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Abstract. As secure messaging services become ubiquitous, the need for
moderation tools that can function within these systems without defeat-
ing their purpose becomes more and more pressing. There are several
solutions to deal with moderation on a local level, handling harassment
and personal-scale issues, but handling wider-scale issues like disinfor-
mation campaigns narrows the field; traceback systems are designed for
this, but most are incompatible with anonymity.

In this paper, we present Anonymous Traceback, a traceback system
capable of functioning within anonymous secure messaging systems. We
carefully model security properties, provide two provably secure and sim-
ple constructions, with the most practical construction able to preserve
anonymity for all but the original source of a reported abusive mes-
sage. Our implementation shows integration to messaging systems such
as Signal is feasible, with client-side overhead smaller than Signals’ sealed
sender system, and low overhead overall.

1 Introduction

End-to-End Encrypted (E2EE) messaging services have become ubiquitous. Peo-
ple want to claw back some privacy from the nature of the internet, to commu-
nicate with actual peace of mind. However, they also open up many problems,
a key one being: how do we moderate a messaging system where all messages
are hidden? Message Franking [3,5] for instance, allows a receiver of an abusive
message to report it and prove the identity of the one who sent it to them. In
many cases, just blocking the immediate sender may be insufficient; attackers
may abuse E2EE systems through viral messages and misinformation campaigns,
which have become a major issue on various online platforms. Such campaigns
have spread disinformation about vaccines [1,2], attempted to interfere with
elections [14], and even resulted in deaths [9]. To deal with those issues, [13]
initiated the study of source tracing in E2EE systems, which enables the server
(with the assistance of a reporting client) to follow the path of a forwarded mes-
sage through the network and locate the original sender of a reported abusive
message. A core challenge of traceback is to maintain security of messages as
much as possible until a valid report is made to the tracing server.

However, traceback in its original form has several limitations. On one
hand, [13] focused on preserving message confidentiality without considering
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anonymity. Their first “path traceback” construction reveals the identities of
the whole forwarding chain, while their second “tree traceback” scheme further
reveals every user involved with the message. Since the purpose is to reduce
the spread of viral misinformation while maintaining user security/privacy as
much as possible, identifying much more information beyond the originator of
the reported message should be unnecessary. In addition, it is incompatible with
(partially) anonymous E2EE messaging systems such as Signal; for the tracing
algorithms in [13] to work, it is necessary that the platform logs who is talking
to who. Attackers could still abuse an anonymous E2EE system, to spread viral
misinformation where traceback cannot be applied.

1.1 Our Contributions

For those reasons, we introduce Anonymous Traceback. We carefully formulate
and define the problem and give 2 constructions capable of maintaining the useful
core feature of locating the source of a reported (potentially abusive) message,
while working within a partially or even fully anonymous messaging system.

Formulating Anonymous Traceback. We take the basic structure of trace-
back, and rework it to function in an anonymous system. While the general
structure of algorithms remains similar to the original traceback [13], several
subtleties need to be taken care of, since tracing the source while preserving
anonymity may seem to be antagonistic goals. We first alter the existing security
property of trace unforgeability to anonymous trace unforgeability to account for
the larger scope of actions the adversary can take, and introduce new notions
for anonymity. Specifically, pre-trace anonymity which keeps a user’s identity
hidden until a trace is made on a message they are involved with, and post-trace
anonymity which lasts even after a trace is made. We afford originators and
forwarders different levels of anonymity as is feasible.

Constructing Anonymous Traceback. We design two constructions, stress-
ing on simplicity for minimal overhead, and compatibility to existing systems.

The first is “anonymous path traceback”. As we mentioned above, the path
traceback in [13] requires explicitly the identity information of each user for the
tracing algorithm. Simply encrypting the information renders it trivial to frame
innocent users, as the server cannot verify that information during tracing; some
means of ensuring the accuracy of the hidden information is necessary. This
somewhat naturally leads towards tools such as zero knowledge proofs, which
still incur significant overhead. While those would work in theory, we prefer to
create a more efficient solution with minimal overhead. We first observe that we
can take advantage of the message recipient’s position to place responsibility for
verifying critical information on them; if the receiver fails to properly check this
information, we consider them corrupted and a valid result for tracing.

There is one more subtle threat: that an adversary may try to launch a
“delayed replay attack”: the adversary sends an abusive message and corrupts
one user A in the forwarding chain. A receives the message from a forwarder
B, and then later sends a copy of that message to himself pretending B is the
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original sender. This is possible due to limited storage space putting a lifespan on
previous send information. We observe that the conventional wisdom of adding
timestamps resolves this issue. Here we do not need precise synchronization of
all the clocks, just roughly close.

Although anonymous path traceback achieves pre-tracing anonymity, it can-
not manage post-tracing anonymity. In an anonymous messaging system, reveal-
ing the whole tracing path also reveals second and more order connections, which
can be used to identify social groups on the platform. This is fairly troublesome:
targeted advertising can be considered invasive, and far worse are the possibili-
ties of a hate group identifying a community to target, or a government cracking
down on dissent. Even if you trust the messaging platform, that does not mean
that data could not end up in the wrong hands regardless.

To preserve more anonymity, we next construct anonymous source traceback,
capable of retaining anonymity for all users except the original source (or an
intentional malicious forwarder). However, current tracing method is a step-
by-step process, each message’s tracing information pointing backwards to the
previous message in the forwarding chain. At each step the tracing information is
verified, including the sender’s identity, meaning the entire path becomes known
in the process of finding the original source. To escape this limitation, we observe
that the identity information needs to be decoupled from the tracing informa-
tion. We realize this by separating the platform into a message server and a
tracing server. The former is only in charge of regular messaging functionality
and maintains identity-related metadata (still preserves anonymity), while the
latter stores relevant tracing information. During tracing, the two servers could
jointly “emulate” the step-by-step tracing process as before, until an identity is
considered as output of the tracing algorithm. We note this two-server archi-
tecture is comparable to other work in the literature, and could have several
plausible instantiations in practice, see Sect. 4 for more discussion.

Implementation and Evaluations. We implement and benchmark our con-
structions’ cryptographic components and compare them to benchmarks of lib-
signal, showing that our computational overhead is practical to integrate into a
large-scale messaging application - and is in fact less overhead than Signal’s sealed
sender system currently uses. While it would be additional overhead on top of
sealed sender, that still indicates it is low enough to work at scale. In addition,
we also provide an estimate of necessary storage space for tracing data compared
to the original traceback paper’s metrics, which while larger also appears practical.

1.2 Related Work

There have been an increasing number of studies into accountability in encrypted
messaging recently. The moderation tool that began this trend is Message Frank-
ing [3,5], which is the baseline tool many others, including traceback, expand upon.
To the best of our knowledge, the original traceback [13] is the first instance of a
system capable of following a message’s forwarding trail to find the original source.
In addition to the path traceback capability we replicate here in anonymous path
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Table 1. Comparison of tracing systems. , , and represent degrees of pre-trace
anonymity, while represents full post-trace anonymity. Hecate does not require the
moderator and platform to be separate and non-colluding, but has a similar issue as
FACTS when a user is out of tokens otherwise.

Original [13] [8] FACTS [7] Hecate [6] Anon path Anon source

Traces Path/Tree Source Source Source Path Source

Origin Anon. N/A N/A

Forwarder Anon. N/A N/A

Deniability Likely Yes Likely Yes No No

Server count 1 1 1 2* 1 2

Storage Reqs Moderate Small Small Small Large Large

traceback, their second construction, tree traceback, could recover the entire for-
warding tree branching out from the initial source.

Peale, Eskandarian, and Boneh [8] also develop a tracing method they call
Source Tracking, which improves upon traceback with two constructions capable
of tracing to the original sender without needing to store information for each
message on the server, or revealing forwarders. However, the more efficient of
these constructions loses the property they call “tree unlinkability”, which cor-
responds to some of the original traceback’s user trace confidentiality property,
and both are incompatible with any form of anonymity, as they require senders
to identify themselves to the platform.

FACTS [7] improves upon traceback both by finding only the original source,
as in our latter construction and source tracking, and also with threshold report-
ing; FACTS will only allow a message to be traced after it has been reported by
a sufficiently large number of users. This is a step towards preventing the abuse
of tracing systems by focusing them on the large-scale misinformation they are
meant for. However, FACTS is not fully compatible with anonymous messag-
ing systems either. While FACTS could theoretically function on top of sealed
sender, it requires that senders request a token and signature from the server
prior to sending their message, making anonymity guarantees fragile at best.

Hecate [6] aims to provide tracing within an anonymous system as we do,
though they make different trade-offs. Hecate is derived from Asymmetric Message
Franking [11] and so achieves deniability where we do not. However, they achieve
tracing through each user generating tokens ahead of time with the moderator, one
token consumed with each message sent makes them identifiable to the moderator
when reported. This carries a key issue: the tokens cannot be generated directly
before use or the anonymity guarantees are significantly weakened, similar to [7].
This means users who leave their phones off, or simply send large volumes of mes-
sages at once, are not getting the full anonymity guarantee (Table 1).

Orca [12] also works towards accountability in metadata private messaging
systems, approached from the opposite end; where we focus on identifying the
original source of forwarded messages, ORCA focuses on more personal-scale
issues, enabling users to block people harassing them directly without needing
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moderator intervention. Orca is a complement to our own work; it allows users
to stop harassment directly without needing the intermediary of the platform,
while keeping the platform as a whole clean is left to systems like ours.

Ethics of Source Tracing. The ethics of moderation systems will always
be a tricky topic. If used without care they can be abused to harass a user-
base or silence criticism, and revealing anonymous identities could lead to legal
consequences. At the same time, they have undeniable utility in dealing with
toxic behavior. We recommend extensive care in using these systems, and would
generally not recommend using our first construction; while it is an important
theoretical stepping stone, it reveals more information than we are comfortable
with. Further discussion on ethics is present in the full version [4].

2 Definitions and Security Models

Our goal is to create a variant of the traceback system that can function within
an Anonymous messaging system and avoid compromising that Anonymity.

Cryptographic Primitives. We will use standard cryptographic tools includ-
ing symmetric key encryption, hash functions, digital signatures and collision
resistant pseudorandom functions (which is a pseudorandom function with an
extra collision resistance property taking both the key and PRF input as func-
tion input, see [13]). The collision resistant PRF function will be referred to as
F, but we omit further details due to the page limit.

The Messaging System. For the most part we treat the underlying E2EE
Messaging system our systems are built on top of as a black box, but there are
a few key assumptions we make about that system:

– There exists a PKI (Public Key Infrastructure) system in place, such that each
user U has an associated public key and private key, as well as a certificate
certU binding their public key to their identity. We make use of these long-
term keys as LTPKU and LTSKU , to sign and verify our primary digital
signature and also as an identifier.

– That for anonymous messages, analogous to Signal’s Sealed Sender, the sender
includes in their encrypted message a certificate certUs

for recipient to verify
their identity, we input it to our RecMsg function in our first two constructions
as a confirmation that we and the underlying platform are in agreement on
the identity of the sender.

Notations in Anonymous Traceback. Now the following will explain nota-
tion for various elements within the constructions:

– Users are denoted by Ui, where i is an identification number unique to that
user. Us and Ur indicate the user sending and receiving a message respectively.

– mid is the message id value, it is generated by the PRF and used as a key
to store trace information in the platform’s database.
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– tts, ttr, and ttp represent the tracing tags for the sender, receiver, and
platform respectively. They contain each party’s view of the trace information.
When moving to the split server construction, ttp is split into ttms and ttts
for the message server and tracing server respectively.

– CK , CPK , Csig are the ciphertexts containing a tracing key, long-term
public key, and signature respectively.

– ki represents the (symmetric) tracing key for the i’th message in a trace, and
k̃i is the hashed version, to use as the PRF key.

– DB is the database of path tracing information, stored as a key: value system
with each entry structured as (mid : CK , CPK , Csig, ts).

– pkeph and skeph are asymmetric keys generated for an ephemeral signa-
ture used in the second construction, with sigeph representing that signature.

– MDB and TDB are the two halves of the DB database, used when the
servers are split for the Message Server and Tracing Server respectively. MDB
entries are structured (mid : CPK , Csig, ts, pkeph, sigeph) and TDB entries are
structured (mid : Ck, pkeph).

2.1 Anonymous Traceback Syntax

The basic structure of an anonymous traceback scheme is similar to that of the
original traceback schemes [13], consisting of the following components:

TagGen(Us,m, tdg) → k, tts: This algorithm generates the tracing key k and
the tracing tag tts. The input tdg is a catch-all for the data relevant to tracing
necessary for tag generation, which varies by construction but always includes
the previous tracing key kprev if available. When delivering the message, k
is encrypted alongside the message plaintext m for the recipient to access.
Compared to the original, we remove the requirement of providing the recip-
ient’s identity as we want to keep as few identities involved in each operation
as possible.

Svr-Process(stplat, tts, Ur) → (mid, ttp), ttr: This protocol is used to verify
incoming tracing information from a sender (tts) prior to delivering the mes-
sage and logs information into the platform’s state stplat. The output comes
in two parts: first the Message ID mid and platform tracing information ttp,
typically used to update the database(s) with mid as the key pointing to ttp,
and second the tracing information that is passed on to the recipient, ttr,
which they use for their own verification in RecMsg.

RecMsg(k, Us, Ur,m, ttr) → tdr: The recipient runs this algorithm to verify the
tag ttr they receive along with the message m, prior to accepting the message.
The output catch-all tdr includes cryptographic data identifying the message,
for use in submitting a tracing request later. Usually, for RecMsg td is simply
k. In our constructions, rather than just the identity Us, we typically use that
user’s PKI certificate, as is delivered with messages in Sealed Sender.

Svr-Trace(stplat,m, k, tdt) → trace: The protocol that performs the actual
tracing operations, utilizing a message m, associated key k, the platform’s
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state and additional data represented as tdt. The result, trace, varies by con-
struction in what information it reveals, but the minimum requirement is
enough information to penalize the original source of the message.

One change worth noting is that we remove the NewMsg algorithm here,
combining its functionality into TagGen for readability; while useful as an
abstraction in security games, in practice it is only called immediately prior
to calling TagGen with all of its output. Having TagGen check the td for a
previous key and generate one if absent simplifies things. Svr-Process and Svr-
Trace are now protocols to be executed by different components of a platform
working in concert. We take full advantage of this in our latter two constructions
by splitting the server into two halves, a Message Server and Tracing Server, each
with their own database.

2.2 Security Model

Our overall goals are to maintain the ability of tracing to find the original source
of the message, and at the same time preserve as much anonymity as possible.
This leads to the following properties.

Anonymity. Retaining anonymity despite the presence of a tracing system is
the primary goal of this paper, so we aim to make these definitions as strong as
possible. Origin Anonymity defines anonymity for the original source of a specific
message, while Forwarder Anonymity defines anonymity for those who forward
a different message. Due to lack of space, we briefly explain the high-level intu-
itions, detailed security games can be found in the full version [4], represented
in the OriginAnon and ForwarderAnon games respectively. In addition, our
constructions achieve different degrees of anonymity for these two groups, rep-
resented by changing oracles: post-trace anonymity is the preferred result, where
even after a message is traced identities remain hidden, while pre-trace anoyn-
mity maintains anonymity until a trace is made (more explanations below).

We give the adversary complete control outside of the context of the challenge
message; able to cause message sends, traces, and read from the database both
before and after the challenge message is sent. For the challenge, the adversary
chooses the message sent, the recipient user, and in ForwarderAnon they even
choose the initial sender of the message. Only at the time of message delivery
must the two possible senders/forwarders and the recipient be honest, and other-
wise the adversary has free reign to corrupt. This also means our anonymity def-
initions have forward and backward security; unlimited corruptions are allowed
both before and after the challenge message, it is only tracing the message that
is disallowed, and only for pre-trace anonymity.

They are formulated by allowing the adversary access to multiple oracles:
Send, to send or forward messages, Trace, to perform traces, and DB to query
the server’s database. The primary differences between pre-trace and post-trace
anonymity are that for pre-trace anonymity the challenge message and its for-
wards are flagged so the tracing oracle will refuse to trace them, while post-trace
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anonymity oracles have no such restriction. In addition, for anonymous source
traceback the DB oracle gives access to only the message server’s database, since
the two servers cannot collude. We choose the message server’s database as it is
the more useful of the two, containing the encrypted identity information.

It is worth noting that these properties apply on a message-by-message basis.
As none of the tracing information (aside from the signature, which is encrypted)
derives from identity or is re-used, an originator whose message is traced in
a system that guarantees only pre-trace anoynmity loses anonymity for that
specific message, but any other messages they have sent or will send in the
future remain anonymous until and unless those specific messages are traced.

Limitations of Sender Anonymity. We note that there is an inherent limitation
to sender anonymity. As the recipient’s identity is known, a curious server could
choose to log each recipient and associate them to the message IDs that they
receive. This may reveal the identity of the ‘first’ recipient of each message that
is traced, the one who received it from the originator. This leakage cannot be
avoided and so excluded in our models.

However, should the system be built on top of a messaging service that has
both sender and receiver anonymity, this leak would disappear. No modification
of our constructions is needed, as we at no point require the recipient’s identity.
While there is a decent amount of evidence that Signal would not take advantage
of this leak [10], the same cannot be said of all messaging services. In the long run
it would be best to build anonymous traceback on top of systems with stronger
anonymity guarantees to avoid this leak.

Anonymous Trace Unforgeability. We borrow the basic structure from trace
unforgeability in [13], but careful modifications are needed to accommodate
the new complications of introducing anonymity, and the adversary’s additional
capabilities. This property ensures that when a trace is performed, an honest
user who (a) is not the original source of the message and (b) did not deliber-
ately partition the trace, cannot be framed. We consider the adversary here to
be any group of colluding users; as the point of tracing functionality is to assist
the platform in moderation we assume the platform will follow our algorithm.
In addition, if the platform wants to punish a user they have the authority to
do so regardless of a tracing result. Due to page limit, we explain the high-level
idea here, for detailed security games, we refer to the full version [4].

Overall, the adversary is allowed to create a database state through the
oracles available to them, and then perform a trace of their choosing. They
succeed if any of four (two in the case of anonymous source traceback) possible
failure conditions arise in that trace: Either a completely empty trace result, an
honest user is misidentified as the original source, the reporter never received
the message they are reporting, or an honest user is misidentified as a forwarder.

The Send and SendMal oracles allow causing honest and dishonest users
to send messages, respectively. SendMal in particular has been expanded upon,
and allows further deviation from the protocol and usage of adversarially chosen
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values where Send behaves honestly. The NewMsg oracle allows honestly gen-
erating information for a new ’original’ message, and is required by the honest
Send oracle when authoring a new message.

We also add the ClearDB oracle to allow an attacker to simulate waiting
for the database sliding window to advance, clearing the trace data, to allow
attempting delayed replay attacks.

As the adversary succeeds when the game returns true, the advantage expres-
sion for anonymous trace unforgeability given a specific construction TB is:

AdvAnonTrUNF
TB (A) = Pr[AnonTrUNFA

TB ⇒ true]

We remark that Trace Partitioning is a potential attack where a malicious
forwarder purposefully breaks the tracing information to appear to be the origi-
nal sender themselves. Similar to the original [13] we cannot actually prevent this
from happening; even if we were to include text matching software to convert
copy & paste into forwards (which likely should be done to prevent the non-tech-
savvy from accidentally partitioning a trace by missing the forward button or
another similar misunderstanding), this would not stop those who modify their
client software from having the capability to break the path and become a ‘new’
originator. Still, even if someone does this, the end result of a trace will still be a
bad actor: the one who deliberately broke the path to the originator. Regardless
of which occurs, a single bad actor will be removed from the platform, so while
imperfect this still allows traceback to fulfill its purpose.

Trace Confidentiality. A property we carry over from [13] that aims to keep
message path information hidden from both the user and the platform until and
unless a trace is performed. It can be split into two separate properties: platform
trace confidentiality and user trace confidentiality, defining the ability to hide
information from the Platform (prior to tracing) and Users respectively.

The goal is simply to keep information about a message’s path hidden unless
that message is being traced. In practice this comes down to ensuring that from
both the user’s and platform’s view it is impossible to tell whether a given
message is a forward or new; if it is not even known whether a message is a
forward to begin with, it is of course impossible to determine information such
as previous forwarders or the original sender.

We inherit this property from [13] largely unchanged, including the security
games; the adversary is given access to tracing information appropriate to either
the platform or a receiving user, and succeeds if able to distinguish between a
newly authored message (or random string) and a forwarded message.

3 Warm-Up: Anonymous Path Traceback

The original traceback [13] algorithm has a fairly simple core. When messages are
sent, a message ID (mid) is generated via the PRF F using a freshly generated
symmetric key, k. When delivering a message the server uses mid as a key to
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store tracing metadata: sender and receiver identities and an encryption of the
previous key if forwarded (garbage if an originator). Later a report can be made
to the server by sending the plaintext and key, used to generate a mid value.
This mid is looked up, the previous key decrypted, used to generate a new mid,
and so on. When a lookup fails, a garbage previous key was used, and so the
message’s originator has been found.

Attempting to introduce anonymity to this system quickly creates issues,
however. The original system relies heavily on communications being authenti-
cated; should the sender not authenticate to the server, there is no way to ensure
that the information on the sender is correct. The need to authenticate anony-
mously reminds us of anonymous credentials, but while that would work fine
to verify that the sender is “allowed to message”, it would not ensure that the
identity could be accurately revealed later during the tracing procedure. Adding
a zero knowledge proof to be verified by the platform could ensure a message
would not be sent without a guarantee that a valid signature existed matching
the identity that will be recovered later. However, this solution had a significant
drawback: compared to secure messaging systems that support a massive scale of
users, it was significantly less efficient. We strive for an extremely simple solution
with minimal overhead.

A key observation of the trust model used for traceback provided our solution
- the idea of partitioning a trace. In traceback, the linked-list nature of the
tracing information means that a dishonest user can break the connection to
previous messages at any time, essentially choosing to become the new “original
source” and take responsibility for a message they forward. This is referred to as
“partitioning the trace”, and is an inherent part of traceback’s security model;
they cannot be stopped from taking the blame if they choose but either way
a bad actor is detected. This ties in nicely with one of the properties of an
anonymous communication system: while the server has no information on the
sender’s identity, the receiver knows it. Therefore, we may pass the responsibility
(which is lightweight) to check that the tracing information corresponds to the
correct person to the recipient.

The end result of this is our addition of a digital signature. We assume the
underlying messaging system already makes use of a PKI, and so use the existing
long term keys to sign the tracing information to be certain the sender’s identity
is accurate. We sign on mid, the encryption of the previous tracing key from
original traceback (CK), as well as an encryption of the public key (CPK) used
both to verify the signature and identify the sender. Passing the signature along
in the clear creates a problem of its own: the server could brute-force attempt
to verify the signature with all known public keys to identify the sender, so it is
encrypted as well, to be verified by the server only during tracing. Meanwhile,
the recipient is expected to verify the signature, and reject messages if they fail.
If they accept a bad signature, when it fails to verify the server will know the
recipient accepted an untraceable message.

However, there is one subtle issue remaining. While in theory we can treat the
database of tracing information as infinite, in practice that is unsustainable. [13]
recommends using a sliding window, where database entries are removed after
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a certain period of time. However, that leaves recipients with valid tags and
signatures that will no longer be rejected for duplicate mid. These could be used
to recreate that message without the previous entries, framing the sender as the
originator of the message’s second life even if they only forwarded the original.
Thankfully, the solution to this Delayed Replay Attack could be again simple:
by adding a timestamp to the values signed on and checking for recentness when
the server delivers a message, this exploit is closed off.

3.1 Construction Details

We follow the same general structure here as the original path traceback con-
struction [13], creating a database of trace information keyed by a unique mes-
sage id value generated via a collision resistant PRF.

TagGen(Us,m, kprev, LTSKUs
) → (ki, tts, sig):

1. Randomly generate a new tracing key ki. If no kprev is provided, also
generate a false previous key, for a new message.

2. Generate the timestamp ts.
3. Use a hash to generate k̃i from ki, to separate the key used for the PRF

F from the key used in encryption.
4. Calculate the message ID, mid, as Fk̃i

(m).
5. Using ki, encrypt kprev and the sender’s long term public key LTPKUs

as CK and CPK respectively.
6. Using LTSKUs

, generate a digital signature, sig, on the combined infor-
mation (mid,CK , CPK , ts).

7. Encrypt sig using ki as Csig.
8. Create the tracing tag tts as (mid,CK , CPK , ts, CSig), to be delivered to

the server when sending the associated message. (The tracing key ki is
encrypted with the message, to be delivered to the recipient only.)

Svr-Process(DB,Ur, tts) → ((mid, ttp), ttr):
1. Check the database DB for an existing entry under mid. If one exists,

reject the message.
2. Check that the timestamp is recent, if not reject the message.
3. Add the current tracing information to DB, with mid as the key value.
4. Copy tts to create the tracing tag for the recipient, ttr.

RecMsg(ki, certUs
, Ur,m, ttr) → ki:

1. Verify that the mid in ttr can be generated using the received message m
and tracing key ki with the PRF. If not reject the message.

2. Decrypt CPK and verify that the public key LTPKUS
matches the send-

ing user’s certificate, certUs
. If not reject the message.

3. Decrypt and verify the signature within Csig using the information from
ttr, if verification fails reject the message.

4. If all verification succeeds, display the message. Output ki can be used to
report the message for tracing.

Svr-Trace(DB,U,m, k) → Tr:
1. Initialize a list Tr of tracing information, beginning with the reporter.
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2. Use the supplied m and k to generate mid = Fk̃(m).
3. Look up the generated mid within DB, and retrieve the relevant tracing

information. If the lookup fails, the trace has concluded.
4. Decrypt CPK to identify the sender with LTPKUs

.
5. Decrypt sig from Csig and verify, if it fails the trace has concluded.
6. Add the user’s identity Us and message ID mid to Tr.
7. Decrypt CK to retrieve the next tracing key, replacing k, and calculate a

new mid using the new k and the reported message m.
8. Repeat steps 3–7 until a lookup fails (indicating the original sender) or

a signature fails to verify (indicating a bad signature was knowingly
accepted). Tr will now contain the user identities and associated mid
values (for reference) in reverse order.

Security Analysis. Our Anonymous Path Traceback construction achieves
trace confidentiality, anonymous trace unforgeability, and pre-trace anonymity
for both originators and forwarders of a given message. Proof sketches are in the
appendix, the complete proofs are left to the full version [4].

4 Anonymous Source Traceback

Path traceback is inherently limited when our goals include maintaining as much
anonymity as possible within the system, so with the basics ironed out we turn
towards preserving the anonymity of the links along the chain. This is called
source traceback, which reveals only the original source’s identity.

The primary obstacle to achieving source traceback based on our existing
construction is the structure of our database itself. As we follow the trail of mes-
sage IDs, at each and every step we verify the signature at that entry, revealing
the identity of the person who sent or forwarded it. This is unavoidable with a
step-by-step method and identity information present.

We solve this by splitting the server in half, passing the identity-related infor-
mation to a message server that delivers the messages and giving necessary trac-
ing information to a tracing server which follows the chain of mid evaluations and
lookups to its end. When tracing, the tracing server passes its result along to the
message server, who can then verify the signature and learn the identity. Splitting
the database is the only option to continue with the current structure of the sys-
tem, where traces are made one step at a time. There has to be information in the
trace capable of revealing the user’s identity, and no real way to prevent the plat-
form from recovering it when performing a trace, since it is necessary to find the
source.

Technical Challenges: There are challenges in building an extremely simple two-
party protocol for source traceback in our split server model. The main challenge
is how to deal with a failed signature verification. The message server can only
verify the signature of the final result, so what happens if that fails? It must
go back to the tracing server for more information. So the tracing server must
retain information on its most recent traces and respond to the message server



54 E. Kenney et al.

when it needs help. However, this creates another problem: what is stopping the
message server from simply asking for all the information whether they need it
or not, reverting to path traceback? Assuming the tracing server is unwilling to
collude with the message server, we can solve this issue by introducing an extra
signature. This signature, made using ephemeral one-use keys to sign the tracing
data entry that the message server handles, can be used to prove to the tracing
server that the failed signature justifying its request is legitimate.

Additionally, the two servers need to ensure that the tracing information
for any message is present on both servers; the opposite half of the tracing
information must be guaranteed to exist on the other server. This manifests in
the form of a small amount of communication to allow the message server to
reject messages that have no corresponding information in the tracing server.
Aside from this, the split also creates a theoretical issue; no longer can the
encryption of the previous key, CK , be verified, which opened a few interesting
questions that are answered in the full version’s [4] security proof.

In this way we can maintain the efficiency and the simplicity of the first
construction while achieving anonymity for all but the reporter and the “source”,
if the underlying messaging system’s anonymity is strong enough. With only
sender anonymity as mentioned before we leak only the first recipient’s identity.

Benefits and Instantiations of Split Servers: The split server construction does
have benefits of its own as well. For example, prior to this construction a user
colluding with someone who has access to the server’s database could reveal
an entire forwarding path; in essence making a report that will definitely result
in a trace. With the message server and tracing server as distinct entities this
collusion becomes more difficult. Access to just the tracing server’s database
cannot reveal identities, while the message server’s database would reveal the
identity of the immediate sender, but tracing to the originator would be impos-
sible. In addition, we can allow more privacy to originators: the tracing server
learns only the message, not their identity, and the message server learns only
the identity without the message. Passing the message to the message server is
a trivial change that does not affect any of the security properties, but it is an
extra layer of privacy available due to the split.

As for instantiation, there are several possible options for the two non-
colluding servers needed to maintain our anonymity properties, including trusted
hardware on the messaging server, or having one server run by an independent
entity such as an NGO or non-profit. We also remark that the other relevant
solution, Hecate [6], implicitly requires a similar structure; while their moderator
and server can technically be separate, doing so would reduce their anonymity
guarantee for token-less originators similar to [7].

4.1 Construction Details

Compared to the anonymous path traceback construction, while we add an
amount of communication overhead, the primary effect is splitting the server-side
work between the message server and the tracing server.
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Where originally a database entry contained a mid as a key pointing
to CK , Ccert, Csig, kT , and the recipient’s identity, these are now split. The
tracing server’s database contains only the information necessary to follow a
chain of entries, mid and CK , while as the message server delivers the mes-
sage to the recipient, its database carries information related to the signature,
mid,Ccert, Csig, ts, and kT . In addition to splitting the old information, both
servers store the new ephemeral public key, pkeph, and the message server stores
the signature it verifies, sigeph. One new wrinkle is that, as the message server’s
database no longer contains CK , it can no longer be signed on by the signature.
This will be covered in more detail in the security proofs, but during analysis it
will be shown that CK actually does not need to be verified by the signature.

The client-side algorithms contain only minor modifications:

TagGen(Us,m, kprev, LTSKUs
) → (ki, ttms, ttts, sig):

1. Follow steps 1–7 from the Anonymous Path Traceback version of TagGen.
2. Generate an ephemeral asymmetric key pair pkeph and skeph.
3. Generate sigeph by signing on (mid,CPK , ts, Csig) with skeph.
4. Create the message server’s tracing tag ttms as (mid,CPK , ts, CSig,

pkeph, sigeph), and the tracing server’s tracing tag ttts as (mid,CK , pkeph).
RecMsg(ki, certUs

, Ur,m, ttr) → ki:
1. Act as Anonymous Path Traceback’s RecMsg. The only difference is

removing CK from the signature verification.

The server-side algorithms however, have split into two, and add TSvr-Req,
to handle the message server’s requests for additional information:

TSvr-Process(TDB, ttts) → mid:
1. Check the database TDB for an existing entry under mid. If one exists,

reject the message.
2. Add the information within ttts to TDB, with mid as the key.
3. Pass mid along to the message server to notify that the tracing server’s

half of the tracing data has been received for that message.
MSvr-Process(MDB,Ur, ttms):

1. Check the database MDB for an existing entry under mid. If one exists,
reject the message.

2. Check that the timestamp ts is recent. If not reject the message.
3. Verify sigeph, reject the message if this fails.
4. Add the information within ttms to MDB, with mid as the key.
5. Create the tracing tag ttr as (mid,CPK , ts, CSig), for the recipient.

TSvr-Trace(TDB, TLOG,m, k) → (mid, k, tid):
1. Initialize a list Tr of tracing information.
2. Use the supplied m and k to generate mid = Fk̃(m).
3. Look up the generated mid within TDB, and retrieve the tracing infor-

mation. If the lookup fails, the trace has concluded.
4. Add the mid and associated key k to Tr.
5. Decrypt CK to retrieve the next tracing key, replacing k, and calculate a

new mid using the new k and the reported message m.
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6. Repeat steps 3–5 until a lookup fails. Tr will now contain the mid values
and associated keys of the message chain in reverse order.

7. Store the full trace information Tr in TLOG to be referenced later if
needed, generating a trace ID tid as the key.

8. Return the end result mid and key to the message server along with tid.
MSvr-Trace(MDB,mid, k, tid) → Us:

1. Look up the provided mid value in MDB, then decrypt sig from the
associated Csig and verify.

2. If the signature fails to verify, request the next mid in the trace from the
tracing server using TSvr-Req, and repeat step 1.

3. When the signature verifies, either the original source or a user who pur-
posely accepted a bad signature has been identified.

TSvr-Req(TDB, TLOG,mid, k, tid, ttms) → (mid, kprev, tid):
1. Look up the provided mid value in TDB and verify that the provided

ttms matches, sigeph verifies, and sig within Csig does not verify to prove
the message server requires additional information. If this fails, reject the
request.

2. Look up the provided tid in TLOG, and return the next mid value in the
trace to the message server.

Security Analysis. Our Anonymous Source Traceback construction achieves
trace confidentiality from both user and platform, anonymous trace unforgeabil-
ity, pre-trace anonymity for message originators, and post-trace anonymity for
message forwarders; leaving forwarders unknown even after a successful trace of a
message they forwarded. For further details and proof sketches see the appendix,
the complete proofs are left to the full version [4].

5 Implementation and Performance

Our implementation focused on testing the cryptographic overhead our construc-
tions cause on the clients and servers of an E2EE system. The implementation
was programmed in C, using the libsodium cryptographic libary. While there
does exist an implementation of the original traceback [13], one of its dependen-
cies no longer exists and the successor has a different API, rendering the original
implementation immeasurable, so we started from scratch. For the hash function
H and PRF F, we use the Blake2b algorithm, encryption uses the XChaCha20
algorithm, for signatures we used EdDSA. We also make use of the libsignal-
client general purpose Signal library as a point of comparison; its session and
sealed sender benchmarks can estimate the overhead of the double-ratchet and
sealed sender. All tests were run on an Intel i7-11800H processor with turbo
disabled, meaning the processor was locked to its base clock speed of 2.3 Ghz.
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Table 2. Average cryptographic overhead for client-side. In order: baseline Signal over-
head, then additional overhead from Sealed Sender, then further additional overhead
from [13] or from our own constructions. Compared to Hecate [6], who tested with a
stronger processor, our anonymous source traceback construction’s sending overhead is
comparable to their combined token generation and sending overhead, with our recip-
ient overhead much lower.

Signal Sealed sender [13] Anon path Anon source

Sending (µs) 7.0958 198.69 +1.569 +34.7775 +96.5644

Receiving (µs) 204.15 174.42 +0.6075 +80.992 +80.992

Performance Results. Looking at the client-side overhead in Table 2, there is
obviously an overhead with our constructions compared to the non-anonymous
traceback [13], however even in the worst case we remain under 1 ms on average.
Compared to the overhead Signal users already face, this is definitely feasible.

Server-side processing overhead is workable as well. In our anonymous path
traceback construction we use no additional cryptography, so we only see an
increase in overhead when verifying the ephemeral key signature in our anony-
mous source traceback construction, which costs on average 79.82 µs. While this
may sound like a large performance hit compared to no cryptographic overhead
at all, on average it can be calculated 12,528 times in a second. Given that we
are testing with a single thread on a CPU locked to its base clock speed, in a
data center this number will scale to a much higher figure.

Overhead during tracing is also worth discussing. In anonymous path trace-
back every signature in a trace must be verified so overhead scales directly with
the length of the trace (approx. 81.919463 µs per forward). In anonymous source
traceback only the original’s overhead occurs per forward (approx. 1.338296 µs)
while signature verifications are conditional; only if the message server’s ini-
tial verification fails must the tracing server and message server perform fur-
ther verifications, costing approximately 80.552661 µs to the message server and
160.840751 µs to the tracing server per bad signature. Most traces will not con-
tain many bad signatures, so on average there should be much less overhead
in anonymous path traceback. Though it is worth considering the possibility of
purposefully chaining garbage signatures as a denial of service attack.

To examine our space efficiency we use the same estimation as [13]: a mes-
saging service that uses a 1-month window and sees 1 billion messages per day.
In anonymous path traceback a database entry is 136 bytes, leading to a require-
ment of ≈4.08 TB, while for anonymous source traceback entries in the tracing
database are 96 bytes, requiring ≈2.88 TB, and message database entries are
232 bytes, requiring ≈6.96 TB. Compared to the original’s figures [13] of ≈600
GB for path traceback and ≈2 TB for tree traceback, we do take up quite a
bit more space. However, while the results are not exciting, they are still likely
feasible for a large service, and our implementation uses conservatively high key
sizes, so there’s room to reduce while maintaining security.
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Implementation Concerns. One thing the original [13] leaves unexamined is
the sliding window approach they recommend for databases when implementing
their system. This puts a cap on storage costs, but it creates a surprising number
of problems in the process. Previously discussed in more detail is the delayed
replay attack, though that is only an issue due to anonymity.

A general issue for traceback-style systems that use a sliding window is behav-
ior when a message trace is called for after the original source has timed out of
the database. A lookup failure indicates that the original source has been found,
but if lookup fails because an entry no longer exists, the trace could penalize the
wrong person. Using a sliding window thus requires care. At the very least, a
2-part window that first flags an entry as timed out, then deletes after a second
time window would avoid misattribution of blame, though the trace still would
not find the source.

It is worth considering preventing forwards client-side after the window has
passed, but this may do more harm than good. The likelihood of a user just
copy-pasting is high, and the alternative of a confirmation prompt warning that
they will be held responsible may not prevent it. Overall, the limitations of the
sliding window should be kept in mind.
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6 Proof Sketches

6.1 Anonymous Path Traceback

Trace Confidentiality. For trace confidentiality, both user and platform, we
can refer back to [13] for their original proofs, as we add no additional information
that could be used to distinguish forwarded messages from original messages.
This is fairly straightforward to see, while we add (depending on the system), a
Signature, Timestamp, and/or Anonymous Blacklisting Authentication Token,
these components do not vary between original or forwarded messages. The only
difference remains the value of the previous key encrypted as CK , just as it was
in the original Traceback paper, and so we can inherit their security here.

Theorem 1. With APT as the anonymous path traceback scheme defined in
Sect. 3.1: For any AnonTrUNF adversary A, there are corresponding adversaries
B and C running in the same time as A such that:

AdvAnonTrUNF
APT (A) ≤ Advcr

F (B) + Advforge
Sig (C)

For any PreAnon adversary A, there is a corresponding adversary B running
in the same time as A such that:

AdvPreAnon
APT (A) ≤ Advcpa

ENC(B)
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Trace Unforgeability. As seen in Theorem 1, the adversary’s advantage
against anonymous trace unforgeability is a sum of the advantage against the
PRF’s collision resistance and the advantage for forging a signature. This means
their advantage should be negligible, as otherwise the probability of breaking
one of the two secure building block schemes would be non-negligible.

Proof Sketch. For anonymous trace unforgeability, the same four failure cases
still form the basis of the proof:

– Case 1: An empty trace.
– Case 2: The identified honest original sender never sent the message.
– Case 3: The reporter never received the message they reported.
– Case 4: An honest user identified as a forwarder did not forward the message.

However, we must also account for the adversary’s additional capabilities; specif-
ically, it is no longer guaranteed that the identity stored matches the identity
of the user who actually sent the message. To model this the SendMal Ora-
cle now allows much more freedom to the adversary. In addition, we model the
possibility of a change in the sliding window with the ClearDB oracle.

To account for the adversary’s new capabilities we add a game transition;
SendMal sets BadSend when the sender identity does not match the tag. This
separates out the situations where the original traceback security proof’s assump-
tions fail. Regardless of why the identities do not match, for the message to have
been accepted means a signature must have been forged.

The remaining failure cases are handled as they are in the original [13] proof,
with one exception. Cases 1 and 3 are impossible because they require an honest
user to report a message they never received; the Send and SendMal oracles
both set WasRec. Case 2, Uj falsely identified as original source for a message
they did not send, cannot happen in absence of signature forgeries due to PRF
collision resistance: a trace for a different plaintext or key must result in the
same mid as a different message Uj sent.

Case 4 is similar to Case 2, Uj is falsely identified as a forwarder, and in
absence of signature forgery this also requires a PRF collision. Either in the exact
same manner as Case 2, or in a special case where Uj is actually the original
source. In the original proof this is designated “problematic” and several game
transitions are used to isolate it, but on second inspection this is still the result
of a PRF collision between the plaintext and fake kprev with some unrelated
message and key.

Pre-trace Anonymity. Anonymous path traceback aims for pre-trace
anonymity for both the originators and forwarders of its messages, therefore
in both cases the Send oracle tracks forwards of the challenge message and
Trace oracles disallow tracing those messages.

Proof Sketch. For both OriginAnon and ForwarderAnon the proofs are
nearly identical. In both cases security is guaranteed by encryption; the only use-
ful information the adversary has is the server’s view of the challenge messages.
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When looking at that view, all relevant information is encrypted, so breaking
encryption is necessary to learn the sender’s identity. There is one extra wrinkle
for ForwarderAnon; the adversary can choose the key that will be encrypted
by Ub as their CK value, which the adversary has access to through the DB ora-
cle. However, attempting to recover the key in this way corresponds to a chosen
plaintext attack, which would also break the encryption’s security.

6.2 Anonymous Source Traceback

Theorem 2. With AST as the anonymous source traceback scheme defined in
Sect. 4.1: For any AnonTrUNF adversary A, there are corresponding adversaries
B and C running in the same time as A such that:

AdvAnonTrUNF
AST (A) ≤ Advcr

F (B) + Advforge
Sig (C)

For any FPostAnon adversary A, there are corresponding adversaries B and C
running in the same time as A such that:

AdvFPostAnon
AST (A) ≤ Advcpa

ENC(B) + Advforge
Sig (C)

Originator Pre-trace Anonymity. This aims for pre-trace anonymity for
originators, so as in path traceback, the Send oracle tracks forwards of the
challenge message and Trace oracles disallow tracing those messages.

Proof Sketch. As the amount of information in the hands of the adversary
has slightly shrunk as compared to anonymous path traceback, things remain
largely the same as the previous pre-trace anonymity proof.

Just as before, the only useful things here are CPK and Csig, which must be
decrypted to utilize, and whose key is unavailable and generated independent of
any other information. Therefore, breaking the encryption remains necessary.

Theorem 3. With AST as the Anonymous Source Traceback scheme defined in
Sect. 4.1, for any OPreAnon adversary A, there is a corresponding adversary B
running in the same time as A such that:

AdvOPreAnon
AST (A) ≤ Advcpa

ENC(B)

Forwarder Post-trace Anonymity. Anonymous source traceback aims to
give forwarders post-trace anonymity, so unlike the previous anonymity defini-
tions, the Send and Trace oracles do not limit tracing in any way. However, to
account for the new avenue the message server has in gathering information, we
also add the Request oracle to allow querying the tracing server.
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Proof Sketch. The new Request oracle allows the adversary to attempt to
gain information on forwarders of a message after a trace is complete, however to
do so would require forging the ephemerally keyed signature meant to ensure the
Message Server’s honesty. We use a game transition to isolate this possibility.
Outside of that new possibility, the adversary cannot learn path information
from the Tracing Server. While we now allow tracing messages downstream from
the forwarder whose identity we want to protect, this gives no real advantage
without the path information, so breaking encryption is still required to learn
the forwarder’s identity.

Anonymous Trace Unforgeability. The primary difference from the anony-
mous path traceback proof is that no tracing information can be verified at the
time of tracing aside from the final result’s. For most of that information, there is
no real benefit to providing bad entries; the signature will fail to verify and hon-
est recipients will drop the message. The one interesting case is CK , which is no
longer included in the signature. If CK could be chosen properly, it would redi-
rect a trace in a completely different direction, but that still requires violating
the collision resistance property of the PRF. As we no longer have to worry about
the full message path remaining accurate, only two failure conditions remain: an
empty trace, and a misidentified source. These reduce in the same way as the
previous unforgeability proof; if the identities mismatch a signature was forged,
and otherwise a PRF collision occurred.
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