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Abstract

A method to predict sub-filter shear-induced velocities on a liquid-gas phase interface for use in a dual scale
LES model is presented and compared against prior work on Vortex Sheet methods. The method reconstructs
the sub-filter velocity field in the vicinity of the interface by employing a vortex sheet at the interface location.
The vortex sheet is transported by an unsplit geometric volume and surface area advection scheme with a
Piecewise Linear Interface Construction (PLIC) representation of the material interface. At each step, the
vorticity field is constructed by evaluating a volume integral of the vortex sheet and a numerical spreading
parameter near the liquid-gas interface. A Poisson equation can then be constructed and solved for the
vector potential; the self-induced velocities due to the vortex sheet are subsequently evaluated from the
vector potential. The described vortex sheet method is tested and compared against prior literature.
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Introduction

Liquid atomization is an important process oc-
curring in many engineering applications. Internal
combustion engines depend on the rapid atomiza-
tion and evaporation of fuels to quickly and effi-
ciently mix with air before combustion can occur.
Evaporation of a liquid fuel is a slow process, but
can be greatly enhanced by increasing the surface
area of the liquid fuel. Since the residence time in
combustion engines is small, the liquid fuel must be
rapidly atomized into many small drops to provide
a large surface area and increase the rate of evap-
oration. Many modern engines rely on the fuel in-
jector design to generate the required turbulence to
rapidly atomize the liquid fuel and obtain an optimal
gaseous fuel/air mixture. Engine performance, effi-
ciency and pollutant production strongly depend on
the quality of the fuel/air mixture prior to combus-
tion, and thus the details of the liquid-gas interface
dynamics and atomization are of great importance.

Predicting the turbulent interface dynamics re-
mains a challenging task for numerical simulations.
Direct numerical simulations (DNS) have provided
great insight for studying many aspects of turbulent
immiscible interfaces. However, DNS must resolve
all the relevant scales of motion, requiring enormous
computational resources to simulate even simple ge-
ometries [1]. This requirement severely limits the
range of resolvable time and spatial scales available
to DNS and restricts DNS from being a viable tool
for engineering design. A need therefore exists for
alternative modeling approaches to predicting tur-
bulent interface dynamics.

A number of models have been introduced to
predict breakup, including stochastic models [2, 3]
and interface transport equations for Reynolds-
averaged Navier-Stokes (RANS) equations [4]. The
stochastic model requires a priori knowledge of
the break-up mechanism for accurate predictions.
Meanwhile the RANS approach models the mean
interface density with a gradient diffusion-like hy-
pothesis, which ignores the spatial grouping effects
of liquid elements [1]. Many engineering applications
of atomization, including aircraft engine combustors
and diesel engine injectors can exhibit swirling flows,
recirculation regions and jets in cross-flow or co-flow
that are hard to predict using a RANS approach.
Large-Eddy Simulations (LES) are often preferred
in these applications, and therefore an atomization
model consistent with the LES methodology is a de-
sirable engineering design tool.

Several LES models for turbulent immiscible in-
terfaces have been proposed in the past [5, 6]. These
LES models, however, require the existence of a cas-

cade process to predict the unresolved scales, and
furthermore require the dynamics of the unresolved
scales to be inferred from the dynamics of the re-
solved scales. The LES methodology has proven to
be remarkably successful in single phase turbulent
flows due to the existence of the energy cascade.
However, It remains unknown whether a similar cas-
cade process can be taken advantage of to model the
dynamics of turbulent immiscible interfaces and at-
omization. What’s more, high resolution simulations
of turbulent liquid jets show that small droplets can
be ripped out from large ligaments in areas of high
shear, circumventing any cascading process that a
traditional LES approach would use [7].

Surface tension forces tend to increase at in-
creasingly small length scales due to the smaller lo-
cal radius of curvature, similar to the viscous forces
responsible for the energy cascade. Although viscos-
ity acts to dissipate kinetic energy at small scales,
surface tension can either reduce surface corruga-
tions or amplify them via an instability mechanism
like Kelvin-Helmholtz, Rayleigh-Taylor or Rayleigh-
Plateau. These instabilities all rely on sub-filter
interface geometry to predict sub-filter corrugation
growth, and thus require knowledge of the sub-filter
interface geometry. Details of the sub-filter interface
geometry are unavailable in the traditional LES ap-
proach, and therefore a dual-scale approach was pro-
posed to provide a fully resolved realization of the
sub-filter interface geometry [8] and properly handle
the sub-filter effects. In this work a model is pre-
sented capable of predicting the effects of sub-filter
shear-driven dynamics on the resolved interface ge-
ometry.

Governing Equations

The governing equations for the fully resolved
motion of an unsteady, incompressible, immiscible,
two-fluid system in the absence of surface tension
and gravitational acceleration are the Navier-Stokes
equations,

%+V-(pu®u):pr+V~(u(Vu+VTu)),

V-u=0 (1)

where u is the fluid velocity, p is the density, p is the
pressure, and p is the dynamic viscosity. Surface
tension and gravitational acceleration are neglected
to focus on the shear driven instabilities of the in-
terface. In addition to the momentum equation, the
conservation of mass constrains the velocity field to
be divergence-free. In the incompressible regime,
fluid properties are taken to be uniform throughout
each fluid. Therefore, p and p are evaluated with a



volume-of-fluid scalar, 1 as,

=1 +(1_w)lﬁgv
(2)

where the [ and g subscripts denote properties in lig-
uid and gas respectively. The volume-of-fluid scalar
1) is evaluated as ¥ = 0 in the gas and 1) = 1 in the
liquid. In addition ¥ must also be transported with
the flow field as,

0
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where the last term on the right-hand-side is zero
for incompressible flows due to Eq. (1).
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Filtered Governing Equations

Following the methodology of LES modeling, a
spatial filter is applied to Eq. (1),

e
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+7T1+ V- (r2+73), (4)
V-u=0, (5)

where the overbar (%) implies spatial filtering, and
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where 71, 7o and T3 represent the sub-filter effects
due to acceleration, advection and viscosity respec-
tively [5]. Applying the spatial filter to Eq. (2)
yields

p=pb+p,(1-0), B=wm+p (1-7).

(9)

The spatially filtered volume-of-fluid can be
evaluated by solving
o —
O 49 (@) = 7 (10)
ot
where 7y is the sub-filter liquid flux and is obtained
by applying the spatial filter to Eq. (3) and making
use of Eq. (1).

T =V - (T — up) (11)
The Dual-Scale Approach to Modeling Sub-Filter

Shear-Induced Velocities

The classical LES modeling approach in single-
phase flows assume the existence of a cascading pro-
cess where there is a net transfer of energy to small

scales. Applying a cascade process to the atomiza-
tion process for a liquid jet for example, would imply
that the jet first breaks up into large scale structures
and then continues to break up into increasingly
small-scale structures. However as mentioned previ-
ously, evidence from high-resolution simulations of
atomizing liquid turbulent jets suggest that the at-
omization process does not follow a cascade process.
These simulations show that small-scale drops can
be ejected during the ligament-formation process,
circumventing any cascade process for the phase in-
terface geometry [7].

Instead of relying on a cascade process for the
sub-filter motion, the dual-scale approach aims to
maintain a fully resolved realization of the interface
geometry at all times [8]. The dynamics of this in-
terface are governed by Eq. (3), where u is the fully
resolved fluid velocity. The fully resolved velocity
is decomposed into its filtered U and sub-filter u,,
components,

u =1+ u,, (12)
which can then be substituted in Eq. (3) as
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Finally, ¥ in Eq. (9) can be evaluated by a direct
explicit filter,

¥= / G(x)pdx. (14)

where G(x) is a spatial filter function. With a model
for usy and making use of Eq. (14), there is no need
to construct a model for 7, and Eq. (9) can be
evaluated directly. What’s more, the unclosed terms
in the Navier-Stokes equations, 71, 72 and T3 , can
be calculated directly by first evaluating the fully
resolved realization of p, u, ¥ and u using Eqgs. (2),
(12) and (13), and then taking an explicit filter of the
terms in Egs. (6), (7) and (8). Finally, it is worth
noting that because p and p are uniform throughout
each fluid, the terms 71 and 73 reduce to zero when
the spatial filter does not contain an interface, and
T9 reduces the standard sub-grid stress term that
can be modeled by any classical single-phase LES
technique. Therefore the dual-scale procedure needs
only be applied in the vicinity of the interface.

The dual-scale method does present an exact
closure of the sub-grid terms, however the model-
ing task is now shifted to maintaining a fully re-
solved realization of the interface geometry by solv-
ing Eq. (13) and modeling the sub-filter velocity



Usg. A model for ug, is proposed consisting of four
parts,

u,, =u +dou+u,+uy (15)

where u’, du, u, and u, are the sub-filter velocities
due to turbulent fluctuations, shear-induced insta-
bilities, surface tension and acceleration instabilities
respectively. Models for u’ and u, are presented in
[9] and [10] respectively, a model for du is presented
here and u, is the subject of future work.

Sub-Filter Velocity due to Shear-Induced Instabilities

To model the shear-induced sub-filter velocities,
we consider the motion of the phase interface be-
tween two inviscid and incompressible fluids. This
motion is governed by the Euler equations presented
here in dimensionless form as
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where the velocity du and density p are defined
on either side of the phase interface I', and p is the
pressure. Additionally, the boundary conditions at
the interface are given by

[(dugy — dw;) - n] |F =0, (17)
[ x (6, — ow)] | =, (18)
lpg —pi] | = %H, (19)

and the velocities are constrained to Ui, far
from the interface. In these boundary conditions,
n and t are unit-vectors normal and tangent to the
interface, 1 is the vectorial vortex-sheet strength,
We = prefLrefufef/ o is the Weber number, o is the
surface tension coefficient, pref, Urer and Lyer are the
reference density, velocity and length respectively,
and « is the local curvature of I'. The evolution of
the vortex sheet strength can be derived by introduc-
ing velocity potentials into the Euler equations and
its accompanying boundary conditions to produce a
vortex sheet transport equation [11, 12, 13, 14].
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The terms on the left-hand side of Eq. (20) rep-
resent the temporal changes and convective trans-
port of the vortex sheet strength. The terms on the

right-hand side describe the stretching of the vor-
tex sheet and surface tension effects. Note that n
is a surface quantity so Eq. (20) only needs to be
solved at the location of the interface. Finally, the
self-induced velocities due to the presence of the vor-
tex sheet can be evaluated via a vector potential
defined by

V2 (x) = w(x), (21)

where the vorticity w can be evaluated from the
redistributed 7 field from the following volume inte-
gral [13].

w(x) = /V n(x')5(x — x)8(G(x)) | VG (x') dx’
(22)

In Eq. (22) ¢ is the dirac delta function and
G(x) is the Levelset function of the interface. Upon
solving Eq. (21) with this vorticity, the velocity du
can be evaluated with

du(x) = /v d(x—x')(V x 1) dx'. (23)

Finally, Eq. (3) and (20) are closed by the ve-
locity calculated from Eq. (23) and thus form the
system of equations that govern the dynamics of the
phase interface I' in the presence of surface tension
forces.

Numerical Approach

The Navier-Stokes equations are solved using
NGA, a structured, staggered, finite difference flow
solver with a fractional step method [15]. The task of
maintaining a fully resolved realization of the phase
interface geometry is achieved by solving Eq. (13) on
a high resolution auxiliary Cartesian grid indepen-
dent of the underlying flow solver grid. The Refined
Level Set Grid (RLSG) method [16] is used to man-
age the auxiliary grid and activate it in regions where
the spatial filter contains an interface as illustrated
in Fig. (1).

Eq. (13) is advanced using the unsplit geomet-
ric transport scheme of Owkes and Desjardins [17].
This method ensures that volume-of-fluid scalars
remain bounded and that discrete volume is con-
served for each fluid. The geometric interface within
each computational cell of the RLSG is built using
PLIC reconstruction with analytical formulas [18]
and ELVIRA estimated normals [19]. Additionally,
eq. (20) is advanced in time using a first Euler time
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Figure 1: Refined Level Set Grid [16]

integration method and first order upwind scheme
for the convective terms.

In order to evaluate the right hand side of the
vector potential equation, Eq. (21), a vortex-in-cell
approach is employed to evaluate the vorticity at
each grid point in the computational domain. The
vorticity at each grid point is calculated using a nu-
merical version of Eq. (22) and an approximated,
smooth delta function. This smooth delta function
has the effect of spreading the vorticity, a quantity
theoretically located only at the interface, to neigh-
boring grid points. This approach is therefore sim-
ilar in spirit to several vortex-in-cell methods that
spread the vorticity of vortex particles to their sur-
rounding grid points [20]. For the purpose of this
paper the following delta function definitions will be
used,

5(x — x) = 0.(@ — a')Scly — y)dc(z — ), (24)
5 (G(x)) = 5(G(X), (25)

and the following numerical delta function d.
[21]

) [1Hcos(Z2)], |z <e
Oc(e) = {o, gl >e 29

Integrating Eq. (22) numerically is started by
first evaluating

Q1) =n(x, )6(G)IVEE)  (27)

for all cells in the A'—band and then integrating

w(x,t) = /’5(x—x’)ﬂ(x/,t)dx/ (28)

for all cells within the A/—band with a midpoint
rule. In Eq. (28), V' is the volume where |x—z'| < ¢,

ly —¢'| < e and |z — 2’| < e. The Poisson equa-
tion governing the vector potential, Eq. (21), is
solved by the Aztec package found in the Trilinos
software library [22]. The vector potential equation
is solved throughout the entire computational do-
main on a staggered grid as proposed by Uchiyama
et al. [23] and applying appropriate boundary con-
ditions at the edges of the domain.

The shear-induced velocity, du, can then be
computed from the vector potential in Eq. (23) in
a two-step process. In the first step, an initial ve-
locity U is evaluated at cell faces using second-order
central finite difference stencils on the edge-centered
components of the vector potential ¥. In order to
maintain consistency with the numerical vorticity
spreading in Eq. (28), the same numerical integra-
tion method and numerical ¢ function must be used
in an interpolation step to calculate du,

su(x,t) = [ d(x—-xUX, t)dx, (29)
V/
within the N —band.
Results

The sub-filter velocity generation technique is
tested with a desingularized version of the Moore
singularity problem following Krasny [24]. The ini-
tial condition for the interface is given by

(2 . 27
y(z,t =0) = Agsin (B [m — Agsin B$]> ; (30)

where Ag and B are the amplitude and wave-
length of the disturbance respectively. The initial
vortex sheet strength is then given by

n;

N.(x,t =0) =

\/1 + —4’%40 cos %”x +2 [—2’%40 cos %”xf
(31)

where 77 is the unnormalized vortex sheet
strength. For this test case the initial amplitude
and wavelength are Ay = 0.01 and B = 1, and the
unnormalized vortex sheet strength is n; = —1. The
simulation will take place in a 1 x 1 domain with
an equidistant 256 x 256 cartesian grid and periodic
boundary conditions on the left and right walls.

The results in Fig. (2) show agreement with the
results from the work of Krasny [24] in the outer core
shape, however the number of turns generated in the
inner core is noticeably different in later times. The
lower number of turns in this study is due to the



vorticity calculation in Eq. (22). Because of the in-
clusion of the §(G(x)), the method is unable to dis-
tinguish between closely spaced interface segments
and only accounts for the closest interface. This can
potentially underpredict vorticity in the central core
and generate fewer turns than other desingulariza-
tion methods like that of Krasny.

Additionally, to demonstrate the model’s capa-
bility of simulating shear in a fully 3-dimensional
case, the temporal evolution of a doubly periodic
liquid interface is presented. The interface is per-
turbed by both a streamwise and spanwise distur-
bance. The shape of the initial interface is given
by

.27 .27
G(x,t =0) = z—Apsin (Bo {x — Apsin BO:L“])

— Apsin <2B:y> . (32)

where Ag and By are the amplitude and wave-
length for the streamwise perturbation and A; and
B are the amplitude and wavelength for the span-
wise perturbation. For this calculation both pertur-
bations are of equal magnitude and thus A9 = A1 =
0.01 and different wavelengths, By = 1,B; = 1/2.

The only non-zero initial component of 7 is given
by

ny(x,t=0) = Ty
\/1 + —479‘30 cos %ﬂox +2 [—2’];‘20 cos %x
(33)
where 1Y = 1. The calculations are evalu-

ated on a [0,1]x[0,1]x[-1.0,-1.0] domain employing a
64x64x128 equidistant Cartesian grid with periodic
boundary conditions applied in the x and y direc-
tions and slip conditions applied on the top and
bottom walls. Fig. (3) shows the results of the
evolution of an interface perturbed by these con-
ditions. As expected, the interface shows a strong
roll-up feature in the streamwise direction and, in-
terestingly, shows Rayleigh-Taylor like dynamics in
the spanwise direction. Although density driven in-
stabilities can be incorporated into the vortex sheet
method, these effects are not active in this simula-
tion and are not driving the behavior observed in
Fig. (3). The effect seen here is due to the dilata-
tion and stretching terms in Eq. (20) which are re-
orienting the vortex sheet strength from 7, to 7.
Since the spanwise perturbation is a pure sine wave,
the reorientation of the vortex sheet strength ”gen-
erates” vorticity in the same interface locations as

the baroclinic torque term would. These Rayleigh-
Taylor dynamics in doubly periodic shear layers have
also been observed in past work conducted on vortex
sheet methods [25].

Conclusions

In this paper a method to reconstruct sub-filter
shear driven velocities for use in a Dual-Scale LES
model has been presented. The method generates
shear driven velocities by applying a vortex sheet at
the interface location of a phase interface between
a liquid and gas. The velocities induced by that
vortex sheet can then be found by generating a vor-
ticity field and solving the vector potential equation.
These velocities are then used to transport the in-
terface and vortex sheet strength. Finally, the up-
dated interface geometry can be explicitly filtered
and sent back to the underlying Navier-Stokes flow
solver. The method has been tested against well-
known results and shows excellent agreement in cap-
turing the motion of the interface under reasonable
conditions.
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Figure 2: Interface shape, 256 x 256 grid, e = 16/256,¢t = 1,2,3,4



Figure 3: Interface shape, 64 x 64 x 128 grid, e = 4/64,t = 1,2, 3,4



