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Abstract We survey some topics in A
1-homotopy theory. Our main goal is to

highlight the interplay between A1-homotopy theory and affine algebraic geometry,
focusing on the varieties that are “contractible” from various standpoints.

5.1 Introduction: Topological and Algebro-Geometric
Motivations

In this note, we want to survey the theory of varieties that are “weakly contractible”
from the standpoint of the Morel–Voevodsky A

1-homotopy theory of algebraic
varieties. The current version of this document is based on lectures given by the
first author at the Fields Institute workshop entitled “Group actions, generalized
cohomology theories and affine algebraic geometry” at the University of Ottawa
in 2011, and the Nelder Fellow Lecture Series by the second author in connection
with the research school “Homotopy Theory and Arithmetic Geometry:Motivic and
Diophantine Aspects” at Imperial College London in 2018.

As a source of inspiration, we review some aspects of the theory of open
contractible manifolds, which has source in one of the first false proofs of the
Poincaré conjecture, and served as a testing ground for many ideas of classical
geometric topology in the 1950s and 1960s. We also review some aspects of
the theory of complex algebraic varieties whose associated complex manifolds
are contractible. Along the way we formulate some problems that we feel are
interesting.
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5.1.1 Open Contractible Manifolds

Suppose Mn is an n-dimensional manifold, which we take to mean either topolog-
ical, piecewise-linear (PL) or smooth (we will specify). Say an n-manifold Mn is
open if it is non-compact and without boundary. As usual, let I be the unit interval
[0, 1]. Recall that Mn is called contractible if it is homotopy equivalent to a point.
Euclidean space R

n is the primordial example of an open contractible manifold:
radially contract every point to the origin.

The history of open contractible manifolds is closely intertwined with the history
of geometric topology. To explain this connection, recall that the classical Poincaré
conjecture asks whether every closed manifold Mn homotopy equivalent to Sn is
actually homeomorphic to Sn. The history of the Poincaré conjecture is closely
connected with the history of open contractible manifolds.

In 1934, J.H.C. Whitehead gave what he thought was a proof of the Poincaré
conjecture in dimension 3 [149]. In brief, his argument went as follows: start with
a homotopy equivalence f : M3 −→ S3. Removing a point produces an open
contractible manifold M3

�pt and continuous map f : M3
�pt → R

3. In essence,
Whitehead argued that all open contractible 3-manifolds are homeomorphic to R

3.
If this was true, then such a homeomorphism would extend by continuity across
infinity inducing a homemorphism M3 → S3. Unfortunately, this proof collapsed
soon thereafter as Whitehead constructed an open contractible manifoldW (the so-
called Whitehead manifold) that is not homeomorphic to the Euclidean space R

3

[150]. Whitehead’s example raised the question of characterizing Euclidean space
among all open contractible manifolds, perhaps in some homotopic way.

Whitehead’s construction is delightfully geometric and is given as an open subset
of a Euclidean space with closed complement the “Whitehead continuuum”, itself
built out of intricately linked tori. Since the construction of the Whitehead manifold
is relatively simple, we give it here. Consider the Whitehead link in S3; thicken it
to obtain two linked solid tori; label the interior solid torus T̂1 and the exterior solid
torus T0. The complement of each Ti in S3 is unknotted. Since T̂1 is unknotted,
the complement T1 of the interior of T̂1 in S3 is another unknotted solid torus that
contains T0. Choose a homeomorphism h of S3 that maps T0 onto T1. Proceeding
inductively, may therefore construct solid tori T0 ⊂ T1 ⊂ · · · in S3 by setting
Tj+1 = h(Tj ). The union W := ∪iTi is the required open contractible manifold.
To see that W is simply connected, one proceeds as follows. Observe that every
closed loop in M3 is contained in some T j by construction. Now, observe that every
closed loop in T0 may be shrunk to a point (possibly crossing through itself) in T 1,
and thus every closed loop in Tj may be shrunk to a point in Tj+1.

Whitehead’s original proof that W is not homeomorphic to R
3 is essentially

geometric. However, it was later observed that for any sufficiently large compact
subset K ⊂ W (K contains T0 suffices), the complement W � K is not simply
connected. More generally, suppose M is an open contractible manifold. We may
consider the collection of compact sets K ⊂ M ordered with respect to inclusion.
In good situations, the inverse system π1(M�K) stabilizes and defines an invariant
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of the homeomorphism type of M called the fundamental group at infinity and
denoted π∞

1 (M). Observe that R3 is simply-connected at infinity, since any compact
subset is contained in a sufficiently large ball, whose complement in R

3 is simply
connected.

While Whitehead’s construction lay dormant for some time, open contractible
manifolds were studied with great intensity in the late 1950s and 1960s. Although
W is not homeomorphic to R

3 Glimm and Shapiro pointed out that the cartesian
productW×R

1 is homeomorphic toR4 [58], i.e.,W does not have the cancellation
property with respect to Cartesian products with Euclidean spaces. Moreover,
Glimm showed that the self-product W × W is homeomorphic to R

6 [58]. These
kinds of “non-cancellation” phenomenon became another theme explored in the
study of open contractible manifolds.

By modifying the construction of theWhitehead continuum,D.R. McMillan con-
structed infinitely many pairwise non-homeomorphic open contractible 3-manifolds
[100]; each of these 3-manifolds could be embedded in R3. While McMillan’s orig-
inal proof that his manifolds were non-homeomorphic was essentially geometric, it
was observed that his examples actually have distinct fundamental groups at infinity.
This naturally raises the question of which groups may appear as a fundamental
groups at infinity of open contractible 3-manifolds.

Simultaneously,McMillan showed his examples also had the property that taking
a Cartesian product with the real line yielded a manifold homeomorphic to R

4. In
fact, McMillan showed that the product of any open contractible 3-manifold M

and the real line was homeomorphic to R
4 assuming the 3-dimensional Poincaré

conjecture. Later joint work of J. Kister and McMillan [87] established existence of
open contractible 3-manifolds that could not be embedded in R

3. Work of Zeeman
andMcMillan then showed that the product of any open contractible 3-manifold and
R
2 was homeomorphic to R

5. From one point of view, the zoo of open contractible
manifolds presented some kind of “lower bound” on the complexity of the Poincaré
conjecture.

The existence of open contractible manifolds of higher dimensions was also
studied in conjunction with the higher dimensional Poincaré conjecture. Construc-
tions of open contractible 4-manifolds were initially given by Mazur and Poenaru
[99, 115], but as with many other constructions in geometric topology, these isolated
examples in dimension 4 did not at first fit into a general picture. Dimension ≥5
proved itself to be more tractable. Extending the results of McMillan, for any
integer n ≥ 5, Curtis and Kwun [35] constructed uncountably many pairwise non-
homeomorphic open contractible n-manifolds.

The method of Curtis and Kwun in some sense mirrors McMillan’s construction,
but requires significantly more group theoretic input. The basic idea is to construct
open contractible manifolds with a prescribed (finitely presented) fundamental
group at infinity. If P is a finitely presented group, then one may build many cell
complexes K(P) with fundamental group P . If one embeds K(P) in Sn for n ≥ 5,
then the boundary of a regular neighborhood N of K(P) has fundamental group
P (this fails for n = 4, since the fundamental group of the boundary depends
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on the embedding). One says that K(P) is a homologically trivial presentation if
Hi(K(P),Z) is trivial for i = 1, 2. In particular, if P admits a homologically
trivial presentation then the Hurewicz theorem implies that K(P) is a perfect
group. If N is a regular neighborhood of an embedding K(P) ↪→ Sn, n ≥ 5,
then one sees that Sn

� ∂N is contractible if K(P) is a homologically trivial
presentation, but has fundamental group at infinity P . The output is that one has
countably many compact contractible manifolds that act as “building blocks” for an
uncountable collection by taking suitable connected sums. Themethod of Curtis and
Kwun for producing “building blocks” evidently does not extend to n = 4. Later,
Glaser extendedMazur’s construction to produce countably many “building blocks”
from which uncountably many pairwise non-homeomorphic open contractible 4-
manifolds could be built by taking suitable connected sums as above [57]. We
summarize these results in the following statement.

Theorem 1 In every dimension ≥3, there exists uncountably many pairwise non
homeomorphic open contractible n-manifolds. ��

Returning to non-cancellation phenomena, Stallings [132] generalized the results
of Zeeman and McMillan by observing:

1. for any integer n ≥ 5, Rn is the unique open contractible PL-manifold that is
simply-connected at infinity; and

2. if Mn is an open contractible m-manifold, then Mn × R is always simply-
connected at infinity.

These observations tamed the zoo of open contractible manifolds in some sense.
The homotopical characterization of Euclidean space above is sometimes called the
open Poincaré conjecture. Stallings’ result was later generalized by Siebenmann
[130] to yield an essentially homotopical characterization of the Euclidean space
amongst all open contractible topological n-manifolds. In conjunction with more
recent work on the low-dimensional Poincaré conjecture, i.e., the celebrated work
of Perelman [31] and Freedman [102], Siebenmann’s theorem can be extended to
the following statement.

Theorem 2 Suppose n ≥ 0 is an integer.

1. For n ≤ 2, Euclidean space Rn is the unique open contractible n-manifold.
2. For n ≥ 3, Euclidean space R

n is the unique open contractible n-manifold that
is simply connected at infinity.

3. If n ≥ 3, and M is an open contractible n-manifold, then M×R is homeomorphic
to R

n+1. ��
The modern study of open manifolds formalizes the notion of “behavior at ∞”

of an open manifold as follows. If W is a locally compact Hausdorff space, we
write Ẇ for a 1-point compactification of W . Write [0,∞] for the extended real
line (i.e., with a limit point at infinity). The end space e(W) consists of the space
of maps of pairs ω : ([0,∞], {∞}) → (Ẇ , {∞}) such that ω−1(∞) = ∞ [76,
§1, Definition 1.2]. The end space may be viewed as a homotopy theoretic model
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for the behaviour at ∞ of W . If W is already compact, then Ẇ = W+, so the end
space is empty. The end space may not be connected: e(R) is homotopy equivalent
to S0 corresponding to the two infinite simple edge paths starting at 0 ∈ R. More
generally, e(Rn) � Sn−1. In that case, we will say that W is simply connected at
infinity if e(W) is connected and simply connected.

5.1.2 Contractible Algebraic Varieties

Cancellation questions like those mentioned above were also studied in algebraic
geometry, though in several different contexts. Perhaps the first such question was
posed by Zariski [128]: if k is a field, L and L′ are finitely generated extensions
of k such that the purely transcendental extensions L(x) and L′(x) are isomorphic
as extensions of k, are L and L′ isomorphic? Phrased in the language of algebraic
geometry: if X and X′ are irreducible algebraic varieties over a field k such that
X×P

1 is k-birationally equivalent toX′×P
1, isX k-birational to X′? At some point,

in the late 1960s/early 1970s, a closely related “biregular” form of Zariski’s original
cancellation question was posed: if A and B are finitely generated k-algebras, and
A[x] ∼= B[x] as k-algebras, is A ∼= B? Even at the beginning, special attention was
paid to the case where A is a polynomial ring. M.P. Murthy [118] also asked: if A is
a Krull dimension 2 extension of a field k and A[x] ∼= k[x1, x2, x3], then must A be
a polynomial ring in 2-variables? In the language of algebraic geometry this leads
to the following question.

Question 3 (Biregular Cancellation Question) If X is a smooth affine variety over
a field such that X × A

n ∼= A
N , then is X isomorphic to affine space? ��

Remark 4 The more general cancellation question will be of interest to us as
well, and we refer the reader to Sects. 5.3.3 and 5.3.4 for more discussion and
history of these kinds of questions. The above question is also sometimes called the
“Zariski cancellation problem”, but it appears never to have been explicitly posed
or considered by Zariski. ��

The situation surrounding Question 3 is quite different depending on the char-
acteristic. Over fields of positive characteristic, recent work of N. Gupta, building
on some old ideas of Asanuma [6] exploiting interesting pathologies existing only
in positive characteristic produced counterexamples to the biregular cancellation
question [59]. Nevertheless, at the time of writing, the question is still open over
fields having characteristic 0.

From the outset, ideas of topology played a role in approaches to the biregular
cancellation problem over fields having characteristic 0. If k = C, then we write
Xan for the set X(C) equipped with its usual structure of a complex manifold. More
generally, if k is a field for which we can find an embedding ι : k ↪→ C, then
we may use ι to define an associated complex manifold Xan

ι . If k is a field that
admits a complex embedding, then we will say that X is topologically contractible
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if Xan
ι is a contractible space for every complex embedding ι of k. The variety

A
n
k is the primordial example of a topologically contractible variety. Thus, any

complex variety that is stably isomorphic to A
n (see Definition 5.3.3.1) is also

automatically topologically contractible. Bearing this in mind, we would like to
place the discussion of the biregular cancellation question in context using the
theory of open contractible manifolds as a template.

Ramanujam writes in [118] that it was initially hoped that a 2-dimensional
non-singular, affine, rational, topologically contractible complex variety would be
isomorphic to A

2. However, he constructs a counter-example to this hope in his
landmark paper–a surface now called the Ramanujam surface in his honor; we
briefly recall the construction of the Ramanujam surface. Ramanujam also gave a
topological characterization of the affine plane among complex algebraic varieties:
C
2 is the unique non-singular contractible complex surface that is simply connected

at infinity.

Example 5 In P
2 take a cubic C with a cusp at q . Let Q be an irreducible conic

meeting C with multiplicity 5 at a point p and transversally at a point r . The
existence of Q can be deduced from the group law on the non-singular part of C, or
directly by avoiding that p is a flex-point of C. Let X be the blow-up of P2 at r and
let C̃, Q̃ denote the strict transforms of C, Q, respectively. The Ramanujam surface
is defined by setting

R = X � C̃ ∪ Q̃.

Smooth complex varieties X that are not isomorphic to A
n but for which Xan

is diffeomorphic to R
2n are known as exotic affine spaces. Such varieties are

automatically topologically contractible; for a survey we refer the reader to [156].
After the work of Ramanujam, many examples of topologically contractible smooth
varieties were invented; for example, see the work of tom Dieck and Petrie [138]
for examples given by explicit equations. In fact, there is a veritable zoo of such
examples: in the references just cited, one finds arbitrary dimensional moduli of
topologically contractible smooth complex affine surfaces!

The biregular cancellation problemwas later solved in the affirmative for surfaces
by Miyanishi–Sugie [104] and Fujita [53] in characteristic 0 and Russell in positive
characteristic: the affine plane (over an algebraically closed field) is the unique
surface that is stably isomorphic to an affine space (see Sect. 5.5.1 for precise
references).

Ramanujam’s topological characterization of the affine plane also fails to hold
in higher dimensions. Indeed, Dimca and Ramanujam both proved that if X is a
topologically contractible smooth complex affine variety of dimension d ≥ 3, then
X is automatically diffeomorphic to R

2d . Putting these facts together, one sees that
there are many exotic affine varieties in dimensions ≥3: simply take the products
of topologically contractible surfaces and affine spaces! This observation, together
with the fact that “topological” invariants do not always have natural counterparts
in positive characteristic, suggest that one might hope for a purely algebraic theory
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of contractible varieties that is more refined than the topological notion discussed
here. Nevertheless, there are a great number of questions about the geometry of
topologically contractible varieties that one may pose here, and we highlight several
questions that have guided the development of the theory of contractible algebraic
varieties.

Question 6 (Generalized Serre Question) If X is a topologically contractible
smooth complex affine variety, then is every algebraic vector bundle on X trivial?

��
Remark 7 This question is called the generalized Serre question in the literature
[156, §8] and we have followed this terminology here. To the best of our knowledge,
Serre only ever considered this question for affine space over a field [129, p.
243], where it was spectacularly resolved (independently) by Quillen and Suslin
[117, 133]; we refer the reader to [92] for a nice survey of these results. Of course,
it is based on the fact that complex topological vector bundles on contractible
varieties are trivial. We will see later that the affineness assumption in the question
is essential; see Example 5.3.5.4 for more details. ��
Question 8 (Generalized van de Ven Question) If X is a topologically contractible
smooth complex variety, then is X rational? ��
Remark 9 This question is sometimes referred to as the van de Ven Question in the
literature [156, Remark 2.2] with reference given to [140]. We call it the generalized
van de Ven question because van de Ven was explicitly concerned with surfaces:
he writes [140, §3 p.197–198] “All the known examples of algebraic non-singular
compactifications of homology 2-cells are rational surfaces. It would follow that
there are no others, at least if we restrict ourselves to simply connected homology
2-cells, if the following statement would be true: (C) Every simply connected non-
singular algebraic surface with geometric genus 0 is rational.” Unfortunately, the
conjecture (C) was later disproved: for example the Barlow surfaces [23] are simply
connected surfaces of general type with geometric genus 0. Nevertheless, Gurjar and
Shastri showed [64, 65] that non-singular contractible surfaces are always rational
by a careful case-by-case analysis. ��

A theorem of Fujita shows that all topologically contractible smooth complex
surfaces are necessarily affine. A remarkable example of Winkelmann [153] shows
that Fujita’s statement does not hold in higher dimensions. Winkelmann gave the
first example of a quasi-affine but not affine smooth contractible complex variety.

Example 10 Winkelmann defines a scheme-theoretically free action of the additive
group Ga on A

5 as follows. Consider the standard 2-dimensional representation V

of Ga given by the embedding Ga ↪→ SL2 as upper triangular matrices. The 6-
dimensional affine space attached to V ⊕ V ⊕ V thus carries a linear representation
of Ga . If we pick coordinates x0, x1, y0, y1 and z0, z1 on this affine space, then x0,
y0 and z0 are degree 1 invariant functions, while x0y1 − y0x1, x0z1 − z0x1 and
y0z1 − z0y1 are degree 2 invariants. The hypersurface x0 = 1− y0z1 − z0y1 is thus
a Ga-invariant smooth hypersurface in A

6 isomorphic to A
5. The induced action is
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scheme-theoretically free, and the invariant computation just mentioned identifies
the quotient as an open subscheme of a smooth affine quadric of dimension 4 with
complement a codimension 2 affine space. ��

Winkelmann’s example highlights another important issue in algebraic geometry
that is not visible in the topological story. Indeed, it follows from the theorems we
stated before that every open contractible manifold may be realized as a quotient of
R

n by a free action of the additive group R. However, every principal R-bundle on a
topological space having the homotopy type of a CW-complex is trivial because R
is contractible. In contrast, in algebraic geometry, a natural analog of free R-actions
on R

n is given by (scheme-theoretically) free actions of the additive group scheme
Ga on A

n. One must first ask then: given a scheme-theoretically free action of Ga ,
when does a quotient even exist as a scheme?1 If X is a scheme, then the set of
isomorphism classes of Ga-torsors on X is parameterized by the sheaf cohomology
group H 1(X,Ga) = H 1(X,OX). On an affine scheme, this cohomology group
necessarily vanishes, but it need not vanish on a quasi-affine scheme that is not
affine.

Example 10 gives the primordial example of a smooth variety that is “alge-
braically” homotopy equivalent to affine space, without being isomorphic to affine
space. While there are various “naive” notions of algebraic homotopy equivalence
(e.g., one may think of homotopies parameterized by the affine line), a robust
homotopy theory for algebraic varieties in which homotopies are parameterized
by the affine line requires more formal machinery. In the sequel, we begin by
trying to highlight the key points of one solution–the construction of the Morel–
VoevodskyA1-homotopy [111]–from the standpoint of the tools required by an end
user interested in algebro-geometric questions like those posed above. Section 5.2
contains motivation and the basic ideas of the construction, without going into
any of the formal categorical preliminaries. In Sect. 5.3, we try to understand
concretely and geometrically how to study isomorphisms in the A

1-homotopy
category, a.k.a. A1-weak equivalence. In the context of the discussion above, we
introduce the key notion of an A1-contractible space, see Definition 5.3.1.1. In what
remains, we review the theory of A1-contractible smooth varieties, guided by the
discussion above, especially the theory of open-contractible manifolds. Along the
way, we discuss an algebro-geometric version of Theorem 1.

Theorem 11 (See Theorems 5.3.5.2 and 5.5.4.3) Assume k is a field. For every
pair of integers d ≥ 3 and n ≥ 0, there exists a connected n-dimensional scheme
S and a smooth morphism π : X → S of relative dimension d whose fibers are
A
1-contractible. Moreover, the fibers over distinct k-points of π are pairwise non-

isomorphic. ��

1a quotient always exists as an algebraic space.
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Much of the rest of the discussion can be viewed as providing background for
the following questions, which suggest a best-possible approximation to an algebro-
geometric variant of Theorem 2 (see Definition 5.3.3.1 for the terminology).

Question 12 If k is a perfect field, is An the only A1-contractible smooth k-scheme
of dimension ≤2? ��
Question 13 Suppose X is an A1-contractible smooth scheme.

1. Does there exist an affine space A
N and a Nisnevich locally trivial smooth

morphism A
N → X?

2. If X is moreover affine, then is X a retract of AN? ��
The first question above is discussed in detail in Sect. 5.5.2. The second is

motivated by the discussion of Sect. 5.3.5 in conjunction with the discussion of
Sects. 5.3.3, 5.5.3, 5.5.4, and 5.5.5. Finally, we suggest that there is a rather
subtle relationship between topologically contractible varieties and A1-contractible
varieties involving “suspension” in the A1-homotopy category.

Conjecture 14 (See Conjecture 5.5.3.11 and Remark 5.5.3.12) If X is a topologi-
cally contractible smooth complex variety with a chosen base-point x ∈ X(C), then
there exists an integer n ≥ 0 such that �n

P
1(X, x) is A1-contractible; in fact, n = 2

should suffice. ��
As with any survey, this one reflects the knowledge and biases of the authors. The

literature in affine algebraic geometry on cancellation and related questions is vast,
and we can only apologize to those authors whose work we have (inadvertently)
failed to appropriately credit.

5.2 A User’s Guide to A
1-homotopy Theory

We began by stating a slogan, loosely paraphrasing the first section of [111]:

there should be a homotopy theory for algebraic varieties over a base where the affine line
plays the role assigned to the unit interval in topology.

The path to motivate the construction of the A
1-homotopy category that we

follow is loosely based on the work of Dugger [48]. The original constructions of the
A
1-homotopy category rely on [80] and are to be found in [111]. General overviews

ofA1-homotopy theory may be found in [141], and, especially for “unstable” results
in [109]. Morel’s paper [107] provides an introductory text, but recent advances like
[17] and [68] allow one to get to the heart of the matter much more quickly. We
encourage the reader to consult [5, 79, 95], and [151] for recent surveys.
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5.2.1 Brief Topological Motivation

The jumping off point for the discussion was the classical Brown-representability
theorem in unstable homotopy theory. Recall that the ordinary homotopy category,
denoted here H , has as objects “sufficiently nice” topological spaces Top (includ-
ing, for example, all CW complexes), and morphisms given by homotopy classes
of continuous maps between spaces. Unfortunately, the category of CW complexes
itself is not “categorically good” enough to build the homotopy category. Indeed,
there are various constructions one wants to perform in topology (quotients, loop
spaces, mapping spaces) that do not stay in the category of CW complexes (they
only stay in the category up to homotopy). We will refer to objects of the category
Top (which we have not precisely specified) as spaces. As usual, for two spaces X

and Y , we write [X,Y ] for the set of morphisms between X and Y in the homotopy
category.

Suppose C is a category of “algebraic structures”. In practice, one may take
C to be the category of sets or an abelian category like abelian groups, or chain
complexes, but we will need some flexibility in the choice. A C-valued invariant is
then a contravariant functor F : Top → C. We will furthermore consider C-valued
invariants on Top that satisfy the following properties:

(i) (Homotopy invariance axiom) If X is a topological space, and I = [0, 1] is the
unit interval, then the map F(X) → F(X × I) is a bijection.

(ii) (Mayer-Vietoris axiom) If X is a CW complex covered by subcomplexes U

and V with intersection U ∩ V , then we have a diagram of the form

F(X) → F(U) × F(V ) → F(U ∩ V ),

and given u ∈ F(U) and v ∈ F(V ), such that the images of u and v under the
right hand map coincide, then there is an element of F(X) whose image under
the first map is the pair (u, v).

(iii) (Wedge axiom) The functor F takes sums to products.

Given a C-valued invariant F on Top as above, the first condition implies that F
factors through a functorH → C, i.e., F is a C-valued homotopy invariant. There
is a very natural class of representable Set-valued homotopy invariants, given by
[−, Y ] for some topological space Y . Given a C-valued homotopy invariant F, the
classical Brown representability theorem says that if it satisfies the second and third
conditions above, then this functor is a representable homotopy invariant, i.e., there
is a CW complex Y and an isomorphism of functorsF ∼= [−, Y ].
Remark 5.2.1.1 In general, “cohomology theories” satisfy more properties than just
those mentioned: e.g., one has a Mayer–Vietoris long exact sequence. For example,
consider the functor sending a space to its usual integral singular cochain complex
S∗(X). If X is a topological space, then S∗(X) → S∗(X× I) is not an isomorphism
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of chain complexes, but a chain-homotopy equivalence. Likewise, if X = U ∪ V ,
then there is a sequence

S∗(X) −→ S∗(U) ⊕ S∗(V ) −→ S∗(U ∩ V ),

but this sequence fails to be an exact sequence of chain complexes. To get a Mayer–
Vietoris sequence one must replace S∗(X) by a suitable subcomplex with the same
cohomology. These observations necessitate making various constructions that are
“homotopy invariant” from the very start. ��
Remark 5.2.1.2 If a “cohomology theory” is represented on CW complexes by a
space Z, and the cohomology theory is geometrically defined (e.g., topological
K-theory with Z the infinite grassmannian), then the “representable” cohomology
theory extended to all topological spaces need not coincide with the geometric
definition for spaces that are not CW complexes. ��

5.2.2 Homotopy Functors in Algebraic Geometry

We would like to guess what properties the “homotopy category” will have based on
the known invariance properties of cohomology theories in algebraic geometry. To
this end, we must have some actual “cohomology theories” at hand. The examples
we want to use are the theory of (Bloch’s higher) Chow groups [55] and (higher)
algebraic K-theory [116], though the reader not familiar with general definitions
could focus on the Picard group, which is related to both. We begin by formulating
a notion of homotopy invariance in algebraic geometry. As above, suppose C is a
category of algebraic structures.

Definition 5.2.2.1 A C-valued contravariant functor F on Smk is A1-invariant if
the morphism F(U) → F(U × A

1) is a bijection. ��
Example 5.2.2.2 The functor Pic(X) is not A1-invariant on schemes with sin-
gularities that are sufficiently complicated [139]. More generally, Chow groups
are A

1-invariant [55, Theorem 3.3] for regular schemes. Likewise, Grothendieck
established an A

1-invariance property for algebraic K0 on regular schemes, and
Quillen established a homotopy invariance property for algebraic K-theory of
regular schemes (this is one of the fundamental properties of higher algebraic K-
theory proven in [116]). ��

In the examples above, A1-invariance, failed to hold on all schemes. As a
consequence, we restrict our attention to the category Smk of schemes that are
separated, smooth and have finite type over k (we use smooth schemes rather than
regular schemes since smoothness is more functoriallywell-behaved than regularity;
if we assume we work with varieties over a perfect field, then there is no need to
distinguish between the two notions). Our restriction to smooth schemes will be
analogous to the restriction to (finite) CW complexes performed above.



156 A. Asok and P. A. Østvær

We would like to impose some Mayer–Vietoris-like condition on C-valued
invariants. The most obvious choice would involve the Zariski topology on schemes.
In practice, a number of classical algebro-geometric cohomology theories have a
Mayer–Vietoris property for a Grothendieck topology that is finer than the Zariski
topology. Indeed, Chow groups and algebraic K-theory have “localization” exact
sequences; we review such sequences here as a motivation for the finer topology.

Let us recall the localization sequence for Chow groups: if X is a smooth variety,
and U ⊂ X is an open subvariety with closed complementZ (say equi-dimensional
of codimension d), there is an exact sequence of the form

CH ∗−d(Z) −→ CH ∗(X) −→ CH ∗(U) −→ 0;

to extend this sequence further to the left, one needs to introduce Bloch’s higher
Chow groups [27, 28], but we avoid discussing this here. We leave the reader the
exercise of showing that from this localization sequence, one may formally deduce
that Chow groups and algebraic K-theory have a suitable Mayer–Vietoris property
for Zariski open covers by two sets.

One often considers the étale topology in algebraic geometry, and one might
ask whether there is an appropriate Mayer-Vietoris sequence for étale covers. In
this direction, consider the following situation. Suppose given an open immersion
j : U ↪→ X and an étale morphism ϕ : V → X such that the pair (j, ϕ) are jointly
surjective and such that the induced map ϕ−1(X�U) → X�U is an isomorphism,
diagrammatically this is a picture of the form:

U ×X V
j

ϕ

V

ϕ

U
j

X

We will refer to such diagrams as Nisnevich distinguished squares. One can show
that X is the colimit in the category of smooth schemes of the diagram U ←−
U ×X V −→ V .

By a straight-forward diagram chase, one may show that the sequence

CH ∗(X) → CH ∗(U) ⊕ CH ∗(V ) → CH ∗(U ×X V )

is exact: given an element (u, v) in CH ∗(U) ⊕ CH ∗(V ), if the restriction of (u, v)

to CH ∗(U ×X V ) is zero, then there is an element x in CH ∗(X) whose restriction
to CH ∗(U) ⊕ CH ∗(V ) is (u, v). Therefore, any theory that satisfies localization
will have the Mayer–Vietoris property with respect to a Grothendieck topology on
schemes that is finer than the Zariski topology.

Example 5.2.2.3 Suppose k is a field of characteristic unequal to 2. Consider the
diagram where X = A

1, U = A
1
� {1}, V = A

1
� {0,−1}. Let j be the usual open
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immersion of A1
� {1} into A

1, and let ϕ be the étale map given by the composite
A
1
� {0,−1} ↪→ Gm → Gm ↪→ A

1, where the map Gm → Gm is z �→ z2. It is
easily checked that this diagram provides a square as above. ��

To define a homotopy category for smooth schemes, informed by the above
observations, we will attempt to build a category through which any A

1-homotopy
invariant on smooth schemes satisfying Mayer–Vietoris in the Nisnevich sense
prescribed above factors. We do this in a few stages. Just as the category of CW-
complexes was not “categorically good”, we will first enlarge the category of
schemes to a suitable category of spaces. Then, we will force Mayer–Vietoris for
Nisnevich covers and then impose A1-homotopy invariance.

Remark 5.2.2.4 As is hopefully evident, we have made a number of choices here: a
category of schemes with which to begin, and a topology for which we would like
to impose Mayer–Vietoris; we have motivated a particular choice here, but other
choices are often warranted. For example, we might want to make constructions
involving non-smooth schemes and be able to compare this situation with the one
we alluded to above. For this reason, we will try to leave some flexibility in the
constructions. ��

5.2.3 The Unstable A1-homotopy Category: Construction

Spaces

For concreteness, fix a base Noetherian commutative unital ring k of finite Krull
dimension. In practice, k will be a field, but for comparing constructions in different
characteristics, it will often be useful for k to be a discrete valuation ring or the
integers Z. Write Smk for the category of schemes that are separated, smooth and
have finite type over k. Write Schk for the category of Noetherian k-schemes of finite
Krull dimension. Write sSet for the category of simplicial sets. There is a functor
Set → sSet sending a set S to the corresponding constant simplicial set (i.e., all face
and degeneracy maps are the identity), and we use this functor to identify Set as a
full subcategory of sSet.

Definition 5.2.3.1 Write Spck for the category of simplicial presheaves on Smk ,
and Spc′

k for the category of simplicial presheaves on Schk; objects of these
categories will be called motivic spaces or k-spaces, depending on whether we want
to explicitly specify k. ��

Sending a (smooth) scheme to its corresponding representable presheaf (of
constant simplicial sets) defines a functor Schk → Spc′k (Smk → Spck) that is fully-
faithful by the Yoneda lemma. We use these functors without mention to identity
(smooth) schemes as spaces. Likewise, there is a functor sSet → Spck sendin a
simplicial set to the corresponding constant simplicial presheaf.
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There are many constructions we may perform in the category of spaces: these
categories are both complete and cocomplete, i.e., have limits and colimits indexed
by all small categories. The category Spck (resp. Spc′

k) has a final object typically
denote ∗ and an inital object ∅. Using the fact that Spck has all small limits and
colimits, the following definitions make sense. A pointed space is a pair (X , x)

whereX ∈ Spck and x : ∗ → X is a morphism of spaces. We write Spck,• for the
category of pointed k-spaces. It is important to emphasize that these constructions
are being made in the category of spaces and NOT in the category of schemes.
Moreover, moving outside of the category of schemes has a number of tangible
benefits.

• If (X , x) and (Y , y) are pointed k-spaces, then the wedge sum X ∨ Y is the

pushout (colimit) of the diagramX
x←− ∗ y−→ Y .

• If (X , x) and (Y , y) are pointed k-spaces, then the smash product X ∧ Y is
the quotient ofX × Y /X ∨ Y .

• We write Si for the constant presheaf with value 	i/∂	i , where 	i is the usual
i-simplex.

Nisnevich and cdh Distinguished Squares

We now make precise various ideas given above motivated by Mayer–Vietoris
sequences.

Definition 5.2.3.2 A Nisnevich distinguished square is a pull-back diagram of
schemes

W
j

ϕ

V

ϕ

U
j

X

such that j : U ↪→ X is an open immersion, ϕ : V → X is an étale morphism, and
the induced map ϕ−1(X � U) → X � U is an isomorphism of schemes given the
reduced induced scheme structure. ��
Remark 5.2.3.3 Every Zariski open cover of a scheme by two open sets gives
rise to a Nisnevich distinguished square. Nisnevich distinguished squares generate
a Grothendieck topology on Smk or Schk called the Nisnevich topology. This
topology is conveniently described in terms of covering sieves: it is the coarsest
topology such that the empty sieve covers ∅, and for every distinguished square
as above, the sieve on X generated by U → X and V → X is a covering
sieve. This definition of the Nisnevich topology is equivalent to other standard
ones in the literature. In fact, the Nisnevich topology may be generated by much
simpler squares where all corners of the square are affine and the reduced closed
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complement of U in X is given by a principal ideal. We refer the interested reader
to [17, §2] for more details. ��

For the most part, we will only use Nisnevich distinguished squares and the
Nisnevich topology, but the following definition will also be useful.

Definition 5.2.3.4 An abstract blow-up square is a pull-back diagram of schemes
of the form:

E Y

π

Z
i

X

where i is a closed immersion, π is a proper map, and the induced map π−1(X �

i(Z)) → X � i(Z) is an isomorphism. ��
Remark 5.2.3.5 As above, the proper cdh topology on Schk is the coarsest topology
such that the empty sieve covers ∅, and for which the sieve on X generated by Z →
X and Y → X is a covering sieve. The cdh topology is the smallest Grothendieck
topology whose covering morphisms include those of the proper cdh topology and
those of the Nisnevich topology. ��

Localization

Given the category Spck (resp. Spc′
k), we now want to formally invert a set of

morphismsS to build a homotopy category. Each covering sieve of a Grothendieck
topology gives rise to a monomorphism of presheaves with target a representable
presheaf; to impose “Mayer–Vietoris” with respect to a given topology, one first
formally inverts the set of all of these monomorphisms. Concretely, if u : U → X

is a Nisnevich covering, then one may build a simplicial presheaf C̆(U) by taking
iterated fiber products of U with itself over X. The morphism u then yields an
augmentation

C̆(U) −→ X

that we would like to force to be a weak equivalence. The Nisnevich (resp. cdh) local
homotopy category is, in essence, the universal category where the above maps have
been inverted (see [17, Lemma 3.1.3] for a precise statement). There are numerous
constructions of this category now and the “universal” point-of-view espoused here
was studied in great detail by D. Dugger; see [48] for more details.

One standard way to invert the relevant set of morphisms is to equip Spck (resp.
Spc′k) with the structure of model category (see, e.g., [72]); this involves specifying
classes of cofibrations and fibrations along with the classes of morphisms that are
to be inverted, i.e., the morphisms we want to become weak equivalences. In any
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case, we will write HNis(k) (resp. Hcdh(k)) for the corresponding local homotopy
category; we refer the reader to [83] for a textbook treatment of local homotopy
theory. By construction, there is a functor Spck → HNis(k) (resp. Spc′

k → Hcdh(k)

that is suitably (i.e., homotopically) initial.
One may build A

1-homotopy categories in a similar universal fashion. After
formally inverting Nisnevich (resp. cdh) local weak equivalences, we further invert
the projection from the affine line:

X × A
1 −→ X .

We write H
A
1(k) for the corresponding category obtained by localizing HNis(k) and

Hcdh

A
1 (k) for the category obtained by localizing Hcdh(k).

Notation 5.2.3.6 An isomorphism in H
A
1(k) or Hcdh

A
1 (k) will be called an A1-weak

equivalence. To emphasize the analogy with topology, we write [X ,Y ]
A
1 for the

set of morphisms in either category; we will read this as the set of A1-homotopy
classes of maps betweenX and Y . ��
Remark 5.2.3.7 Given X and Y in Spck and a morphism H : X × A

1 → Y ,
we may think of H as an algebraic homotopy between H(−, 0) : X → Y and
H(−, 1) : X → Y ; we will say that H(−, 0) and H(−, 1) are naively homotopic.
More generally, we will say that two morphismsX → Y are naively homotopic if
they are equivalent for the equivalence relation generated by naive homotopies. Note
that naively homotopic maps determine the same A1-homotopy class, i.e., there is
an evident function

HomSpck (X ,Y )/{naive A1-homotopies} −→ [X ,Y ]
A
1 .

Because of the relatively abstract definition of the target of this morphism, it is an
interesting question to understand situations in which this morphism is a bijection.

��

5.2.4 The Unstable A1-homotopy Category: Basic Properties

Motivic Spheres

In addition to the simplicial circle S1 described above, we introduce the Tate circle
Gm, viewed as a space pointed by the identity section. We then define bigraded
motivic spheres by the formula

Si,j = Si ∧ G
∧ j
m .
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From these definitions, and basic homotopy-invariance statements, one may write
down some standard algebro-geometric models of motivic spheres. Homotopy
categories typically do not have robust notions of limit or colimit, and one
therefore considers a more flexible “up to homotopy” notion. The results below
are straightforward homotopy colimit computations, and we mention the required
facts without going into details.

Example 5.2.4.1 The space A
1/{0, 1} is a model for S1. This is an algebro-

geometric analog of the fact that the circle S1 can be realized as the homotopy
pushout of the two-point space S0 along the maps projecting onto each point. ��

One of the basic consequences of our construction of the A1-homotopy category
is that any Zariski Mayer–Vietoris square is a pushout square.

Example 5.2.4.2 There is an A
1-weak equivalence S1,1 ∼= P

1. To see this, use the
standard Zariski open cover of P1 by two copies of A1. ��
Example 5.2.4.3 There is an A1-weak equivalenceAn

�0 ∼= Sn−1,n. Use induction
and the open cover of An

� 0 by the open sets (An−1
� 0) × A

1 and Gm × A
n−1

with intersection Gm × (An−1
� 0). ��

Example 5.2.4.4 There is an A
1-weak equivalence Pn/Pn−1 ∼= Sn,n. Use the open

cover of Pn by An and Pn
� 0 with intersection An

� 0. ��
Remark 5.2.4.5 With reference to Definition 5.4.1.3 we remark that Si,j is A1-(i −
1)-connected in the sense that the A

1-homotopy sheaf πA
1

n (Si,j ) vanishes for n ≤
i − 1, see [109, §3]. This corresponds precisely to the connectivity of the real points
of Si,j or equivalently the connectivity of the simplicial sphere Si . ��

Representability Statements

Just like in topology, there is a Brown representability theorem characterizing
homotopy functors in algebraic geometry. In addition to homotopy invariance, one
wants functors that turn Nisnevich distinguished squares into “homotopy” fiber
products; for more details, see the works of Jardine [82] and Naumann-Spitzweck
[113]. One additional subtlety that arises is that many natural functors of algebro-
geometric origin that arise fail to be A

1-invariant on the category of all smooth
schemes. Thus, one would also like to investigate representability questions for such
functors. We summarize some theorems that will be useful in the sequel.

In topology, complex line bundles are represented by homotopy classes of maps
to infinite complex projective space, at least on spaces having the homotopy type
of a CW complex. There is an algebro-geometric analog of this result. For any
base commutative unital ring k, one may define the space P

∞
k as the colimit of

P
n
k along the standard closed immersions P

n ↪→ P
n+1. The space P

∞ can be
given a multiplication in the A1-homotopy category. Indeed, the Segre embeddings
P

n × P
m −→ P

(n+1)(m+1)−1 may be used to define a map P
∞ × P

∞ → P
∞.
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This multiplication map may be shown to be associative up to A
1-homotopy and

equips [−,P∞]
A
1 with a group structure. In the algebro-geometric setting, one has

a representability theorem for algebraic line bundles.

Proposition 5.2.4.6 ([111, §4 Proposition 3.8]) If k is a regular ring, then for any
smooth k-scheme X, there is an isomorphism of the form

Pic(X)
∼−→ [X,P∞]

A
1;

this isomorphism is functorial in X. ��
In topology, complex vector bundles of a given rank are represented by homotopy

classes of maps to a suitable infinite Grassmannian, at least on spaces having the
homotopy type of a CW complex. Unfortunately, the functor assigning to a smooth
scheme X over a base k the set Vr (X) of isomorphism classes of rank r vector
bundles on X fails to be A1-invariant, as the following example shows. Thus, this
functor cannot be representable on the category of all smooth schemes.

Example 5.2.4.7 Consider P
1. A classical result of Dedekind–Weber often

attributed to Grothendieck asserts that all vector bundles on P
1 are direct sums

of line bundles (see [67] for an elementary proof). Consider X = P
1 × A

1 with
coordinates t and x. The matrix

(
t−1 x

0 t

)

is the clutching function for a rank 2 vector bundle on P1×A
1. The fiber over x = 0

of this bundle is isomorphic to O(−1) ⊕ O(1), while the fiber over x = 1 (or any
other non-zero value) is isomorphic toO⊕O . This rank 2 vector bundle is therefore
evidently not pulled back from a vector bundle on P1. ��

A classical result of Lindel [96] shows that the functor Vr (X) is A
1-invariant

upon restriction to the category of smooth affine k-schemes, if k is a field. This result
was extended by Popescu to the case where k is a Dedekind domain with perfect
residue fields. Then, even though Vr (X) fails to be representable on all smooth
schemes, one can hope it is representable on smooth affine schemes. On smooth
affine schemes, given a vector bundle, one may always choose generating sections:
every vector bundle on a smooth affine scheme thus determines (non-uniquely) a
morphism to a Grassmannian. We may define Grn as a space to be the colimit of
Grn,N over standard inclusions Grn,N → Grn,N+1. The morphisms to Grn defined
by different choices of generating sections all lie in the same A

1-homotopy class.
Thus, one obtains a well-defined bijection in the following result.

Theorem 5.2.4.8 (Morel, Schlichting, Asok–Hoyois–Wendt) Assume k is smooth
over a Dedekind ring with perfect residue fields. For any smooth affine k-scheme X,
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the assignment sending a rank r vector bundle on X to the morphism X → Grr
corresponding to a choice of generating sections factors through a pointed bijection

Vr (X)
∼−→ [X,Grr ]A1;

this bijection is functorial in X. ��
Proof This result was stated originally by F. Morel [110, Theorem 8.1] in the case
where k is perfect and assuming r �= 2. Morel’s argument was greatly simplified by
M. Schlichting [126, Theorem 6.22]. The result appears in the form above in [17,
Theorem 1]. ��
Remark 5.2.4.9 While vector bundles of a given rank are only representable on
smooth affine schemes, upon passing to stable isomorphism classes, i.e., algebraic
K-theory, one may obtain a representability statement on all smooth schemes.
Representability of algebraic K-theory was first established in [111, Theorem 3.13],
though we refer the reader to [127, Remark 2 p. 1162] for some corrections to the
original argument. ��

Representability of Chow Groups

Chow cohomology groups are also representable on smooth schemes, but the
representing object is a bit more subtle. To set the stage recall that ordinary singular
cohomology with coefficients in an abelian group A is representable on finite CW-
complexes by Eilenberg–Mac Lane spaces K(A, n). A classical result of Dold and
Thom gives a concrete geometric model for the Eilenberg–MacLane spaceK(Z, n).
Indeed for a pointed topological space T , we may define the symmetric product
Symn(T ) as the quotient of the n-fold product by the action of the symmetric group
on n letters permuting the factors, i.e.,

Symn(T ) = T n/�n.

Using the base-point, there are natural inclusions SymnT → Symn+1T , and one
defines the infinite symmetric product Sym(T ) as the colimit of the finite symmetric
powers with respect to these inclusions. The space Sym(T ) may be thought of
as the free commutative monoid on T . By “group completing,” we may define a
space Sym(T )+ that is a topological abelian group. For connected spaces, the group
completion process does not alter the homotopy type, and the classical Dold–Thom
theorem shows that for every n ≥ 0, there are weak equivalences of the form:

K(Z, n) ∼= Sym(Sn),

i.e., Eilenberg–Mac Lane spaces may be realized as infinite symmetric products of
spheres.
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The procedure sketched above yields a reasonable representing model for Chow
groups as well. For a smooth scheme X, define a presheaf Zt r (X) on Smk by
assigning to U ∈ Smk the free abelian group on irreducible closed subschemes
of U × X that are finite and surjective over a component of U . This construction
is covariantly functorial in X as well, and for a closed subscheme Z ⊂ X, we
define Zt r (X/Z) = Zt r (X)/Ztr(Z), where the latter quotient is the quotient as
presheaves of abelian groups. In particular, we saw earlier that Pn/Pn−1 is a model
of the motivic sphere Sn,n, and we set

K(Z(n), 2n) := Zt r (P
n/Pn−1).

The spaces K(Z(n), 2n) are usually called motivic Eilenberg–Mac Lane spaces.
With that definition in mind, we can formulate the appropriate representability
theorem.

Theorem 5.2.4.10 ([38]) Assume k is a perfect field. For every n ≥ 0, and every
smooth k-scheme X, there is a canonical bijection

[X+,K(Z(n), 2n)]
A
1 −→ CHn(X).

Remark 5.2.4.11 We refer the reader to [144, §2] for a convenient summary of
properties of motivic cohomology phrased in terms of motivic Eilenberg–Mac Lane
spaces. The relationship between K(Z(n), 2n) and symmetric products, which may
appear a bit obscure above stems from the link between symmetric powers and
algebraic cycles on quasi-projective varieties; we refer the interested reader to
[134], [141, §6.1] and the references therein for more details. This relationship is
perhaps most clearly seen in the case n = 1 where CH 1(X) = Pic(X). One
may define Symn on the category of (say) quasi-projective varieties over a field.
It is well-known that Pn ∼= Symn(P1) as schemes (essentially, this is the map
sending a polynomial in 1 variable to its roots). Thus, Sym(P1) ∼= P

∞. Using this
identification, one may build a map P

∞ → K(Z(1), 2); this map is an A
1-weak

equivalence. ��

The Purity Isomorphism

Definition 5.2.4.12 If X is a smooth scheme and π : E → X is a vector bundle
with zero section i : X → E, we define T h(π) = E/E − i(X). ��

This definition of Thom space has many of the same properties as the corre-
sponding construction in topology; we summarize some here.

Proposition 5.2.4.13 Suppose X is a smooth scheme.

1. If π : X × A
n → X is a trivial bundle of rank n, then T h(π) ∼= P

1∧ n ∧ X+.
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2. If ψ : X′ → X is a morphism of schemes, π ′ : E′ → X′ is a vector bundle on
X′ and π : E → X is a vector bundle on X fitting into a commutative square of
the form

E
ϕ

π

E

π

X
ψ

X,

where ϕ is a fiberwise monomorphism, then there is an induced morphism
T h(π ′) → T h(π).

3. If π : E → X and π ′ : E′ → X are vector bundles over X, then T h(π ⊕ π ′) ∼=
T h(π) ∧ T h(π ′). ��
The importance of the notion of Thom space stems from the purity isomorphism,

which we summarize in the next result. For later use, we will need to understand
functoriality of purity isomorphism. In order to precisely formulate the functoriality
properties, we need to introduce a bit of terminology. Suppose we have a cartesian
square of smooth schemes of the form

where i is a closed immersion. In that case, i ′ is also a closed immersion and
we will say the square is transversal if the induced map of normal bundles ϕ :
νZ′/X′ → f ∗νZ/X is an isomorphism. The following result was established in [111,
§3 Theorem 2.23]; the subsequent functoriality statements appear in [145, §2].

Theorem 5.2.4.14 (Homotopy Purity) Suppose k is a Noetherian ring of finite
Krull dimension.

1. If i : Z → X is a closed immersion of smooth k-schemes, then there is a purity
isomorphism

X/X − i(Z) ∼= T h(νi).

2. If i : Z → X is the zero section of a geometric vector bundle π : X → Z, then
the purity isomorphism is the identity map.
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3. Given a transversal diagram of smooth schemes as above, the purity isomorphism
is functorial in the sense that there is a commutative square of the form

X /(X Z ) T h(νZ /X )

X/(X Z) T h(νZ/X),

where the horizontal maps are the purity isomorphisms, the left vertical map
is the map on quotients induced by commutativity of the square and the right
vertical map is the map induced by functoriality of Thom spaces. ��

Remark 5.2.4.15 As will become clear in the sequel, homotopy purity is an
absolutely fundamental tool in A

1-homotopy theory, especially from the standpoint
of computations. In the context of stable categories to be introduced in Sect. 5.2.5 it
will lead to Gysin exact sequences. ��

Comparison of Nisnevich and cdh-local A1-weak Equivalences

There is an obvious inclusion Smk → Schk; this yields a functor Spc′
k → Spck

by restriction. One may show that there is an induced (derived) “pullback” functor
π∗ : H

A
1(k) → Hcdh

A
1 (k). For later use, we will need the following comparison

theorem of Voevodsky [26, Theorem 5.1] [146, Theorem 4.2].

Theorem 5.2.4.16 (Voevodsky) Assume k is a field having characteristic 0. Sup-
pose f : (X , x) → (Y , y) is a pointed morphism in Spck . If π∗(f ) is an
isomorphism in Hcdh

A
1 (k), then �f is an isomorphism in H

A
1(k). ��

5.2.5 A Snapshot of the Stable Motivic Homotopy Category

One of the basic lessons of classical homotopy theory is that calculations become
more accessible after inverting the suspension functor on the homotopy category
of pointed spaces. The notion of a topological spectrum makes this process precise
[3]. Similar constructions turn out to be extremely useful in the setting of motivic
homotopy theory following [50, 73, 81, 107, 141].

For the purposes of this survey it is useful to know there exists a closed symmetric
monoidal categorySH (k) called the stable motivic homotopy category of the field
k. We note that SH (k) is an additive category, in fact a triangulated category
equipped with the auto-equivalence given by smashing with the simplicial circle.
This category is obtained by formally inverting suspension with the projective line
P
1 on the category Spck,• of pointed motivic spaces. One formally inverts P1 by

considering “spectra”. A motivic spectrum E ∈ Sptk is comprised of pointed
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motivic spaces En for all n ≥ 0 together with structure maps P1 ∧ En → En+1. For
example, every X ∈ Smk has an associated motivic suspension spectrum �∞

P
1X+

with terms (P1)∧n ∧ X+ and identity structure maps. Reminiscent of the way the
natural numbers give rise of the integers we are entitled to motivic spheres Sp,q

in SH (k) for all p, q ∈ Z. In fact, SH (k) is generated by shifted motivic
suspension spectra of the form �p,q�∞

P
1X+. With a great deal of tenacity one can

make precise the statement thatSH (k) is the associated stable homotopy category
of Sptk . Moreover, one can define a symmetric monoidal structure on SH (k) for
which the sphere spectrum 1 = �∞

P
1 Spec(k)+ is the unit.

There are standard Quillen adjunctions, whose left adjoints preserve weak
equivalences

�
P
1 : Spck,• � Spck,• : �

P
1

�∞
P
1 : Spck,• � Sptk : �∞

P
1 .

Moreover,we letHom(E,F ) denote the internal homomorphismobject ofSH (k)

characterized by the adjunction isomorphism

HomSH (k)(D,Hom(E,F )) � HomSH (k)(D ∧ E,F).

Later on in our discussion of A1-contractibility we will appeal to the following
result connecting the stable and unstable worlds of motivic homotopy theory. We
include a proof since it illustrates some basic concepts and techniques.

Lemma 5.2.5.1 Let X be a smooth scheme and x ∈ X a closed point. If
�∞
P
1 (X, x) � ∗ in SH (k), then there exists an integer n ≥ 0 such that �n

P
1(X, x)

is A1-contractible. ��
Proof By [50, Definition 2.10], an object F ∈ Spck,• is fibrant exactly when for
everyX ∈ Smk , (1)F(X) is a Kan complex; (2) the projectionX×A

1 → X induces
a homotopy equivalence F(X) � F(X × A

1); (3) F maps Nisnevich elementary
distinguished squares in Smk to homotopy pullback squares of simplicial sets, and
F(∅) is contractible. Moreover, a motivic spectrum E ∈ Sptk is fibrant if and only
if it is levelwise fibrant and an �

P
1 -spectrum.

Let (En)n≥0 be a levelwise fibrant replacement of �∞
P
1 (X, x), i.e., En is a fibrant

replacement of�n

P
1(X, x) in Spck,•, and let E be a fibrant replacement of�∞

P
1 (X, x)

in Sptk . A key observation is that filtered colimits in Spck,• preserve fibrant objects;
this follows from the above description of fibrant objects and the facts that filtered
colimits of simplicial sets preserve Kan complexes, homotopy equivalences, and
homotopy pullback squares [50, Corollary 2.16]. Putting these facts together, one
deduces that there is a simplicial homotopy equivalence

�∞
P
1E � colimn→∞ �n

P
1En.
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Let X̃ ∈ Spck,• be the simplicial presheaf (X, x)∨	1 pointed at the free endpoint

of 	1; this is a cofibrant replacement of (X, x) in Spc•(k). Since X̃ ∈ Spck,• is
finitely presentable, the following are homotopy equivalences of Kan complexes,
where Map denotes the simplicial sets of maps in the above simplicial model
categories

Map(�∞
P
1 X̃, E) � Map(X̃,�∞

P
1E)

� Map(X̃, colimn→∞ �n

P
1En)

� colimn→∞ Map(X̃,�n

P
1En)

� colimn→∞ Map(�n

P
1X̃, En).

The hypothesis that �∞
P
1 (X, x) is weakly contractible means that the weak equiv-

alence �∞
P
1 X̃

∼→ E and the zero map �∞
P
1 X̃ → ∗ → E are in the same

connected component of the Kan complex Map(�∞
P
1 X̃, E). Since π0 preserves

filtered colimits of simplicial sets, there exists an integer n ≥ 0 such that the weak
equivalence �n

P
1X̃

∼→ En and the zero map �n

P
1X̃ → ∗ → En belong to the same

connected component of Map(�n

P
1X̃, En). In other words, �n

P
1X̃ � �n

P
1(X, x) is

A
1-contractible. ��

Stable Representablity of Algebraic K-theory

Algebraic K-theory is also representable in the stable A
1-homotopy category. To

see this, it suffices to consider the infinite projective space P∞ and a certain “Bott
element” β obtained from the virtual vector bundle [O] − [O(−1)] over P1. The
precise context involves the stable motivic homotopy categorySH (k); we replace
P

∞ with its motivic suspension spectrum �∞
P
1P

∞+ upon which it makes sense to
invert β.

Theorem 5.2.5.2 (Gepner–Snaith, Spitzweck–Østvær) If k is a noetherian ring
with finite Krull dimension, then there is a natural isomorphism in SH (k)

�∞
P
1P

∞+ [β−1] ∼= KGL.

Proof (Comments on the Proof) Here KGL is the algebraic K-theory spectrum
introduced by Voevodsky [141] (over regular base schemes it represents Quillen’s
algebraic K-theory). Independent proofs of this result are given in [56, 131]. The
conclusion holds more generally over any noetherian base scheme of finite Krull
dimension. ��
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Milnor–Witt K-theory

For later reference we recall the definition of Milnor-Witt K-theory KMW∗ (k) in
[110]. It is the quotient of the free associative integrally graded ring on the set of
symbols [k×] := {[u] | u ∈ k×} in degree 1 and η in degree−1 by the homogeneous
ideal imposing the relations

(1) [uv] = [u] + [v] + η[u][v] (η-twisted logarithm),
(2) [u][v] = 0 for u + v = 1 (Steinberg relation),
(3) [u]η = η[u] (commutativity), and
(4) (2 + [−1]η)η = 0 (hyperbolic relation).

Milnor-Witt K-theory is ε-commutative for ε = −(1 + [−1]η). By work of Morel
there is an isomorphism with the graded ring of endomorphisms of the sphere

KMW∗ (k) ∼=
⊕
n∈Z

πn,n1.

Moreover, we haveKMW
0 (k) ∼= GW(k), the Grothendieck-Witt ring of stable iso-

morphism classes of symmetric bilinear forms [103]. Inverting η in KMW∗ (k) yields
the ring of Laurent polynomials W(k)[η±1] over the Witt ring, and KMW∗ (k)/η ∼=
KM∗ (k), the Milnor K-theory ring of k [101].

5.3 Concrete A
1-weak Equivalences

In this section, we attempt to make the discussion of the previous section more
concrete. In particular, we will discuss fundamental examples of isomorphisms in
the unstable A1-homotopy category. Moreover, we recall some results from affine
(and quasi-affine) algebraic geometry in the context of A1-homotopy theory.

5.3.1 Constructing A1-weak Equivalences of Smooth Schemes

By construction of the A
1-homotopy category, for any smooth scheme X the

projectionmapX×A
1 → X is anA1-weak equivalence; in particular, the morphism

A
1 → Spec k is an A

1-weak equivalence. By induction, one concludes that An →
Spec k is an A

1-weak equivalence. In fact, one may give a completely algebraic
construction of thisA1-weak equivalence using the ideas of Remark 5.2.3.7. Indeed,
there is a morphism A

1 × A
n → A

n sending (t, x1, . . . , xn) �→ (tx1, . . . , txn);
this corresponds to the usual radial rescaling map. As in topology, this construction
defines a naive A

1-homotopy between the identity map (t = 1) and the map
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factoring through the inclusion of 0 (t = 1). In any case, affine space gives the
first example of a space satisfying the hypotheses of the following definition.

Definition 5.3.1.1 A spaceX ∈ Spck is A
1-contractible if the structure morphism

X → Spec k is an A1-weak equivalence. ��
Example 5.3.1.2 Assume k is a field and let α1 and α2 be coprime integers. The
cuspidal curve �α1,α2 = {yα1 − zα2 = 0} is A1-contractible. More precisely, we
identify �α1,α2 as a motivic space by restricting its functor of points to Smk . Then,
the normalization map A

1
x → �α1,α2 given by x �→ (xα2, xα1) is an A

1-weak
equivalence, even an isomorphism of presheaves on Smk (see [10, Example 2.1]).

��
Example 5.3.1.3 Over a perfect field k, there are no non-trivial forms of the affine
line. ��

SupposeZ is anA1-contractible smooth scheme. Since we have forced maps that
are “Nisnevich locally” weak equivalences to be weak equivalences, it follows that
any map that is Nisnevich locally isomorphic to the product projection U ×Spec k

Z → U is automatically a weak equivalence. More precisely, if f : X → Y

is a morphism of smooth k-schemes, and there exists a Nisnevich covering map
u : U → Y and an isomorphism of U -schemes X ×Y U ∼= U ×Spec k Z, then we
will say that f is Nisnevich locally trivial with A

1-contractible fibers.

Lemma 5.3.1.3 If f : X → Y is any morphism of smooth k-schemes that is
Nisnevich locally trivial with affine space fibers, then f is an A

1-weak equivalence.
��

For example, the projection map in a geometric vector bundle is automatically
an A

1-weak equivalence. More generally, if π : E → X is a torsor under a vector
bundle on X, then π is Zariski locally trivial (this follows from the vanishing
of coherent cohomology on affine schemes), and thus an A

1-weak equivalence.
Jouanolou originally observed [85] that given a quasi-projective variety X, one
could find a torsor under a vector bundle over X whose total space was affine; such
a scheme will be called an affine vector bundle torsor. Thomason generalized this
observation to schemes admitting an ample family of line bundles; and in the next
result we summarize the consequences for A1-homotopy theory.

Lemma 5.3.1.4 (Jouanolou–Thomason Homotopy Lemma) If k is a regular
ring, and X is a separated, finite type, smooth k-scheme, then there exists a smooth
affine k-scheme X̃ and morphism π : X̃ → X that is a torsor under a vector bundle;
in particular, π is Zariski locally trivial with affine space fibers and is thus an
A
1-weak equivalence. ��

Proof If k is regular, thenX is a separated, regular, Noetherian scheme. In that case,
X admits an ample family of line bundles (combine [136, Expose III Corollaire
2.2.7.1]. The result then follows from [148, Proposition 4.4], a result attributed to
Thomason. ��
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Remark 5.3.1.5 If X is a smooth scheme, then a choice of smooth affine scheme X̃

and an A
1-weak equivalence π : X̃ → X will be called a Jouanolou device over X.

Unfortunately, the construction of Jouanolou devices is not functorial. ��
Example 5.3.1.6 For any base ring k, following Jouanolou, there is a very simple
example of a Jouanolou device over Pn. Let P̃n be the complement of the incidence
hyperplane in P

n × P
n (viewing the second P

n as the dual of the first). It is easy to
see that the composite of the inclusion and the projection onto the first factor defines
a morphism P̃

n → P
n which is a Jouanolou device; we will refer to this as the

standard Jouanolou device over Pn. For n = 1 it is straighforward to check that P̃1

is isomorphic to the closed subscheme of A3
k defined by the equation xy = z(1+ z).

��

5.3.2 A
1-weak Equivalences vs. Weak Equivalences

For this section, we will consider rings k that come equipped with a homomorphism
ι : k → C. In that case, we may compare A

1-weak equivalences and classical
weak equivalences via what are often called “realization functors”. Given a smooth
k-scheme X, we may consider the set Xan

ι (via ι) and we view this as a complex
manifold with its usual structure. Morel and Voveodsky [111, §3.3] show that the
assignment X �→ Xan

ι may then be extended to a functor between homotopy
categories

Rι : H (k) −→ H

which we refer to as a (topological) realization functor; see [49] for more discussion
of topological realization functors. In particular, applying Rι to an A

1-weak equiv-
alence of smooth schemes yields a weak equivalence of the associated topological
spaces of complex points.

Remark 5.3.2.1 The choice ι is important: Serre showed that it is possible to find
smooth algebraic varieties over a number field together with two embeddings of k

into C such that the resulting complex manifolds are homotopy inequivalent. In fact,
F. Charles provided examples of two smooth algebraic varieties over a number field
k together with two embeddings of k into C such that the real cohomology algebras
of the resulting complexmanifolds are not isomorphic [32]. Said differently, the real
homotopy type of a smooth k-scheme may depend on the choice of embedding of k

into C. ��
Question 5.3.2.2 Assume ι1, ι2 : k → C are distinct ring homomorphisms. Is
it possible to find a (smooth) k-scheme X such that Rι1(X) is contractible while
Rι2(X) is not? ��
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Remark 5.3.2.3 Recall that a connected topological space X is Z-acyclic if
Hi(X,Z) = 0 for all i > 0. Of course, contractible topological spaces are Z-acyclic.
One can show that the property of being Z-acyclic is independent of the choice of
embedding for smooth varieties using étale cohomology as follows. If X is a smooth
k-scheme, then the integral singular cohomology groups Hi(X

an,Z) are finitely
generated abelian groups. By the Artin-Grothendieck comparison theorem, the
cohomology of X(C) with Z/n-coefficients is isomorphic to the étale cohomology
of X with Z/n-coefficients, and étale cohomology of X is independent of the
choice of embedding of k into C. By appeal to the universal coefficient theorem,
one deduces that the vanishing of Hi(X

an,Z)tors for one embedding implies the
vanishing for any other. Similarly, the rank of the free part is determined by the
Betti numbers, which are also determined by étale cohomology and are therefore
also independent of the choice of embedding.

To our knowledge, all the examples where homotopy types change with the
embedding involve a nontrivial fundamental group. If X is a topologically con-
tractible smooth k-scheme, then its étale fundamental group is independent of
the choice of embedding. Furthermore, the étale fundamental group of X is the
profinite completion of the topological fundamental group of X(C). Thus, if X

is topologically contractible, then any of the manifolds X(C) has a fundamental
group with trivial profinite completion. If one could prove that X(C) has trivial
fundamental group for any choice of embedding, the above problem would have
a positive solution as a consequence of the usual Whitehead theorem. Let us also
note that, working with étale homotopy types, one can deduce restrictions on the
profinite completions of the other homotopy groups of X(C). ��

Using the realization functor mentioned above and the definition of topologically
contractible varieties from the introduction, the following result is immediate.

Lemma 5.3.2.4 If k is a commutative ring, ι : k → C is a homomorphism, and X

is A1-contractible smooth k-scheme, then Rι(X) is topologically contractible. ��
Remark 5.3.2.5 While complex realization is only available for fields admitting
an embedding in C, there are other realization functors that may be defined more
generally. For example, one may define an étale realization functor on the unstable
A
1-homotopy category over any field [78]. Over fields having characteristic p,

the p-part of the étale homotopy type is not A1-invariant in general. For example,
the affine line over a separably closed field having positive characteristic has a
large nontrivial étale fundamental group. Thus, étale realization of an unstable
A
1-homotopy type involves completion away from the residue characteristics of

whatever base ring we work over. Correspondingly, the analog of Lemma 5.3.2.4
says that the étale realization of an A

1-contractible smooth scheme is only trivial
after a suitable completion. On the other hand, the true “topological” analog of
contractibility, i.e., contractibility in the étale sense including triviality of the p-part
is extremely restrictive: in fact, there are no nontrivial étale contractible varieties
[71]. ��
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5.3.3 Cancellation Questions and A1-weak Equivalences

We now connect the discussion to the cancellation questions mentioned in the
introduction: from the standpoint of A

1-homotopy theory, this can be viewed
as a source of many interesting A

1-weak equivalences. Before discussing the
biregular cancellation problem, we recall some results about the original (birational)
Zariski cancellation problem. In the special case where X is a projective space,
this question can be rephrased as follows: if X is a stably k-rational variety,
then is it k-rational? The work of Beauville–Colliot-Thélène–Sansuc–Swinnerton-
Dyer from the early 80s answered Zariski’s original question in the negative [24],
i.e., even over algebraically closed fields, there exist stably rational, non-rational
varieties of dimension ≥3 (examples over algebraically closed fields cannot exist in
dimension ≤2 by the classification of non-singular surfaces). The results following
this development introduced a hierarchy of birational cancellation questions for
discussion of which we refer the interested reader to [34, §1]. Correspondingly, we
introduce a hierarchy of “biregular” cancellation questions mimicking the birational
story.

Definition 5.3.3.1 Suppose X and Y are irreducible smooth k-schemes of the same
dimension. Say that X and Y are

1. stably isomorphic if there exist an integer n ≥ 0 such that X × A
n ∼= Y × A

n;
2. common direct factors if there exists a smooth varietyZ such thatX×Z ∼= Y×Z;

and
3. common retracts if there exists a smooth variety Z and closed immersions X →

Z and Y → Z admitting retractions. ��
Remark 5.3.3.2 If X and Y are stably isomorphic, one may ask for the smallest
value of m for which X × A

m ∼= Y × A
m; so it makes sense to refine stable

isomorphisms and inquire about m-stable isomorphisms. ��
From the standpoint of A1-homotopy theory, this definition is important because

of the following result.

Lemma 5.3.3.3 Stably isomorphic smooth varieties are A1-weakly equivalent. ��
Perhaps the original cancellation question, which was explicitly stated by

Coleman and Enochs [33], asked whether 1-stably isomorphic affine varieties are
isomorphic. More generally, Abhyanker–Heinzer–Eakin [1] asked whether stably
isomorphic affine varieties are isomorphic. In [1], this question is introduced
as follows: a ring A is called invariant if given a ring B and an isomorphism
A[x1, . . . , xn] ∼= B[y1, . . . , yn] it follows thatA ∼= B. In fact, Abhyankar–Heinzer–
Eakin proved that one-dimensional integral domains over a field are invariant
[1, Theorem 3.3], i.e., cancellation holds for irreducible affine curves. Then, [1,
Question 7.10] asks whether two-dimensional integral domains over a field are
invariant, with particular attention drawn to the case of the affine plane. It is, of
course, natural to consider the invariance question in higher dimensions as well.
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The invariance question becomes more subtle as the dimension of varieties
under consideration increases. In the early 1970s, Hochster gave the first counter-
example to a cancellation problem over the real numbers [70], and similar examples
were observed by M.P. Murthy (unpublished). In the mid 1970s, Iitaka and Fujita
gave geometric conditions (non-negativity of the so-called logarithmic Kodaira
dimension, an invariant taking values among −∞, 0, 1, 2, . . . ) under which affine
varieties that are common direct factors are isomorphic [77, Theorem 1]. From
the point of A1-homotopy theory, what is more interesting is counter-examples to
cancellation questions involving smooth varieties.

5.3.4 Danielewski Surfaces and Generalizations

In the late 1980s, Danielewski gave [36] a rather definitive counter-example to
the invariance question for smooth affine surfaces: he wrote down smooth affine
surfaces depending on a positive integer n, such that any two varieties in the
class were stably isomorphic, and showed that the relevant varieties could be non-
isomorphic for different values of n; we now discuss these varieties in detail.

Definition 5.3.4.1 Fix a polynomial P(z) in one variable and an integer n ≥ 1. The
Danielewski surface Dn,P is the closed subscheme of A3 defined by the equation
xny = P(z). ��
Example 5.3.4.2 When n = 1 and P(z) = z(1+ z), the variety Dn,P is isomorphic
to the standard Jouanolou device over P1 from Example 5.3.1.6. Assuming 2 is
invertible in our base ring, it is also isomorphic to the standard hyperbolic quadric
xy + z2 = 1. ��

If P(z) is a separable polynomial, then it is straightforward to see that Dn,P

is smooth over k. In that case, projection in the x-direction determines a morphism
Dn,P → A

1
k . Assume for simplicity k is an algebraically closed field, soP(z) factors

as a product of distinct linear factors; write z1, . . . , zd for the d := degP(z) distinct
roots of P(z). In that case, the fibers of the projection morphism are isomorphic
to A

1
k over non-zero points of A1

k while the fiber over 0 consists of d copies of
A
1
k defined by x = 0, z = zi . The complement of all but d − 1 of these copies

of the affine line is an open subscheme of Dn,P that is isomorphic to A
2, and the

restriction of the projection morphism is a product projection A
1
k × A

1
k → A

1
k .

Thus, the projection morphism Dn,P → A
1
k factors through a morphism Dn,P →

A
1
P , where A

1
P is a non-separated version of the affine line with a d-fold origin.

Danielewski and Fieseler observed that this product projection makes Dn,P → A
1
P

into a torsor under a line bundle (see [40, Proposition 2.6] for various generalizations
of this construction). We summarize the Danielewski construction in the following
result, which follows from the discussion above and the fact that torsors under line
bundles over affine schemes may be trivialized (i.e., are isomorphic to line bundles).
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Proposition 5.3.4.3 (Danielewski, Fieseler, Dubouloz) Assume k is algebraically
closed and P is a separable polynomial. If n and n′ are distinct positive integers,
and P is a separable polynomial over k, then set:

Dn,P
p1←− Dn,P ×

A
1
P

Dn′,P
p2−→ Dn′,P .

The morphisms pi make the fiber product into the projection map for a geometric
line bundle. In particular, Dn,P and Dn′,P are common retracts of Dn,P ×

A
1
P

Dn′,P
(retraction given by the zero section). If P = z(1 + z), then Dn,P and Dn′,P are
furthermore stably isomorphic. ��

The above observations, coupled with a homotopy colimit argument allow one to
describe the A1-homotopy type of Dn,P rather explicitly: it is A1-weakly equivalent
to a wedge sum of d − 1-copies of P1k . The proposition even gives very explicit
A
1-weak equivalences for different values of n and fixed P . The isomorphism

class of the varieties Dn,z(1+z) may be distinguished over the complex numbers
by computing their first homology at infinity: explicitly Dn may be realized as the
complement of a divisor in a Hirzebruch surface.

Proposition 5.3.4.4 (Fieseler) If k = C, then for any integer n ≥ 2,
H∞

1 (Dn,z(1+z)) ∼= Z/2nZ. In particular, if n and n′ are distinct integers, Dn,z(1+z)

and Dn′,z(1+z) are not isomorphic. ��
Danielewski’s original construction has been expanded in many directions. We

refer the reader to [40] and [41] for more details. One even knows that there are
pairs of topologically contractible smooth affine varieties giving counter-examples
to cancellation [46]. Cancellation may fail for open subsets of affine space: this was
observed for affine spaces of sufficiently large dimension in [84] and for A3 in [43].
Jelonek even observed [84, Proposition 3.18] that there exist smooth affine varieties
that are 2-stably isomorphic but not 1-stably isomorphic. Subsequently, lower-
dimensional examples of this phenomena (though which fail to be smooth) were
constructed in [7] and 2-dimensional smooth counterexamples were constructed in
[44]. Furthermore, cancellation may fail rather generically: for every smooth affine
variety of dimension d ≥ 7, there exists a smooth affine variety X′ birationally
equivalent to X such that the variety X′ × A

2 is not invariant. We refer the reader
to [125] for a survey of the state of affairs up to about 2014, though the references
above should make it clear that many exciting developments have occurred since
that time.

Problem 5.3.4.5 Develop tools to distinguish isomorphism classes of smooth
schemes having a given unstable A1-homotopy type. ��
Remark 5.3.4.6 In Sect. 5.4.4, we will develop some tools to aid in the study of this
problem for smooth schemes that are not proper. ��
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5.3.5 Building Quasi-Affine A1-contractible Varieties

Winkelmann’s example 10 is realized as a quotient of affine space by a free action
of a unipotent group (we review this below in Example 5.3.5.1. In this section, we
discuss some examples that significantly expand on this idea and therefore show
that A1-contractible smooth schemes are abundant in nature.

Unipotent Quotients

If the additive group scheme Ga acts scheme-theoretically freely on a smooth
scheme X and a quotient exists as a scheme, then the quotient map is automatically
Zariski locally trivial because H 1(−,Ga) vanishes on affine schemes (Ga is an
example of a linear algebraic group that is special in the sense of Serre). In
that case, the quotient map is automatically an A

1-weak equivalence by appeal to
Lemma 5.3.1.3.

Example 5.3.5.1 Take k = Z, and suppress it from notation. Let Q4 be the smooth
affine quadric in A

5 defined by the equation x1x3 − x2x4 = x5(1 + x5). Let E2
be the closed subscheme defined by the equation x1 = x3 = x5 + 1 = 0; E2 is
isomorphic to A

2. The complement X4 := Q4 � E2 is quasi-affine and not affine;
it is Winkelmann’s quasi-affine quotient from the introduction (i.e., Example 10)
over SpecZ. The variety X4 is an A

1-contractible smooth scheme by appeal to
Lemma 5.3.1.3. ��

Generalizing these observations, in [10], the first author and B. Doran showed
that many (pairwise non-isomorphic) strictly quasi-affine A1-contractible varieties
could be constructed in this way. In fact, the following result, which is a first step in
the direction of Theorem 1.

Theorem 5.3.5.2 ([10, Theorem 1.3]) Assume k is a field. For every integer m ≥ 6
and every integer n ≥ 0, there exists a connected n-dimensional k-scheme S and a
smooth morphism π : X → S of relative dimension m, whose fibers over k-points
are A1-contractible, quasi-affine, not affine, and pairwise non-isomorphic. ��

By Proposition 5.2.4.6, it follows that if X is any A
1-contractible smooth k-

scheme, then Pic(X) = Pic(k). In particular, if Pic(k) is trivial (e.g., if k is a
field or Z), then every line bundle on X is trivial. In that case, every torsor under
a line bundle on X is automatically a Ga-torsor. It is known that total spaces of
Ga-torsors over schemes may have non-isomorphic total spaces (e.g., consider the
Danielewski varieties above). The following question extends a question posed
initially by Kraft [90, §3 Remark 2] in the case X = X4 (since Ga-torsors on
affine schemes are always trivial, the question is only interesting for quasi-affine
A
1-contractible varieties).
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Question 5.3.5.3 Suppose X is an A
1-contractible smooth k-scheme. Is it possible

to have two Ga-torsors on X with non-isomorphic total spaces? ��
Winkelmann’s example also has interesting consequences for the shape of the

generalized Serre question 6. Indeed, one may use it to see that it is possible to have
nontrivial vector bundles on A

1-contractible smooth schemes that are not affine.
This phenomenon is analyzed in great detail in [11] as a measure of the failure of
A
1-invariance of the functor assigning to a schemeX the set of isomorphism classes

of rank r vector bundles on X (cf. Example 5.2.4.7). It also shows that the affineness
assertion in Question 6 is absolutely essential.

Example 5.3.5.4 The variety X4 above carries a nontrivial rank 2 vector bundle.
The variety Q4 carries a nontrivial rank 2 vector bundle. The easiest way to see this
is to realize Q4 as Sp4/(Sp2 × Sp2), i.e., as the quaternionic projective line HP

1

in the sense of [114]. In that case, the map Sp4/Sp2 → Q4 is a nontrivial Sp2-
torsor, and the relevant vector bundle is the associated vector bundle to the standard
2-dimensional representation of this Sp2-torsor. In fact, the quotient Sp4/Sp2 and
the varietyQ4 both have theA1-homotopy type of a motivic sphere, and the relevant
morphism is the motivic Hopf map sometimes called ν. Since the open immersion
j : X4 ↪→ Q4 has closed complement of codimension 2, the restriction functor
j∗ on the category of vector bundles is fully-faithful. Thus, this rank 2 bundle
restricts to a nontrivial rank 2 vector bundle on X4. The total space of this rank
2 vector bundle is another A1-contractible smooth scheme which is necessary non-
isomorphic to affine space as it is itself quasi-affine! ��

We have seen above that there are quasi-affine A1-contractible smooth schemes
of dimension d ≥ 4. On the other hand, one may see using classification that
the only A

1-contractible smooth scheme of dimension 1 (say over a perfect field)
is A

1. It follows from a general result of Fujita [54, §2 Theorem 1] that any
topologically contractible smooth complex surface is necessarily affine. Thus, the
following question remains open.

Question 5.3.5.5 If k is a field, does there exist an A
1-contractible (resp. topolog-

ically contractible) smooth k-scheme of dimension 3 that is quasi-affine but not
affine? ��

Other Quasi-Affine A1-contractible Varieties

In [10], it was asked whether every quasi-affine A
1-contractible variety could be

realized as a quotient of an affine space by a free action of a unipotent group,
generalizing the situation in topology suggested by Theorem 2. The answer to this
question was seen to be no in [16]. For any integer n ≥ 0, write Q2n for the
smooth affine k-scheme defined by the equation

∑
i xiyi = z(1 + z) in A

2n+1 with
coordinates (x1, . . . , xn, y1, . . . , yn, z). Then, defineEn to be the closed subscheme
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of Q2n defined by x1 = · · · = xn = 1 + z = 0. As in the case n = 2, En is
isomorphic to affine space of dimension n. We define a variety

X2n := Q2n � En.

For n = 0, E0 = Spec k, and X0 is Spec k as well. For n = 1, one can check that
X2 is isomorphic to A

2
k . For n = 2, X4 is Winkelmann’s example studied above.

The following example shows that not every A
1-contractible smooth scheme may

be realized as a quotient of affine space by a free action of the additive group, in
contrast to the situation in topology summarized in Theorem 2.

Theorem 5.3.5.6 ([16, Theorems 3.1.1 and Corollary 3.2.2]) Suppose n ≥ 0.

1. The variety X2n is A1-contractible.
2. If n ≥ 3, then X2n is not a quotient of affine space by a free action of a unipotent

group. ��
Proof We will sketch the proof of the first statement, which follows by induction
starting from the fact that X2 ∼= A

2 and is thus A
1-contractible. To set up the

induction, we introduce some terminology. Let Un be the open subscheme of Q2n
defined by xn �= 0. Note that Un is isomorphic to A

2n−1 × Gm with coordinates
x1, . . . , xn−1, y1, . . . , yn, z on theA2n−1-factor and coordinate xn on the Gm-factor.
The closed complement Zn of Un, i.e., the closed subscheme of Q2n defined by
xn = 0 is isomorphic to Q2n−2 ×A

1 with coordinate yn on the A1-factor. The point
x1 = · · · = xn−1 = y1 = · · · = yn = z = 0 defines a point 0 on Zn. The normal
bundle to Zn is a trivial line bundle, with an explicit trivialization defined by the
equation xn = 0. Note that, by construction En is a closed subscheme of Zn, and
therefore U2n ⊂ X2n as well. Likewise, the subscheme Zn � En is isomorphic to
X2n−2 × A

1.
The closed subscheme of Un defined by setting x1 = · · · = xn−1 = y1 = · · · =

yn = z = 0 is isomorphic toGm with coordinate xn. The inclusion mapGm → Un is
a monomorphismof presheaves, and splits the projectionUn

∼= A
2n−1×Gm → Gm.

In particular, the map Un → Gm is an A
1-weak equivalence. Likewise, the closed

subscheme of Q2n defined by x1 = · · · = xn−1 = y1 = · · · = yn = z = 0 is
isomorphic to A

1 with coordinate xn and we have a pullback diagram of the form

0 A
1

Zn Q2n;

where the top map is given by xn = 0 and thus maps on normal bundles to the
horizontal closed immersions have compatible trivializations. Since En is disjoint
from this copy of A1, it follows that we have a sequence of inclusions of the form:

Gm −→ A
1 −→ X2n.
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We would like to understand the homotopy cofiber of the composite map, which
coincides with the homotopy cofiber of the map Un → Xn since the projection map
Un → Gm is an A1-weak equivalence.

Since A
1 is A

1-contractible, the homotopy cofiber of the map A
1 → X2n is

X2n pointed by 0. The cofiber of Gm → A
1 is P1 by the purity isomorphism (see

Theorem 5.2.4.14). Likewise, the cofiber of the map Gm → X2n coincides with
T h(ν(Zn�En)/X2n) = P

1+ ∧ (X2n−2 × A
1), and there is thus a cofiber sequence of

the form

P
1 −→ P

1+ ∧ (Zn � En) −→ X2n.

By construction, and functoriality of the purity isomorphism (again Theo-
rem 5.2.4.14), the left hand map is the P1-suspension of the map S0

k → (Zn �En)+
given by inclusion of 0 in the first factor. It is therefore split by the map
(Zn � En)+ → S0

k that corresponds to adding a disjoint base-point to the
structure map. Thus, one concludes that there is an induced A

1-weak equivalence
P
1 ∧ (Zn �En) → X2n. Since (Zn �En) ∼= X2n−2 ×A

1, it is A1-contractible, and
the suspension P1 ∧ (Zn � En) is also A1-contractible. ��
Question 5.3.5.7 Is the total space of a Jouanolou device over X2n isomorphic to
an affine space? ��
Remark 5.3.5.8 An approach to analyzing the above question was suggested around
2016 in unpublished work of A. Ananyevskiy and A. Luzgarev [4], at least
over fields having characteristic unequal to 2, and suggested independently by
Danielewski [37] after reading an earlier version of this survey. The idea is to realize
Q2n as the homogeneous space SO2n+1/SO2n for the split special orthogonal
group. In that case, one may try to build an explicit morphism from an affine space
to X2n as follows. Take the unipotent radical of a suitable parabolic subgroup of
SO2n+1, and a suitable subgroup of the unipotent radical of the opposite subgroup.
In that case, one can use multiplication in SO2n+1 to build the relevant morphism.
Nevertheless, in this case, it is not known if the morphism one obtains is Zariski (or
Nisnevich) locally trivial. ��

5.4 Further Computations in A
1-homotopy Theory

In the preceding section, we revisited some constructions for affine (and quasi-
affine) varieties from the standpoint of A1-homotopy theory. Of these constructions
and results, only Theorem 5.3.5.6 really required tools of A1-homotopy theory. To
connect with some of the other questions mentioned in the introduction, in particular
the generalized van de Ven Question 8, in this section we will discuss connectivity
from the standpoint of A

1-homotopy theory, and close with some of the basic
computations of the analogs of classical (unstable) homotopy groups of spheres.
Recall that k is a base Noetherian commutative unital ring of finite Krull dimension,
which we will often assume is a field.
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5.4.1 A
1-homotopy Sheaves

Suppose (X , x) is a pointed space. Earlier, we defined bi-graded motivic spheres
Si,j . These bi-graded motivic spheres allow us to define corresponding homotopy
groups.

Basic Definitions

Definition 5.4.1.1 Given a space X , the sheaf of A
1-connected components,

denoted πA
1

0 (X ), is the Nisnevich sheaf on Smk associated with the presheaf
U �→ [U,X ]

A
1 . ��

Definition 5.4.1.2 If X is a motivic space, then X is A
1-connected if the

canonical morphism πA
1

0 (X ) → Spec k is an isomorphism (and A
1-disconnected

otherwise). ��
Definition 5.4.1.3 Given a pointed space (X , x), the i-th A

1-homotopy sheaf,
denoted πA

1

i (X , x), is the Nisnevich sheaf on Smk associated with the presheaf
U �→ [Si ∧ U+, (X , x)]

A
1 . ��

As in classical topology, one can formally show that πA
1

1 (X , x) is a Nisnevich

sheaf of groups, and πA
1

i (X, x) is a Nisnevich sheaf of abelian groups for i > 1.
In fact, results of Morel show that, just like in topology, these sheaves of groups
are “discrete” in an appropriate sense; see [109] for an introduction to these ideas
and [110] for details. The following result, called the A1-Whitehead theorem for its
formal similarity to the ordinary Whitehead theorem for CW complexes, is a formal
consequence of the definitions.

Proposition 5.4.1.4 ([111, §3 Proposition 2.14]) A morphism f : X → Y of
A
1-connected spaces is an A

1-weak equivalence if and only if for any choice of
base-point x for X, setting y = f (x) the induced morphism

πA
1

i (X , x) −→ πA
1

i (Y , y)

is an isomorphism. ��
The following result is called the unstable 0-connectivity theorem.

Theorem 5.4.1.5 ([111, §2 Corollary 3.22]) If X is a space, then the canonical
map X → πA

1

0 (X ) is an epimorphism after Nisnevich sheafification. ��
Remark 5.4.1.6 One consequence of Theorem 5.4.1.5 is that existence of a
k-rational point is an A1-homotopy invariant. ��
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A
1-rigid Varieties Embed into H (k)

One rather fundamental difference between the A
1-homotopy category and the

classical homotopy category is that while classical homotopy types are essentially
discrete, A1-homotopy types may vary in families. We begin by recalling the
following definition, which begins to analyze the interaction with morphisms from
the affine line and A1-connected components.

Definition 5.4.1.7 A smooth scheme of finite type X ∈ Smk is A1-rigid if the map

Smk(Y × A
1,X) −→ Smk(Y,X) (5.1)

induced by the 0-section Spec k → A
1 is a bijection for every Y ∈ Smk . ��

Remark 5.4.1.8 Let π : Y × A
1 → A

1 denote the projection map. Then the
composite map

Smk(Y,X)
π∗→ Smk(Y × A

1,X) −→ Smk(Y,X) (5.2)

is the identity. Thus X is A1-rigid if and only if π∗ is surjective or equivalently (5.1)
is injective for all Y ∈ Smk . ��
Lemma 5.4.1.9 A smooth scheme of finite type X ∈ Smk is A1-local fibrant if and
only if it is A1-rigid. ��
Proof Since every object of Smk is local projective fibrant, X ∈ Smk is A1-local
fibrant if and only if (5.1) is a weak equivalence of simplicial sets. We note that every
discrete simplicial set is cofibrant and fibrant. Thus (5.1) is a weak equivalence if
and only if it is a homotopy equivalence or equivalently a bijection. ��
Corollary 5.4.1.10 The full subcategory of A1-rigid schemes in Smk embeds fully
faithfully into H (k). Moreover, if X is A

1-rigid, the canonical morphism X →
πA

1

0 (X) is an isomorphism of Nisnevich sheaves. ��
Example 5.4.1.11 We note that Gm is A1-rigid. To show (5.1) is injective for all
Y ∈ Smk we may assume Y = SpecR, where R is a finitely generated k-algebra.
In fact, if R is a reduced commutative ring, then the pullback map R× → R[x]×
is bijective. More generally, any open subscheme of Gm is A1-rigid. Similarly, one
may show that if X is a smooth curve of genus g ≥ 1 and U ⊂ X is an open
subscheme, then U is also A

1-rigid. ��
Example 5.4.1.12 The scheme P1 is not A1-rigid because π∗ is not surjective when
Y = Spec k (there are of course many non-constant embeddings A1 ↪→ P

1). We
will explore this example more in Sect. 5.4.2. ��
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Example 5.4.1.13 Recall that a semi-abelian variety is a smooth connected alge-
braic group G obtained as an extension

1 −→ T −→ G −→ A −→ 1

of an abelian variety A, i.e., a smooth connected proper algebraic group, by a torus
T . For example, A can be the Jacobian of an algebraic curve of positive genus and
T can be the multiplicative group scheme. For any map φ : A1 → G the composite
A
1 → G → A is constant. To show this we may assume k is algebraically closed.

Indeed every map ρ : P1 → A is constant: by Lüroth’s theorem, we are reduced to
consider the normalization, i.e., we may assume that ρ is birational onto its image.
In that case, the differential dρ : T

P
1 → TA is injective being non-zero at the generic

point. Now the tangent sheaf TA is trivial while T
P
1 ∼= O

P
1(2). However, there is no

injective map O
P
1(2) → O⊕n

P
1 , where n is the dimension of A.

Returning to φ we conclude there exists g ∈ G(k) such that φ factors through the
translate gT ⊂ G, and we may view φ as a map A1 → (A1

� {0})n for some n > 0.
It follows that f is constant because every map A1 → A

1
� {0} is constant. In fact,

the affine line provides a useful geometric characterization of semi-abelian varieties
by Brion [29, Proposition 5.4.5]: If G is a smooth connected algebraic group over a
perfect field, then G is a semi-abelian variety if and only if every map A

1 → G is
constant.

Finally, since abelian varieties exist in non-constant families, we see A
1-

homotopy types exist in non-constant families. ��
Remark 5.4.1.14 Over the complex numbers, an algebraic variety X is called
Brody hyperbolic if every holomorphic map C → X is constant and algebraically
hyperbolic (also called Mori hyperbolic) if every algebraic morphism A

1 → X is
constant. It is not hard to show that Mori hyperbolic varieties are A

1-rigid in the
sense above. ��

5.4.2 A
1-connectedness and Geometry

Having explored varieties that were discrete from the standpoint of A1-homotopy
theory, we now discuss aspects of connectedness inA1-homotopy theory. Recall that
a motivic space X is A1-connected if the canonical morphism πA

1

0 (X ) → Spec k

is an isomorphism (and A1-disconnected otherwise).

Remark 5.4.2.1 Since the A
1-homotopy category is constructed by a localization

procedure, the sheaf πA
1

0 (X ) is rather abstractly defined and hard to “compute” in
practice. To give one indication of how A

1-connectedness interacts with arithmetic,
suppose X is a k-scheme with k a field. Since stalks in the Nisnevich topology
on Smk are henselizations of points on smooth schemes, Theorem 5.4.1.5 implies
that if X is an A

1-connected smooth scheme, then X(S) is non-empty for S every
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henselization of a smooth scheme at a point. In particular, A1-connected smooth
schemes always have k-rational points. ��

One would like to have a more “geometric” interpretation of A1-connectedness.
Of course, any A

1-contractible space is A1-connected, by the very definition. For
this, we recall how connectedness is studied in topology: a topological space is
path connected if any two points can be connected by a map from the unit interval.
Replacing the unit interval by the affine line, we could define a notion of A1-path
connectedness. For flexibility, we will use a slightly more general definition.

Definition 5.4.2.2 If X is a smooth k-scheme, say that X is A1-chain connected
if for every separable, finitely generated extension K/k, X(K) is non-empty,
and for any pair x, y ∈ X(K), there exist an integer N and a sequence x =
x0, x1, . . . , xN = y ∈ X(K) together with morphisms f1, . . . , fN : A

1
K → X

with the property that fi(0) = xi−1 and fi(1) = xi ; loosely speaking: any two
points can be connected by the images of a chain of maps from the affine line. ��
Remark 5.4.2.3 Note: K is not necessarily a finite extension, so this definition is
nontrivial even when k = C. Indeed, in that case, we ask, e.g., that C(t)-points,
C(t1, t2)-points, etc. can all be connected by the images of chains of affine lines.

��
From the definitions given, it is not clear that either A1-connectedness implies

A
1-chain connectedness or vice versa. In one direction, the problem is that

A
1-chain connectedness only imposes conditions over fields: while fields are

examples of stalks in the Nisnevich topology, they do not exhaust all examples of
stalks.

Proposition 5.4.2.4 ([107, Lemma 3.3.6] and [108, Lemma 6.1.3]) If X is an A
1-

chain connected smooth variety, then X is A1-connected. ��
Proof (Idea of Proof) The proof uses the fact that we are working with the
Nisnevich topology in a fairly crucial way. To check triviality of all stalks, it
suffices to show that πA

1

0 (X)(S) is trivial for S a henselian local scheme. Chain
connectedness implies that the sections over the generic point of S are trivial and
also that the sections over the closed point are trivial. We can then try to use a
sandwiching argument to establish that sections over S are also trivial: in practice,
this uses the homotopy purity Theorem 5.2.4.14! ��

Conversely, it is not clear that A1-connectedness implies A1-chain connected-
ness. However, one may prove the following result.

Theorem 5.4.2.5 ([15, Theorem 6.2.1]) If X is a smooth proper k-variety, and
K/k is any separable finitely generated extension, then πA

1

0 (X)(K) = X(K)/ ∼.
In particular, if X is A1-chain connected, then X is A1-connected. ��
Remark 5.4.2.6 Another proof of this result has been given in [22]. ��
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A
1-connectedness and Rationality Properties

The preceding theorem suggests a link between A
1-connectedness and rationality

properties. Indeed, Manin defined the notion of R-equivalence for rational points
on an algebraic variety: if L/k is a finite extension and X is a smooth k-scheme,
we say two L-points x0 and x1 are directly R-equivalent if there exists a rational
map P

1
L → XL defined at the points x0 and x1. We say two L-points are R-

equivalent if they are equivalent for the equivalence relation generated by direct
R-equivalence, and we write X(L)/R for the set of R-equivalence classes of
L-rational points. One says that a varietyX/k is universally R-trivial ifX(L)/R =∗
for every finitely generated separable extension L/k. With that definition, a smooth
proper variety X that is A1-chain connected is automatically universally R-trivial,
and Theorem 5.4.2.5 may be phrased as saying that A1-connected smooth proper
varieties are universally R-trivial. In fact, one may make a slightly stronger version
of this statement.

Proposition 5.4.2.7 If k is a field and U is an A
1-connected smooth k-variety

that admits a smooth proper compactification X, then X is A
1-connected and U

is universally R-trivial. ��
Remark 5.4.2.8 Of course, the hypothesis of admitting a smooth proper compacti-
fication is superfluous if either k has charateristic 0 or U has small dimension. ��
Proof The easiest proof of this fact uses a tool that we have not yet introduced called
the zerothA1-homology sheaf, which plays a role very similar to singular homology
in classical topology, but is rather far frommotivic (co)homologymentioned earlier.
Since U ⊂ X is open, the map

HA
1

0 (U) −→ HA
1

0 (X).

is an epimorphism by Asok [9, Proposition 3.8]. On the other hand, since U is A1-
connected, there is an isomorphism HA

1

0 (U) ∼= Z. Since X is proper, one concludes

HA
1

0 (X) ∼= Z as well. Then, the fact that X is A
1-connected follows from [9,

Theorem 4.15]. To conclude, simply observe that if x0 and x1 are L-points in U ,
then x0 and x1 are connected by a chain of affine lines over L in X. Restricting this
chain of affine lines to U gives the required witness to R-equivalence. ��

Recall that if k is a field, a k-form of the affine line is a smooth k-scheme of
dimension 1 that is fppf-locally isomorphic to A

1
k . However, if k is imperfect, then

there exist non-trivial forms of the affine line (e.g., if a ∈ k is not a p-th power, then
the hypersurface in A

2
k defined by the equation yp = x + axp gives a non-trivial

form).

Proposition 5.4.2.9 If k is a field, and X is a form of the affine line over k, then X

is A1-contractible if and only if X is isomorphic to A
1
k . ��
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Proof One direction is immediate. Assume k is a field and fix an algebraic closure
k̄ of k. If Xk̄ is not A

1-connected, then X cannot be A1-connected either. Using this
observation and Proposition 5.4.2.7 one easily reduces to the assertion that if X is
A
1-contractible, it must be isomorphic to a form of the affine line. If k is a perfect

field, then there are no non-trivial forms of the affine line (see, e.g., [124, Lemma
1.1]), and the result follows.

Assume then that k is imperfect. R. Achet proves [2, Theorem 2.4] that if X is a
non-trivial form of A1

k , then either X(k) is empty or Pic(X) is non-trivial. Note that
both conclusions are eliminated by the assertion that X is A1-contractible. ��

In light of the van de Ven question mentioned in the introduction, we observe
that Proposition 5.4.2.7 has the following consequence on the rationality of A1-
contractible varieties.

Corollary 5.4.2.10 Assume k is a field having characteristic 0. If X is an A
1-

contractible smooth k-scheme then X is universally R-trivial. ��
Remark 5.4.2.11 If k is a field and X is a smooth proper variety, then any
A
1-connected smooth proper variety is separably rationally connected. However,

A
1-connectedness has cohomological implications, e.g., the (prime to the charac-

teristic part of the) Brauer group of an A
1-connected smooth proper k-scheme is

automatically trivial (see [9, §4] for a detailed discussion of this point). For example,
it is known that there exist k-unirational varieties that are not A1-connected [15,
§2.3] [9, Example 4.18]. Thus,A1-connectedness of a smooth scheme has nontrivial
implications for the rationality properties of the scheme. ��

We know that A
1-connectedness implies universal R-triviality for smooth

schemes admitting a smooth proper compactification. However, the example of
Gm shows that R-equivalent k-points need not be connected by (chains of) rational
curves. Nevertheless, the following question remains open:

Question 5.4.2.12 Is it true for an arbitrary smooth k-scheme X that A
1-

connectedness is equivalent to A1-chain connectedness? ��
Remark 5.4.2.13 The relationship between R-equivalence and A

1-weak equiva-
lence of points has been studied on certain linear group schemes in [21]. ��

5.4.3 A
1-homotopy Sheaves Spheres and Brouwer Degree

Earlier, we saw that An
� 0 was a motivic sphere: it was isomorphic in H (k) to

Sn−1,n. It is not hard to show that An
� 0 is A

1-connected for n ≥ 2, so it is
natural to inquire about its connectivity and to compute its first non-vanishing A1-
homotopy sheaf. We quickly summarize some results of F. Morel, though we do not
have enough space to motivate the proofs.
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Theorem 5.4.3.1 (F. Morel) If k is a field, then A
n
� 0 is at least (n − 2)-A1-

connected, i.e., if n ≥ 2, it is A
1-connected and πA

1

i (An
� 0, x) vanishes for any

choice of k-point x ∈ A
n
� 0(k) and any integer 1 ≤ i ≤ n − 2. ��

Morel also computed the first non-vanishing A
1-homotopy sheaf in terms of

Milnor–Witt K-theory introduced earlier.

Theorem 5.4.3.2 (F. Morel) If k is a field, then for any integer n ≥ 2, and any
finitely generated separable extension L/k

πA
1

n−1(A
n
� 0)(L) = KMW

n (L).

From this result, Morel deduced the computation of the homotopy endo-
morphisms of A

n
� 0. If k ↪→ C, then A

n(C) is homotopy equivalent to
S2n−1. Therefore, realization defines a homomorphism [An

� 0,An
� 0]

A
1 →

[S2n−1, S2n−1] ∼= Z where the latter identification is the usual Brouwer degree.

Theorem 5.4.3.3 If k is a field, then for any integer n ≥ 2, there is a canonical
“motivic Brouwer degree” isomorphism

[An
� 0,An

� 0]
A
1 ∼= GW(k).

Moreover, if k ↪→ C, the induced homomorphism GW(k) → Z coincides with
the homomorphisms induced by sending a stable isomorphism class of symmetric
bilinear forms to the rank of its underlying C-vector space. ��

Later, we will see that computations of motivic Brouwer degree appear in proofs
of A1-contractibility statements.

5.4.4 A
1-homotopy at Infinity

In this section, we introduce some notions of A
1-homotopy theory at infinity.

Unfortunately, we are unable at the moment to make a good definition of “end
space” in order to define a workable notion of A1-fundamental group at infinity.

One-point Compactifications

Fix a field k, and suppose X is a smooth k-scheme. By a smooth compactification
of X we will mean a pair (X̄, ψ), where ψ : X → X̄ is an open dense immersion,
and X̄ is smooth. We will say that such a smooth compactification is good if the
closed complement of ψ (viewed as a scheme with the reduced induced structure)
is a simple normal crossings divisor.
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Lemma 5.4.4.1 If X is a smooth scheme, and X̄0 and X̄1 are smooth compactifi-
cations, with boundaries ∂X̄0 and ∂X̄1, then X̄0/∂X̄0 and X̄1/∂X̄1 are cdh-locally
weak equivalent and thus �X̄0/∂X̄0 and �X̄1/∂X̄1 are weakly equivalent in the
A
1-homotopy category. ��

Proof By definition of the cdh topology, if we are given an abstract blow-up square
of the form

E X

Y X,

i.e., Y → X is a closed immersion, X′ → X is proper and the induced map X′
�

E → X�Y is an isomorphism, then there is a cdh local weak equivalenceX′/E →
X/Y . To establish the statement, simply take the closure X̄ of the image of the
diagonal map X → X̄0 × X̄1 and observe that X̄ → X̄0 and X̄ → X̄1 yield abstract
blow-up squares. The second statement follows from the first because any morphism
of presheaves that is a cdh local weak equivalence becomes a Nisnevich local weak
equivalence after a single suspension (i.e., Theorem 5.2.4.16). ��

The lemma above shows that one-point compactifications are well-behaved in
the cdh-local version of the A

1-homotopy category. Alternatively, the S1-stable
A
1-homotopy type of a one-point compactification is well-defined.

Definition 5.4.4.2 If X is a smooth k-scheme, then for any compactification X̄ of
X, we set Ẋ = X̄/∂X̄; there is a natural map X → Ẋ. ��
Lemma 5.4.4.3 Suppose X is a smooth scheme. The following statements hold.

1. If X is proper, then Ẋ = X+.
2. For any integer n ≥ 0, there is an A

1-weak equivalence ˙(X × A
n) ∼= Ẋ∧P1∧n

.
��

Proof The first statement is immediate from X/∅ = X+. For the second statement,
one can first observe that Pn is a compactification of An with boundary P

n−1 and
use the A1-weak equivalence Pn/Pn−1 ∼= P

1∧ n
. Then, use the fact that if X̄ is any

compactification of X, then X̄ × P
n is a compactification of X × A

n. ��

Stable End Spaces

Our goal is to make some progress toward a definition of end-spaces in algebraic
geometry. There are many possible approaches to such a definition, and we do not
know whether they are all equivalent. One approach is to consider a “punctured
formal neighborhood” of the boundary in a compactification; this approach is not
suited to motivic homotopy theory using smooth schemes. The following definition
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is motivated by the definition of singular homology at infinity, in the case where the
boundary is suitably “tame”.

J. Wildeshaus introduced the notion of “boundary motive” [152] of a variety; it
can be thought of as a motivic version of the singular chain complex at infinity.
In fact, with notational modifications, Wildeshaus’ definition gives a P

1-stable
homotopy type. The only novelty of the definition we give below is that it gives
an S1-stable homotopy type.

Definition 5.4.4.4 Assume X is a smooth k-scheme. The S1-stable end space is
defined to fit into the following exact triangle:

X
∐

{∞} −→ Ẋ −→ e(X)[1]

Remark 5.4.4.5 The main benefit of working S1-stably instead of P1-stably is that
one has some hope of uncovering unstable phenomena related to “A1-connected
components at ∞”. Indeed, the zeroth A

1-homology sheaf of a smooth proper
scheme (see the proof of Proposition 5.4.2.7) detects rational points, while the
corresponding P1-stable object only sees zero cycles of degree 1 [9, 14]. Thus, the
above definition should be refined enough to detect some algebro-geometric analog
of the number of ends of a space. ��
Proposition 5.4.4.6 Assume k is a field having characteristic 0.

1. The construction e(−) is a functor on the category of smooth schemes and proper
maps.

2. If X is S1-stably A1-contractible, then e(X) ∼= Ẋ/∞[−1]. ��
Example 5.4.4.7 The end space of R is S0. Analogously, e(A1) = Gm. In particular,
end spaces need not even be A1-connected. Similarly, we find e(An) ∼= A

n
� 0. ��

Example 5.4.4.8 Suppose X is an A
1-contractible smooth affine scheme of dimen-

sion n. If X is isomorphic to An then e(X) ∼= A
n
� 0. ��

End spaces as defined here are also compatible with realization. Indeed, the
triangle defining e(X) makes sense in the usual stable homotopy category, and we
define eC(X) to be the cofiber of the natural map from the suspension spectrum of
X(C)

∐{∞} to the suspension spectrum of ˙X(C). Because realization behaves well
with respect to homotopy cofibers, the following result is immediate.

Proposition 5.4.4.9 If ι : k ↪→ C is an embedding, then Rι(e(X)) = eC(X). ��
Question 5.4.4.10 Is there a “good” unstable definition of end spaces in A

1-
homotopy theory? ��



5 A
1-homotopy Theory and Contractible Varieties: A Survey 189

5.5 Cancellation Questions and A
1-contractibility

5.5.1 The Biregular Cancellation Problem

After the work of Iitaka–Fujita and Danielewski, it became clear that cancellation
questions could admit negative solutions for smooth affine varieties of negative
logarithmic Kodaira dimension. Perhaps the main remaining question in this
direction is as follows.

Question 5.5.1.1 (Biregular Cancellation) If X is a smooth scheme of dimension
d such that

1. X is stably isomorphic to A
d , or

2. X is a direct factor of AN for some N > d , or
3. X is a retract of AN for some N > d , or

is X necessarily isomorphic to affine space? ��
Remark 5.5.1.2 The question of whether varieties that are stably isomorphic to
affine space are necessarily isomorphic to affine space is sometimes called the
Zariski cancellation question, but as mentioned earlier, Zariski never explicitly
stated this question. On the other hand Beilinson apparently asked whether any
retract of affine space is isomorphic to affine space [156, §8]. ��

The biregular cancellation question is known to have a positive answer for
smooth affine schemes of dimension 1 by Abhyankar et al. [1], and also for smooth
affine schemes of dimension 2: the result was established by Miyanish–Sugie and
Fujita [53, 104] over characteristic 0 fields and extended to perfect fields of arbitrary
characteristic in [121]. In contrast, we now know that the biregular cancellation
problem admits a negative answer over algebraically closed fields having positive
characteristic. Indeed, N. Gupta constructed a counter-example in dimension 3 [59]
and extended this result in a number of directions [60, 61]. We refer the reader
to [62] for more discussion of these results. However, the specific form of these
counterexamples does not allow them to be lifted to characteristic 0.

Lemma 5.5.1.3 If X is a smooth scheme of dimension d that is a retract of AN , then
X is a smooth affine, A1-contractible scheme. In particular, any counter-example to
the biregular cancellation problem is necessarily a smooth affine A

1-contractible
scheme. ��
Proof Any retract of an A1-weak equivalence is an A1-weak equivalence. ��
Remark 5.5.1.4 Gupta’s counterexamples to cancellation above provided the first
examples of smooth affine A1-contractible schemes in positive characteristic. ��
Remark 5.5.1.5 OverC, the biregular cancellation question remains open in dimen-
sions ≥3. ��
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Granted the Quillen–Suslin theorem on triviality of vector bundles on affine
space, it is easy to see that any algebraic vector bundle on a variety that is a retract of
affine space is automatically trivial. The representability theorem for vector bundles
guarantees that the same statement holds forA1-contractible smooth affine varieties.

Theorem 5.5.1.6 If X is a smooth affine A
1-contractible variety, then all vector

bundles on X are trivial. ��

5.5.2 A
1-contractibility vs Topological Contractibility

We now compare A1-contractibility and topological contractibility in more detail.
In particular, we would like to know whether topological contractibility and
A
1-contractibility are actually different. The best we can do at the moment is to

proceed dimension by dimension. The only topologically contractible smooth curve
is A1. However, already in dimension 2 problems appear to arise.

Affine Lines on Topologically Contractible Surfaces

With the exception of A2, most topologically contractible surfaces appear to have
very few affine lines, as we now explain. Based on the classification results (see
[156] and the references therein for more details), it suffices to treat the case
of surfaces of logarithmic Kodaira dimensions 1 and 2 (there are no contractible
surfaces of logarithmic Kodaira dimension 0).

Remark 5.5.2.1 General conjectures in algebraic geometry and arithmetic of
Green–Griffiths and Lang suggest that smooth proper varieties of general type
should not have “many” rational curves (see, e.g., [39]). Analogously, one hopes
that affine varieties of log general type should not have “many” morphisms from the
affine line (see, e.g., [97]). The topologically contractible surfaces of logarithmic
Kodaira dimension 2 contain no contractible curves by work of Zaidenberg
[154, 155] and Miyanishi-Tsunoda [105]; what can one say about morphisms from
the affine line to such a surface? For example, are such surfaces Mori hyperbolic
(see Remark 5.4.1.14)? ��
Remark 5.5.2.2 The surfaces of logarithmic Kodaira dimension 1 are all obtained
from some special surfaces (the so-called tom Dieck-Petrie surfaces) by repeated
application of a procedure called an affine modification (an affine variant of a blow-
up). How does A1-chain connectedness behave with respect to affine modifications
(we understand well how A

1-chain connectedness behaves with respect to blow-ups
of projective schemes with smooth centers)? One could also try to use the rationality
results of Gurjar-Shastri, i.e., that any smooth compactification of a topologically
contractible surface is rational [64, 65]. ��



5 A
1-homotopy Theory and Contractible Varieties: A Survey 191

Based on these observations, it seems reasonable to expect that topologically
contractible surfaces that are not isomorphic to A2 are disconnected from the stand-
point of A1-homotopy theory, which leads to the following conjecture suggesting an
answer to Question 12 from the introduction.

Conjecture 5.5.2.3 A smooth topologically contractible surface X is
A
1-contractible if and only if it is isomorphic to A

2. ��
The generalized van de Ven Question 8 asks whether all topologically con-

tractible varieties are rational. For A
1-contractible varieties, by “soft” methods,

one can establish “near rationality” as we observed above. The upshot of this
discussion is that A1-contractibility is a significantly stronger restriction on a space
than topological contractibility. In support of the above conjecture, the following
classification result was observed in [47].

Proposition 5.5.2.4 An A
1-contractible and A

1-chain connected smooth affine
surface over an algebraically closed field of characteristic 0 is isomorphic to the
affine plane A2. ��
Example 5.5.2.5 ([47]) For coprime integers k > l ≥ 2, the smooth tom Dieck-
Petrie surface is defined as

Vk,l := { (xz + 1)k − (yz + 1)l − z

z
= 0

} ⊂ A
3 (5.3)

We note thatVk,l is topologically contractible and stablyA1-contractible. However,
Vk,l has logarithmic Kodaira dimension κ(Vk,l) = 1, and thus it cannot be A

1-
chain connected. This example shows that the affine modification construction does
not preserve A1-chain connectedness. It is an open question whether or not Vk,l is
A
1-contractible. ��
Establishing A

1-connectedness is a first step towards understanding A
1-

homotopy type. A first step toward answering Question 8 in higher dimensions
thus seems to begin with an analysis of the following problem.

Problem 5.5.2.6 Which classes of topologically contractible varieties are known to
be A1-chain connected? ��

Chow Groups and Vector Bundles on Topologically Contractible Surfaces

The only general result about vector bundles smooth topologically contractible
varieties of arbitrary dimension pertains to the Picard group.

Theorem 5.5.2.7 ([63, Theorem 1]) If X is a topologically contractible smooth
complex variety, then Pic(X) = 0. ��
Proof Gurjar states this result for affine varieties. To remove the affineness assump-
tion, one may either inspect the proof and see that the assumption is never used, or
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one may reduce to the affine case by simply observing that Pic(X) is A1-invariant
by Proposition 5.2.4.6, and any topologically contractible smooth complex variety
is A

1-weakly equivalent to a topologically contractible smooth affine scheme by
appeal to Lemma 5.3.1.4. ��

On the other hand, Theorem 5.2.4.8 together with standard techniques of obstruc-
tion theory allows one to understand vector bundles on topologically contractible
smooth affine varieties. Indeed, the ideas of [12, 13] show that classification of
vector bundles on smooth affine schemes of low dimensions are reduced to analysis
of Chow groups. If X is a topologically contractible smooth affine complex variety
of dimension d , then onemay relate the structure ofCHd(X) to geometry. Indeed, if
Y is any smooth complex affine variety of dimension d , then a theorem of Roitman
[120] implies that CHd(Y ) is uniquely divisible. Thus, if CHd(Y ) is furthermore
finitely generated, it must be trivial. The latter condition may be guaranteed by
imposing conditions on the geometry of compactifications and is thus related to the
generalized van de Ven Question 8. The Chow groups of topologically contractible
surfaces, which were originally computed by Gurjar and Shastri [64, 65], may be
computed in this way. Indeed, Gurjar and Shastri show that the generalized van de
Ven question has a positive answer in dimension 2, so it follows immediately that
if X is a topologically contractible smooth complex affine surface, then CH 2(X) is
trivial.

Theorem 5.5.2.8 If X is a topologically contractible smooth complex surface, then
every algebraic vector bundle on X is trivial. ��
Proof Suppose X is a smooth affine surface over an algebraically closed field. By
Serre’s splitting theorem, it suffices to prove that rank 1 and rank 2 bundles are
trivial. However, Pic(X) ∼= CH 1(X). The results of [12, Theorem 1] imply that the
canonical map

(c1, c2) : V2(X) −→ CH 1(X) × CH 2(X)

is a bijection. If k = C and X is furthermore topologically contractible, then
Theorem 5.5.2.7 implies that CH 1(X) = Pic(X) = 0. The argument that
CH 2(X) = 0 is given before the statement. ��
Remark 5.5.2.9 In fact, the results of Gurjar and Shastri give a much more refined
result than CH 2(X) = 0 for a topologically contractible smooth complex affine
variety. In [8], the Voevodskymotive of a topologically contractible smooth complex
affine surface is seen to be isomorphic to that of a point. This implies that the
Chow groups are universally trivial, i.e., for every finitely generated extensionL/C,
CH 2(XL) = 0 as well.

Similarly, the generalized Serre Question 6 in dimension 3 may be reduced to a
question that is purely cohomological.
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Theorem 5.5.2.10 If X is a topologically contractible smooth complex threefold,
then every algebraic vector bundle on X is trivial if and only if CH 2(X) and
CH 3(X) are trivial. ��
Proof As in the proof of Theorem 5.5.2.8, it suffices to treat the case of ranks
1, 2 and 3 by Serre’s splitting theorem. It is known that the Picard group of any
topologically contractible threefold is trivial, so the rank 1 case follows. The results
of [12, Theorem 1] imply that if, furthermore, CH 2(X) is trivial, then every rank
2 vector bundle is trivial. Finally, classical results of Mohan Kumar and Murthy
imply that there is a unique rank 3 vector bundle with given (c1, c2, c3) [106]. In
particular, if CH 3(X) is also trivial, it follows that every rank 3 bundle on such an
X is trivial. ��
Remark 5.5.2.11 In [8], it is observed that one may produce threefolds with trivial
Chow groups by means of the technique of affine modifications, so one may
produce many examples of topologically contractible threefolds satisfying the
above hypotheses. Similar observations are used in [74] to establish triviality of
vector bundles on Koras–Russell threefolds (see Sect. 5.5.3 and the discussion after
Theorem 5.5.3.7 for more details). ��

As sketched above, one may use geometry to analyze vector bundles on
topologically contractible smooth complex affine threefolds. Indeed, suppose X is
a topologically contractible smooth complex affine threefold admitting a smooth
compactification X̄ that is rationally connected. Of course, this is weaker than
assuming the generalized van de Ven Question 8 has a positive solution in dimension
3. In that case CH 3(X̄) = Z and thus CH 3(X) is trivial. Tian and Zong [137,
Theorem 1.3] implies thatCH 2(X̄) is generated by classes of rational curves. Using
this, and the localization sequence, one can sometimes establish that CH 2(X) is
itself torsion. In that case, [91, Appendix Theorem] due to Srinivas implies that
CH 2(X) is actually trivial. For example, it follows from [91, Corollary 18] that if X

is a topologically contractible smooth complex affine threefold that admits a finite
morphism from A

3, then all vector bundles on X are trivial.

Remark 5.5.2.12 For some comments on the situation in dimension ≥4, see
Conjecture 5.5.3.11. ��

5.5.3 Cancellation Problems and the Russell Cubic

We now investigate A
1-contractible smooth affine varieties over fields having

characteristic 0. For concreteness, it’s useful to focus on one particular case: let
KR be the so-called Russell cubic, i.e., the smooth variety in A

4 defined by the
equation:

x + x2y + z3 + t2 = 0
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There is a natural Gm-action onKR given by

Gm × KR → KR; (λ, x, y, z, t) �→ (λ6x, λ−6y, λ2z, λ3t). (5.1)

With respect to this action we have the Gm-invariant variables u := xy, v := yt2 ∈
O(KR)Gm . In fact, the GIT-quotient for (5.1) is given by

π : KR → A
2
u,v; (x, y, z, t) �→ (u, v). (5.2)

The fiber π−1(α, β) ⊂ KR is described by the equations α = xy, β = yt2, and

x + x2y + z3 + t2 = 0. (5.3)

Multiplying (5.3) by y yields the equation

α + α2 + yz3 + β = 0. (5.4)

Using these equations one checks that there is exactly one closed orbit in each fiber.
Thus the set of closed orbits is parameterized by the normal scheme A2

u,v and we
conclude the corresponding GIT-quotient is indeed (5.2).

Makar-Limanov succeeded in showing that KR is non-isomorphic to A3 [98] by
calculating his eponymous invariant. We recall that the Makar-Limanov invariant
of an affine algebraic variety X is the subring ML(X) of �(X,OX) comprised of
regular functions that are invariant under all Ga-actions on X. Using the bijection
between Ga-actions on X and locally nilpotent derivations ∂ on the k-algebra
�(X,OX) one finds that

ML(X) =
⋂
∂

ker(∂).

Clearly we have ML(A3) = k and similarly for all affine spaces, while extensive
calculations reveal that ML(KR) = k[x]. That is, KR admits in a sense fewer
Ga-actions than A

3. Here we observe the inclusion ML(KR) ⊂ k[x]: the locally
nilpotent derivations x2∂z − 2z∂y and x2∂t − 3t2∂y of k[x, y, z, t] induce locally
nilpotent derivations on the coordinate ring k[KR]. One easy checks that their
kernels intersect in k[x]. The interesting part of Makar-Limanov’s calculation is
to show that ∂(x) = 0 for every locally nilpotent derivation of k[KR]. Alternatively
one can use Kaliman’s result in [86] saying that if the general fibers of a regular
function A

3 → A
1 are isomorphic to A

2 then all its fibers are isomorphic to
A
2. All the closed fibers of the projection map KR → A

1
x are isomorphic to A

2

except for over the origin, which yields a copy of the cylinder on the cuspidal curve
{z3 + t2 = 0}.

Dubouloz [42] showed that the Makar-Limanov invariant cannot distinguish
between the cylinder KR × A

1 on the Russell cubic and the affine space A
4.
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Furthermore, M.P. Murthy showed that all vector bundles on KR are trivial [112]
(it is also known that the Chow groups of KR are trivial). However, the Gm-action
on KR has an isolated fixed point. If KR is not stably isomorphic to A3, is there an
A
1-homotopic obstruction to stable isomorphism?

Question 5.5.3.1 Is the Russell cubic KR A
1-contractible? ��

This question, which has recently been solved in the affirmative, has guided
much of the research in the area. First, one might try to compute the A1-homotopy
groups; for this even to be sensible, we should make sure that the first obstruction to
A
1-contractibility vanishes. For a generalization of the following observation we

refer the reader to [47].

Proposition 5.5.3.2 (B. Antieau (unpublished)) The Russell cubic KR is
A
1-chain connected. ��
5.5.3.3 (Approach 1) Can one detect nontriviality of any of the higher
A
1-homotopy groups ofKR? One approach to this problem is to think “naively” of,

e.g., the A1-fundamental group. Think of chains of maps from A
1 that start and end

at a fixed point up to “naive” homotopy equivalence (this naturally forms a monoid
rather than a group). The resulting object maps to the actualA1-fundamental group,
but what can one say about its image? ��
5.5.3.4 (Approach 2) Since to disprove A

1-contractiblity, we only need one
cohomology theory that is A

1-representable that detects nontriviality, it is useful
to look at invariants that are not as “universal” as A1-homotopy groups. For another
approach, using group actions, let us mention that J. Bell showed that rational
Gm-equivariant K0 of KR is actually nontrivial [25]. Unfortunately, his computa-
tions together with the Atiyah-Segal completion theorem in equivariant algebraic
K-theory also show that the “Borel style” equivariant K0 is isomorphic to the Borel
style equivariant K0 of a point [18]. Nevertheless, A1-homotopy theory gives a
wealth of new cohomology theories with which to study the Russell cubic. For
example, it would be interesting to know if one of the more “refined” Borel style
equivariant theories is refined enough to detect failure of A1-contractibility.

If μn ⊂ Gm is a sufficiently “large” subgroup then the μn-equivariant K0 of
KR is also nontrivial. Moreover, the fixed-point loci for the μn-actions are all affine
spaces (indeed, if n is prime, then the only nontrivial subgroup is the trivial subgroup
which has the total space as fixed point locus). Thus, for many purposes, one might
simply look at μn-equivariant geometry.

In equivariant topology, a map is a “fine” equivariant weak equivalence if it
induces a weak equivalence on fixed point loci for all subgroups. Transplanting
this to A

1-homotopy theory: if we knew that equivariant algebraic K-theory was
representable in an appropriate equivariant A1-homotopy category, such a category
has been constructed for finite groups by Voevodsky [38], and we knew enough
about the weak equivalences, then Bell’s result might formally imply that X is not
A
1-contractible. ��
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The Russell Cubic and Equivariant K-theory

For representability of equivariant algebraic K-theory let us work relative to a
regular Noetherian commutative unital ring k of finite Krull dimension. We assume
that G → k is a finite constant group scheme (or more generally that it satisfies
the resolution property: every coherent G-module on X in SchG

k is the equivariant
quotient of a G-vector bundle). Under these assumptions, Nisnevich descent for
equivariant algebraic K-theory of smooth schemes over k was established in [68].
The fact that equivariant algebraic K-theory satisfies equivariant Nisnevich descent
for smooth schemes implies that it is representable in the equivariant motivic
homotopy category.

Let X be a G-scheme over k. Write PG(X) for the exact category of
G-vector bundles. Then the equivariant algebraic K-groups are the homotopy
groups KG

i (X) := πiK(PG(X)) of the associated K-theory space, defined by
Waldhausen’s S•-construction [147]. We obtain a presheaf of simplicial sets KG on
SchG

k such that πiKG(X) = KG
i (X) for all X by applying a rectification procedure

to the pseudo-functor X �→ PG(X). With the same hypothesis as above, there is a
natural isomorphism

KG
i (X) ∼= [Si ∧ X+,KG]H G• (k)

for any X in SmG
k and the pointed G-equivariant motivic homotopy category

H G• (k) of k. This is the desired representability result for equivariant algebraic
K-theory mentioned above.

An explicit computation of the μp-equivariant Grothendieck groups of Koras–
Russell threefolds was carried out in [74]. For concreteness we specialize to the
case k = C. When X is a complex variety with an action of an algebraic group G,
we let R(G) � KG

0 (k) denote the representation ring of G. If H ⊆ G is a closed
subgroup, we note there is a restriction map KG

0 (X) → KH
0 (X). Let X be a smooth

affine variety with C
×-action and let n > 0 be an integer. There is a natural ring

isomorphism

φ : KC
×

0 (X) ⊗
R(C×)

R(μn)
∼=−→ K

μn

0 (X). (5.5)

An algebraicC×-action on a smooth complex affine variety is called hyperbolic if
it has a unique fixed point and the weights of the induced linear action on the tangent
space at this fixed point are all non-zero and their product is negative. Recall from
[89] that a Koras–Russell threefold X is a smooth hypersurface in A

4
C
which is

1. topologically contractible,
2. has a hyperbolic C×-action, and
3. the quotient X//C× is isomorphic to the quotient of the linear C×-action on the

tangent space at the fixed point (in the sense of GIT).
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It is shown in [89, Theorem 4.1] that the coordinate ring of a threefold X satisfying
(1)–(3) has the form

C[X] = C[x, y, z, t]
tα2 − G(x, yα1, zα3)

. (5.6)

Here α1, α2, α3 are pairwise coprime positive integers. We let r denote the x-degree
of the polynomial G(x, yα1, 0) and set εX = (r − 1)(α2 − 1)(α3 − 1). A Koras–
Russell threefold X is said to be nontrivial if εX �= 0.

Bell [25] showed that the C
×-equivariant Grothendieck group of X is of the

form

KC
×

0 (X) = R(C×) ⊕
(

R(C×)
(f (t))

)ρ−1

= Z[t, t−1] ⊕
(
Z[t,t−1]
(f (t))

)ρ−1

= Z[t, t−1] ⊕ Z
(α2−1)(α3−1),

(5.7)

where

f (t) = (1 − tα2α3)(1 − t)

(1 − tα2)(1 − tα3)
(5.8)

is a polynomial of degree (α2 − 1)(α3 − 1) and ρ ≥ 2 is the number of
irreducible factors of G(x, yα1, 0) ∈ C[x, y]. In particular, KC

×
0 (X) is nontrivial.

A combination of (5.5)–(5.8) together with explicit calculations reveal that the μp-
equivariant Grothendieck group of X is trivial for almost all primes p. This implies
that the suggested approach to showing non-A1-contractibility of a Koras–Russell
threefold via μp-equivariant Grothendieck groups cannot work.

Theorem 5.5.3.5 Let p be a prime and let n ≥ 1 be an integer. Let μpn act on a
Koras–Russell threefold X via the inclusion μpn ⊂ C

×. Then the following hold.

1. The structure map X → Spec(C) induces an isomorphism R(μpn) ⊕ Fpn

∼=−→
K

μpn

0 (X).
2. Fpn is a finite abelian group which is nontrivial if and only if X is nontrivial and

p|α2α3. ��
If the integers p and α2α3 are coprime it follows that every μpn -equivariant

vector bundle on X is stably trivial, i.e., for any μpn-equivariant vector bundle E

on X, there exist μpn-representations F1 and F2 such that E ⊕ F1 � F2.
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Higher Chow Groups and Stable A1-contractibility

Another natural idea is to study the higher Chow groups of Koras–Russell three-
folds. Showing triviality of the said groups goes a long way in concluding
A
1-contractibility of KR.

Proposition 5.5.3.6 Let X be a Koras–Russell threefold of the first kind with
coordinate ring

C[X] = C[x, y, z, t]
(ax + xmy + zα2 + tα3)

,

where m > 1 is an integer, a ∈ C
∗, and α2, α3 ≥ 2 are coprime. For Y any

smooth complex affine variety, the pullback map CH ∗(Y ) → CH ∗(X × Y ) is an
isomorphism. ��
A related calculation shows the same conclusion holds for Koras–Russell threefolds
of the second kind. As for the proof of Proposition 5.5.3.6 a key input is the
observation that the ring homomorphism

C → C[u, v]/(ua + vb)

induces an isomorphism on higher Chow groups for coprime integers a, b ≥ 2.
Combined with the isomorphism between higher Chow groups and motivic

cohomology, as shown by Voevodsky [142, Corollary 2], we obtain the following.

Theorem 5.5.3.7 Let X be a Koras–Russell threefold of the first or second
kind, and let Y be any smooth complex affine variety. Then the pullback map
H ∗,∗(Y,Z) → H ∗,∗(X × Y,Z) induced by the projection X × Y → Y is an
isomorphism of (bigraded) integral motivic cohomology rings. ��

A consequence of Theorem 5.5.3.7 is that every vector bundle on X is trivial.
This was originally shown by Murthy [112, Corollary 3.8] by a completely different
method.

Theorem 5.5.3.7 is a key input in the approach to A
1-contractibility of Koras–

Russell threefolds in [74]. To proceed it is convenient to employ some techniques
from stable motivic homotopy theory. In particular, the slice filtration on the stable
motivic homotopy category SH (C) will be put to good use [143]. Recall the
objects of SH (C) are sequences of pointed motivic spaces related by structure
maps with respect to (P1,∞). We recall that SH (C) is a triangulated category
with shift functor E �→ E[1] given by smashing with the topological circle. Denote
by �∞

P
1 (X, x) ∈ SH (C) the (P1,∞)-suspension spectrum of X ∈ SmC and a

rational point x ∈ X(C). For fixed F ∈ SH (C), we say that E ∈ SH (C) is

1. F-acyclic if E ∧ F � ∗;
2. F-local if HomSH (C)(D,E) = 0 for every F -acyclic spectrum D.
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It is clear that the F -local spectra form a colocalizing subcategory ofSH (C). Note
that if F is a ring spectrum, then any F -module E is F -local (every map D → E

factors through D ∧ F and hence it is trivial if D is F -acyclic).
Let MZ ∈ SH (C) denote the motivic ring spectrum that represents motivic

cohomology, i.e., for every X ∈ SmC and integers n, i ∈ Z there is an isomorphism

Hn,i(X,Z) � HomSH (C)(�
∞
P
1X+, MZ(i)[n]). (5.9)

Here, for E ∈ SH (C), the Tate twist E(1) is defined by E(1) = E ∧
�∞
P
1 (Gm, 1)[−1]. The Betti realization ofMZ identifies with the classical Eilenberg-

Mac Lane spectrum HZ representing singular (co)homology of topological spaces
[69, Appendix A] and [94, §5].

Lemma 5.5.3.8 For every X ∈ SmC and closed point x ∈ X the suspension
�∞
P
1 (X, x) ∈ SH (C) is MZ-local. ��

Proof Resolution of singularities allows one to show that �∞
P
1 (X, x) is in the

smallest thick subcategory ofSH (C) containing�∞
P
1Y+ for any smooth projective

variety Y . It suffices now to show that �∞
P
1Y+ is MZ-local for such Y . Voevodsky’s

slice filtration for any E ∈ SH (C) is a tower of spectra [123, 143]

· · · → fq+1E → fqE → fq−1E → · · · → E, q ∈ Z.

Here the qth slice sqE of E is defined by the distinguished triangle

fq+1E → fqE → sqE → fq+1E[1].

Levine [93] has shown that the slice filtration of �∞
P
1Y+ for Y any smooth projective

variety is complete in the sense that

holim
q→∞ fq(�∞

P
1Y+) � ∗.

Equivalently, if we define cqE by the distinguished triangle fqE → E → cqE →
fqE[1], then

�∞
P
1Y+ � holim

q→∞ cq(�∞
P
1Y+).

Since the subcategory of MZ-local spectra is colocalizing, it now suffices to prove
that cq(�∞

P
1Y+) is MZ-local for every q ∈ Z. By definition of the slice filtration, we

have cq(�∞
P
1Y+) � ∗ for q ≤ 0. Using the distinguished triangles

sqE → cqE → cq−1E → sqE[1]
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and induction on q , we are reduced to proving the slices sq (�∞
P
1Y+) are MZ-local.

In fact, all slices in SH (C) are MZ-local: any slice sqE is a module over the
zeroth slice s0(1) of the sphere spectrum, and hence it is s0(1) � MZ-local [66, §6
(iv), (v)]. ��
Theorem 5.5.3.9 Let X be a Koras–Russell threefold of the first or second kind.
Then there exists an integer n ≥ 0 such that the suspension �n

P
1(X, 0) is A

1-
contractible. ��
Proof We first reformulate Theorem 5.5.3.7 as an equivalence in SH (C), using
its structure of a closed symmetric monoidal category, see Sect. 5.2.5. The structure
map X → Spec(C) induces a morphism in SH (C)

MZ � Hom(�∞
P
1 Spec(C)+, MZ) → Hom(�∞

P
1X+, MZ). (5.10)

In view of (5.9), Theorem 5.5.3.7 asserts that for every smooth complex affine
variety Y and n, i ∈ Z, there is an induced isomorphism

HomSH (C)(�
∞
P
1Y+(i)[n], MZ) → HomSH (C)(�

∞
P
1Y+(i)[n],Hom(�∞

P
1X+, MZ)).

The objects �∞
P
1Y+(i)[n] form a family of generators of SH (C), because every

smooth variety admits an open covering by smooth affine varieties. Thus (5.10) and
its retraction Hom(�∞

P
1X+, MZ) → MZ induced by the base point 0 ∈ X are

isomorphisms. From the distinguished triangle

MZ[−1] → Hom(�∞
P
1 (X, 0), MZ) → Hom(�∞

P
1X+, MZ) → MZ,

we deduce that Hom(�∞
P
1 (X, 0), MZ) � ∗. By [119, Theorems 1.4 and 2.2] or

[122, Theorem 52], �∞
P
1 (X, 0) is strongly dualizable in SH (C), so that

Hom(�∞
P
1 (X, 0), MZ) � Hom(�∞

P
1 (X, 0),1) ∧ MZ.

ThusHom(�∞
P
1 (X, 0),1) is MZ-acyclic, and for any E ∈ SH (C) we obtain

HomSH (C)(E,�∞
P
1 (X, 0)∧MZ) � HomSH (C)(E ∧Hom(�∞

P
1 (X, 0),1), MZ) � ∗,

since E ∧ Hom(�∞
P
1 (X, 0),1) is MZ-acyclic and MZ is MZ-local (being an MZ-

module). By the Yoneda lemma, this implies �∞
P
1 (X, 0) is MZ-acyclic, i.e.,

�∞
P
1 (X, 0) ∧ MZ � ∗,

On the other hand, by Lemma 5.5.3.8, �∞
P
1 (X, 0) is MZ-local. It follows that

every endomorphism of �∞
P
1 (X, 0) is trivial, and hence �∞

P
1 (X, 0) � ∗. Owing to

Lemma 5.2.5.1 this completes the proof. ��
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Remark 5.5.3.10 In general, A1-weak equivalences do not desuspend. To illustrate
this, for simplicity, take k = C, and let {p1, . . . , pn} and {q1, . . . , qn} be two collec-
tions of complex points in A1, but the argument works much more generally. If n ≥
1, then A

1
� {p1, . . . , pn} is an A

1-rigid variety in the sense of Definition 5.4.1.7.
In particular, the A

1-weak equivalences A1
� {p1, . . . , pn} ∼= A

1
� {q1, . . . , qn}

are simply isomorphisms of varieties by appeal to Corollary 5.4.1.10. However,
any isomorphism of varieties of this form is induced by an automorphism of the
affine line. The automorphism group of the affine line acts 2-transitively, but not
n-transitively for any n ≥ 3. In fact, as soon as n ≥ 3, there is a moduli space of
configurations of dimension n − 2.

The variety �
P
1A

1
� {p1, . . . , pn} is A1-weakly equivalent to A2

� {x1, . . . , xn}
for any collection of n C-points of A2. Indeed, it is not hard to show that the
algebraic automorphism group of A

2 acts n-fold transitively on A
2(C) for any

n ≥ 1, in contrast to the situation for the affine line. Thus, if we choose coordinates
x, y on A

2, we may move the points x1, . . . , xn to lie on the x-axis and then cover
A
2
� {x1, . . . , xn} by A

1
� {p1, . . . , pn} × A

1 and A
1 × Gm with intersection

A
1
� {p1, . . . , pn} ×Gm. The required weak equivalence then follows by the same

homotopy colimit argument used to prove that A2
� 0 ∼= P

1 ∧ Gm. By increasing
the number of points, we see that there are arbitrary dimensional moduli of smooth
varieties that become A1-weakly equivalent after a single P1-suspension. ��

The discussion above also has implications for topologically contractible smooth
complex varieties. The motivic conservativity conjecture (see, e.g., [75, Proposition
3.4] or [19, Conjecture 2.1‘]) implies the rational Voevodsky motive of a topologi-
cally contractible variety is that of a point. In dimension 2, the integral Voevodsky
motive of topologically contractible surface is trivial by the results of [8]; it is also
observed there that triviality holds for a number of higher dimensional examples. It
thus is not inconsistent with known examples to suggest that the integral Voevodsky
motive of a topologically contractible smooth complex variety is always that of
a point. In conjunction with the proof of Theorem 5.5.3.9, the following seems
reasonable.

Conjecture 5.5.3.11 If X is a topologically contractible smooth complex affine
variety, then there exists an integer n ≥ 0 such that �n

P
1(X, x) is A1-contractible; in

fact, n = 2 should suffice. ��
Remark 5.5.3.12 The stronger assertion here is obtained by combining the
weaker assertion and a conjecture about conservativity of Gm-stabilization [20]
(the assumption n = 2 essentially stems from this conservativity conjecture).
Conjecture 5.5.3.11 is reminiscent of an open version of the Cannon–Edwards
double suspension theorem [30, 51]. Conjecture 5.5.3.11 in conjunction with A

1-
representability of Chow groups (see Theorem 5.2.4.10) implies that if X is any
topologically contractible smooth complex variety, then CHi(X) = 0 for every
i > 0. In conjunction with Theorem 5.5.2.10, Conjecture 5.5.3.11 thus implies that
the generalized Serre question has a positive answer in dimension 3. We thank Tariq
Syed for informing us that the same conclusion holds in dimension 4 owing to his
work in [135]. ��
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5.5.4 A
1-contractibility of the Koras–Russell Threefold

In what follows we will outline how Theorem 5.5.3.9 can be used to show the
Russell threefold KR is A1-contractible over any base field of characteristic zero.
This was carried out by Dubouloz and Fasel in [45].

Observe that KR contains both the affine line A
1
y and the affine plane A

2
z,t

intersecting transversally in the origin. The idea is now to show that the inclusion
A
2
z,t → KR is an A

1-equivalence. There is a naturally induced commutative
diagram of homotopy cofiber sequences

A
2
z,t {(0, 0)}

i

A
2
z,t P

1
z ∧ P

1
t

KR A
1
y KR KR/(KR A

1
y). (5.1)

Here the rightmost vertical map is an A
1-equivalence induced by the inclusion

{0} ⊂ A
1
y : This follows since the normal bundle of A1

y in KR is trivial, so that by

homotopy purity 5.2.4.14 we obtain A1-equivalences

KR/(KR� A
1
y) ∼

A
1 (A1

y)+ ∧ (P1)∧2 ∼
A
1 (P1)∧2.

By a general result we are reduced to showing that i is an A
1-equivalence. The

perhaps most technical argument in the proof consists of showing that KR � A
1
y is

A
1-weak equivalent to the punctured affine spaceA2

z,t�{(0, 0)}. We discuss this part
later in this section. As a consequence the leftmost vertical map in (5.1) is a self-map
of A2

z,t � {(0, 0)} up to A1-equivalence. As a consequence, its A1-homotopy class is
determined by its motivic Brouwer degree (see Theorem 5.4.3.3). The computation
of this degree may be turned into understanding a certain map in sheaf cohomology
for the Nisnevich topology with coefficients in Milnor-Witt K-theory.

Lemma 5.5.4.1 Let f : An
� {0} → A

n
� {0} be a morphism in H (k). Then f is

an isomorphism if and only if

f ∗ : Hn−1(An
� {0}, KMW

n ) → Hn−1(An
� {0}, KMW

n )

is an isomorphism. ��
According to Lemma 5.5.4.1 we are reduced to showing that

i∗ : H 1(KR� A
1
y, KMW

2 ) → H 1(A2
z,t � {0}, KMW

2 )
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is an isomorphism. In effect, we consider the commutative diagram

H 1(KR A
1
y,KMW

2 )
∂

i∗

H 2((P1)∧2,KMW
2 ) H 2(KR,KMW

2 ) H 2(KR

H 1(A2
z,t {0},KMW

2 ) {0},KMW
2 )

∂
H 2((P1)∧2,KMW

2 ) H 2(A2
z,t ,K

MW
2 )

A
1
y,K

MW
2 )

H 2(A2
z,t

obtained from (5.1). One checks readily that ∂ ′ is an isomorphism, so that i∗ is
an isomorphism if and only if ∂ is an isomorphism. Since ∂ is a KMW

0 (k)-linear
map between free KMW

0 (k)-modules of rank one, it suffices to show the following
assertion.

Proposition 5.5.4.2 The connecting homomorphism ∂ : H 1(KR � A
1
y, KMW

2 ) →
H 2((P1)∧2, KMW

2 ) is surjective. ��
Proof As the first row in the above diagram is exact, it is sufficient to prove that
H 2(KR, KMW

2 ) = 0. Fasel’s projective bundle theorem [52] implies

Hi(KR, KMW
j ) ∼= Hi+n(KR+ ∧ (P1)∧n, KMW

j+n )

for all i, n ∈ N and j ∈ Z. Theorem 5.5.3.9 holds more generally over fields of
characteristic zero and shows that KR ∧ (P1)∧n = ∗ for n � 0. Combined with the
homotopy cofiber sequence

(P1)∧n → KR+ ∧ (P1)∧n → KR ∧ (P1)∧n

we find Hi(KR, KMW
j ) = Hi+n((P1)∧n, KMW

j+n ) for i ≥ 1, and the latter group is
trivial. ��

Dubouloz and Fasel also give an alternate proof of Proposition 5.5.4.2 by means
of explicit symbol calculations [45]. Moreover, the proof of A1-contractibility for
KRworks more generally for Koras–Russell threefolds of the first kind. It is unclear
whether a similar proof works for Koras–Russell threefolds of the second kind.
The main issue at stake for such a threefold X is whether there exists an A

1-
weak equivalence between the complement X � A

1
y and some punctured affine

plane. On the other hand, in light of Theorem 1 from the introduction the proof
is robust enough to provide many new examples of affine A1-contractible varieties
of dimension 3.

Theorem 5.5.4.3 ([45, Corollary 1.3]) Assume k is a field. For every integer m ≥
2, there exists a smooth affine morphism π : X → A

m−2 of relative dimension
3 whose fibers are all A1-contractible. Furthermore, fibers of π over k-points are
pairwise non-isomorphic and stably isomorphic. ��
Question 5.5.4.4 Looking further forward: can one characterize affine spaces
among affine A

1-contractible varieties in a motivic version of the Poincaré con-
jecture (e.g., by defining some notion of A1-fundamental group at infinity)? ��
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5.5.5 Koras–Russell Fiber Bundles

The geometry becomes much more pronounced in the proof showing that KR �

A
1
y is A1-weak equivalent to the punctured affine space A2

z,t � {(0, 0)}; the salient
geometric features of Koras–Russell threefolds of the first kind have been further
developed into the context of Koras–Russell fiber bundles introduced in [47]. In the
following we assume k is an algebraically closed field of characteristic zero.

Definition 5.5.5.1 Suppose s(x) ∈ k[x] has positive degree and let R(x, y, t) ∈
k[x, y, t]. Define the closed subscheme X(s, R) of A1

x × A
3 = Spec(k[x][y, z, t])

by the equation

{s(x)z = R(x, y, t)}.

We say that the projection map

ρ := prx : X(s, R) → A
1
x (5.1)

defines a Koras–Russell fiber bundle if

(a) X(s, R) is a smooth scheme, and
(b) For every zero x0 of s(x), the zero locus in A

2 = Spec(k[y, t]) of the
polynomial R(x0, y, t) is an integral rational plane curve with a unique place
at infinity and at most unibranch singularities. ��

Remark 5.5.5.2 One can show that a Koras–Russell fiber bundle is isomorphic to
A
3 if and only if for every zero x0 of s(x) the curve {R(x0, y, t) = 0} is isomorphic

to A1. ��
For concreteness we discuss two classes of examples of Koras–Russell fiber

bundles.

Example 5.5.5.3 Deformed Koras–Russell threefolds of the first kind are defined as

X(n, αi , p) := {xnz = yα1 + tα2 + xp(x, y, t)}, (5.2)

where n, αi ≥ 2 are integers, α1 and α2 are coprime, and p(x, y, t) ∈ k[x, y, t]
satisfies p(0, 0, 0) ∈ k∗. By Dubouloz and Fasel [45] it is known that X(n, αi , p)

is A
1-contractible when p(x, y, t) = q(x) ∈ k[x] and q(0) ∈ k∗. Note that

X(n, αi, p) is smooth according to the Jacobian criterion since p(0, 0, 0) ∈ k∗.
Moreover, the unique singular fiber of the projection map

prx : X(n, αi, p) → A
1
x (5.3)

is a cylinder on the cuspidal curve �α1,α2 := {yα1 + tα2 = 0} ⊂ A
2, which is

A
1-contractible

pr−1
x (0) = �α1,α2 × A

1
z ∼

A
1 ∗. (5.4)
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Here (5.3) is a flat A2-fibration restricting to a trivial A2-bundle over A1
x � {0}

and X(n, αi, p) is factorial. The A
1-homotopy theory of deformed Koras–Russell

threefolds of the first kind (5.2) is essentially governed by (5.3) and (5.4). ��
Example 5.5.5.4 For 1 ≤ i ≤ m, choose distinct linear forms li (x) = (x − xi) ∈
k[x], ni, αi , βi ≥ 2, where αi and βi are coprime, and a ∈ k×. We define
Xm(ni, αi , βi , a) or simply Xm by the equation

Xm = Xm(ni , αj , βj , a) := {(
m∏

i=1

li (x)ni

)
z =

m∑
i=1

⎛
⎝

⎛
⎝∏

j �=i

lj (x)

⎞
⎠ (yαi + tβi )

⎞
⎠ + a

m∏
i=1

li (x)
}
.

(5.5)

In the case of two degenerate fibers, (5.5) takes the form

X2 = {(x−x1)
n1(x−x2)

n2z = (x−x1)(y
α2+tβ2)+(x−x2)(y

α1+tβ1)+a(x−x1)(x−x2)}.
(5.6)

For all m the Makar-Limanov invariant of Xm(ni, αj , βj , a) equals k[x]; hence it is
non-isomorphic to A

3. Moreover, the projection map

prx : Xm(ni, αj , βj , a) → A
1
x (5.7)

defines a trivial A2-bundle over the punctured affine line A
1
x � {x1, . . . , xm}. Its

fiber over the closed point xi ∈ A
1
x is isomorphic to the cylinder on the cuspidal

curve �αi ,βi : {yαi + tβi = 0}. By counting closed fibers non-isomorphic to A2 one
concludes that Xm and Xm′ are non-isomorphic when m �= m′. ��

Now we turn to the geometric properties of deformed Koras–Russell threefolds
as in Example 5.5.5.3. In particular, this will explain the A

1-equivalence between
KR� A

1
y and the punctured affine plane.

There is an inducedGa-action on X(n, αi, p) determined by the locally nilpotent
derivation

∂ = xn ∂

∂y
+ (α1y

α1−1 + x
∂

∂y
p(x, y, t))

∂

∂z
,

on the coordinate ring of X(n, αi, p), with fixed point locus the affine line {x =
y = t = 0} ∼= A

1
z . The geometric quotientX(n, αi, p) → X(n, αi, p)/Ga yields an

A
1-bundle X(n, αi, p) � A

1
z → S(α1, α2) in the category of algebraic spaces [88].

In fact there exists a factorization

X(n, αi , p) A
1
z

ρ

π|
A
2
x,t {(0, 0)}

(α1, α2),

δ

(5.8)
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where π| is the restriction of π = prx,t : X(n, αi, p) → A
2
x,t to X(n, αi, p) � A

1
z .

To construct (5.8) we form a cyclic Galois cover of A2
x,t of order α1 and hence

of X(n, αi, p) by pullback via π . The maps arise as geometric quotients for μα1 -
equivariant maps by gluing copies of A2

� {(0, 0)} via a family of cuspidal curves.
Here ρ is an étale locally trivial A1-bundle, we have S(α1, α2) ∼= S(α1, 1), and
both of the projection maps for the smooth quasi-affine 4-fold

(X(n, αi, p) � A
1
z) ×S(α1,α2)

(X(n, α1, 1, p) � A
1
z) (5.9)

are Zariski locally trivial A1-bundles, and hence A1-weak equivalences. The fiber
product in (5.9) is formed in algebraic spaces over the punctured affine planeA2

x,t �

{(0, 0)}. Furthermore, the projection map prx : X(n, α1, 1, p) → A
1
x is a trivial

A
2-bundle. It follows that X(n, α1, 1, p) ∼= A

3
x,y,z and we can finally conclude that

there exist A1-weak equivalences

X(n, αi , p) � A
1
z ∼

A
1 X(n, α1, 1, p) � A

1
z ∼

A
1 A

2
x,t � {(0, 0)}.

The currentlymost general result concerningA1-contractibility of Koras–Russell
fiber bundles was shown in [47].

Theorem 5.5.5.5 Suppose ρ : X(s, R) → A
1
x is a Koras–Russell fiber bundle with

basepoint the origin. The S1-suspension and hence the P
1-suspension of X(s, R)

are A1-contractible:

X(s, R) ∧ S1 ∼
A
1 X(s, R) ∧ P

1 ∼
A
1 ∗.

Question 5.5.5.6 Can one generalize the notion of a Koras–Russell fiber bundle
and show Theorem 5.5.5.5 over arbitrary fields of characteristic zero? ��
Remark 5.5.5.7 Work on Question 5.5.5.6 is likely to involve base change argu-
ments to an algebraic closure. ��
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