1 — 1/n.
So with positive probability, these two events occur simultaneously. Hence, there exists some deter-
ministic X € R™>™ such that both events occur. Let @ be the witness of the first event for X, and
define v = X7Ta. Then the following two equations hold:

n
1 = v)plly < 55 llurll; (M
. ne
dist(v,ker®) < C 5y llv]l5 (8)

Now suppose that the claim of Lemma E.4 holds (for the original samples X, ..., X,,). Also
suppose that the claim of Lemma E.5 holds for vector v (and samples X1, ..., X,,), i.e. v7' (I —
P)v > (vT'v)/8: or equivalently, the following inequality holds for arbitrary vectors a € R™:

1
v—XTall. > ——|Iv|l, . 9
I I, = 575 2 ©)
By Lemmas E.4 and E.5, we may assume that both claims hold with probability p = 1 —
(4m)/(3r) — exp(—=Q(m)). Fix a € R™. Then

dist(X 7 a, ker©) < C / % HXTaH2 (by claim of Lemma E.4)
<Oy S (lo=XTall, + lvl,)
340,/% vaXTaH2 (by Equation 9)
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By Equation 8 and Equation 9,
. ne T
dist(v,ker ©) < 3C Y lv—X a||2.
Thus, by the triangle inequality,
. T ne T
dist(v — X" a,ker©) < 7C Y Hv - X a”z.

By assumption, 7C'y/(ne)/A < 4. So because ker(©) is (4,7, 7)-quantitatively dense and |P| >
n — 7, and by Equation 9,

v =X a)pll, = nlv = X7 al, >

ol
22

Finally, we convert this into a bound on (u — X T'a) p, repeatedly using the fact that vectors « and v
are close on P (Equation 7):

Itu = X" a)e],

Y

(v = X"a)p||, — l(u—0)pl,

v

o _
WG lvlly = 55 luplly

n n
> _
25/ vplly 39 luplly
n n n
—— ||up|ly — —= [(u —v — —ju
e luplly e ¢ )Plls 39 lupll,

n
2wl

%

v

where the second and last inequalities apply Equation 7. We showed this inequality holds for all
a € R™ with probability at least p, which is the desired conclusion of the Lemma. This contradicts
the initial assumption that the conclusion is false, proving the conclusion unconditionally. O

E.3 Failure of rectangular preconditioners

Lemma E.7. Let r := dim ker ©. Then for any S € R™"*%,

1 r—2m

e

Pr ||,
i€[n]
where 8 = g1 g 1. -

Proof. Suppose not. Then ||STei|| < 1/+/Ben for at least n + 2m — r choices of i € [n]. Pick
some 3 > j3 which is sufficiently close to 3 that I = {i € [n] : ||STe;|| < 1//B’en} also satisfies
[I| > n+2m —r. Let V = span{e; : ¢ € I}. Then dimV = |I| > n + 2m — r. Define
W =V Nker®. Then dim W > dim V' — (n — r) > 2m. Moreover, for any w € W, we have

= _ . 2
'LUT@ 1w 2 € ! ||PrOchr®w||2
— 2
= ! Juwl;

whereas

1 [[wll,
ST wl], < Jwil - [|STei]], < lwl]l, < .
S 2l 157l < g Il < 7

~ 2 - .
As a consequence, wle~tw > g HSTwH L Therefore W C Wg_1 ¢ 8> contradicting the defini-
tion of Bg-1 g n- O

Lemma E.8. There are constants ¢, c,, > 0 so that the following holds. Let M € R™™"*" and

€ > 0. Define © = MTM and © = © + €l. Let ) be the smallest nonzero eigenvalue of ©. Let
k,m,s,a,1,1,b,b' > 0and suppose that M satisfies (b, ,n, T)-erasure-robustness, and ker(M ) is
(1/(124/n), 1/2/n,b')-quantitatively-dense. Suppose v > 2m, m > ¢y, logn, k > (n/7)log(sn)
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and € < c\/n?. Let Dy, be the distribution of k-sparse signals with uniformly random support in
R™, and Gaussian entries on the support. For any preconditioner S € R"*® satisfying

P [M767 0t <72 }] < (10)
i€[n—r] n—r
and
B0
-1
128n" 2k | M| || 5 < 1, (11)

we have the following: with probability at least
1—2/n— kb /n—exp(—k(r —2m)/n)

over true signals drawn from Dy, it holds that S-preconditioned Lasso fails with probability at least
1 — (4m)/(3r) — exp(—Q(m)) over independent samples X1, ..., X,, ~ N(0,071).

Proof. Let S : n X s be an arbitrary preconditioning matrix satisfying (10) and (11). By (10), we
can apply Lemma D.2 to define sets C, D as functions of S, with the following properties:

« For every i € D, the column v = (S7); € R" satisfies [|v||, > 7,

e The submatrix Sgepe satisfies

n3/2q || M|
Seve. <7F
E || C]HQ— o

jeDe
<<y,

Draw w* ~ Dy. Let K = supp(w*) and let U = supp(STw*). Recall that for every i € D, the ith
row of ST (the vector (S7); € R™) has at least 7 nonzero entries. Therefore, for a particular choice
of i € D, the probability that (STw*); = 0 is at most the probability that a uniformly random set of
k elements from [n] misses all 7 elements of the support of (ST);, which is at most

QI=-7/m)Q-7/(n=1))---Q=7/(n—k)) < e kT/n < 1/(sn).

Hence by the union bound over all ¢ € D, recalling that D C [s], we have that D C U with
probability at least 1 — 1/n.

Similarly, because |C| < b, with probability at least 1 —kb’ /n it holds that K C C°. By LemmaE.7,
with probability at least 1 — (1 — (r —2m) /n)* > 1 — e~ k(r=2m)/ jt holds that ||.S;||, > 1/+/Ben
for some j* € K. Now conditioned on K, observe that (w*) i has independent N (0, 1) entries. So
by Lemma E.1,
P1V[||S:’1u)*”1 > |18l /n] > 1 —1/n.

Thus, it follows that HSTw* |1 > 1/(n+/Pen) with probability at least 1 — 1/n — exp(—k(r —
2m) /n) over w*. Moreover ||w*||, < 2v/k with probability at least 1 — exp(—(k)). Assume for
the rest of the proof that all of the above events (on w*) occur: D C U, K C C°, ST w* |1 >

1/(nv/Ben), and ||w*||, < 2v/k. We have shown that these together occur with probability at least
1—-2/n—kb /n—exp(—k(r—2m)/n), and in the rest of the proof we show that under these events,
S-preconditioned Lasso fails with probability at least 1 — (4m)/(3r) — exp(—£(m)) over samples
X1, X,

Let z = sign(STw*). Since supp(w*) = K C C¢, we have by Cauchy-Schwarz that

* T, * ST *
[lw* |l [lw* |l lw ]l 2ny/Benk

where the last inequality uses the above bounds on ||STw* || , and |w*||5. Define

1(52)c-

d= argmin |z — (S2)c<|,
z€ker X, ce
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implicitly zero-extending d from C* to [n]. Then Xd = Xj,,),ccdc- = 0 by construction, and
moreover

(ST d)ue |, < [|(STd)pel], (D CU)
=Y (S jce doe) (supp(d) € C°)
jeEDE
< lldlly Y I1Sce;ll (Cauchy-Schwarz)
jeDe
n3/2n || M
< fal, - = e

On the other hand,
2
2 .
I3 = (57 d.2) = |[Projies x,, oo (S2)e| -
We now apply Lemma E.6 to vector Sz and set C*, using that ker(M) is (1/(12y/n),1/(2+/n),V')-
quantitatively dense in conjunction with the bounds ¢ < cA\/n?, m > ¢, logn, r > 2m, and
|C| < V. By this lemma and by (12), with probability at least 1 — (4m)/(3r) — exp(—§(m)), we
can lower bound the norm of the projection to get

1 1
dlls > ——[(S2)cells > —————.
Il > 7= 1682)exll = gy
As aresult, so long as n%/%n | M| » /v Aa < 1/(128n?/Bek), which holds by (11), we have that
| (STd)ye , < (8Td, z) so the preconditioned Lasso fails on w*. O

Theorem E.9. There are constants c, c,,, > 0 so that the following holds. Let M € R"™"*"  and de-
fine® = MTM. Let k, k', m,7,b,b',n,t > 0. Let X be the smallest non-zero eigenvalue of ©. Sup-
pose that M satisfies (b, b, n, T)-erasure-robustness, and that ker(M) is (1/(12+/n),1/(2+/n),b')-
quantitatively-dense. Let ¢ > 0 and define ® = ©~+e¢l. Suppose that 544n5/2kn M|l zv/e/XA<1,
that v > 2m, that m > c,, logn, and that ¢ < c\/n?. And suppose that the rows of M are k'-
sparse. Then there is a distribution D over max(k't, k)-sparse signals such that for any precondi-
tioner S € R™** with (n/7)log(sn) < k, with probability at least

1Inin 1— eibt/("f"‘) _ l 1— g _ kibl _ efk(rf2m)/n
2 n’ n n

over w* ~ D, the S-preconditioned Lasso fails to recover w* with probability at least 1 —
(4m)/(3r) — exp(—Q(m)) over the samples X1, ..., X,,.

Proof. Let D), be the signal distribution where we draw independent and uniformly random indices
Ry,..., R € [n— r] as well as independent Z1, . .., Z; ~ Unif([—1, 1]), and set the signal to be

W=y o
i=1 M};iéflMRi

We define D to be the mixture which with probability 1/2 draws a signal from D,,, and with
probability 1/2 draws from the distribution Dy, defined in Lemma E.8 (note that in the former case,
the signal is k'¢-sparse, and in the latter case, it is k-sparse).

Pick any S € R"** with (n/7)log(sn) < k. Define o = Bgzl . /(18n*). We distinguish two
cases. o

Case I: incompatible preconditioner. On the one hand, suppose that
b

n—r

Pr [M67M; < a||STM[}] >

i€[n—r]
Then with probability at least

(= (=b/n=n))

(1 _ e—tb/(n—r))

N | =
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over the row indices R, ..., R;, there is some R; with

15" M,

2 1 ~_
| > aM}Q@ Mg, .

In this event, we have
ST Mg, ||, 1
max ————o > ——

i€ft] M}{léflMRi Va

so by Lemma E.1, it holds with probability at least 1 — 1/n over Z1, . .., Z, that || ST w*|

But by the triangle inequality, we have {/(w*)TO~1w* < t < n. Thus,

T2 o L oama—1, s o L (1 /=) (1_ L
wFNrD{HSwH1>n4a(w)® w]22(1 e ) 1 —

1
12 nvar

Moreover, for such w*, by choice of a and by Theorem D.1, the S-preconditioned Lasso recovers w*
with probability at most exp(—$2(m)), from m independent samples X1, ..., X,, ~ N(0,071).
Case II: compatible preconditioner. On the other hand, suppose that

b
n—r

Pr (16710 < a||STMJ}) <
i€n—r

This is precisely the condition (10) in Lemma E.8. Moreover, (11) is satisfied because we defined o
so that Bgzl S hm Ja = 18n*, and because of the bound assumed in the theorem statement. Thus,
we can invoke Lemma E.8, which states that for w* ~ Dy, with probability at least 1 — 2/n —
kb /n — exp(—k(r — 2m)/n) over the signal, the S-preconditioned Lasso fails with the desired
probability. Thus, the same holds for w* ~ D up to a factor of 2. [

Finally, we instantiate the above theorem with the matrix constructed in Theorem C.15.

Theorem E.10. Let n € N be sufficiently large. There is a matrix ¥ € R™ ™ with condition
number poly(n) such that the following holds. Let k € N with k > log® n. There is a distribution
D over k 1og4 n-sparse signals such that for any positive integer m < n/5 and any preconditioner
S € R with s < exp(ck/ log® n—log n), with probability at least 3—0(1/logn) over w* ~ D,
the S-preconditioned Lasso recovers w* with probability at most 8m/3n + exp(—Q(m)) from m
independent samples X1, ..., X, ~ N(0,X) with noiseless responses Y; = (X;, w*).

Proof. Let © be the matrix guaranteed by Theorem C.15. We check the conditions of Theorem E.9.
Clearly, 7 := dim ker(©) > n/2. By claim (5), we have A = Q(n~°/2). By claims (3) and (2), we
can take b = n/(klogn), ' = 2n/(klogn), n = nSlog®n, and 7 = Q(n/log® n). By claim (4),
we have | M || < O(y/nlogn). Thus, we can take ¢ = Q(n~2?). By claim (1), the rows of M are
K'-sparse with &' = O(log® n). Let t = klog® n.

So applying Theorem E.9, we get that there is a distribution D over k log4 n-sparse signals such that
for any preconditioner S € R™** with s < exp(ck/log® n — logn), with probability at least

lmin 1— g 1— 2 _ L _ e—k(n/2—2m)/n
2 n’

over w* ~ D, the S-preconditioned Lasso recovers w* with probability at most 8m/(3n) +
exp(—Q(m)) from m samples. So long as m < n/5, both terms in the minimum are 1—0(1/logn),
yielding the claimed result.
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