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Abstract— The problem of decentralized multi-robot target
tracking asks for jointly selecting actions, e.g., motion primi-
tives, for the robots to maximize target tracking performance
with local communications. One major challenge for practical
implementations is to make target tracking approaches scalable
for large-scale problem instances. In this work, we propose
a general-purpose learning architecture towards collaborative
target tracking at scale, with decentralized communications.
Particularly, our learning architecture leverages a graph neural
network (GNN) to capture local interactions of the robots
and learns decentralized decision-making for the robots. We
train the learning model by imitating an expert solution
and implement the resulting model for decentralized action
selection involving local observations and communications only.
We demonstrate the performance of our GNN-based learning
approach in a scenario of active target tracking with large
networks of robots. The simulation results show our approach
nearly matches the tracking performance of the expert al-
gorithm, and yet runs several orders faster with up to 100
robots. Moreover, it slightly outperforms a decentralized greedy
algorithm but runs faster (especially with more than 20 robots).
The results also exhibit our approach’s generalization capability
in previously unseen scenarios, e.g., larger environments and
larger networks of robots.

I. INTRODUCTION

Multi-robot target tracking finds a wealth of applications
in robotics. Typical examples include monitoring [1], pa-
trolling [2], surveillance [3], and search and rescue [4]. Such
applications ask for teams of robots that act as mobile sensors
to jointly plan their actions to optimize tracking objectives
(e.g., the number of tracked targets or the uncertainty re-
duction in the targets’ positions). In this paper, we focus
on tracking objective functions that are submodular, i.e., the
functions that have the diminishing returns property. Exam-
ples of such functions include information-theoretic metrics
such as entropy and mutual information [5] and the geometric
metrics such as the visibility region [6]. The problems of
maximizing submodular functions are generally NP-hard.
The most well-known approach for tackling these problems
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is the greedy algorithm that runs in polynomial time and
yields a constant factor approximation guarantee [7], [8].

The greedy algorithm cannot be directly implemented in
the scenarios where the robots can only communicate locally
due to a limited communication range. To address the issue
of local communication, some decentralized versions of the
greedy algorithm were designed, where only neighboring
information is utilized to choose actions for the robots for op-
timizing submodular objectives [9]–[12]. For example, build-
ing on the local greedy algorithm [8, Section 4], Atanasov et
al. designed a decentralized greedy algorithm that achieves
1/2 approximation bound for multi-sensor target tracking [9].
Specifically, the algorithm greedily selects an action for each
robot in sequential order, given all the actions selected so far.
However, with limited communication, the robots may not
have access to all the previously selected actions. To this end,
a few decentralized submodular maximization algorithms
were devised to execute a sequential greedy algorithm over
directed acyclic graphs that may not be connected [11], [12].
Other decentralized greedy approaches include the ones that
utilize a consensus-based mechanism to bring robots to an
agreement by communicating local greedy selections with
neighbors over multiple hops [10], [13]. However, these
algorithms may take a considerable amount of time to reach
a consensus.

In this paper, we aim to explore learning-based methods
to learn policies by imitating expert algorithms [14] (e.g.,
the greedy algorithm [8]) for multi-robot target tracking.
Particularly, we choose the graph neural network (GNN)
as the learning paradigm given its nice properties of de-
centralized communication architecture that captures the
neighboring interactions and the transferability that allows
for the generalization to previously unseen scenarios [15],
[16]. Also, GNN has recently shown success in various
multi-robot applications such as formation control [17], [18],
path finding [19], and task assignment [20]. Specifically,
Tolstaya et al. implemented GNN to learn a decentralized
flocking controller for a swarm of mobile robots by imitating
a centralized flocking controller with global information.
Similarly, Li et al. applied GNN to find collision-free paths
for large networks of robots from start positions to goal
positions in the obstacle-rich environments [19], [21]. Their
results demonstrated that, by mimicking a centralized expert
solution, their decentralized path planner exhibits a near-
expert performance, utilizing local observations and neigh-
boring communication only, which also can be well gener-
alized to larger teams of robots. The GNN-based approach
was also investigated to learn solutions for the combinatorial



optimization in a multi-robot task scheduling scenario [20].
Contributions. To this end, we design a GNN-based learning
framework that enables robots to communicate and share
information with neighbors and selects actions for the robots
to optimize target tracking performance. We train such a
learning network to perform as close as possible to the greedy
algorithm by imitating the behavior of the greedy algorithm.
Different from classical algorithms (e.g., greedy algorithms),
GNN can be seamlessly integrated with other networks
such as convolutional neural network (CNN) or multilayer
perceptron (MLP) to process richer data representations like
images or sensor measurements. While, classical algorithms
may not be able to either handle such data modalities or
handle them efficiently. For example, (decentralized) greedy
algorithms cannot directly use the raw image data or sensor
measurements for decision making. Therefore, we devise
a GNN-based learning framework that takes raw sensor
measurements as inputs and leverages GNN for scalable and
fast feature sharing to generate robots’ actions. Specifically,
we make the following contributions:

• We formulate the problem of applying GNN for multi-
robot target tracking with local communications (Prob-
lem 1);

• We design a GNN-based learning framework that pro-
cesses robots’ local observations and aggregates neigh-
boring information to select actions for the robots (i.e.,
the solution to Problem 1).

• We demonstrate the performance of the GNN-based
learning framework such as near-expert behavior, trans-
ferability, and fast running time in the scenario of active
target tracking with large networks of robots. Specifi-
cally, our methods covers around 89% targets compared
to the expert algorithm and runs several orders faster.

II. PROBLEM FORMULATION

We present the problem of decentralized action selection
for multi-robot target tracking (see Fig. 1). Particularly, at
each time step, the problem asks for selecting an action
for each robot to optimize a target tracking objective using
local information only. Specifically, the robots’ actions are
their candidate motion primitives, the team objective can
be the number of targets covered, and for each robot, the
local information is the set of targets covered by it and its
neighbors. The goal of this work is to design GNN to learn
such decentralized planning for the robots by imitating an
expert algorithm. We start with introducing the framework
of decentralized target tracking and GNN, and then formally
define the problem.

A. Decentralized Target Tracking

a) Robots: We consider a team of N robots, denoted
by V = {1, 2, · · · , N}. At a given time step, the relative
position between any two robots i and j in the environment
is denoted by prij , i, j ∈ V . The global positions of the robots
are not required.

Fig. 1: Multi-robot target tracking: a team of aerial robots,
mounted with down-facing cameras, aims at covering multiple
targets (depicted as colorful dots) on the ground. The red arrow
lines and the blue dotted lines show inter-robot observations and
communications. The red squares represent the fields of view of
the robots’ cameras.

Fig. 2: Robots’ observations, motion primitives, and communi-
cations: at a given time step, each robot observes the robots
within its sensing range rs; e.g., robot 1 observes robot 2 and
robot 3. Each robot has a set of motion primitives (depicted as
dotted arrow curves), from which it can choose one to cover
some targets using its camera. For example, robot 1 has 3 motion
primitives, {a1,1, a1,2, a1,3}, and it follows a1,1 to cover 2 targets,
{t3, t4}. Robot 2 has 4 motion primitives, {a2,1, a2,2, a2,3, a2,4},
and it chooses a2,3 to cover 3 targets, {t1, t2, t3}. However, in
combination, these two motion primitives jointly cover 4 targets,
{t1, t2, t3, t4}. In addition, each robot communicates with those
robots within its communication range rc; e.g., robot 1 communi-
cates with robot 2.

b) Action set: We denote a set of available actions for
each robot i as Ai, i ∈ V . At a given time step, the robot can
select at most 1 action from its available action set; e.g., in a
motion planning scenario, Ai is robot i’s motion primitives,
and the robot can select only 1 motion primitive to execute
at each time step. For example, in Fig. 2, there are 2 robots,
where robot 1’s action set is A1 = {a1,1, a1,2, a1,3} (and
robot 1 selects action a1,1 to execute), and robot 2’s action
set is A2 = {a2,1, a2,2, a2,3, a2,4} (and robot 2 chooses a2,3
to execute). Denote the joint action set of all robots as A ,⋃

i∈V Ai. Also, denote a valid selection of actions for all
robots as U ⊆ A. For example, we have U = {a1,1, a2,3}
for the two robots in Fig. 2.

c) Observation: We consider each robot i is equipped
with a sensor (e.g., a LiDAR sensor) to measure the relative
positions to the robots within its sensing range (see Fig. 2).
Without loss of generality, we assume all robots’ sensors



have the same sensing range rs. For each robot i, we
denote the set of robots within its sensing range as Vs

i .
Then the sensor observation of each robot i, i.e., the relative
positions between robot i and Vs

i , can be represented by
Zr

i = {prij}j∈Vs
i
.

In addition, each robot is mounted with a camera that
perceives a part of the environment within its field of
view (see Fig. 1). Using the camera, the robot can observe
some objects and measure the relative positions to them in
the environment, once it selects an action to execute. For
example, in Fig. 2, when robot 1 selects motion primitive
a1,1, it can sweep and cover a set of targets {t3, t4}, and the
corresponding observation Z1,1 is the relative positions to
targets {t3, t4}. Notably, each action of the robot corresponds
to an observation. Thus, given a time step, we denote the
(possible) camera observation1 of each robot i by Zt

i , which
is the collection of the observations by the robot’s available
actions Ai. For example, in Fig. 2, the camera observation
of robot 1 is Zt

1 = {Z1,1,Z1,2,Z1,3}. Particularly, we
denote those objects that can be covered by robot i as
Ti and the corresponding relative positions as {ptij}j∈Ti .
Then the robot i’s camera observation can be represented
by Zt

i = {ptij}j∈Ti . Finally, we define the observation of
each robot i by Zi, which contains the observations of the
sensor and camera on it, i.e., Zi = {Zr

i ,Zt
i }.

d) Communication: Each robot i ∈ V communicates
only with those robots within a prescribed communication
range. Without loss of generality, we consider all robots have
the same communication range rc (see Fig. 2). That way, we
introduce an (undirected) communication graph at a given
time step as G = (V, E ,W) with nodes the robots V , edges
E ⊆ V × V the communication links, and weights of the
edges W : E → R denoting the strength of communications.
The graph G is distance-based and (i, j) ∈ E if and only
if ‖prij‖2 ≤ rc. We denote the 1-hop neighbors of robot
i by Ni, which are the robots within the range rc. We
denote the adjacency matrix of graph G by S ∈ RN×N with
[S]ij = sij = 1 if (i, j) ∈ E and 0 otherwise. Notably, the
connectivity of graph G is not required.

e) Objective function: We consider a target tracking
objective function f : 2A → R to be monotone non-
decreasing and submodular in the robots’ actions U . For
example, f can be the number of targets covered [22]. As
shown in Fig. 2, the number of targets covered by the selected
actions (motion primitives), U = {a1,1, a2,3}, is f(U) = 4.

B. Graph Neural Networks
a) Graph Shift Operation: We consider each robot

i, i ∈ V has a feature vector xi ∈ RF , indicating the
processed information of robot i. By collecting the feature
vectors xi from all robots, we have the feature matrix for
the robot team V as:

X =



xT
1
...

xT
N


 = [x1, · · · ,xF ] ∈ RN×F , (1)

1We call it as the possible observation, since the robot can select at most
1 action to execute at a time step.

where xf ∈ RN , f ∈ [1, · · · , F ] is the collection of the
feature f across all robots V; i.e., xf = [xf

1 , · · · ,xf
N ]T with

xf
i denoting the feature f of robot i, i ∈ V . We conduct

graph shift operation for each robot i by a linear combination
of its neighboring features, i.e.,

∑
j∈Ni

xj . Hence, for all
robots V with graph G, the feature matrix X after the shift
operation becomes SX with:

[SX]if =
N∑

j=1

[S]ij [X]fj =
∑

j∈Ni

sijx
f
j , (2)

Here, the adjacency matrix S is called the Graph Shift
Operator (GSO) [16].

b) Graph convolution: With the shift operation, we
define the graph convolution by a linear combination of
the shifted features on graph G via K-hop communication
exchanges [16], [19]:

H(X;S) =
K∑

k=0

SkXHk, (3)

where Hk ∈ RF×G represents the coefficients combining
F features of the robots in the shifted feature matrix SkX,
with F and G denoting the input and output dimensions
of the graph convolution. Note that, SkX = S(Sk−1X) is
computed by means of k communication exchanges with 1-
hop neighbors.

c) Graph neural network: Applying a point-wise non-
linearity σ : R → R as the activation function to the graph
convolution (eq. (3)), we define graph perception as:

H(X;S) = σ(
K∑

k=0

SkXHk). (4)

Then, we define a GNN module by cascading L layers of
graph perceptions (eq. (4)):

X` = σ
[
H`(X`−1;S)

]
for ` = 1, · · · , L, (5)

where the output feature of the previous layer `−1, X`−1 ∈
RN×F `−1

, is taken as input to the current layer ` to generate
the output feature of layer l, X`. Recall that the input to the
first layer is X0 = X (eq. (1)). The output feature of the last
layer XL ∈ RN×G, obtained via K-hop communications
and multi-layer perceptions, will be used to predict action
set U for all robots to the following problem.

Notably, GNN can represent rich classes of mappings
(functions) from the input feature to the output feature.
Since the graph convolution is a linear operator (eq. (3)),
the function’s characteristics mainly depends on the property
of the activation function σ (in eq. (5)). For example, if the
activation function is concave (or submodular), the function
represented by GNN is also concave (or submodular).

C. Problem Definition

Problem (Decentralized action selection for multi-robot tar-
get tracking). At each time step, the robots V , by exchanging
information with neighbors only over the communication



graph G, select an action to each robot i ∈ V to maximize
a submodular target tracking objective function f :

max
U⊆A

f(U)

s.t. |U ∩ Ai| = 1, for all i ∈ V .
(6)

The constraint follows a partition matroid constraint to
ensure that each robot selects 1 action per time step (e.g., 1
motion primitive among a set of motion primitives).

Eq. (6) can be interpreted as a submodular maximization
problem with a partition matroid constraint and decentralized
communication. This problem is generally NP-hard even
if we assume the centralized communication [8]. That is
because, finding the optimal action set requires to exhaustive
search and evaluate the quality of all possible valid action
sets U ⊆ A. Clearly, this exhaustive search method has
combinatorial complexity and quickly becomes intractable as
either the number of robots or the number of available actions
of the robots increase. The most well-known approach for
tackling this type of problem (with the centralized com-
munication) is the (centralized) greedy algorithm [8]. The
advantage of the centralized greedy algorithm is two-fold:
(i), it is efficient as it runs in polynomial time (with O(|A|2)
complexity); (ii), it achieves at least 1/2–approximation
of the optimal. In addition, since the 1/2–approximation
bound is computed based on the worst-case performance,
the centralized greedy algorithm can typically perform much
better (on average) in practice; e.g., it performs close to
the exhaustive search (see Figure 4-c in Section IV-D).
Since the centralized greedy algorithm is much cheaper than
the exhaustive search and performs comparatively, we use
the centralized greedy algorithm as our expert algorithm to
generate ground-truth training data.

Particularly, we aim to train a learning network to perform
as well as the centralized greedy algorithm for solving
Eq. (6), while involving the communications among neigh-
boring robots only. For such a learning network, GNN can
be a great fit given its decentralized communication protocol.
Hence, the goal is to utilize GNN to learn an action set U to
Eq. (6) by imitating the action set selected by the centralized
greedy algorithm. More formally, we define the problem of
this work as follows.

Problem 1. Design a GNN-based learning framework to
learn a mapping M from the robots’ observations {Zi}i∈V
and the communication graph G to the robots’ action set U ,
i.e., U =M({Zi}i∈V ,G), such that U is as close as possible
to action set selected by the centralized greedy algorithm,
denoted by Ug.

We describe in detail our learning architecture for solving
Problem 1 in the next section.

III. ARCHITECTURE

We design a learning architecture that consists of three
main components—the Individual Observation Processing
(Section III-A), the Decentralized Information Aggregation

(Section III-B), an the Decentralized Action Selection mod-
ule (Section III-C). Next, we describe in detail these key
components, illustrated in Fig. 3, as follows.

A. Individual Observation Processing

Recall that each robot i’s observation Zi includes its
sensor observation Zr

i and its camera observation Zt
i (see

Section II-A). We process the observation Zi to generate a
feature vector xi for each robot i in two steps.

• Step 1 is a pre-processing step. Since the sensor
observation Zr

i stores the relative robot positions
{prij}j∈Vs

i
, we reshape (handcraft) it as a vector x−i,1 :=

[pT
i1, · · · ,pT

i|Vs
i |
]T. Similarly, for the camera observation

Zt
i that contains the relative positions to the objects

covered, {ptij}j∈Ti , we reshape it as vector x−i,2 :=

[pT
i1, · · · ,pT

i|Ti|]
T. Finally, by concatenating x−i,1 and

x−i,2, we generate a pre-processed feature vector x−i for
robot i, i.e., x−i = [(x−i,1)

T, (x−i,2)
T]T. 2

• Step 2 is a post-processing step where the pre-processed
feature vector x−i is fed into a multi-layer perceptron
(MLP) module to generate the robot’s feature vector xi,
i.e., xi = MLP(x−i ).

The feature vectors of the robots are then exchanged and
fused through neighboring communications (Section III-B).

B. Decentralized Information Aggregation

Each robot i communicates its feature (or processed infor-
mation) with its neighbors Ni over multiple communication
hops. As shown in Section II-B, for each robot i, we use
GNN to aggregate and fuse the feature vectors through K-
hop communication exchanges among neighbors (eq. (3)).
Thus, the output of the GNN (i.e., XL in eq. (5)) is a hyper-
representation of the fused information of the robots and
their K-hop neighbors. The output is then taken as input
to the action selection module, described in Section III-
C, to generate an action for each robot. Notably, since
only neighboring information is exchanged and fused, GNN
renders a decentralized decision-making architecture.

C. Decentralized Action Selection

We aim at selecting an action set U for the robots V (1
action per robot) to maximize the team tracking performance
f(U). To this end, we use a MLP for each robot i to train an
action selection module. More specifically, each robot applies
a MLP that takes the aggregated features as input and selects
an action for the robot as output. We consider all robots
carry the same MLP, resembling a weight-sharing scheme.
The actions of the robots are selected based on a supervised
learning approach, as in Section III-D.

2We assign the same dimension to feature vector x−i for all the robots.
In particular, for each robot i, we use relative positions of 10 nearest robots
in {prij}j∈Vs

i
and relative positions of 20 nearest targets in {ptij}j∈Ti .

If robot i has less than 10 nearby robots measured or covers less than 20
targets, we simply add some dummy values (e.g., -1) in the feature vector
to maintain the same dimension.
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Fig. 3: Our decentralized learning architecture includes three main modules: (i), the Individual Observation Processing module processes
the local observations and generates a feature vector for each robot; (ii), the Decentralized Information Aggregation module utilizes a
GNN to aggregate and fuse the features from K-hop neighbors for each robot; (iii), the Decentralized Action Selection module selects
an action for each robot by imitating an expert algorithm.

D. Supervised Learning

We train our learning architecture by a supervised learning
approach, i.e., to mimic an expert algorithm (the centralized
greedy algorithm). Specifically, during the training stage, we
have access to the action set Ug selected by the central-
ized greedy algorithm, the corresponding observations on
the robots {Zi}i∈V , and the corresponding communication
graph G. Thus, the training set D can be constructed as
a collection of these data, i.e., D := {({Zi}i∈V ,G,Ug)}.
Over the training set D, we train the mapping M (defined
in Problem 1) so that a cross entropy loss L(·, ·), representing
the difference between the output action set U and the greedy
action set Ug is minimized. That is,

min
PM, {H`,k}, MLP

∑

({Zi}i∈V , G, Ug)∈D
L(M({Zi}i∈V ,G),Ug),

(7)
where we optimize over the learnable parameters of the pro-
cessing method, named PM (e.g., CNN, MLP) to process the
robots’ observations, the set of learnable parameter matrices
{H`,k}l∈{1,··· ,L}, k∈{0,··· ,K} in GNN to aggregate and fuse
the neighboring information over multiple communication
hops, and the learnable parameters of MLP to select actions
for the robots.

Notably, by the decentralized learning architecture where
the parametrization is operated locally on each robot, the
number of learnable parameters is independent of the number
of the robots N . This decentralized parametrization offers a
perfect complement to the supervised learning which requires
the availability of expert solutions that can be costly in the
large-scale settings. For example, even though the centralized
greedy algorithm is much more efficient than the exhaustive
search, it still takes considerable time to generate a solution
when the number of robots or their actions is large, given its
running time grows quadratically in the number of robots’
actions (i.e., with O(|A|2) complexity). However, leveraging
the decentralized parametrization, we only need to train over
the small-scale cases and generalize the trained models such
as the distributed computation (i.e., PM and MLP) and the

neighboring information exchange (i.e., GNN) to the larger-
scale settings, as it will be demonstrated in Section IV-D.
In other words, once trained, the learned models can be
implemented in other cases, including those with different
communication graphs and varying numbers of robots.

IV. PERFORMANCE EVALUATION

We present the evaluations of our method in scenarios
of active target tracking with large networks of robots.
In particular, we compare our method with other baseline
algorithms in terms of both running time and tracking
quality. In these comparisons, we test the trained learning
models in the cases with various team sizes. The code of
implementations is available online.3 The experiments are
conducted using a 32-core, 2.10Ghz Xeon Silver-4208 CPU
and an Nvidia GeForce RTX 2080Ti GPU with 156GB and
11GB of memory, respectively.

Next, we first describe the active target tracking scenario,
the specifications of the learning architecture, and the com-
pared baseline algorithms. Then we present the evaluations.

A. Multi-Robot Active Target Tracking

We consider N aerial robots that are tasked to track M
mobile targets on the ground. Each robot uses its sensor
to obtain the relative positions to those robots that are
within its sensing range rs. The sensing range rs is set
to be rs = 20 units. The camera on each robot i has a
square field of view do × do, and each robot i has 5 avail-
able motion primitives, Ai = {forward, backward,
left, right, idle}4. Once the robot selects a motion
primitive from Ai \ idle, it flies a distance dm along
that motion primitive. If the robot selects the idle motion
primitive, it stays still (i.e., dm = 0). Hence, each motion

3https://github.com/VishnuDuttSharma/
deep-multirobot-task

4The designed learning architecture is generic and can be extended to
handle other action spaces (e.g., robots have different action sets as shown
in Figure 2) or robot trajectories as long as the centralized expert algorithm
it learns from operates with the corresponding action spaces or robot
trajectories.

https://github.com/VishnuDuttSharma/deep-multirobot-task
https://github.com/VishnuDuttSharma/deep-multirobot-task


primitive corresponds to a rectangular tracking region with
length dm+do and width do. The tracking width (or the side
of the field of view) is set to be do = 6 units. The flying
length dm is set to be dm = 20 units for all robots selecting
the non-idle motion primitive. We set the robot’s commu-
nication range as rc = 10 units and the communication hop
as K = 1 (i.e., each robot i communicates only with its
1-hop neighbors Ni). We let robots fly at different heights
so that collisions do not occur during their movement. The
objective function is considered to be the number of targets
covered, given all robots selecting motion primitives.

B. Supervised Learning Specification

We apply the centralized greedy algorithm [8] as the
expert algorithm to generate a ground-truth data set. In each
problem instance, the size of the environment, a square,
depends on the number of robots, i.e., its side length is
specified as 100 ×

√
N/20. We randomly generate the

positions of the robots and targets in the environment,
and utilize the centralized greedy algorithm to select an
action set for the robots. Notably, each instance includes
the robots’ observations {Zi}i∈V , the communication graph
G (represented by its adjacency matrix S), and the greedy
(or ground-truth) action set Ug. The ground-truth data set
comprises 120, 000 instances for varying numbers of robots
and the corresponding environments. In particular, we scale
the size of the environment proportionally to the number of
robots but keep the target density the same. Here, the target
density is captured by the percentage of the cells in the grid
occupied by the targets. We set the target density as 2.5%
in all cases. The robot’s observations include the relative
positions of 10 nearest robots within its sensing range and
20 nearest targets that can be covered. We experimentally
found these hyperparameters such as the target density and
the numbers of nearest robots and targets are suitable across
different environmental scales. The data is randomly shuffled
at training time and divided into a training set (60%), a
validation set (20%), and a testing set (20%).

Our learning architecture consists of a 3-layer MLP with
32, 16, and 8 hidden layers as the Individual Observation
Processing module, a 2-layer GNN with 32 and 128 hidden
layers as the Decentralized Information Aggregation module,
and a single layer MLP as the Decentralized Action Selection
module. For each robot, the network outputs a probability of
selecting each action in the action set. All the robots have
identical action sets. This learning network is implemented in
PyTorch v1.6.0 and accelerated with CUDA v10.1 APIs. We
use a learning rate scheduler with cosine annealing to decay
the learning rate from 5 × 10−3 to 10−6 over 1500 epochs
with batch size 64. This architecture and training parameters
are selected from multiple parameter search experiments.

C. Compared Algorithms

We compare our method, named GNN with three other
algorithms. The algorithms differ in how they select the
robots’ motion primitives. The first algorithm is the cen-
tralized greedy algorithm (the expert algorithm), named

Centrl-gre. The second algorithm is an optimal algo-
rithm, named Opt which attains the optimal solution for
eq. (6) by exhaustive search. Particularly, for N robots, each
with 5 motion primitives, Opt needs to evaluate 5N possible
cases to find the optimal solution. Evidently, Opt is viable
only for small-scale cases. Hence, Opt is used for compari-
son only when the number of robots is small (e.g., N ≤ 10).
The third algorithm is a random algorithm, named Rand,
which randomly (uniformly) selects one motion primitive for
each robot. The fourth algorithm is a decentralized greedy
algorithm, named Decent-gre, which applies the standard
greedy algorithm [7] to select an action with the maximal
marginal gain for each robot among the robot and its 1-hop
neighbors5. With the same settings, these four algorithms
are compared in terms of the team’s tracking quality, i.e.,
the number of targets covered by all robots, and the running
time, across 1000 trials. Notably, the running time for the
Decent-gre is calculated as the maximum time taken by
any robot. For GNN, it is the inference time on GPU.

D. Evaluations

a) Small-scale comparison: We first compare GNN with
Opt, Centrl-gre, Decent-gre and Rand in small-
scale cases, as shown in Figures 4-(a) & (c). Since Opt
is only feasible for small-scale scenarios, we set the number
of robots N = 4, 6, 8, 10. Particularly, we train GNN with
the number of robots N = 20 and test its performance over
N = 4, 6, 8, 10.

We observe GNN has a superior running time as shown
in Figure 4-(a): it runs considerably faster than both
Centrl-gre and Opt: around 0.5 order faster than the
former and 1.5 orders faster than the latter with 4 robots.
It also runs slightly faster than Decent-gre6. This su-
periority becomes more significant as the number of robot
increases. In addition, GNN has an average running time less
than 1 ms, regardless of the number of robots, which is due to
its decentralized decision-making protocol. Despite the faster
running time, GNN retains a tracking performance close to
Centrl-gre and Opt, slightly better than Decent-gre,
and better than Rand: it covers in average more than 89% of
the number of targets covered by Centrl-gre and more
than 85% of that by Opt, and covers more targets than both
Decent-gre and Rand, as shown in Figure 4-(c)7.

Figures 4-(a) & (c) also demonstrate the generalization
capability of GNN in smaller-scale scenarios: even though
it is trained with 20 robots, it maintains both fast running
time and the tracking performance close to Centrl-gre
and Opt with smaller number of robots, e.g., N = 4, 6, 8, 10.
Another interesting observation is that Centrl-gre covers

5Notably, Decent-gre is different from the distributed (sequentially)
greedy algorithms in [11], [12] where each robot selects an action based on
the actions of its previous neighbors (i.e., its neighbors that have already
selected actions). This is to ensure Decent-gre and GNN are compared
with the same communication setting.

6The averaged running times of Opt, Centrl-gre, Decent-gre, and
GNN with 4 robots are 18ms, 2.14ms, 0.77ms, and 0.72ms, respectively.

7In the small-scale experiment, the averaged number of the targets covered
for Opt, Centrl-gre, Decent-gre, GNN, and Rand are 49.12, 47.21,
42, 42.67, and 34.23, respectively.
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Fig. 4: Comparison of Opt, Centrl-gre, Decent-gre, GNN, and Rand in terms of running time (plotted in log scale) and the
number of targets covered. (a) & (d) are for small-scale comparison averaged across 1000 Monte Carlo trials. (b) & (e) are for large-scale
comparison averaged across 1000 Monte Carlo trials.

the similar number of targets as Opt, and yet runs several
orders faster when N ≥ 8. This demonstrates the rationality
of choosing Centrl-gre as the expert algorithm in this
target tracking scenario.

b) Large-scale comparison: We compare GNN with
Centrl-gre, Decent-gre, and Rand in the large-scale
scenarios where the number of robots is set as N =
20, 30, 40, 50, 100. Opt is not included in this comparison
due to its long evaluation time. For example, it takes almost
two days to evaluate 1000 instances, each with 510 possible
cases, for 10 robots. GNN is trained with the number of
robots N = 20 and is tested over N = 20, 30, 40, 50, 100.
The results are reported in Figures 4-(b) & (d). Similarly,
we observe GNN runs around 1.5 to 2.5 orders faster than
Centrl-gre with the running time less than 1 ms for
all N = 20, 30, 40, 50, 100 (Figures 4-(b)). It also runs
faster than Decent-gre, which runs slower as the number
of robots increases. Although GNN runs faster, it achieves
a tracking performance close to Centrl-gre, slightly
better than Decent-gre, and better than Rand (Figure 4-
(d)). Additionally, these results verify GNN’s generalization
capability in larger-scale scenarios: it is trained with 20
robots, and yet, can be well generalized to a larger number
of robots, e.g., N = 30, 40, 50, 100.

Train

Test
20 30 40 50

20 89.34% 88.98% 88.56% 88.61%

30 89.45% 88.93% 88.70% 88.66%

40 89.33% 88.78% 88.54% 88.62%

50 89.38% 88.87% 88.57% 88.72%

TABLE I: Percentage of the number of targets covered (the average
across 1000 trials) by GNN trained and tested with varying numbers
of robots.

c) Generalization evaluation: We further verify GNN’s
generalization capability by evaluating the tracking quality
of GNN trained and tested with varying numbers of robots.
Specifically, we train GNN with N = 20, 30, 40, 50 robots
and test it on N = 20, 30, 40, 50 robots. The evaluation
results are reported in Table I where the tracking quality
is captured by the percentage of the number of targets
covered with respect to the number of the targets covered
by Centrl-gre. We observe that GNN trained and tested
with the same and different number of robots cover the
similar percentage of the targets (around 89%), which further
demonstrates the generalization capability of GNN.



To summarize, in the evaluations above, GNN provides
a significant computational speed-up, and, yet, still at-
tains a target tracking quality that nearly matches that of
Centrl-gre and Opt. Moreover, GNN achieves a slightly
better tracking quality than Decent-gre but runs faster
(especially with more than 20 robots) and thus scales better.
In addition, GNN has a better tracking quality than Rand.
Further, GNN exhibits the capability of being able to well
generalize to previously unseen scenarios. Particularly, it can
be trained in a smaller-scale environment, which typically
has a cheaper computational overhead. Then the trained
policies can apply to larger-scale environments.

V. CONCLUSION AND FUTURE WORK

We worked towards choosing actions for the robots
with local communications to maximize a team’s tracking
quality. We devised a supervised learning approach that
selects actions for the robots by imitating an expert solution.
Particularly, we designed a GNN-based learning network
that maps the robots’ individual observations and inter-robot
communications to the robots’ actions. We demonstrated the
near-expert performance, generalization capability, and fast
running time of the proposed approach.

This work opens up a number of future research avenues.
An ongoing work is to extend the designed GNN-based
learning architecture in a distributed fashion and analyze
the number of messages shared and communication costs. In
addition, we will incorporate the attention mechanism [23]
that enables robots to learn when to communicate [24], who
to communicate with [25], and what to communicate [21]
to prioritize the information with higher contributions and
reduce communication costs. A second research avenue is
to learn resilient coordination that secures team performance
against either the malicious team members [26] or adver-
sarial outsiders [27], [28]. A third research direction is to
explore decentralized reinforcement learning methods [29],
[30] for multi-robot target tracking. Further, our learning-
based approach can be extended to data-based learning for
more complicated tasks which do not have well-performing,
decentralized solutions yet [31]. The model could also be
used to bootstrap the GNN-based planner for such tasks,
which cannot be done using classical counterparts [31].
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