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Abstract— We study a chance-constrained variant of the
cooperative aerial-ground vehicle routing problem, in which an
Unmanned Aerial Vehicle (UAV) with limited battery capacity
and an Unmanned Ground Vehicle (UGV) that can also act as a
mobile recharging station need to jointly accomplish a mission
such as monitoring a set of points. Due to the limited battery ca-
pacity of the UAYV, two vehicles sometimes have to deviate from
their task to rendezvous and recharge the UAV. Unlike prior
work that has focused on the deterministic case, we address the
challenge of stochastic energy consumption of the UAV. We are
interested in finding the optimal policy that decides when and
where to rendezvous such that the expected travel time of the
UAV is minimized and the probability of running out of charge
is less than a user-defined tolerance. We formulate this problem
as a Chance Constrained Markov Decision Process (CCMDP),
which can be equivalently transformed into a Constrained
Markov Decision Process (CMDP). To the best knowledge of the
authors, this is the first CMDP-based formulation for the UAV-
UGY routing problems under power consumption uncertainty.
We adopt a Linear Programming (LP) based approach to solve
the problem optimally. We demonstrate the effectiveness of our
formulation in the context of an Intelligence Surveillance and
Reconnaissance (ISR) mission.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are increasingly being
sought in applications such as surveillance, environmental
monitoring, and agriculture due to their ability to monitor
large areas in a short period of time. One bottleneck in
practice that limits their application is the limited battery
capacity, especially for multi-rotor UAVs. One way to over-
come this bottleneck is to use a team of aerial and ground
vehicles for such tasks, in which the UGV can work as a
mobile recharging station and will recharge the UAV during
long-range operations. The key to achieving such cooperation
on the decision-making level is to design efficient routing
algorithms that can tell robots which task node to visit next,
and when and where the UAV should be recharged. Moreover,
the rate of battery discharge of a UAV is stochastic in the
real world. The routing algorithm should be able to deal
with such uncertainties, e.g., trade off task performance with
failure risks.

In this paper, we consider the cooperative routing problem
with a team of a single UGV that can work as a mobile
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Fig. 1. An illustrative example of the rendezvous problem considered in
this paper. When the UAV and UGV are executing tasks, they need to decide
when and where to rendezvous to replenish the battery of the UAV while
minimizing the travel time of the UAV and satisfying the risk constraint
induced by stochastic energy consumption. When they need to rendezvous,
they will deviate from their task and meet at a chosen rendezvous location.

charger and a single energy-constrained UAV, in which the
UAYV and UGV need to complete a task by visiting task nodes
distributed throughout the task area. The UGV can only move
on the road network but the UAV can directly fly between
any pair of nodes (assuming it has enough charge). Given the
task nodes to visit and the stochastic energy consumption
model of the UAV, we are interested in finding a routing
strategy for the UAV and the UGV such that the expected
time to finish the task is minimized and the probability of
running out of charge is less than a user-defined tolerance.
Such problems can be formulated within the stochastic
programming (SP) framework [1]. However, since we need
to consider not only routes but also recharge decisions and
chance constraints, SP-based formulation would involve too
many variables, rendering the formulation only solvable for
very small instances.

In this paper, we propose to find the routing strategy in two
decoupled phases. In the first phase, a higher-level planner
finds deterministic routes for the UAV and the UGV without
considering stochasticity in energy consumption based on the
task requirement. In the second phase, a risk-aware planner
will refine the routes generated from the previous phase to
find when and where to rendezvous to satisfy the chance
constraint while minimizing the time to finish the UAV task'.
Our focus in this paper is mainly on the second phase. We
formulate our risk-aware refinement as a Markov Decision
Process (CMDP), in which the chance constraint is modeled

'We focus on minimizing the time taken for the UAV task instead of
the total time which would be the maximum of the UAV and UGV travel
times. If the UGV task takes longer than the UAYV, then once the UAV’s
task is done, the UGV simply executes the remaining portion of its route.
Therefore, optimizing the UAV time is appropriate. Furthermore, In many
applications [2], the UGV’s task is to simply act as a mobile recharging
station



as the secondary cost in the constraint. To the best of our
knowledge, this is the first CMDP-based formulation for
the UAV-UGYV routing problems under energy consumption
uncertainty. We use Linear Programming (LP) to find the op-
timal stationary policy. We validate our formulation and the
solution in an Intelligence Surveillance and Reconnaissance
(ISR) mission.

The main contributions of this paper are:

« We show how to formulate the stochastic cooperative
UAV and UGV rendezvous problem with energy con-
straint as a CMDP and use LP to solve the problem
optimally in polynomial time.

« Demonstrate the effectiveness of the formulation and the
solution using realistic models that are obtained using
field data.

The rest of this paper is organized as follows. We first
give a brief overview of the related work in Section II. Then
we discuss the general problem definition along with its
mathematical formulation as a Chance-Constrained Markov
Decision Process (CCMDP) in Section III. Next in Section
IV, we discuss the solution to this problem as an LP instance.
Finally, we present the results from numerical simulations in
Section V with conclusions in Section VI.

II. RELATED WORK

The routing of energy-constrained UAVs with stationary
recharging stations or assistive UGVs has been studied
extensively [3]-[6]. Even with deterministic environmental
changes or stationary conditions, this problem can be reduced
to the Traveling Salesman Problem (TSP), [7], [8] making it
an NP-hard problem.

The cooperative UAV and UGV routing problem has
been studied from different perspectives and thus received
various formulations in the literature. It is most commonly
formulated as a type of vehicle routing problem. Manyam
et al. [9] use a team of one UAV and one UGV with com-
munication constraints to cooperatively visit targets. Along
with an exact solver to Mixed Integer Linear Programming
(MILP) formulation, they also provide heuristic reduction to
the generalized traveling salesman problem (GTSP). Maini
et al. [10] present a two-fold strategy: first, they identify
feasible rendezvous points, then they formulate a MILP to
find the optimal routes for the UAV and UGV. Thayer et
al. [11] present a solution to the Stochastic Orienteering
Problem, where the objective is to maximize the sum of
rewards associated with each visited node while constrained
by the maximum budget over edges with stochastic cost.

Murray and Chu [12] introduced the flying sidekick TSP
(FSTSP) for parcel delivery systems, which was later adopted
in last-mile delivery applications using drones [13], [14].
In literature, the term multi-echelon scheme is often used
for systems where delivery consists of multiple layers.
Specifically, the two-echelon vehicle routing problem (2E-
VRP) is concerned with finding minimal cost routes to
deliver packages with trucks/UGVs and drones [4], [15]. An
important differentiation from the original vehicle routing
problem is the synchronization of UAV and UGV tasks.

Learning-based approaches have been used to address
cooperative UAV and UGV routing problems. Ermugan et
al. [16] also propose a two-phase approach. First, they find
a route for UAVs without taking into account the energy
constraints. Then, the planner learns to insert into the route
recharging stations and replans a new TSP route. Reinforce-
ment learning has also proven to be a possible approach to
solving this problem [17].

In our previous work, we studied cooperative planning
with a single UGV and an energy-constrained UAV as
well [2], [7], [18]. Our proposed approach in [18] demon-
strated how to maximize the number of sites visited in a
single charge in conjunction with the ability to land a UAV
on top of a UGV to be transported to the next take-off site.
We extended this in [2] to allow the UAV to also be recharged
while either being transported or stationary on the UGV.
We extended the latter to the area coverage path planning
problem by formulating it as a GTSP [7]. Here, we extend
this body of work by introducing the stochasticity of the
UAV’s energy consumption and by assuming that the UGV
has its own required set of tasks to be carried out. To the
best of our knowledge and based on the presented literature
review, none of the works takes into account the stochastic
nature of energy consumption.

III. PROBLEM FORMULATION

The cooperative routing problem studied in this paper
involves one UAV and one UGV. The UAV and the UGV
are executing tasks, which are given by some task planners
as shown in Section V-A. The UAV needs to visit a sequence
of task nodes in order to finish the task, but its battery
may not be enough for it to finish the task in a single
flight without recharging. Also, the energy consumption of
the UAV is stochastic. The UAV needs to decide when and
where it should rendezvous with the UGV to replenish the
battery while minimizing the total travel time to finish the
task. When the UAV decides to rendezvous with the UGV
to replenish power, both the UAV and the UGV will take a
detour (as defined in Sec. III-D) from their respective tasks
and go back to their tasks after recharging.

At a high level, the problem studied in this paper is stated
below.

Problem 1 (Risk-aware UAV-UGV rendezvous). Given a
route of nodes for the UAV Ta, a route of nodes for the
UGV g, and the stochastic energy consumption model and
battery capacity of the UAV, find a policy for the UAV to
decide when and where to rendezvous with the UGV for
recharging such that the total travel time is minimized and
the probability of running out of charge during flight is less
than a given tolerance.

Next, we will present the setup and the assumptions that
we use in this paper. Then we will present our CCMDP
based formulation and show how to transform a CCMDP
into a CMDP.



A. Environment and Task Model

Our problem considers a two-dimensional Euclidean
space, which consists of a road network graph G = (V,., E)
and a set of task points V; for the UAV to visit.

The UGV has to move on the road network and its task is
specified as a sequence of nodes of the road network. UAV’s
task is specified by some task planners using nodes in V;.
More details on the task planner will be discussed in the
Section V-A. Both UAV and UGV should follow the task
specification to visit the task nodes in order and they will
deviate from the task route to rendezvous when necessary.

B. Vehicle Motion Model

The UGV will move at a fixed speed vy when it transits
between two nodes in the road network. When the UAV
transits between two nodes, it will fly with either the best
endurance speed, vy, or the best range speed, wvp.. The
best endurance speed is the speed at which the energy
consumption rate is minimized. At this speed, the propellers
of the multirotor operate more efficiently than in hover,
and the UAV is capable of the greatest flight duration.
By contrast, when a UAV flies at the best range speed, it
minimizes the derivative of energy consumption rate with
respect to velocity. This flight speed results in a lower flight
duration than operation at vy, but will allow a greater range
to be traveled per unit of energy. For a no-wind condition, the
velocity of the best range is always better than the velocity
of best endurance.

C. Recharging and Stochastic Energy Consumption Model

We assume that it takes constant time 7' to finish the
recharging process, which includes the landing/take-off time
and battery-swapping time.

In this paper, we only consider the power consumption
when a UAV traverses the route with the assumption that the
power needed for computation, takeoff, and landing has been
reserved by the power management system. As described
in the transition model, the UAV will fly at a fixed speed
when it transits between two nodes in the environment.
However, given that constant speed, the energy consumption
is stochastic considering the disturbances in the environment.

Given the distance [ between two task nodes and the flying
speed v, the energy consumption can be computed as

1

o= [ Po(v)dt, )
t=0

where Pg(v) is the power consumption of the UAV when

it flies at a speed v, and ® is a vector of parameters for

stochastic variables.

D. Rendezvous Model

When the UAV reaches a node in 74 and decides to
rendezvous with the UGV, the UAV and UGV will deviate
from their task temporarily to finish the rendezvous process.
There are two steps in the rendezvous process. In the first
step, the UAV and UGV will meet at a rendezvous point
as shown in Fig. 2 and in the second step, they will go to
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Fig. 2. First step in the rendezvous process. The UGV (blue triangle) needs
to deviate from its task node to rendezvous with the UAV at the rendezvous
point (pink star). The rendezvous paths are in dashed lines.

the next task node in 7, and 7, respectively. We want to
optimize the time consumed in these two steps to find the
optimal rendezvous points.

Let d : R? xR? — R, be the distance metric between two
points in the Euclidean space. We use dg : V. x V., — R
to denote the length of the shortest path between two nodes
in the road network. We use 7, (k) to denote the position of
the UAV when it decides to rendezvous at the kth node in
its task route and 7,(k + 1) to denote the next position to
visit for UAV after the rendezvous. With a slight abuse of
notation, we use 7,(k) to denote the position of the UGV
in the road network when the UAV decides to rendezvous at
the kth node in its task route. With the above notations, the
problem to find the rendezvous point can be stated below.

Problem 2 (Where to rendezvous). Given the positions of
UAV (T,(k)) and UGV (T,(k)) at the beginning of the
rendezvous process, UAV’s next position to go To(k + 1),
UAV’s flight speed v,, UGV’s transition speed v,, and the
road network G, we want to find a rendezvous point p, € G
such that the time consumed in the rendezvous process is
minimized. Mathematically,

d(pr, Ta(k+1))

min A+ 2
A>0, p-€G Va
st A= max(dG(E(k)’ pr)7 A(Ta(F), pr)). 3)

Vg Vg

In the first step of the rendezvous process, if the UAV
or UGV reaches the rendezvous first, it has to wait for the
other vehicle. Therefore, the time consumed in the first step
is decided by the vehicle that reaches the rendezvous point
later than the other. We encode this fact in the optimization
problem by introducing the variable A, which describes the
maximum time needed for both UAV and UGV to reach the
rendezvous point. The time consumed in the second step of
the rendezvous process is the time needed for the UAV to
fly back to its next task node.

Problem 2 can be solved by iterating over the nodes in
the road network as what we do in the case study. But
such a method will increase the time to extract transition
information for the CMDP. A more efficient way to solve
Problem 2 is left for our future work.
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Fig. 3. State transition graph in CMDP.

E. Chance-Constrained Markov Decision Process

One natural choice to model the sequential decision-
making problems described in Problem 1 is to use MDP.
In this section, we first show how to formulate Problem 1 as
a CCMDP and then show how to transform a CCMDP into
a CMDP in the following section.

The rigorous definition of an MDP can be found in
[19]. Here we define the MDP from the perspective of the
application. The MDP corresponding to Problem 1 is defined
as a tuple M = (S, A, T,C, sp), where
o S="Tyx8SyxTyxB U {sep, 51} is the state space of the

problem, where 7, here is used as an un-ordered set, which

describes all possible positions of UAV in a task route;

Sy is the set of positions of UGV and this information

is needed when we compute the rendezvous points; 7,

here is used as an un-ordered set, which describes the task

nodes UGV will visit. 7, is included in the state space
to inform the MDP about the next node the UGV needs
to visit after a rendezvous. Without this information, the
system will be non-Markovian; B is a discretized variable
for describing the state of the charge of the UAV; s, is
one failure state representing the out-of-charge state and
the UAV will transit to this state whenever it cannot finish
its task route; s; is added as an absorbing state and UAV
will transit to this state when it either finishes UAV’s route
or runs into a failure state. One illustrative example of state

transitions is given in Fig. 3.

o A is the action space of the UAV. If the UAV has not
finished its route and is not in a failure state, there are
four actions for the UAV to choose: 1) vp.: move to the
next node in 7, with the best endurance velocity. 2) vy,
move to the next node in 7, with the best range velocity.
3) vpepe: rendezvous with the best endurance velocity.
4) vy, s rendezvous with the best range velocity. When
UAV is in a failure state or has finished its route, there
is only one action that makes the system transit to the
terminal state s;.

e To(s,s',a) = P(s' | s,a) is the transition function, which
depends on the stochastic energy consumption model.
When UAV chooses to move forward to its next task node,
its battery state at the destination node is a random variable
that depends on the current battery state and Equation
(1). Since we have discretized the battery charging levels
at each node, the probability of reaching the destination
node with a given battery charge can be calculated using
Equation (1). When it cannot reach the next task node,
i.e., with non-zero probability, it will run out of charge,

it transits to the failure state s.,,. When UAV chooses
to rendezvous, a rendezvous point is first computed by
solving the Problem 2. Then the distribution of battery
remaining when it reaches the rendezvous point can be
computed based on Equation (1). The non-positive portion
of the distribution corresponds to the failure probability.
After recharging, UAV will transit to its next task node
starting with a full battery. When the UAV transits to the
failure state or it finishes the task route, it will transit to
the terminal state s; with probability 1 as shown in Fig.
3. In the terminal state s;, the system will loop over this
state.

e C(s,8',a) is the cost function for the UAV. We define it
as the time needed to transit between two states. If the
UAV chooses to move to the next node, the cost will be
time consumed during that transition. If a UAV chooses to
rendezvous, the cost will be the sum of the time consumed
in two steps of the rendezvous process. When the state
transits to the failure state or to the terminal state, it takes
Zero cost.

e Sq is the initial state of the system.

Definition 1 (Risk). Let 7 be a policy, the risk of the policy
given initial state sq is defined as

P(3t s =50 | s0)- 4)

We seek the optimal policy 7* that satisfies

chz, a))] (5)
1=0

) <6, (6)

p"(s0) =

= argmln E

s.t. p"(s0

where ¢ is the user-specified risk tolerance.

E. Constrained Markov Decision Process

We can transform a CCMDP into a CMDP by introducing
a new cost function C : S x S x A — {0,1} [20]. As shown
in Fig. 3, when the system transits from a non-failure state
to the failure state s, it will incur a cost of one and other
transitions will incur zero cost. The new cost function C is
defined as

if s 50 and 8" = sy

Cls.a,5) = {1 ™

0 else.

As shown in [20] [Proposition 4.1], the risk can be defined
using the new cost function C' as

Z (Si,m(S3)) | 80] . (8)
i=0

As a result, the CCMDP problem can be formulated as

—argmlnE ZC S5, T 2))] &)
=0
E > C(Si,(S)) | 301 < 6. (10)
1=0




IV. SoLuTIONS TO CMDP

A CMDP can be solved using Linear Programming (LP)
[21], [22]. The decision variables y in LP are the occupancy
measure for each state-action pair and are defined as

y(s,a) = ZPr(St =s,A4: = a). (11)
¢
The LP is formulated as:
min ,a)C(s, 12
Jn > y(s,a)C(s,a) (12)
(s,a)eSxA
s.t. Zy(&a)é(s,a) <4 (13)
Z y(sla CL/) = H(S/a 80) =+ Z y(S’ a)Pr(s’ | S, a‘)
a’ s,a (14)
Vs’ e S \ {Sl}
y(s,a) > 0Vs,a, (15)

where I(s’, so) is a Dirac delta function that returns 1 when
s’ = sg and 0 otherwise. This LP corresponds to the dual
linear program for MDPs [21] with one extra cost constraint
(13), which enforces that the cost of entering the failure state
be lower than the predefined risk tolerance. Constraint (14)
is a flow conservation constraint to define valid occupancy
measures and is defined by the initial state and the transition
probability (see [21], ch. 8 for details). The last constraint
(15) is added to guarantee that y(s, a) is non-negative.

If LP admits a solution, we can construct the policy from
the occupancy measures by normalizing them:

T (s,a) = _ysa) V(s,a) € S x A,

2 Y(s, )
where 7*(s,a) is the probability of taking action « in the
state s in the optimal stationary randomized policy. If Eq.
(16) has a zero denominator, which suggests that state s is
not reachable from sy, the policy for (s,a) can be defined
arbitrarily.

An illustrative example to explain the policy extracted
from the solution of LP is given in Fig. 4. When the UAV
reaches s, it has 20% battery remaining. It can choose
to rendezvous to replenish itself or move forward to its
next task node s T If the UAV chooses to rendezvous,
the distribution of the battery remaining at the rendezvous
point is shown in Fig. 4.(a). The distribution corresponding
to forward action is given in Fig. 4.(b). If we set § = 0.01,
the policy constructed from LP results in rendezvous with a
probability of 0.997 and forward with 0.003. Otherwise, if
the UAV were to choose to move forward, it would have less
than 10% battery charge remaining with a probability of 0.2,
which is not enough to ensure a rendezvous or forward action
at sy |, suggesting the failure probability is at least 0.2. By
contrast, if we set the § = 0.5, the policy becomes that
rendezvous with a probability of 0.504 and moves forward
with 0.496. One reason for such a policy is that with a
probability of 0.8 the UAV will have 10% battery remaining
when it moves to si , |, where a rendezvous process with a

(16)
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Fig. 4. An illustrative example to explain the policy constructed with
occupancy measures from LP. When the UAV is at state si with State of
Charge (SOC) equal 20%, it has two actions: move forward (blue dashed
line) to its next task node 5Z+1 or rendezvous with the UGV (red dashed
line) to recharge itself. The distribution of SOC after taking rendezvous is
shown in (a) and that for forward action is shown in (b). (c) shows the
distribution of SOC if the UAV first chooses forward action at s and then
chooses rendezvous sj; 11

shorter travel distance may be possible with a lower failure
probability than the risk tolerance as shown in Fig.4.(c).

V. EXPERIMENTS

In this section, we first present a qualitative example to
show what the input and output look like for our problem.
Next, we study how system parameters (different risk toler-
ances) influence the rendezvous behaviors between the UAV
and the UGV. Then, we present quantitative results for the
ISR application that motivates our research. Specifically, we
will use Monte Carlo (MC) simulations to evaluate 1) the
satisfaction of the risk constraint for the policy constructed
from LP; 2) the effectiveness of the policy in minimizing
the expected task duration; 3) the risk tolerance-task duration
Pareto curves. Moreover, the running time of LP for CMDP
is empirically evaluated. All experiments are conducted using
Python 3.8 on a PC with the i9-8950HK processor. LP is
solved using Gurobi 9.5.0.

A. Task Route Planner

The task routes 7, and 7, used in Problem 1 can be either
generated jointly by some existing task planners [2], [9] or
can be generated by separately by different task planners.
In our case study, the task for the UGV is to persistently
monitor nodes A, B, and C (blue squares in Fig. 5). The
task nodes for the UAV are red dots in Fig. 5 and the task
route (from node O to 18 and back to 0) is generated by a
planner for Traveling Salesman Problem (TSP).

B. System Models

TABLE I
COEFFICIENTS FOR STOCHASTIC ENERGY CONSUMPTION MODEL

bo b1 b2 b3 b4 b5
-88.77 353  -042 0.043 1075

Value -2.74
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risk tolerance is set to be 6 = 0.1 in this case study. (a) The input of the risk-aware rendezvous problem. (b) One sample route of UAV when it executes
the policy 7. (c) The route of UGV corresponds to the route of UAV. Lower case letters with or without prime denote the same road node that is visited

at different times

The UAV task and UGV tasks are from our ongoing
project on intelligence, surveillance, and reconnaissance
(ISR) as shown in Fig. 5a. In this project, we are interested
in the case where § = 0.1. UAV has about 240 KJ energy
and its best range speed and best endurance speed are 14
m/s and 9.8 m/s respectively. UGV moves at 4.5 m/s. The
rendezvous process will take 300 seconds.

We consider two sources of stochasticity in the energy
consumption model of UAVs: weight and wind velocity con-
tribution to longitudinal steady airspeed. The deterministic
energy consumption model of the UAV is a polynomial fit
constructed from analytical aircraft modeling data, given as

P(Voo) = bo+b1 Voo +bov2 +-b3v3 +byw+bsveew, (17)

where by to bs are coefficients, and their experimental values
are listed in Table 1. Figure 6 shows the agreement between
the polynomial regression fit model and the analytical data
that it was derived from.

Weight is randomly selected following a normal distribu-
tion with a mean of 2.3 kg and a standard deviation of 0.05
kg, w ~ N (Haws aﬁ,). Vehicle airspeed, v, is the sum of
the vehicle ground speed, 7,4, and the component of the wind
velocity that is parallel to the vehicle ground speed, ignoring
sideslip angle and lateral wind components.

Voo = [Ty + cos(—1))&ap

The longitudinal wind speed contribution is derived from two
random parameters; wind speed, and wind direction. Wind
speed is modeled using the Weibull probability distribution
model of wind speed distribution, &, ;, with a characteristic
velocity a = 1.5 m/s and a shape parameter b = 3. This is
representative of a fairly mild steady wind near ground level.
Wind direction ¥ is the heading direction of the wind, and is
uniformly randomly selected on a range of [0, 360) degrees.

(18)

C. Simulation Results

An illustrative example of the input and the output of
the problem considered is shown in Fig. 5. The input of
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Fig. 6. Comparison of analytical data used to derive the polynomial
regression fit model of UAV power requirement at three weights and across
11 airspeeds.

the problem is shown in Fig. 5a, which consists of UAV
task nodes (red dots), UGV task nodes (blue square), and
road network (black nodes). Fig. 5b and 5c shows one
sample route of UAV and UGV respectively when the system
executes the policy computed by LP. UAV’s route starts
from node 0. When the UAV reaches node 4, it will choose
to rendezvous with UGV using the best range speed in a
rendezvous point, which is denoted as a star, and then go
to its next task node 5. Similarly, the UAV will rendezvous
with the UGV when it reaches nodes 7, 8, 11, 14, and 15.
The corresponding route of UGV is presented in Fig. 5c.
Next, we show how different risk tolerances influence
rendezvous behaviors under our CMDP formulation. In these
experiments, we set the risk tolerance § to be 0.01, 0.2, and
0.5. Results shown in Fig. 7 includes sample routes for the
UAV and the UGV and statistical data of the policies. Fig. 7a,
7b, and 7c are sample routes for the UAV when it executes
the policy. Fig. 7d, 7e, and 7f are corresponding routes of
the UGV. The rendezvous point is denoted as a star. The
SOC is annotated in red text close to the task node at which
the UAV decides to rendezvous. Some statistical data are
summarized in table 7g. In general, we observe that when the
risk tolerance is set to be small, the UAV tends to rendezvous
more often, and the average route travel time is higher. Here
the average route travel time is computed by considering only
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(g) Quantitative results.

Fig. 7.

How different risk thresholds influence the rendezvous behaviors. UAV route time with the best range speed is 4354 s and the route distance is

61.0 km. (a) UAV is very risk-averse to failures with a risk threshold equal to 0.01. (b) UAV is less risk-averse to failures with a risk threshold equal to

0.2. (c) UAV is neutral to the failures with a risk threshold equal to 0.5.

TABLE II
EMPIRICAL EVALUATION OF FAILURE PROBABILITY ¢ = 0.1.

Nue (# of MC trials) 500

0.108

1000
0.105

3000
0.099

5000
0.097

Failure rate

trials in which the UAV finishes its task route. By contrast,
as the risk tolerance is relaxed to a larger value, the average
route travel time will decrease, which comes at the cost of
a high failure probability.

We also conducted several quantitative experiments to
validate our formulation. The first experiment is to use MC
simulation to check whether the failure probability is upper
bounded by the set risk tolerance of 0.1. We use FR to denote
the empirical failure rate. As can be seen in Table II, as MC
increases, the empirical failure rate is close to and below the
theoretical PF 0.1. In the following experiments, we will use
N, = 2000 for simulation.

To validate that the policy constructed from LP can
minimize the expected travel distance. We compare our

10000 1.0
= CMDP
9000 mmm Greedy-40
EEm Greedy-50 0.8
80001 mmm Greedy-60
Greedy-70
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o
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Fig. 8. Results comparisons for the CMDP policy and the greedy policies
with § = 0.1. The dashed black line represents the task duration if the UAV
moves with the best range speed without considering battery limitation.

policy with a greedy baseline. The greedy policy is set
as: always flies with the best range speed and chooses to
rendezvous when state-of-charge drops below a set value.
What we observe in experiments is that when the route of
a UAV is long, for example, there are more than 15 nodes,
the probability of finishing the route is close to zero for
the greedy baseline no matter what threshold we set. To
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have a more informative comparison, we use only nodes 0
to 11 for the task route in the following experiments. We
consider four-set values 40%, 50%, 60%, and 70%, and the
corresponding policies are denoted as Greedy-40, Greedy-50,
Greedy-60, and Greedy-70. As shown in Fig.8, our policy can
guarantee success probability above the set value of 0.9 and
the expected travel time of UAV is shorter compared to the
baseline. Though the baseline can achieve a higher success
probability in some cases as shown in Fig.8, its expected
task duration is still longer than our policy.

The empirical Pareto curve for risk tolerance and the task
duration is shown in Fig. 9. The green curve is the mean
value and the shaded area is formed using one standard
deviation from the mean. When the risk level is set to be
a higher value, the UAV will tend to make more risky
decisions, leading to a lower travel time at the cost of a
higher failure probability.

The running time for the proposed routing problem con-
sists of three parts. The first part is devoted to extracting
transition information for LP. The second part is about
constructing an LP model with Gurobi and the last part is for
solving the LP. In our case study, there are about 54000 states
and it takes about 6 min to extract transition information, 9
minutes to create an LP model, and about 1 second to solve
the LP.

VI. CONCLUSION

In this paper, we study a variant of the cooperative aerial-
ground routing problem with energy chance constraint on
the UAV. We formulate the problem as a CMDP and use
LP to find the optimal policy for the CMDP. We validate
our formulation and the solution in one ISR application. In
future work, one direction we will explore is to extend one
UAV and one UGV routing problems to multiple UAVs and
UGVs and consider the distributed solution for such types
of risk-aware routing problems.
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