End-to-Same-End Encryption: Modularly Augmenting an App
with an Efficient, Portable, and Blind Cloud Storage

Long Chen

Institute of Software, Chinese Academy of Sciences

Qiang Tang
The University of Sydney

Abstract

The cloud has become pervasive, and we ask: how can we pro-
tect cloud data against the cloud itself? For messaging Apps,
facilitating user-to-user private communication via a cloud
server, security has been formulated and solved efficiently
via End-to-End encryption, building on existing channels
between end users via servers (i.e., exploiting TLS, and en-
cryption, without the need to program new primitives). How-
ever, the analogous problem for Apps employing servers for
storing and retrieving end-user data privately, solving the anal-
ogous “privacy from the server itself”” (cloud-blind storage)
where (1) based on existing infrastructure and (2) allowing
user mobility, is, in fact, still open. Existing proposals, like
password protected secret sharing (PPSS), target end-to-same-
end encryption of storage, but need new protocols, whereas
most popular commercial cloud storage services are not pro-
grammable. Namely they lack the simplicity needed for being
portable over any cloud storage service.

Here, we propose a novel system for storing private data in
the cloud with the help of a key server (necessary given the
requirements). In our system, the user data will be secure from
any of: the cloud server, the key server, or any illegitimate
users, while the authenticated user can access the data on
any devices just via a correct passphrase. The most attractive
feature of our system is that it does not require the cloud
storage server to support any newly programmable operations,
except the existing client login and the data storing. Moreover,
our system is simply built on top of the existing App login,
and the user only needs one passphrase to login the App and
access his secure storage. The security of our protocol, in
turn, is proved under our rigorous models, and the efficiency
is further demonstrated by real-world network experiments
over Amazon S3. We remark that a preliminary variant, based
on our principles, was deployed by Snapchat in their My Eyes
Only module, serving hundreds of millions of users!

Ya-Nan Li
The University of Sydney

Moti Yung
Google & Columbia University

1 Introduction

Modern Apps increasingly leverage cloud services to store
and manage their clients’ data. Email providers, online docu-
ment programs, and music libraries that synchronize across all
kinds of devices are all storing users data in the cloud. Lever-
aging public cloud storage services such as Google Cloud
Storage, Amazon S3, etc, helps companies to design their
Apps with great flexibility and scalability without the need to
invest in their own infrastructure. However, this also signifi-
cantly increases the risk of leaking client’s information [33].
Indeed, since the data are owned by the users but collected
by the App and stored in the cloud, privacy has already been
raised as a serious concern for these Apps. It is, thus, natural
that users have the right to require that their data are protected,
so that accessing either by illegitimate users, or the provider
of the App, or even the operators of the cloud server storing
the content, is prohibited. Unfortunately, popular cloud stor-
age services either directly store the user data, or keep the
decryption key so that the files get decrypted on the server
side every time they are accessed.

Given the laudatory success of cryptography research, one
may naturally assume that it is a solved problem. However
(somewhat unexpectedly), taking different requirements from
real-world considerations into account, the problem of aug-
menting an App with a secure and usable cloud storage is
still out of reach.

Portability & cloud-blindness. Portability is a desired prop-
erty since a user may access his content from multiple devices,
such as mobile phones, laptops, and desktops. Moreover,
there is a possibility that the user loses (or breaks) a device
and/or has to move to a new one and recovers the data from
storage. To protect user data against cloud, the data stored
in cloud should be blind to the cloud. A naive attempt that
encrypting data with a strong key and storing it on the user
device hinders the basic requirement of user’s mobility among
devices (portability, which is a major advantage in utilizing
the cloud, to begin with!). On the other hand, one may suggest
to encrypt with a password (or any corresponding derived key)

USENIX Association

31st USENIX Security Symposium 2353

directly [42] so that a human can remember. Unfortunately,
from security point of view, it is a very weak (low entropy)
key, thus vulnerable to potential offline dictionary attacks
from a corrupted cloud (or whoever breached the cloud).

Such an inherent dilemma between cloud-blindness and
portability hints at the fact that the problem of secure (blind)
and portable cloud storage is not solvable in the theoretic
model with only one storage provider which might be cor-
rupt.' However, if we pay a closer look at existing system set-
tings, we see that besides renting public cloud storage servers,
most App providers also deploy separate, independently-run
servers (corporate or private cloud component) for routine
administration such as user management. Therefore, a natural
idea is to consider this real-world system model with more
than one independent server.

Indeed, cryptographic tools such as password-hardened
encryption (PHE) [34]) leverage external crypto services to
strengthen the security of password protected storage. In a
PHE, the user password will be sent to the storage server and
then “hardened” to a strong key with an external server called
“rate limiter” via a password hardening service [16,35,47];
then the storage server takes this strong key to do encryption
and decryption. It is secure against external attackers that may
breach the storage server. On the other hand, as an orthogonal
concept, the main motivation of PHE (and password harden-
ing) is to provide secure service to a “crypto-free” client thus
the storage server does the cryptographic operations including
encryption/decryption. Thus the cloud-blindness as we wish
is beyond the security model of PHE.

Deployablity. From theoretical feasibility point of view, with
multiple servers, several cryptographic primitives can satisfy
both cloud-blindness and portability, such as general secure
multiparty computation (MPC), and password protected se-
cret sharing (PPSS) [5, 10-12,27-29, 36, 56]. In particular,
a (t,n)-PPSS protocol allows a user to store a secret among
n servers so that he can later reconstruct it with a password
by contacting ¢ servers. While an attacker breaking into up
tot — 1 servers and controlling all communication channels
learns nothing about the secret. However, these more theo-
retical solutions are difficult to be used by current Apps for
deployablity issues.

All existing PPSS solutions require specific algebraic op-
erations (on both servers) that bring a major hurdle for a
“scalable” deployment. Those operations are not supported at
all by the APIs of most commercial cloud storage services!
Note that plain storage services like Dropbox and Amazon
S3 normally provide extremely limited set of APIs. Take
Amazon S3 for example, they only provide two types of APIs:
storage, retrieval, deletion and access control related function-

"Indeed, several works, e.g., Boyen [8] formally showed that any
password-protected portable storage between a user and one server is al-
ways vulnerable to an offline dictionary attack by the malicious server or
hackers obtaining the server’s database, who holds a “known content” can
always offline play the user side.

alities. Therefore, the App providers have no choice but to
use cloud computing services (such as Amazon EC2), which
is dramatically (and unnecessarily) more expensive than us-
ing plain cloud storage (such as Amazon S3). For example,
besides the fixed-rate transfer cost, using Amazon EC2 in-
stances for storage incurs a very large computation cost to
keep the virtual machines continuously running, plus about
5 times the storage cost of the cost of a plain storage service
like Amazon S3. According to a rough estimation, an App
provider with only 1 million users will have to pay around
two million dollars more if deploying the same secure storage
on EC2 instead of S3 for just one month! (See Section. 6 for
details of the estimation.)

In this paper, we will consider the architecture with one
plain storage server and one App server (sometimes also

called key server), shown in Figure .

Storage Sever

[~

=Sl))

111I1=0

App Sever

Figure 1: The architecture.

Built-in App login. We may let the client get his password
“hardened” to a strong key K via the password hardening
service [16,35,47] using the App server as the “rate limiter”.
Then the user uses K to encrypt his content and authenticate
himself to the plain cloud server. However, there is one more
issue to consider when augmenting an App with a secure and
usable cloud storage: since the existing App login (usually
password based) is already in place, and in real world, users
often reuse their passwords or slight variations [46]. When
the App server is corrupted, the login password may be learnt
via offline attacks. Then the adversary can use this password
to breach into the secure storage system! We thus requires a
new design that can let the user reuse the existing App log-in
without weakening security.

In a nutshell, while one can always design a protocol for
the purpose of portable blind cloud storage, the deployability
and built-in App login requirements in a real industrial setting
make them, in fact, not as ready to use and augment exist-
ing systems. Note that the industrial-context constraints like
the economic and engineering overhead are often ignored in
the literature, but become particularly essential in upgrading
an already heavily used App which cannot suffer down time
and lose existing registered users (see Table 1). We, there-
fore, conclude that we still lack an industrial-system-oriented
feasible solution for the basic question:

How to augment Apps with a cloud-secure (blind), portable,
and highly efficient storage functionality, easily deploy-able
on non-programmable cloud storage services?

2354 31st USENIX Security Symposium

USENIX Association

PHE | OKMS
PPSS [34] [30] PBCS
Cloud-blindness Yes No Yes Yes
Plain cloud storage No * Yes Yes
Built-in App login No * No Yes
One pwd Yes Yes No Yes
Crypto-free client No Yes! No No
Oblivious key update No Yes Yes No?

Table 1: Comparison of different primitives. Cloud-blindness
means that neither corrupted server can recover the user’s
data. Plain cloud storage means the system could deploy
on the non-programmable cloud storage. * means that the
property alone is not considered in PHE (beyond its model).
Build-in App login means the existing App login mechanism
for authentication is integrated. One pwd means that the user
only needs to use one password for the secure storage. Crypto-
free client means that the App client involves no cryptography
except the basic TLS. Oblivious key update means that the
system update key without client participation.

1.1 Our contributions

We model, design, analyze, implement, and experiment with
a novel system, which we name Portable Blind Cloud Storage
(PBCS). It aims to achieve the four goals simultaneously:
portability, cloud-blindness, deployability and built-in App
login. PBCS can realize the functionalities of both the App lo-
gin and blind cloud storage modules with one protocol and be
directly deployed on plain cloud storage services like Amazon
S3. The user can reconstruct its data and login the App if and
only if he contributes a correct passphrase (e.g., successfully
log-in). At the core of our PBCS system is a “Give-and-Take
protocol” that involves the user with its current device, a data
server (plain storage) and a key server (See Fig. 2, Fig. 6
and Fig. 7). More detailed comparisons with previous works
could be found in Section 1.4 and Table 1.

Portability: PBCS allows the users to securely access his
content and login the App on any device using one passphrase.
The security and the usability of the system will be unaffected
when some of his devices are lost, as no secret is stored in the
user’s device. See Sec. 5 for detailed discussions.

Cloud-blindness: PBCS provides an “end-to-same-end” au-
thenticated encryption for the data. Specifically, the data is
semantically secure even against a compromised server and il-
legitimate users who do not follow the protocol. Furthermore,
neither server can make the client accept tampered data. See
security models and analysis in Sec. 4.2.

Deployability on plain cloud storage: PBCS minimizes the
requirements of the data server, so that it can be deployed in
existing plain storage services like Amazon S3 or Dropbox. In
our protocol, the data server only needs to support password
login and basic data storage/retrieve functions. We implement
our protocol with simple optimizations. The simplicity and

the essentially “negligible” overhead of our PBCS system are
showcased by evaluations done in a real network environment
with the data server deployed on Amazon S3. See Sec. 6.

Built-in App login: PBCS integrates the App login module, so
the user does not need to enter two separate passphrases for the
App login and the secure storage module. This not only saves
the engineering overhead, but also minimizes the influence
on the user experience after the secure storage modular has
been augmented. Furthermore, it can prevent security issues
when careless users set the two independent passphrases for
the login and the storage to be same.

1.2 Technical overview.

To achieve the four goals simultaneously, there are several
challenges to resolve. From security point of view, we need to
be particularly careful about potential offline attacks. In a very
high-level, we let client leverage each server to login another
server, in a way that data server only needs to support login,
while key/App server login can be reused. More importantly,
these logins essentially “force” the adversary to do online
attacks (which are easier to defend) instead of offline attacks.

msk ID, PP
|
| ®
® I
MInI=0 p—
TTITY) ® pwd —:)
o —
KeySever <mmsmms , =) Data Sever
@ mk @
E ——

Enc(mk, data)

Figure 2: PBCS data flow. 1). the client derives his password
by querying the key server with his passphrase. 2). the client
logins the data server with his ID and the derived password.
3). the client logins the key server. 4). the client “shares” his
master key. 5). the client encrypts his data with the master
key and deposit the ciphertext to the data server.

Client authentication to a plain storage server. A
computation-barren plain storage, like Dropbox, usually only
supports a password login mechanism, it thus rules out PPSS
that needs algebraic operations. Our key observation is that
the user can leverage the key server to generate and maintain
a high entropy “password” to login the data server. Inspired
by the password hardening techniques [16, 35], we let the
key server provide a service called identity based password
hardening. This service enables the client (instead of server

'PHE let the server encrypt and decrypt the message.

2PBCS can also achieve the proactive security (updating the encryption
key) by the client invoking the “Give-and-Take” protocol via new random-
nesses. See Appendix B.

USENIX Association

31st USENIX Security Symposium 2355

in PHE) to compute a unique pseudo-random string with suf-
ficient length using a low entropy passphrase according to
his identity, without revealing the passphrase (See Sec.3 for
details). The “hardened” password is then used to register at
and later login the data server (Step 1,2 in Fig. 2). Without the
correct passphrase, it is impossible to login the data server.

Client authentication with a built-in App login. Since user
will mostly do App login anyway, to use it without threat-
ening the security of passphrase used in secure storage, we
let the client use only one passphrase and ensure that the key
server cannot learn the passphrase via App login. More pre-
cisely, the passphrase PP will be hardened, while the actual
authentication token ¢ for key server login will be replaced
with another one that can be generated using PP and some
randomness s;y4 that is stored in data server. Thus, anyone who
can authenticate himself to the key server/login the App must
login the data server first (whose authenticator was hardened
using PP for the same id from the key server) and reconstruct-
ing the same ¢ with the randomnesses s;;. In this way, the
existing App login could be seamlessly integrated into our
“Give-and-Take” protocol. More importantly, to login the App
and access the secure storage is achieved by one protocol with
only one passphrase user can remember.

Detecting malicious behaviors. Either corrupt server may
not follow the protocol, hence we need to detect malicious
behaviors of servers. But due to the deployment requirements,
we do not have the luxury of involving non-interactive zero-
knowledge (NIZK) proofs like most of the PPSS schemes
[5,10-12,27,36,56] (either the proof or the verification) on
the plain cloud storage. In PBCS, we want to provide a
lightweight solution by leveraging authenticated encryption.
Specifically, we let data be encrypted by an authenticated
encryption scheme via a master key mk, hence the confiden-
tiality and the integrity of the data is guaranteed if mk has not
been leaked or tampered. However, we also need to protect
mk itself via a KEM when a part of the KEM encryption key
(some randomness r;;) must be barely stored on one of the
servers. The security properties of the standard authenticated
encryption will not trivially hold when the key is modified.
To guarantee the integrity of mk, we introduce a twisted Enc-
then-Hash paradigm, which enables the client (decryptor) to
verify that the KEM encryption key has not been modified.

1.3 Extended applications

Moreover, instantiating PBCS in different settings could lead
to different interesting new applications. They not only in-
clude various applications of PPSS such as password man-
ager [5] and portable cryptocurrency wallet [28], but also
more interesting scenarios, we give three examples below.

Secure personal repository. One of the most suitable set-
tings for our PBCS is to keep personal multimedia data such

as pictures and video albums secure in the cloud and available
across devices; or upgrading a plain version of a social media
App into one having secure storage at the back-end. Indeed,
an early version of our protocol was implemented and de-
ployed by Snapchat as their My Eyes Only module [7,31,49].
In the system, the smartphone transmits encrypted videos
to a content server provided by Google Cloud, and sends
corresponding tokens to a key server managed by the Snap.
The client’s videos are kept private to both Google and Snap.
PBCS in this paper has significantly improved the preliminary
version both on the usability and security. Particularly, we
allow the data server to be plain cloud storage, and reuses the
App log-in requiring only one single password after upgrade.

Secure sync-up system for E2EE messaging Apps. En-
crypted messengers like WhatsApp routinely back up users’
text messages and contact lists to cloud servers. These back-
ups undo much of the strong security offered by E2EE —
since they make it much easier for the companies and hackers
to obtain users’ plaintext content. Some Apps like Signal
chose to provide a secure backup module relying on the trust
hardware SGX [37], which may suffer from all kinds of side
channel attacks [6,9,45,52]. Instead, PBCS can help users
synchronize their contact lists and chat history in an encrypted
manner on a third-party cloud server chosen by themselves,
while only use the App provider’s server as the key manage-
ment server of PBCS. Therefore the contact list can only be
accessed by the user with correct passphrase.

Portable personal Al assistant with privacy guarantee.
Nowadays Internet companies strive to provide personalized
models for their customers based on the data collected over-
time from user devices. Traditional methods involve extract-
ing personal data to the cloud and doing the training on the
data set to derive a model, then enabling the cloud server to
assist whenever a user logs in to the server and provides new
data input. However, at times this raises serious concerns
about user privacy, and legal ones such as the EU General
Data Protection Regulation (GDPR) [53]. Complying with
such regulations while maintaining the utility of the Al assis-
tant is important so learning on device has been suggested:
Exemplified in “federated learning” [38]. However, once the
user model is computed, restricting it to the single device is
limiting. Using our solution, once a personal model is gen-
erated, the user can securely store her personal Al assistant
model in the cloud, and get access to it via any other device
or when changing devices. Note that in our solution, the user
plain data never leaves the user devices and the user has full
control of his own data and personal Al assistant model which
remains private when passing across devices.

1.4 Other related works

Password hardening, introduced in [16] and modeled in
[35,47], aims at enhancing the security of password login

2356 31st USENIX Security Symposium

USENIX Association

with the assistance of an extra server not colluding with the
server to be logged-in. A password management system,
called SPHINX, was proposed in [48], which could protect
the security of password even when password manager has
been compromised. This line of works mainly focused on the
security of password itself, while we are trying to improve
the security of the overall cloud storage module for Apps.
Nevertheless, we adopt the techniques in [48] to design an
important building block IBOPRF of the PBCS system.

Password-hardened encryption (PHE) [34] is proposed to
enhance the security of the password based cloud storage,
although it does not achieve the cloud-blindness as we re-
quired. In PHE, the storage server takes the user password as
input and interacts with an external server called “rate limiter”
to “hardened” the password to a strong key, and use it to do
encryption and decryption. One advantage of PHE is that
the client does not need to process any cryptographic com-
putations except transforming the username and password.
Another feature of PHE is that both the crypto server and the
storage server can rotate their secret keys to provide proactive
security. However, in contrast to PBCS , the storage server
in PHE learns both client’s decrypted message and password,
while in PBCS only the client encrypts and decrypts data.

Another related primitive is the Oblivious Key Manage-
ment Service (OKMS) proposed in [30], which helps clients
manage the secret key via an untrusted storage server. How-
ever, OKMS does not meet our deployability requirement,
since the design of OKMS did not consider the authentication
of the client. One may use two passwords to login into the two
servers, which we aim to avoid. It is suggested [30] to instan-
tiate OKMS within Hardware Security Modules (HSMs) [23]
to prevent unauthorized queries, but the client-side storage for
OKMS makes it non-portable (this also applies to end-to-end
hardware modules [23]).

The PPSS [5, 10-12,27-29,56] can achieve the portability
and the cloud-blindness as we required, since both systems
let a user store secret information among multiple servers
so that she can later recover the information solely on the
basis of her password. However, most of the PPSS designers
paid more attentions on the communication round optimiza-
tion” instead of the deloyability, the compatibility and the
concrete efficiency. When PPSS is used to augment an App
with secure storage, the users need to remember one addi-
tional password to login the App. More importantly, PPSS
cannot be deployed on a plain cloud storage which is the
main stream (and cheaper) commercial cloud product. An-
other difference comes from the fact that the initiation phrase
of PPSS requires authenticated channels between the user and
the honest servers, but PBCS always allow the adversary to
impersonate the legitimate user when depositing the content.

Very recently, Dauterman et al., [14] proposed a system
for encrypted mobile-device backups, named SafetyPin. Safe-

2 Although some PPSS [1,27] may save 2 rounds than our PBCS .

tyPin requires users to remember only a short PIN and defends
against brute-force PIN-guessing attacks using hardware secu-
rity protections. Since SafetyPin splits trust over a cluster of
hardware security modules (HSMs), it can protect backed-up
user data even against an attacker that can adaptively com-
promise many of the system’s constituent HSMs. However,
SafetyPin highly relies on the HSM cluster of the cloud, while
our PBCS aims to be deployed on any commercial storage
cloud. We summarize the detailed comparison in Table 1.

2 Preliminaries

Login mechanisms. Most cloud storage service providers de-
ploy a login mechanism to authenticate their clients. In prac-
tice, such login mechanism can be instantiated via a password,
a biometric like the fingerprint, a token from a third party au-
thentication protocol like OAuth [20,21], the recent Universal
Second Factor protocol [51], or other types of authenticators
from the user via her software to the cloud server. Without
loss of generality, a login mechanism can be abstracted as the
register algorithm AuthReg and the login algorithm Login:

- AuthReg(id, ai;4): Client U with identity id registers to server

D using an authenticator a;; which can be a password, a
token, etc. After the registration, client U keeps 4, and
server D gets the stub P, for later login verification.

- Login(id, a;g, Bia): After registration, client U authenticates
himself to the server D by presenting his id and the authen-
ticator o, and server D uses the stored stub B4 to verify the
pair (id,o) and output a bit b to denote success or not.

For simplicity, we assume the communications in register
and login are all protected by a secure channel, hence cannot
be seen or altered by the adversary (in fact, pinned certificates
and universal second factor plus password authenticators fa-
cilitate this situation).

Game Bypass™ Oracle Oauthreg (id,Qt)

id* «s$4
g+ <$X

B «+—$AuthReg(id, o)
return 3

/ Choose o from distribution %
Bigr +$AuthReg(id*, otig+)
o <—§.qOAuthReg: OLogin
Login(id*, o/ ,Big-) = b
return b else
Login(a, Big-) = &'

count = count + 1

Oracle O ogin(Qt)

if count > B

return L

return b’

Figure 3: The security game of the login scheme.

Here we define the formal properties of the Login mecha-
nism. The login mechanism should satisfy:

USENIX Association

31st USENIX Security Symposium 2357

e Correctness: If B;; is generated from the AuthReg algo-
rithm with id and a4, the Login procedure with id, oy
and B,y will always succeed.

o g-Security: Without a4+ or B+, the probability that an
adversary 4 outputs an authenticator o that can pass the
verification with B;4+ within B login attempts is less than
€. Here the upper bound B is specified by the scheme.
Formally, a login scheme (AuthReg, Login) is e-secure if
the probability of the adversary wining the Bypass game
in Fig. 3 is less than €.

3 Identity Based Oblivious PRF

The identity based oblivious pusedorandom function (IBO-
PRF) is an important primitive underlying our PBCS protocol
to insist on a single password. Here we formalize its syntax
and properties to adapt to our PBCS design (though our con-
struction adopts the techniques used in the password manager
SPHINX [48]). We observe that most websites’ and Apps’ lo-
gin systems enable the user to choose a really long password
which is more than 16 characters, but the user usually cannot
remember such a long password. Inspired by the oblivious
pseudorandom function (OPRF) [17,27,44] and the password
hardening service [16,35], we allow the user to leverage the
IBOPREF service to generate a long and high-entropy login
password from the short passphrase people can remember.

Different from the traditional OPRF, the IBOPREF is a pro-
tocol between one server and multiple clients. The server
holds a master key msk while each client holds an unique
identity id. Different from the password hardening service
in [16,35], IBOPREF is a service that faces the end-users di-
rectly, instead of a three party protocol between the end users,
the client (which may be a web server that performs password-
based authentication of end users) and a hardening service
provider. It is also different from the existing industrial pass-
word manager service like the Chrome [22] and the iCloud
Keychain [24] ones, the IBOPREF server itself will not learn
the user’s passphrase or the login passwords.

The IBOPREF server computes a specific PRF key k;; for
each identity id, and let the client obliviously compute the
PRF value %, (x) on his input x via interactions with the
server. Later %, (x) can be encoded into a long password.
After the communication, on the one hand, the server cannot
learn the client’s input x nor predict the final output F, (x).
On the other hand, any client cannot compute the correct PRF
value without communicating with the server.

The IBOPREF is a challenge-response protocol between a
client and a server with the following syntax.

- Setup(1*) — (pp,msk) : Given the security parameter
A, generate the public parameter pp and the server’s master
secret key msk.

- CEvaly (pp,id,x) — (ch,st): When inputs the public pa-
rameter pp, identity id and a secret input passphrase x, the

client computes a challenge ch and an internal state st.

- SEval(pp,id,ch,msk) — rp: When the server receives
an identity id and a challenge ch from the client, the server
computes a response r according to the public parameter pp
and his master secret key msk.

- CEvaly(pp,id,rp,st) — y: When the client receives the
response 7p from the server, he will retrieve the internal state
st and compute the function output password y according to
the public parameter pp and the identity id.

Properties. The IBOPRF should guarantee the following
properties (Formal definitions can be found in Appendix A):

Uniqueness: If all parties follow the protocol, the client
will learn a unique output y = % (id,x), i.e., the client will
never output y' # y for same id and x.

Pseudorandomness captures the security of IBOPRF
against other malicious clients who did not corrupt the server
but can arbitrarily query the server. It guarantees that those
clients cannot distinguish y = % (id*,x*) from a random
string r for a chosen identity id* and a secret input x.

Obliviousness models the security of IBOPRF against the
malicious server. It guarantees that a malicious server cannot
predict y for a fixed id and an unknown input x, even if it can
interact with the honest client holding id and x multiple times.

Construction. The IBOPRF could easily be constructed
in the random oracle model. Our design is inspired by the
2HashDH protocol in [28]. In Appendix A, we give formal
analysis for the above construction.

- Setup(1*): Choose a prime p which is A bits large. The
input passphrase space and the output password space are
within {0,1}* and {0, 1}*, respectively. The hash function
Hy is from {0, 1} to Z,,. The hash function H is from ID x
{0,1}* to Z,. The hash function Hj is from {0, 1} x 7z,
to {0,1}*. Form the public parameter pp = (p,Hy,Ha,H3).
Pick the master secret key msk <s{0,1}*.

- CEval|(pp,id,x): On input the identity id and the
passphrase x, the user picks st <—sZj, as the internal state
and sends ch = HY (x) to the server.

- SEval(id, ch,msk): Given the identity id, the server com-
putes the client specific PRF key k;; = H,(id,msk). Then the
server generates the response rp = chid.

- CEvaly(id,rp,st): On message rp from the server, the
client verifies rp € (g). If the test passes, then the client
retrieves the secret state st and returns y = Hs (x, rpl/ 5.

4 Architecture and Definition

As we explained in the introduction, we aim to upgrade an
existing App (having a plain cloud storage) with a secure
storage function while minimize the influence on usability.
Therefore, the PBCS fully leverages the existing infrastruc-
ture of a typical App. Specifically, a typical App [25,31,40]
(maybe without the secure storage) may use a manager server
to administrate its service. To provide more storage space

2358 31st USENIX Security Symposium

USENIX Association

for each client, the App usually registers and maintains an ac-
count on the cloud server for each individual user. When the
user wants to deposit or retrieve his large files, the App will
help him to login to his cloud storage account via his identity
and the password. After login, the client can freely deposit
data to or retrieve data from the cloud. To be compatible with
the existing App architecture, the PBCS system involves three
parties: a client U (or user) who deposits/retrieves data, a data
server D (cloud storage server) which stores the encrypted
data, and a key server X (administrative server) which offers
key management services (See Fig. 2).

As in standard practice, the PBCS system consists of two
parts, i.e., the key encapsulation mechanism (KEM) part
which lets a client distributively generate and store a strong
master key mk with the help of the two servers; and the data
encapsulation mechanism (DEM) part to encrypt the actual
content with mk. The encryption of the DEM part can be
easily instantiated through any standard authentication en-
cryption; and the confidentiality and integrity of the content
depends on the security of the master key. In the following,
we will focus on the KEM part as the DEM part can be triv-
ially augmented. For a concrete example walking through the
whole system, we refer to Sec. 5.3.

4.1 Syntax of the KEM

Our PBCS fully leverages the login mechanism of the servers.
Specifically, the KEM part of PBCS consists of three pro-
cedures: Register, Give and Take. The Register procedure
enables a client with identity id and passphrase PP to register
an account on the cloud server with the help of the key server.
In the Give procedure, the client first logins his account on the
cloud server, and chooses a master key mk, then distributively
deposits mk to the cloud server and the key server. In the Take
procedure, the client retrieves the master key mk by logining
the cloud server and interacting with the two servers via PP.
Note that the client only needs to remember the passphrase
PP during all procedures. We first give a formal definition.

Definition 1 A KEM part of our Portable Blind Cloud
Storage system is a tuple of interactive procedures
(Register, Give, Take) after setup, each of which is meant to
be run among three parties (modeled as interactive Turing ma-
chines): a user U, a key server K and a data server D. Each
of them has three subroutines, i.e., (Upegister, Ugive, UTake),
(%egisten Kaive, KTake) and (@Registery Daive, Q)Take) for each
procedure Register, Give and Take. In a PBCS system, the
key server K and the data server D will maintain their states
sk and sp, respectively:

Setup: The key server and the data server generate their
public parameters pp % and ppp, and secret parameters Sp g
and spp, respectively. Moreover; the servers will initiate their
internal states s and s.p.

Register: The client chooses his id and a passphrase PP.
Given the public parameters ppx and ppp, the client will
interact with the two servers and create an account on the
cloud server. If succeeds, the two servers will update their
states s, Sp, accordingly.

Give: The client takes his id, the passphrase PP and the
servers’ public parameters pp«,ppp as inputs. The servers
take their states s ,sp and secret parameters sp«,Spp as
inputs, respectively. If succeeds, the client obtains a randomly
generated mk and the servers update their states s« and sq
incorporating the shares regarding mk respectively.

Take: In this procedure, the client retrieves the stored master
key mk, which would be used later in the DEM part. The
client inputs id, PP and the servers’ public parameters pp g
and ppp, while the servers input their states sy and sp and
secret parameters sp i and spp, respectively. If succeeds, the
servers update their states s and sq respectively.

4.2 Security Threats and Models

The PBCS system should guarantee both the confidential-
ity and integrity of the stored data against the illegitimate
users, the corrupted key server, or the corrupted data server.
Particularly, we require that :

- The illegitimate user without the correct passphrase can
not learn the storage data, nor let the user accept forged data;

- If any one of the servers is malicious, he can not learn
the storage data nor let the user accept forged data even if he
does not follow the protocol;

- Even both servers are corrupted, the security of data falls
back the best possible security in the single-server setting.

However, the denial of service attacks are out of scope
of our security model. Furthermore, PBCS is designed for
the running environment where only the servers have the
certificates issued by PKI, but the clients do not. Accordingly,
a sever-only authenticated and confidential channel [26,32]
can be established between the honest users and servers via
TLS. So the adversary is allowed to impersonate any client in
front of the server, but can not read or alter the communication
between the honest client and the honest server.

Security Models. When the DEM part is instantiated via a
standard authenticated encryption, the confidentiality and the
integrity of the content in PBCS depend on the security of
the master key, so here we only consider the formal security
models for the KEM part. Now we will provide models to
capture the master key’s confidentiality and integrity.

We provide four security properties to formalize the confi-
dentiality of the master key against illegitimate users, against
either compromised key server (or data server) and even
against two compromised servers. It is not hard to see that
security against illegitimate users is straightforwardly implied
by the security against a compromised key (or data) server
since the server himself can disguise as an illegitimate user;
also security in the case that both servers got compromised

USENIX Association

31st USENIX Security Symposium 2359

IND-CKS Game

1: b<s${0,1}
2: Generate the data server’s (ppp,spp)

3: ppx <$A
4: A arbitrarily switches in two modes:
Mode 1 I(',SQ)) 3 <.ﬂ.(), @Register(sp@,siy»

| 4 can register on D with arbitrary identity id

Mode 2:(sp,") <$ <@Give/Take(SpD7s@)v’q(')>
| A interacts with D while pretending as & or clients with any id
[4 assigns D to execute any procedures (Give, Take)
5: id" <% ﬂ() / The adversary chooses the challenge user id*
6: PPy <$ C | Choose the passphrase for the challenge user.
7: A arbitrarily switches in three modes:
Mode 1: (-,5p,-) <$
(Uaive (id*, PPig, pp %, PP D), Daive (sP 0, 51), A(+))
/ A interacts with D and Uy arbitrarily as % and views their responses
/ D and U(id*, PP+) only execute the Give procedure

/ At this stage €I has not generated mk successfully yet

Mode 2: (sp,-) <=$ <@Give/Take(SPz7-,S@)ﬂ(')>
/ Similar to Mode 2 in Step 4
la may also pretend to be Uy« but without knowing PP+
Mode 3: (-,sp) <=5 (A() S Dregister (SPD,5D))
| A4 can register D with arbitrary identity id # id*
8: (mkoy,sp,) <%
(Uaive(id*, PPig-, pp %, PP D), Daive (SP 0, 51), A(+))
9: mky <—${0,]}*
10: A<« mkp
11: A arbitrarily switches in three modes:
Mode 1: (mk',sp,-) <
(Urake (id*, PPig+, pp i, PP D), Drake (50), A())
ifb=0Amk'# 1 thenmk* = mk'
ifb=1Amk' # 1 then mk* = mk
ifmk' =1 thenmk* =1
A < mk* | The adversary learns mk*

/ A interacts with D and Uy« arbitrarily as % and views their responses

Mode 2: (s,) -5 (DeiveTake (sP:5). A())

/ Similar to Mode 2 in Step 4

/ 24 may also pretend to be Ujy+ but without knowing PPy
Mode 3: (-,5p) <$ <ﬂl() s @Register(sp@,s@)>

| 4 can register D with arbitrary identity id
12: return b = b’ where b’ +$.4()

Figure 4: The IND-CKS game. The challenger C simulates
the data server D and the target client Ug+.

falls back to the single server case. We defer more security
discussions to our full version. In the main body, we consider
the situation that the adversary corrupts the key management
server and other users (with identities different from the vic-
tim), and propose the IND-CKS security (here CKS denotes
Compromised Key Server) in Def. 2. Similarly, we can model
security against the compromise data server, which we call
IND-CDS security (CDS denotes Compromised Data Server),
by switching the role of X and D. Note that our PBCS sys-
tem provides a similar level of the security as PPSS, i.e., an
attacker breaking into any one of these servers learns nothing
about the secret (or the password).

Our IND-CKS experiment is similar to the game-based
definition of PPSS in [27]. Intuitively, during the IND-CKS
experiment (Fig.4), the challenger C simulates data server D
and the challenge client (with identity id*), while the adver-
sary A4 plays the roles of the key server X as well as other
clients. A4 can arbitrarily invoke the (Register, Give, Take)
procedures. Also she can adaptively register new accounts
on the data server. The challenger simulates the procedure
that the challenged client deposits a master key. The adver-
sary, who controls the corrupted key server and deviates the
protocol, aims to distinguish this master key from a random
key. A slight difference of the IND-CKS experiment with the
PPSS [27,28] is that PPSS requires the adversary cannot im-
personate the honest client in front of the honest server in the
initiation phrase, but the IND-CKS experiment the adversary
can impersonate the target client in front of servers. More
precisely, we have the following definition.

Definition 2 (Master key confidentiality against the compro-
mised key server.) Consider the following interactive game
Expﬁ’D'CKS in Fig. 4 between an adversary A and a chal-
lenger C, parametrized by security parameter \ and a bit b.”
Let n denote the min-entropy of the passphrase PPg-.* We
say that a PBCS scheme is secure against the compromised
key management server if there exists a negligible function

s.t. Y PPT adversary A4 it holds that
1
Pr [Exp’}l’D'CKs (1”, 1") - 1} < 5 +Adv(n) + negi(2)

where Adv(n) is the ideal security inherited for guessing
PP;;«, which is O (ZL,,).TO make the model meaningful, we
assume that the adversary will cause a certain number (poly-
nomially bounded) of failures, but the Give procedure of the
challenge client will eventually succeed and a master key will
finally be generated.

3For two PP.T interactive algorithms P, and P, we denote by
(a,b) <$(Pi(x),P>(y)) the event that P; and P, engage in an interactive
protocol with ;’s input x and ?5’s input y, and produce local outputs a and
b, respectively. Similarly, we denote by (a,b,c) <$(Pi(x), P>(y), P3(z)) for
the corresponding three-party interaction among Py, P5, P3.

“4Note that n may not directly equal to the length of the passwords, since
the distribution of passwords is not uniform [54, 55].

2360 31st USENIX Security Symposium

USENIX Association

Our definition aims at capturing the soundness property as
PPSS [27,28] as well. The soundness means that one mali-
cious server cannot make the user to accept a tampered master
key in the Take procedure. Therefore, the adversary in our
model not only can learn a master key mk;, after a successful
Give (mk; could be a real key mko or a random key mk; ac-
cording the flip coin b), but also is given a master key version
mk* after a successful Take procedure. If the scheme does not
satisfy the soundness, the malicious adversary could make
the client get a tempered master key which not equals to the
one generated in the Give procedure, and then the adversary
can distinguish his view is the real key or the random one by
comparing mk; and mk*.

5 Construction

We now describe the details of the KEM part of our PBCS.
Since the DEM part which carries the actual content can be
augmented trivially, the KEM part becomes the most challeng-
ing design.The first challenge of designing our PBCS system
lies on how to derive a simple yet client authentication solu-
tion which could be deployed on non-programmable cloud
storage service. The second challenge is to integrate the App
login mechanism in the secure storage module, so the user
can leverage one password to login the App and access the
secure content. Moreover, we also need to be careful that the
malicious server may intentionally modify the storage data.

Simple cloud server authentication. To avoid heavy prim-
itives that cloud storage APIs may not support, we need a
simple way for the cloud server to authenticate the client.
Note that we can not let the user directly use his passphrase
to login the cloud server, since this passphrase will also be
used to login the App and must be hidden to the cloud server.
However, we observe that the existing login mechanism usu-
ally supports a very long password, which could be more
than 16 characters and decoded into a 128 bits length string.
Although it is crazy to require a person to remember such
a long password, the client can generate the long password
from a short passphrase via an IBOPREF service provided by
the key server. Hence the user only needs to remember a short
passphrase instead of the long password. Moreover, although
the IBOPREF service is public to all clients as well as the data
server (since to compute the password hardened value does
not need to login in advance), the pseudorandomness guaran-
tees that the low entropy passphrase is still kept secret to the
(malicious) data server when he blindly queries the IBOPRF
limited times with the same identity. The obliviousness of
the IBOPRF guarantees that the key server also cannot learn
the passphrase. Compromising one server does not help to
authenticate to the other. Since our “Give-and-Take” protocol
only involves the basic account register/login and TLS on the
cloud server side, it can be directly deployed on a commercial
cloud storage services like Dropbox or AWS S3.

Integrating App login into PBCS is not only the require-
ment of minimizing the influence on the user experience, but
also important for the security. Indeed, users often reuse
their passwords or use slight variations [46] on different ser-
vices. To solve this problem, the user can not use the re-
membered passphrase to login the key server directly, since
this passphrase is also used to login the cloud server and
needed to be hidden to the key server. Our idea is to make
the App login to be naturally accomplished in the meantime
of that the “Give” or “Take” protocol is executed. Precisely,
the client will generate an authentication token as the App
login password from a high entropy randomness s;; and the
passphrase PP. The high entropy randomness s;; is stored
on the data server. In the “Give” or “Take” protocol, the
client will authenticate himself to the key server by directly
inputting this authentication token to the existing App login
module’, hence the client could simultaneously login the App.
Moreover, since a compromised key server can not learn the
passphrase, he can not login the data server and break the
security of the private content.

Integrity guarantee. When the master key is fixed, the in-
tegrity of the content can be trivially protected by the authen-
ticate encryption used in the DEM part. However, a malicious
server may intentionally violate the protocol and let the client
accept a modified master key. This is out of the scope of
the security property of the traditional authentication encryp-
tion. To guarantee the integrity of the master key against a
malicious key server, one may suggest to use authentication
encryption to encrypt the master key mk. When the key server
keeps the authentication ciphertext of mk instead of a piece of
mk shares. However, the encryption key k of mk is stored on
the data server and can be modified. To solve this problem,
we let k be derived from the the randomness r;; stored by
the data server and invent a novel method to verify that r;y
is not modified by the malicious data server. Specifically,
we tear the encryption key into two parts: k| and k». k; and
ko are both derived from r;; and the passphrase PP but via
two different random oracles KDF, and KDF3. k; is used to
encrypt mk and get the ciphertext ¢z, while k; is used to de-
rive a HMAC with the form T = Hy(ct,k»). Both ¢t and T are
stored on the key server side. If the data server provides a
tampered r/,, the client will generate a wrong k5. So when the
key server sends back the tag T, a false randomness r/,; will
lead the tag verification fails, i.e., T # Ha(ct,k}). Note that
the tuple of the IND-CPA secure ciphertext ¢t and the token T
can also be viewed as an authentication encryption ciphertext
since it follows the Enc-then-Mac paradigm.

3The App login password is encoded from the authentication token which
is a long bit string.

USENIX Association

31st USENIX Security Symposium 2361

kid = H2 (msk, id)

b= aha (2]

Yia = AuthReg(id,t) id,t

K (msk, L) C(id,PP) D(L?)
r<$Zm
ifac (g id,a a = Hj(PP)

pwd = H3(PP,b'/")

sig <310, 1}}L

t = KDF; (Sid,PP)

it =0

Biq = AuthReg(id, pwd)
LOQin(id7PWd7 Bid)

N ig A (Sid7*7*)

Figure 5: The Register Procedure. The client derives the password pwd from the IBOPRF with his passphrase PP and uses it to
run AuthReg to register to the data server who obtains and stores the login sub B;; for the future login verification. Also the client
derives the authentication token ¢ from PP and a randomness seed s;4. Later s;; will be deposited to the data server. #, as the App
login password, will be registered to the key server who obtains and stores the login stub 7;; for the future login verification.
The boxed message means they are protected by TLS. The security requires the number of calling the IBOPRF service for one

specific id on the key server side is bounded.

5.1 Construction details

Following the guidelines discussed above, we can design the
three procedures of our “Give-and-Take” protocols as follows.
During all procedures, the client will use TLS to protect the
communications. Here we assume the cloud server and the
App’s login mechanisms have already deployed countermea-
sures to prevent the on-line dictionary attacks.

* Register: The key server holds a IBOPRF master se-
cret key msk. The client chooses an identity id and a
memorable passphrase PP. The key server and the data
server will maintain a tuple Lii:i(€ £X and Li? € L? for
each identity id, respectively. KDF is a key derivation
function as a random oracle. B;; and 7,4 are login stubs
for the data server and the key server, respectively. When
the IBOPREF is instantiated via 2HashDH in Sec. 3, the
register procedure is as Fig. 5.

* Give: When the protocol starts, the client with identity
id holds the passphrase PP. The data storage server D
holds the login stubs B;;, and maintains a list L? to
record randomnesses. The key server X keeps a list LX,
the login stubs 7;; and his master secret key msk. Let
(KeyGen, Enc,Dec) be the algorithms of a symmetric
encryption scheme with the ciphertext space C. Let the
function y = F,,(id, x) be the IBOPRF computed by
the key server as defined in Sec. 3. KDF;, KDF, and
KDF3 are three key derivation functions which could
be modeled as random oracles. Hy is a hash function

from C x {0,1}* — {0,1}* which could also be mod-
eled as random oracles. The detailed Give procedure is
demonstrated pictorially in Fig.6 when the IBOPREF is
instantiated via 2HashDH as Sec. 3.

* Take is to let the client retrieve the master key from two
servers. Take protocol will use the same primitives as
Give. When Take starts, the client with identity id holds
passphrase PP. The servers D and X each holds a tuple
(Bia, L) and (msk,y;q, LX) respectively. The detailed
Take procedure is demonstrated pictorially in Fig. 7,
where the IBOPRF is instantiated by the 2HashDH in
Sec. 3. Note that the number of the call of the IBOPRF
service for one specific id on the key server side must be
limited to guarantee the security.

5.2 Security

The security of PBCS can be founded in following theorems.
The analysis will appear in the full version.

To show the master key is confidential to the data server,
we argue that the only approach for the adversary to access
ctig= via K is to successfully recover the authentication token
tig+. Since the KDF; is a random oracle, the adversary must
guess the passphrase PP. Due to the pseudorandomness of
the IBOPRF, pwd will not leak the information about PP
within limited time of invoking the IBOPREF service, so the
adversary has to guess PP blindly. Moreover, the client will
not accept a tampered master key, since the client could verify

2362 31st USENIX Security Symposium

USENIX Association

e ——

LOgin(idvtaYid)

e K _
ifL;=1

1
LI.Z,(<« (ct,7)
e=1

elsee =0 ife=1

% (msk.7ia, LX) Clid.PP) D (B L”)
r<S$Zpy
. ia’,u _yr
ifue(g) u=H|(PP)
kig = Hy(msk,id)
v = ykid pwd = Hj (PP7V1/r)
rig <$1{0, 1}7“ Login(id,pwd, B;z)

mk <s${0,1}"

t = KDF, (S,‘d,PP)
kl = KDFz(}”idJ)P)
k» = KDF3(riq, PP)
ct = Ency, (mk)

T = Hy(ct,kp)

L (sig,ria)

Remember PP

Figure 6: The Give Procedure. The client logins the data server via the password pwd derived with the key server, where the

data server stores the login stub B;; for the login verification.

Then the client reconstructs the authentication token ¢ and the key

of the authentication encryption k; and k. The client uses id,t to login the key server who stores the login stub 7;,; for login
verification, and deposits the ciphertext of the master key ct and the corresponding tag T to the key server. The boxed message
means that they are protected by TLS. Hy, Hy and H3 are hash functions used in the 2HashDH IBOPREF defined in Sec. 3. The
security requires the number of the call of the IBOPRF service for one specific id on the key server side is bounded.

the randomness r;; replied by the data server via the hash
function Hs and KDF3. Formally, we have:

Theorem 1 Let KDF be a random oracle. The min-entropy
of the passphrase PP is d. The IBOPRF is (g,d,B)-
pseudorandomness. The total number of the adversary call-
ing IBOPRF service is bounded by B. The total number
of the invalid APP login is bounded by Bx. PBCS is se-
cure against compromised data server, i.e., the probability
for any adversary to win the IND-CDS game is less than
1/2+¢&+ B /2% + negl(\).

To get access to the encryption key k4« on the data server,
the adversary has only two choices. The first is to authenticate
to the data server, which means to successfully recover the
password pwd. However, pseudorandomness of IBOPRF
guarantees pwd cannot be guessed by the key server. The

second is to blindly guess r;4+, whose probability is negligible.
Hence the master key is confidential to the malicious key
server. Moreover, since the IND-CPA ciphertext ct and the
tag T from an authenticated encryption of the master key mk.
Hence the malicious key server can not make the forged tuple
(ct’,7') to be accepted by the client. Formally, we have:

Theorem 2 Let (Register, Login) be a Advau,-secure login
mechanism (as in Sec. 2). Let), be the distribution of input
x, d be its min-entropy. The adversary makes q attempts to
login the data server. The IBOPRF is (€,d,q)-obliviousness.
Let KDF; be a random oracle. Let (KeyGen, Enc, Dec) be
a secure authenticated encryption scheme. PBCS is secure
against compromised data server, i.e., the probability for any
adversary to win the IND-CKS game (Fig. 4) is less than
1/2+¢e+ negl(L), where A is the security parameter.

USENIX Association

31st USENIX Security Symposium 2363

K (msk, Vi, L) C(id.PP) D(Bia. L?)
r<—S$Zn
ifue (g id, u u=Hj(PP)
kid = Hz(msk, id)
y = ykid pwd = H3(PPv'/") Login(id, pwd, Big)
.................................. Data Server Login Succeeds. ...,
t =KDF (sis, PP) (Sia>7ia) < Lig
kl = KDFz(rid,PP)
(lid,Cl,T) — L;;C id,t kr = KDF3 (rid,PP)
Login(id, 1, Yia)
.................................. Key Server Login Succeeds ...,
return ct,T T if T=Ha(ct, k2)
mk = Decy, (ct)

Figure 7: The Take Procedure. The client logins the data server via the password pwd derived with the key server, reconstructs
the App login password ¢ and the key of the authentication encryption k; and k. Then the client logins the App and authenticates
himself to the key server with 7, retrieves the ciphertext of the master key ct and the corresponding tag T from the key server and
then decrypts it. The tag 7 is used to verify the integrity of the ciphertext ct. The boxed messages means they are protected by
the TLS channel. B;4,Y;s are the login stubs stored in the data server and the key server, respectively, for login verification. Hy,
H, and Hj are hash functions used in the 2HashDH IBOPREF defined in Sec. 3. The security requires the number of the call of
the IBOPREF service for one specific id on the key server side is bounded.

5.3 Deployment considerations

In practice, most of the above PBCS operations are run “un-
der the hood”. Here we describe how to leverage PBCS to
smoothly integrate the secure storage module into the App
and modify the App login mechanism while not affecting the
user’s experience.

When the user registers an account to the App with an
identity by choosing a passphrase PP, in the back-end the
client will launch a Register procedure of PBCS and help the
user to register a cloud account with password pwd and an
App account with password ¢ using the identity id.°

When the user logins his App account using the passphrase
PP at the first time, in the back-end the client and two servers
run the Give procedure to complete the App login and auto-
matically initialize the secure storage services as well. After-
ward, the system will generate a distributively stored master
key mk and store it securely.

When the user logins his App account using the passphrase
PP from then on, the client’s device will invoke the Take

©For the users who already have App accounts before the update to PBCS,
we highly suggest them to choose a new login passphrase, because the
previous one may already be learned by the App server.

to login the App as well as retrieving the master key mk by
communicating with the two servers at the back end. To
upload the actual content, the client will encrypt the actual
content using mk to generate ciphertext CT', and uploads CT
to the data server. To retrieve the content, the client downloads
the ciphertexts CT from the data server, uses mk to decrypt it
and displays the results in the interface.

6 Experimental Evaluations

In this section, we demonstrate the deployability, efficiency,
scalability and economical cost of our PBCS system via exper-
iments carried out in Amazon Web Service (AWS for short).

Deployability. We did a survey of current popular cloud
storage services, and found that popular storage services,
including but not limited to Amazon S3 [2], Google Cloud
Storage [18], Azure Storage [41], and Dropbox [15] pro-
vide the required API to act as the data server in PBCS to
support secure storage. In our experiment, we only use the
create/put/get API for java from Amazon S3 for deposit and
retrieve. Other storage services provide such APIs supporting
similar functions, like Dropbox’s file upload/download APIL.

2364 31st USENIX Security Symposium

USENIX Association

Moreover, our PBCS system is easy to be adopted to ex-
isting Apps. Our code can be packaged into a keyServerAPI
and a clientAPI to provide service for App. Simply run the
keyServerAPI on the App provider’s administrative server
and call the clientAPI on the App’s client side to provide
secure deposit and retrieve.

Efficiency. We implement a prototype in Java includ-
ing instantiating all cryptographic primitives with the stan-
dard Java API and Bouncy Castle library. The IBOPRF
is implemented with “secp256rl1” curve. We use TLS 1.2
with the TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 ci-
phersuite for client to authenticate and securely connect
key server, HTTPS protocol to communicate with the data
server, and AES/CTR/NoPadding as the storage encryp-
tion, and AES/GCM/NoPadding as the key encryption, and
PBKDF2WithHmacSHA256 with one iteration with different
salts to implement the KDF > 3. We use the build-in login of
cloud storage service to implement the client authentication.

We do experiments on AWS. The data server is deployed
on Amazon S3 in Tokyo. The key server is deployed on
AWS EC2 using t2.micro instance in Osaka. The client is
deployed in Seoul using AWS EC2 t3.xlarge instance, which
has similar configuration with popular PCs’. The operating
system is ubuntu 18.04 LTS. All the three are located in
different regions to simulate remote clients and physically
separated servers. We measured the round trip time (RTT)
using ping from the client to the key server of 28.9ms and to
the data server of 33.0ms, and the network upload/download
speed of 700Mbps/699Mbps (using iperf3).

To show our design is efficient and practical, we measure
the overhead of client and key server. We measure the time
cost of each procedure over 100 iterations and get the average,
where the IBOPRF, Give and Take costs 0.145s, 0.53s, and
0.48s, respectively. The key server overhead makes up less
than 1% of IBOPRF including one hash to group element
operation costing 4.5s per million iterations, and one elliptic
curve scalar multiplication operation which costs 261.83s per
million iterations. So TLS handshake and the network latency
dominate the IBOPREF cost.

We do experiment on files with various sizes (from 10MB
to 300MB) and run 25 iterations for both depositing and
retrieval to get average cost. The results are displayed in
Fig. 8, 9, where the red plain deposit denotes insecure deposit,
the blue secure deposit includes one run of the Take protocol,
encrypting file, and uploading encrypted file to the data server.
For the client overhead, besides the above procedures, com-
pared to insecure depositing and retrieving plain data without
PBCS, secure data depositing and retrieval via PBCS need
to encrypt and decrypt the data, which bring extra overhead.
From Fig. 8, the showed overheads (secure deposits costs
larger than plain deposits), are very small, increasing from

7 At the time of writing, the t2.micro instances were equipped with 1GB
memory and 1 vCPU of Intel Xeon processors. The t3.xlarge instances were
equipped with 16GB memory and 4 vCPU of Intel Xeon processors.

7

6 4 plain deposit
optimised secure deposit
5 + secure deposit

4 A

Time/s
.
>

3

N
»oe

»

0 50 100 150 200 250 300 350
File size/MB

Figure 8: Time for depositing files

0 to 1.5 seconds as the file size increases to 300MB. From
Fig. 9, the secure retrieval overhead is even fewer, near to

zero. The detailed breakdown data could be found in Tables
2

6 4 plain retrieve
optimised secure retrieve

5 + secure retrieve 1
24 2
g
E3 s
.
2 .
1 N ¢
0
0 50 100 150 200 250 300 350
File size/MB

Figure 9: Time for retrieving files

Further optimization. We observe that our PBCS’s over-

heads mainly come from the Enc/Dec, that increase (though
still small) as the file gets larger, so it can be optimized by
encrypting/decrypting data while uploading/downloading. If
we cut the large file into smaller blocks, and encrypt/decrypt
each of them while uploading/downloading another block, the
total latency could be reduced to the encryption/decryption
of only one block and the upload/download of all the blocks.
We show the optimization details in Appendix C. From the
yellow line in Fig.8,9 and the columns “OO0vd” of Tables 2,
one can see that the optimised overhead is extremely close to
0. More impressively, the time cost of downloading a plain-
text file are even larger than securely downloading using the
optimized implementation. This is because our optimization
for retrieval folds both decryption and disk write operation
with downloading data process®.
Scalability. The main obstacle of PBCS to deploy in a popu-
lar App may be its influence on key server (the App server)
scalability. So we test the key server throughput in the IBO-
PRF. As the reference , we also test the throughput of key
server for static page.

8We do not split the plaintext file into blocks, since it incurs more time
cost than treating a plain file as a whole when a deposit/retrieve request needs
to be made for each block at the server end.

USENIX Association

31st USENIX Security Symposium 2365

The key server as a web server is equipped with ng-
inx+tomcat framework. The IBOPRF requests are HTTPS
GET requests. We use Siege as the throughput test benchmark
running on AWS EC2 t2.2xlarge instance with 8vCPU and
32GB memory in Seoul, the same region as the client. We
test 400 parallel requests with 250 iterations. For key server
throughput with 1 vCPU, static page is 666.09 req/s and IBO-
PRF is 464.64 req/s. In IBOPREF, key server computes one
hash-to-curve operation and one scalar multiplication of ECC
point to deal with each request, which makes its throughput a
bit lower than fetching static pages. The throughput of both
increase linearly with the number of vCPU, shown in Fig. 10.

4500
4000 o static https
3500 IBOPREF https
3000

2500

q/s

£ 2000
1500
1000

500

0 1 2 3 4 5 6 7 8 9
vepu

Figure 10: Key server throughput

Cost savings. Here we use Amazon S3 and EC2 as example
to give some estimation of cost savings by insisting on de-
ploying our system on cloud storage. Imaging an App with
one million users (popular Apps have way more), it is aug-
mented with secure storage using our PBCS: We first assume
each user consumes about 1GB/month space (which could
be much larger if the App involves videos). Considering the
default file open soft limit of 1024 connections for each vir-
tual machine, at least 1000 instances are required to keep one
million connections open.

Besides the same cost of data transfer, using EC2 for same
use, one needs to pay for extra computation cost [4] to keep
VMs running, and 5 times cost of the storage [3]. Particularly,
if we choose EC2 instance (“d2.4xlarge”) with storage opti-
mization to provide relatively robust service, it costs $2.76
per hour (while S3 posts only a negligible request cost). Then
the App provider mentioned above will need to pay around
2.76 % 24 % 30 x 1000 + 0.08 * 1,000,000, which is already
about two million dollars more if deploying the same secure
storage on EC2 for just one month! Supporting more users,
each user uses more data storage on average, or for a longer
period would incur even larger costs proportionally.

7 Conclusion

We model, design, analyze, implement, and experiment with
a novel system, which we name Portable Blind Cloud Storage

Table 2: Cost breakdown for the deposit (time/s) and retrieve
(time/s), where the size unit is MB. DPT/DCT denote deposit-
ing plaintext/ciphertext, RPT/RCT denote retrieving plain-
text/ciphertext, Opt denotes the cost of optimized deposit time
cost, Ovd/OOvd denote the overhead of the basic/optimized
implementation.

Size | DPT | Enc | DCT | Opt | Ovd | OOvd
10 | 0.79 | 0.07 | 0.77 | 0.79 | 0.06 0
20 | 098 | 0.16 | 0.88 | 0.90 | 0.05 | -0.08
50 | 1.25 | 039 | 1.11 | 142 | 0.25 | 0.17
100 | 1.91 | 0.78 | 1.56 | 2.12 | 0.43 | 0.21
150 | 2.82 | 1.18 | 2.08 | 2.77 | 0.44 | -0.05

200 | 3.39 | 1.57 | 2.73 | 3.60 | 091 | 0.21

250 | 398 | 197 | 334 | 427 | 1.33 | 0.29

300 | 4.61 | 250 | 3.64 | 472 | 1.52 | 0.11

Size | RPT | Dec | RCT | Opt | Ovd | OOvd
10 | 0.67 | 0.07 | 0.65 | 0.64 | 0.05 | -0.03
20 | 0.88 | 0.15 | 0.74 | 0.82 | 0.01 | -0.06
50 | 1.24 | 0.39 | 0.85 | 1.18 0 -0.06

100 | 1.82 | 0.78 | 1.02 | 1.77 | -0.02 | -0.05

150 | 2.37 | 1.17 | 1.18 | 2.32 | -0.02 | -0.05

200 | 3.09 | 1.56 | 1.68 | 2.87 | 0.15 | -0.22

250 | 4.05 | 2.07 | 2.03 | 3.20 | 0.05 | -0.85

300 | 477 | 2.67 | 225 | 3.74 | 0.15 | -1.03

(PBCS). It aims to for a secure and usable cloud storage
system that satisfies multiple goals simultaneously.

Our entire design boils down to the preferred design prin-
ciple of “Constructivism” (build on parts) over “Gestalt”
(design it all) in deploying a large scale secure system.
It is recommended that the modern software development
[13,19,39,43,50] should start simple and only add compo-
nents once really necessary, following the philosophical prin-
ciple of Occam’s razor, which essentially states that “simpler
solutions are more likely to be correct than complex ones”.
In retrospect, we wish that designed system like our PBCS
system that has been smoothly embedded in the existing archi-
tecture, fully exploits already existing standardized and exist-
ing components and tools, (this is in contrast with theoretical
primitives holistically designed from scratch) such as login
mechanism, TLS, and plain cloud storage. As previously
discussed, our approach enables sound system development
and a security proof for the entire system, relying on avail-
able optimized implementations of secure components and
inheriting tested robustness and high efficiency. It makes the
development practical exploiting existing APIs with high com-
patibility, reduces duplication, and simplifies the engineering
work and maintenance of overall systems. This is especially
necessary for upgrading and updating a living popular App
supporting an enormous amount of users.

2366 31st USENIX Security Symposium

USENIX Association

Acknowledgement

Moti Yung thanks the Snap Inc.’s security team for initial dis-
cussions leading to this work. Long Chen was supported by
the National Key R&D Program of China 2021 YFB3100100.
Qiang Tang is supported in part by gifts from Stellar Founda-
tion, Ethereum Foundation and Protocol Labs. Qiang Tang
and Ya-Nan Li were also previously supported in part by NSF
grant CNS #1801492 when the work was partially done and
they were in New Jersey Institute of Technology.

References

[1] Michel Abdalla, Mario Cornejo, Anca Nitulescu, and
David Pointcheval. Robust password-protected secret
sharing. In ESORICS, pages 61-79. Springer, 2016.

[2] AWS. https://docs.aws.amazon.com/Amazon
S3/latest/API/Type_API_Reference.html. Ac-
cessed July 30, 2020.

[3] AWS. Amazon EBS pricing. https://aws.amazon
.com/ebs/pricing. Accessed July 31, 2020.

[4] AWS. Amazon EC2 on-demand pricing. https://aw
s.amazon.com/ec2/pricing/on-demand. Accessed
July 30, 2020.

[5] Ali Bagherzandi, Stanislaw Jarecki, Nitesh Saxena, and
Yanbin Lu. Password-protected secret sharing. In CCS,
pages 433—444. ACM, 2011.

[6] Andrea Biondo, Mauro Conti, Lucas Davi, Tommaso
Frassetto, and Ahmad-Reza Sadeghi. The guard’s
dilemma: Efficient code-reuse attacks against Intel SGX.
In USENIX Security, pages 1213-1227, 2018.

[7] Jad S Boutros, Jiayuan Ma, Filipe Jorge Marques
de Almeida, and Marcel M Yung. Device indepen-
dent encrypted content access system, July 2 2019. US
Patent 10,341,304.

[8] Xavier Boyen. Hidden credential retrieval from a
reusable password. In ASIACCS, pages 228-238, 2009.

[9] Ferdinand Brasser, Urs Miiller, Alexandra Dmitrienko,
Kari Kostiainen, Srdjan Capkun, and Ahmad-Reza
Sadeghi. Software grand exposure:SGX cache attacks
are practical. In WOOT, 2017.

[10] Jan Camenisch, Robert R Enderlein, and Gregory Neven.
Two-server password-authenticated secret sharing UC-
secure against transient corruptions. In PKC, pages
283-307. Springer, 2015.

[11] Jan Camenisch, Anja Lehmann, Anna Lysyanskaya, and
Gregory Neven. Memento: How to reconstruct your

secrets from a single password in a hostile environment.
In CRYPTO, pages 256-275. Springer, 2014.

[12] Jan Camenisch, Anna Lysyanskaya, and Gregory
Neven. Practical yet universally composable two-server
password-authenticated secret sharing. In CCS, pages
525-536. ACM, 2012.

[13] Kaizen Coder. Occam’s razor in software development.
https://www.cirdangroup.com/cirdan-blog/oc
cams-razor-in-software-development. Accessed
January 12, 2020.

[14] Emma Dauterman, Henry Corrigan-Gibbs, and David
Mazieres. {SafetyPin}: Encrypted backups with
{Human-Memorable} secrets. In /4th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 20), pages 1121-1138, 2020.

[15] Dropbox. Dropbox for java developers. https://www.
dropbox.com/developers/documentation/java.

Accessed July 30, 2020.

[16] Adam Everspaugh, Rahul Chaterjee, Samuel Scott, Ari
Juels, and Thomas Ristenpart. The Pythia PRF service.
In USENIX Security, pages 547-562, 2015.

[17] Michael J Freedman, Yuval Ishai, Benny Pinkas, and
Omer Reingold. Keyword search and oblivious pseudo-
random functions. In TCC, pages 303—-324. Springer,
2005.

[18] Google. Cloud storage client libraries.
https://cloud.google.com/storage/docs/re
ference/libraries. Accessed July 30, 2020.

[19] Cirdan Group. The role of occam’s razor
in agile software development. https:
//www.cirdangroup.com/cirdan-blog/occams
-razor-in-software-development. Accessed
January 12, 2020.

[20] Eran Hammer-Lahav. The OAuth 1.0 protocol. 2010.

[21] Dick Hardt. The OAuth 2.0 authorization framework.
2012.

[22] Google Chrome Help. Manage passwords. Website,
2021. https://support.google.com/chrome/an
swer/95606?co=GENIE.Platform.

[23] IBM Security. IBM HSM products. https://www.
ibm.com/security/cryptocards, May 2018.

[24] Apple Inc. Set up icloud keychain. Website, 2021.
SetupiCloudKeychain.

[25] Intricately. Everything you want to know about Tik-
Tok. https://my.intricately.com/companies/t
iktok, 2017. Online; accessed 6 January 2020.

USENIX Association

31st USENIX Security Symposium 2367

https://docs.aws.amazon.com/AmazonS3/latest/API/Type_API_Reference.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Type_API_Reference.html
https://aws.amazon.com/ebs/pricing
https://aws.amazon.com/ebs/pricing
https://aws.amazon.com/ec2/pricing/on-demand
https://aws.amazon.com/ec2/pricing/on-demand
https://www.cirdangroup.com/cirdan-blog/occams-razor-in-software-development
https://www.cirdangroup.com/cirdan-blog/occams-razor-in-software-development
https://www.cirdangroup.com/cirdan-blog/occams-razor-in-software-development
https://www.dropbox.com/developers/documentation/java
https://www.dropbox.com/developers/documentation/java
https://cloud.google.com/storage/docs/reference/libraries
https://cloud.google.com/storage/docs/reference/libraries
https://cloud.google.com/storage/docs/reference/libraries
https://www.cirdangroup.com/cirdan-blog/occams-razor-in-software-development
https://www.cirdangroup.com/cirdan-blog/occams-razor-in-software-development
https://www.cirdangroup.com/cirdan-blog/occams-razor-in-software-development
https://support.google.com/chrome/answer/95606?co=GENIE.Platform
https://support.google.com/chrome/answer/95606?co=GENIE.Platform
https://www.ibm.com/security/cryptocards
https://www.ibm.com/security/cryptocards
Set up iCloud Keychain
Set up iCloud Keychain
https://my.intricately.com/companies/tiktok
https://my.intricately.com/companies/tiktok

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Tibor Jager, Florian Kohlar, Sven Schige, and Jorg
Schwenk. On the security of TLS-DHE in the stan-
dard model. In CRYPTO, pages 273-293. Springer,
2012.

Stanislaw Jarecki, Aggelos Kiayias, and Hugo
Krawczyk. Round-optimal password-protected secret
sharing and T-PAKE in the password-only model. In
ASIACRYPT, pages 233-253. Springer, 2014.

Stanislaw Jarecki, Aggelos Kiayias, Hugo Krawczyk,
and Jiayu Xu. Highly-efficient and composable
password-protected secret sharing (or: How to protect
your bitcoin wallet online). In EuroS&P, pages 276—
291. IEEE, 2016.

Stanistaw Jarecki, Aggelos Kiayias, Hugo Krawczyk,
and Jiayu Xu. TOPPSS: Cost-minimal password-
protected secret sharing based on threshold OPRF. In
ACNS, pages 39-58. Springer, 2017.

Stanislaw Jarecki, Hugo Krawczyk, and Jason Resch.
Updatable oblivious key management for storage sys-
tems. In CCS, pages 379-393, 2019.

Brandon Jones. Do Snapchat memories take up space on
your phone? https://www.psafe.com/en/blog/sn
apchat-memories-take-space-phone/, 2017. On-
line; accessed 6 January 2020.

Hugo Krawczyk, Kenneth G Paterson, and Hoeteck Wee.
On the security of the TLS protocol: A systematic anal-
ysis. In CRYPTO, pages 429—-448. Springer, 2013.

Sarah Kuranda. How private is your public cloud? stack-
ing up google, microsoft and aws data privacy. https:
//www.crn.com/news/cloud/300081714/how-p
rivate-is-your-public-cloud-stacking-up-g
oogle-microsoft-and-aws-data-privacy.htm,
2016. Online; accessed 6 January 2020.

Russell WF Lai, Christoph Egger, Manuel Reinert,
Sherman SM Chow, Matteo Maffei, and Dominique
Schroder. Simple password-hardened encryption ser-
vices. In USENIX Security, pages 1405-1421, 2018.

Russell WF Lai, Christoph Egger, Dominique Schrdder,
and Sherman SM Chow. Phoenix: Rebirth of a cryp-
tographic password-hardening service. In USENIX
Security, pages 899-916, 2017.

Philip MacKenzie, Thomas Shrimpton, and Markus
Jakobsson. Threshold password-authenticated key ex-
change. In CRYPTO, pages 385—400. Springer, 2002.

Frank McKeen, Ilya Alexandrovich, Ittai Anati, Dror
Caspi, Simon Johnson, Rebekah Leslie-Hurd, and Car-
los Rozas. Intel® software guard extensions (intel®

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

sgx) support for dynamic memory management inside
an enclave. In HASPICSA, page 10. ACM, 2016.

Brendan McMahan and Daniel Ramage. Federated
learning: Collaborative machine learning without cen-
tralized training data. Google Research Blog, 3, 2017.

Tim Menzies. Occam’s Razor and Simple Software
Project Management, pages 447—472. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2014.

Cade Metz. How Facebook moved 20 billion Instagram
photos without you noticing. https://www.wired.
com/2014/06/facebook-instagram/, 2014. Online;
accessed 6 January 2020.

Microsoft. Azure storage libraries for java.
https://docs.microsoft.com/en-us/java/api
/overview/azure/storage. Published February 13,
2020.

Kathleen Moriarty, Burt Kaliski, and Andreas Rusch.
PKCS# 5: password-based cryptography specification
version 2.1. Technical report, 2017.

Rick Mugridge. Test driven development and the scien-
tific method. In ADC, pages 47-52. IEEE, 2003.

Moni Naor and Omer Reingold. Number-theoretic
constructions of efficient pseudo-random functions. In
FOCS, pages 458-467. IEEE, 1997.

Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark
Silberstein, and Christof Fetzer. Varys: Protecting
SGX enclaves from practical side-channel attacks. In
USENIX ATC, pages 227-240, 2018.

Sarah Pearman, Jeremy Thomas, Pardis Emami Naeini,
Hana Habib, Lujo Bauer, Nicolas Christin, Lorrie Faith
Cranor, Serge Egelman, and Alain Forget. Let’s go in
for a closer look: Observing passwords in their natural
habitat. In CCS, pages 295-310, 2017.

Jonas Schneider, Nils Fleischhacker, Dominique
Schroder, and Michael Backes. Efficient cryptographic
password hardening services from partially oblivious
commitments. In CCS, pages 1192—-1203. ACM, 2016.

Maliheh Shirvanian, Stanislaw Jareckiy, Hugo
Krawczykz, and Nitesh Saxena. Sphinx: A password
store that perfectly hides passwords from itself. In
ICDCS, pages 1094-1104. IEEE, 2017.

Snapchat. How to use my eyes only. https://su
pport.snapchat.com/en-US/a/my-eyes-only. Ac-
cessed July 22, 2020.

2368 31st USENIX Security Symposium

USENIX Association

https://www.psafe.com/en/blog/snapchat-memories-take-space-phone/
https://www.psafe.com/en/blog/snapchat-memories-take-space-phone/
https://www.crn.com/news/cloud/300081714/how-private-is-your-public-cloud-stacking-up-google-microsoft-and-aws-data-privacy.htm
https://www.crn.com/news/cloud/300081714/how-private-is-your-public-cloud-stacking-up-google-microsoft-and-aws-data-privacy.htm
https://www.crn.com/news/cloud/300081714/how-private-is-your-public-cloud-stacking-up-google-microsoft-and-aws-data-privacy.htm
https://www.crn.com/news/cloud/300081714/how-private-is-your-public-cloud-stacking-up-google-microsoft-and-aws-data-privacy.htm
https://www.wired.com/2014/06/facebook-instagram/
https://www.wired.com/2014/06/facebook-instagram/
https://docs.microsoft.com/en-us/java/api/overview/azure/storage
https://docs.microsoft.com/en-us/java/api/overview/azure/storage
https://docs.microsoft.com/en-us/java/api/overview/azure/storage
https://support.snapchat.com/en-US/a/my-eyes-only
https://support.snapchat.com/en-US/a/my-eyes-only

[50] Mads Soegaard. Occam’s razor: The sim-
plest solution is always the best. https:
//www.cirdangroup.com/cirdan-blog/occams
-razor-in-software-development. Accessed
January 12, 2020.

[51] Sampath Srinivas, Dirk Balfanz, Eric Tiffany, FIDO
Alliance, and Alexei Czeskis. Universal 2nd factor
(U2F) overview. FIDO Alliance Proposed Standard,
pages 1-5, 2015.

[52] Jo Van Bulck, Frank Piessens, and Raoul Strackx. Sgx-
step: A practical attack framework for precise enclave
execution control. In SysTEXSOSP, pages 1-6, 2017.

[53] Paul Voigt and Axel Von dem Bussche. The EU general
data protection regulation (GDPR). A Practical Guide,
Ist Ed., Cham: Springer International Publishing, 2017.

[54] Ding Wang and Ping Wang. The emperor’s new pass-
word creation policies: An evaluation of leading web
services and the effect of role in resisting against online
guessing. In ESORICS, pages 456—477. Springer, 2015.

[55] Ding Wang, Zijian Zhang, Ping Wang, Jeff Yan, and
Xinyi Huang. Targeted online password guessing: An
underestimated threat. In CCS, pages 1242-1254. ACM,
2016.

[56] Lin Zhang, Zhenfeng Zhang, and Xuexian Hu. UC-
secure two-server password-based authentication proto-
col and its applications. In AsiaCCS, pages 153-164.
ACM, 2016.

A Security and Analysis of IBOPRF

Here we provide the formal definition of IBOPRF as well as
the corresponding security analysis.

A.1 Security definition

Pseudorandomness: Intuitively, the pseudorandomness cap-
tures the security of IBOPRF against other malicious clients.
It guarantees that other clients who did not corrupt the server
can not distinguish y = % (id*,x*) with a random string r for
a chosen identity id* and a secret input x, even though he
can arbitrarily query the server. More precisely, we have the
following definition.

Definition 3 let D be the distribution of input x and B be the
maximum number of the adversary to query the server with
identity id*. If the minimum entropy of the distribution is d,
we call an IBOPRF with (&,d, B)-pseudorandomness if the
probability of a probabilistic polynomial time adversary to
win the game in the left side of Fig. 11 is €.

Obliviousness: Intuitively, the obliviousness captures the
security of IBOPRF against the malicious server. It guarantees
that a malicious server can not predict y for a fixed id and an
unknown input x, even he can interact with the honest client
holding id and x multiple times. More precisely, we have the
following definition.

Definition 4 Let D be the distribution of input x, where d
is the min-entropy of the input distribution D. We call an
IBOPRF with (g,d, k)-obliviousness if the probability of the
successful guess in the game in the right side of Fig. 11 is
less than € when the adversary could make k different guesses

fory.

A.2 Analysis

In this section, we will show the IBOPRF construction in
Sec.3 satisfies the uniqueness, pseudorandomness and oblivi-
ousness.

Uniqueness. The uniqueness is obvious, since the output of
the function is y = Hs (x, H, (x)Hz(m‘kaid>).

Pseudorandomness. The pseudorandomness comes from
the (N,Q) one-more Diffie-Hellman assumption [27, 28],
which states that for any polynomial time adversary A4,
Pryc 52,5 <56 A PPH0 (g.¢k g1, g,) = S is negligi-
ble, where S = {(gjs,g’i)\S =1,...,0+ 1}, Qis the number
of 4’s queries to the (-)* oracle, and j; € [N] for s € [Q + 1].
In other words, suppose A4 is allowed to query with a “kth
power” oracle with Q times and a DDH oracle with polyno-
mial queries. The assumption claims that although the 4 is
allowed to compute the kth power of any Q of the N elements
via quering (-)* oracle, 4 computes the kth power of any
QO+ 1 of the N elements (i.e. computes the kth power of “one
more” element) is negligible.

Note that H;, H, and H3z could be modeled as random ora-
cles. If the adversary has not been queried (msk,id*) on the
random oracle Hy, k;;+ is completely random to the adversary.
Moreover, if the adversary has not queried (x*,Hy (x*)ie*) to
the random oracle H3, the value y will be truly random to
the adversary. So we could conclude that a successful ad-
versary must have queried x* to H; and be able to compute
H, (x*)kia . Assume that the adversary has queried H; with g
times. Since the adversary is only allowed to query the oracle
S() with id* with B times, according to the (¢, B) one-more
Diffie-Hellman assumption the adversary can at most get B
tuples with the form (x, H; (x)kid). That means the adversary
must get the correct x* within B guesses. So the probability
is O(B/d).

Obliviousness. The obliviousness is easy to get when we
model H; and Hj as the random oracle. To get the correct y,
the adversary must guess the correct input x*. The probability
to get the correct x* within k guesses is less than O(k/d).

USENIX Association

31st USENIX Security Symposium 2369

https://www.cirdangroup.com/cirdan-blog/occams-razor-in-software-development
https://www.cirdangroup.com/cirdan-blog/occams-razor-in-software-development
https://www.cirdangroup.com/cirdan-blog/occams-razor-in-software-development

Pseudorandom IBOPRF? Oracle S(id, ch) Oblivious IBOPRF”
1: b<«s${0,1} 1: ifid #id* 1: b<«s{0,1}
2. (pp.msk) <sSetup(1") 2: rp <=$SEval(pp,id,ch, msk) 21 (pp,msk) <sSetup(1%)
30 id* +s{0,1} 31 returnrp 30 id* +s{0,1}*
4 X esD 4: else 41 X" 3D
5: (ch,st) <$CEval|(pp,id,x) S: ifi<B 5: (ch,st) <s$CEval|(pp,id,x*)
6: rp<$SEval(pp,id,ch,msk) 6: rp «<=sSEval(pp,id”,ch,msk) . rpisa
7: yo <$CEval(pp,id,rp,st) 7: i=i+1 7: yo +S$CEvaly(pp,id,rp,st)
8: y1 +3${0, l}x 8: return rp 81 Vivees Vi eﬁsﬂlc(msk)
0. B <—$ﬂs<)(id*,yb) 9: else return L o: iffori=1,... k
10: returnb =10 Oracle C(+) 10: Yi =Yo
11 return 1
1: (ch,st) +sCEval|(pp,id*,x") 12: else return 0
2: returnch

Figure 11: The pseudorandomness and obliviousness of the IBOPRF. D is the distribution of input x and B is the maximum

number of the adversary to query the server with identity id*.

B Further Extensions

Due to our principle of minimal addition to an existing infras-
tructure and simplicity, our system could be easily extended to
support further functionalities and more complicated settings.

Defending denial of service attacks. DOS attacks are a fun-
damental threat to Apps, not only to the PBCS system. In
our protocol, the adversary can send an arbitrary number of
Give requests to the key server. Since the key server does
not authenticate the client in this stage, he will need to store
everything it receives, and may give out his storage resources.
A simple countermeasure is: one can make the key manage-
ment server and the data server share one identity list, so only
the client with the id on the list can “Give” the key.

Proactive security guarantees that an attacker has less time
to compromise shares and as long as the attacker visits both
server simultaneously, the system remains secure. PBCS can
choose new randomness s, and r;; stored under the cloud
server and compute ' = KDF (s}, PP), k| = KDFy(rl,, PP),
%, = KDF3(rl,;, PP), ct’ = Enc(k},mk), T = Hs(k},ct") and
depositing (¢, ct’,T') to the key management server.

Different authentication factors. The security of PBCS system
relies on the security of the passphrase. The passphrase we
described in the protocol does not have to be restricted to
password. To achieve a higher level security, the user can
choose the biometrics or a long PIN generated by a secure
device or escrow system. Therefore, the passphrase can have
a very high entropy, and PBCS is more robust against online
dictionary attacks. Furthermore, if the user leverages different
authentication factors to login the key server and the cloud
server respectively, e.g., using the Face ID to login the key

server and the password to login the cloud server, the leakage
of one authentication factor will not be affected the security
of PBCS and the IBOPRF module could be saved.

C Implementation Optimization

In the implementation of PBCS, we leverage a simple opti-
mization idea: one can parallelly encrypt/decrypt data while
upload/download, hence he does not need to wait the finish of
the encryption/decryption before uploading/downloading the
data. However, it is involved to determine how many blocks
we should divide a file, since cloud storage needs to return
an “ack” confirmation for each request on each block. The
increased block number brings extra latency, which could be
large when network delay is long.

Taking all those into account, we first model the time cost T’
as the function of file size s and total block number 7, and then
get a quick estimation T (n,s) = ka5 + (2c2 +c3)n+kis+c1,
where k, represents the encryption time (s/MB), ¢, is the net-
work latency, and c3 is the time for S3 processing one deposit
instruction; while k| denotes the time needed for transferring
and storing 1MB data to S3, ¢| denotes the TLS connection
building time, which is constant for the same network. Up-
loading a plaintext will take 7'(1,s). Thus the overhead can
be easily derived as AT = T(1,s) — T(n,s), which we will
minimize by finding the optimal number of blocks n* as a
function of s. We estimate the concrete parameters in our
experiment environment, set n* accordingly. In our concrete
example n* = \/% , which could be easily adapted in different
network conditions.

2370 31st USENIX Security Symposium

USENIX Association

