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Abstract

Gaussian process (GP) regression is a flexible, nonparametric approach to regression that
naturally quantifies uncertainty. In many applications, the number of responses and covari-
ates are both large, and a goal is to select covariates that are related to the response. For
this setting, we propose a novel, scalable algorithm, coined VGPR, which optimizes a pe-
nalized GP log-likelihood based on the Vecchia GP approximation, an ordered conditional
approximation from spatial statistics that implies a sparse Cholesky factor of the precision
matrix. We traverse the regularization path from strong to weak penalization, sequentially
adding candidate covariates based on the gradient of the log-likelihood and deselecting irrel-
evant covariates via a new quadratic constrained coordinate descent algorithm. We propose
Vecchia-based mini-batch subsampling, which provides unbiased gradient estimators. The
resulting procedure is scalable to millions of responses and thousands of covariates. Theo-
retical analysis and numerical studies demonstrate the improved scalability and accuracy
relative to existing methods.

Keywords: adaptive bridge penalty; gradient-based variable selection; mini-batch subsampling;
ordered conditional approximation; penalized Gaussian regression

1. Introduction

Gaussian process regression Many tasks in statistics and machine learning can be
viewed as regression problems, with the goal of inferring the functional relationship between
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a response and a number of covariates. Gaussian processes (GPs) are an attractive choice
for modeling the regression function (e.g., Rasmussen and Williams, 2006), as they naturally
quantify uncertainty, they can flexibly capture nonlinear and nonparametric behavior, they
are interpretable, and much of the resulting inference involves closed-form expressions. We
focus on GP regression for datasets with a large number of responses, n, and a large number
of covariates, d, under the assumption that only few covariates, dy < d, are useful for
predicting the response. In this setting, our goals are variable selection, model estimation,
and subsequent prediction based on the selected sparse model.

Existing approaches for large n Basic GP regression scales poorly to large n or d.
Many approaches have been proposed that deal with one or both of these issues. The
challenge with large n is that direct GP inference requires O(n?) time. Heaton et al. (2019)
and Liu et al. (2020) provide reviews of methods that tackle the large-n problem in spatial
statistics and machine learning, respectively. These methods include fully (e.g., Quinionero-
Candela and Rasmussen, 2005; Banerjee et al., 2008; Finley et al., 2009) and partially
(e.g., Snelson and Ghahramani, 2007; Sang et al., 2011) independent conditional (FIC/PIC)
approximations, but these low-rank approaches can have limitations in many settings (e.g.,
Stein, 2014), even when optimizing over pseudo-inputs (Hensman et al., 2015). Other
GP approximations, such as multi-level PIC (Katzfuss, 2017; Katzfuss and Gong, 2020),
approximations based on stochastic partial differential equations (Lindgren et al., 2011),
distributed GPs (Deisenroth and Ng, 2015) or KISS-GP (Wilson and Nickisch, 2015), can
struggle with high input dimension d.

The Vecchia approximation A highly promising approach to scaling GP inference to
large n may be the Vecchia approximation (Vecchia, 1988), which has become very popular
in spatial statistics (e.g., Stein et al., 2004; Datta et al., 2016; Guinness, 2018; Katzfuss
and Guinness, 2021; Katzfuss et al., 2020), but which has not received much attention in
machine learning. This approach can be viewed as an ordered conditional approximation,
in which the joint density of the GP response is approximated as a product of univariate
conditional distributions. The resulting approximation can be highly accurate even with
small conditioning sets. Katzfuss et al. (2022) proposed a scaled Vecchia approximation that
further improves the accuracy of the Vecchia approximation and used it for GP emulation
of expensive computer experiments in d = O(10) dimensions. A more detailed review of
Vecchia approximations will be provided in Section 2.2.

Existing approaches for large d There has also been extensive work on scaling GPs
to moderate or high input dimension d. Moderate d can be handled by variable selection
using automatic relevance determination (ARD) kernel functions (Neal, 1996) and Bayesian
model selection (Dearmon and Smith, 2016; Posch et al., 2021). However, for larger d (say
d > 100), these methods are not sufficiently scalable due to computation and convergence
issues caused by the high dimensionality of the parameter space. For such high dimen-
sions, existing approaches include penalized GP regression (e.g., Yi et al., 2011), manifold
GP regression (e.g., Calandra et al., 2016), and hierarchical diagonal sampling (HDS; e.g.,
Chen et al., 2012). However, both penalized GP and manifold GP regressions consider all
covariates simultaneously, leading to O(d) optimization parameters, which may negatively
impact model inference in three aspects, namely convergence to local optima, over-fitting,
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and computational inefficiency. Furthermore, Yi et al. (2011) and Calandra et al. (2016)
optimized the exact GP likelihood, not scalable with respect to n, while HDS assumes that
responses are sampled where needed, mainly addressing Bayesian optimization instead of
GP regression.

Large numbers of responses and covariates Several methods have been proposed to
handle large n and d by approximating the GP using FIC and transforming and reducing the
dimension of the input domain, such as randomly-projected additive GPs (Delbridge et al.,
2020), deep kernel learning (Wilson et al., 2016), and dimension reduction with pseudo-
inputs (Snelson and Ghahramani, 2006). These approaches mainly achieve dimension re-
duction rather than variable selection. To our knowledge, none of the existing approaches
is suitable for our goal of simultaneous variable selection and GP regression for large n and
large d.

The VGPR algorithm Here we propose the VGPR algorithm, for Vecchia GP Regree-
sion, which is highly scalable in n and d. Specifically, to handle large n, we extend the scaled
Vecchia GP approximation (Katzfuss et al., 2022) and propose Vecchia-based mini-batch
subsampling, which provides unbiased gradient estimators. To achieve variable selection
for large d, we consider a penalized Vecchia-GP loglikelihood, and we traverse the regu-
larization path from strong to weak penalization, sequentially adding candidate covariates
based on the gradient of the log-likelihood and deselecting irrelevant covariates through a
new quadratic constrained coordinate descent algorithm (QCCD). QCCD builds a quadratic
approximation of the objective function at each iteration and applies constrained coordinate
descent to find the constrained quadratic optimum. Compared with existing GP regression
methods such as Yi et al. (2011) and Katzfuss et al. (2022), traversing the regularization
path with warm starts effectively avoids local optima while QCCD can reach boundary val-
ues, achieving covariate deselection without artificial thresholding. We provide theoretical
and numerical evidence for our gradient-based variable selection. The dominant complexity
of VGPR depends linearly on the batch size and quadratically on the number of selected
covariates (as opposed to the total number of responses or covariates).

Outline In Section 2, we briefly review ARD kernels and the scaled Vecchia approxima-
tion. Section 3 introduces our new VGPR algorithm that involves the QCCD subroutine,
the choice of the penalty function, the selection of covariates based on the gradient, and
a mini-batch sampling technique specific to the Vecchia approximation. In Section 4, we
compare VGPR with state-of-the-art GP regressions in terms of posterior inference and
variable selection based on simulated GP datasets. Section 5 provides a comparison with
methods commonly used in machine learning for variable selection and prediction based
on real datasets, including an example with n = 10% and d = 103. Section 6 concludes
the paper. The code for replicating the numerical results in this paper are published at
https://github.com/katzfuss-group/Vecchia_GPR_var_select.
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2. Review
2.1 GP regression and ARD kernels

We consider the standard GP regression model (e.g., Rasmussen and Williams, 2006):
yi = f(x;) + €, 1=1,...,n,

where y; is the i-th response observed at the d-dimensional covariate vector x; € X C
RY, f(-) ~ GP(0,K) is a GP with zero mean and a positive-definite covariance or kernel
function K : X x X — R, and {¢ ~ N(0,7%)} are independent noise terms. Then,

the vector of responses, y = (yl, e ,yn) , at input values x1,...,x, follows an n-variate
Gaussian distribution, A, (0,X), with covariance matrix X = (K(Xi’xj))i,jzl,...,n + 721,
whose (7, 7)-th entry describes the covariance between responses y; and y; as a function
of their corresponding covariate vectors x; and x;. Throughout, we assume a centered
response vector y and a zero mean structure; if desired, a (non-zero) linear mean structure
can be profiled out during maximum likelihood estimation (Guinness, 2021).

An automatic relevance determination (ARD) kernel (Neal, 1996) is an anisotropic kernel
that assigns each covariate a separate parameter, controlling its impact in the covariance
structure. Specifically, we assign a separate relevance (i.e., inverse range) parameter r; > 0
to each input dimension I:

K(xi,x5) = K(q" (xi,%5)), ¢ (xi,%5)% = S0 rd @iy — ), (1)

where the superscript r emphasizes the dependence of the distance ¢ on the relevances
r=(ry,...,7q)". Note that r; = 0 is equivalent to deselecting the [-th covariate. In (1), K
can be any isotropic kernel that is valid in R%; for our numerical results, we used a Matérn
covariance kernel with smoothness 2.5 as recommended in Chapter 4 of Rasmussen and
Williams (2006):

K(q) =0*(1+q+q°/3)exp(—q), (2)
where o

is the variance parameter. Our model depends on unknown parameters 8 =
(02,12, 7%), whose inference is usually achieved by maximum likelihood estimation (MLE).
We denote by r? the element-wise square of r; we use the squared relevance (SR) as the op-
timization parameters for the purpose of variable selection, which is explained in Section 3.
Computing the exact GP density, pa(y) = Nn(y|0,2g), requires O(n?) time and O(n?)
memory, often becoming infeasible for n > 10,000.

2

2.2 Review of scaled Vecchia

We use the (scaled) Vecchia approximation to tackle GP regressions with large n (e.g.,
n > 10%), because it can achieve higher approximation accuracy while having the same
linear complexity compared with other state-of-the-art GP approximations. The original
Vecchia approximation (Vecchia, 1988) starts from the conditional representation of the
density function, pg(y) = [, Pe(Vily1:(i—1)), and truncates the conditioning sets to sets
¢(i) with a maximum of m < n elements:

Po(y) = I1iz1 po(Uilye(s)) = Na(0,X). 3)
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The Vecchia approximation has several attractive properties. It partitions the n-dimensional
GP density into n computationally independent univariate conditional densities, and hence
results in n parallel computations each requiring only O(m?) time, where even small m <
n can achieve high accuracy due to the screening effect (Stein, 2011). As indicated by
(3), the approximation also implies a joint Gaussian distribution, whose inverse Cholesky
factor £-1/2 is sparse with fewer than nm nonzero entries (e.g., Katzfuss and Guinness,
2021). Furthermore, Vecchia approximation produces the smallest KL divergence from
pe(y) subject to certain sparsity constraints on 12 (Schéfer et al., 2021a) and can achieve
e-accurate approximations with m = O(log?(n)) for certain Matérn-type kernels up to edge
effects (Schéfer et al., 2021a).

The accuracy of Vecchia approximations depends on the ordering of y and the choice of
{c(7)}; the scaled Vecchia approximation in Katzfuss et al. (2022) takes varying relevances
of the covariates into account. Specifically, the scaled Vecchia approximation uses the
maximum-minimum distance ordering (MM) and the nearest-neighbor conditioning (NN)
based on the scaled distances ¢"(x;,x;) between y; and y;. MM is a sequential ordering
that selects each response to maximize the minimum distance toward previous responses in
the ordering, and NN chooses the min(i — 1, m) nearest responses of y; among {y1,...,vi—1}
as y)- MM and NN can be obtained in quasilinear time in n (Schifer et al., 2021b,a).
We use ﬁg (y) to represent the scaled Vecchia likelihood evaluated at @ with MM and NN
computed based on ¢%, where ¥ does not necessarily have to take on the same values as the
r indicated by 6.

Another attractive property of the Vecchia approximation is that many existing GP
approximations, including FIC and PIC, can be viewed as its special cases corresponding
to particular choices of the ordering and conditioning (Katzfuss and Guinness, 2021); how-
ever, the scaled MM and NN choices in scaled Vecchia can be much more accurate. To
demonstrate this, we used a numerical experiment to compare FIC, FITC (with optimized
pseudo-inputs), PIC, Vecchia (with MM and NN based on ¢'), and scaled Vecchia approx-
imations in terms of their KL divergence from an exact multivariate Gaussian distribution
(see details in Appendix A). Figure 1 shows the results for the comparison with n = 5,000,
d=10,0%=1,r=(10,5,2,1,0.5,0,...,0)", 72 = 0, averaged over ten repetitions. While
Vecchia without scaling outperformed FIC, FITC, and PIC, the scaled Vecchia approach,
which will be used in our proposed methods below, resulted in additional improvements of
several orders of magnitude.

The construction of the conditioning sets ¢(¢) in the scaled Vecchia approximation can
be also applied to posterior prediction to achieve an O(m?) complexity at each unknown
location. Specifically, the m nearest in-sample neighbors of an unknown location based on
¢" is defined as its conditioning set, based on which the conditional mean and variance is
computed. Fast computation of the joint posterior predictive distribution at a large set of

test inputs is also possible (Katzfuss et al., 2020).

2.3 Gradient and Fisher information

The (penalized) negative log-likelihood, h%(6) = —(%(8) + wx(0) is typically used as the
objective function for parameter inference in GP regression, where here éf(e) = log p5(y)
is the log-likelihood under the scaled Vecchia approximation and w) (@) is a penalty func-
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Figure 1: Approximation accuracy (in terms of KL divergence from the true GP density) versus conditioning-
set size, for five GP approximations, namely FIC, FITC, PIC, Vecchia and Scaled Vecchia (SVecchia)

tion whose magnitude increases with A. Under the Vecchia approximation, not only the
log-likelihood but also its first- and second-order information can be computed in parallel
and at linear complexity in n. Specifically, éf(ﬂ) can be decomposed into the sum of n
computationally independent terms:
n
hi(0) = —(0) + waA(8) = = > _ (logpa(y (iyuc) — 1ogpo(Ye(i))) + wa(6). (4)
i=1
Based on this expression involving a sum of (log) Gaussian densities, it is straightforward
to compute the gradient g5 and the Fisher information matrix (FIM) —I:Ig of *(8). Notice
that ﬂg can be used as a surrogate of the Hessian matrix. The computations of gg and I:Ig
are O(nm3d) and O(nm?d?), respectively, based on the closed-form formula for multivariate
normal gradient and FIM; refer to Guinness (2021) and the R package ‘GpGp’ (Guinness,
2018) for the computation details.

The availability of the second-order information under the Vecchia approximation ben-
efits the convergence rate of parameter inference. Along this direction, a state-of-the-art
method is the Fisher scoring algorithm proposed in Guinness (2021) that substitutes the
Hessian matrix in the natural gradient descent with FIM to achieve a quadratic convergence
rate:

L . A0\ T g0
ot — () _ ( em) &n), (5)

where the superscript denotes the parameter estimates at the (-th iteration. However, it is
not ideal for constrained optimization. Specifically, Fisher scoring uses variable transforma-
tion (e.g., logarithm) to enforce positivity constraints, and so it is typically impossible for
optimization parameters to reach boundary values (i.e., zero), which is crucial for variable
deselection. We introduce a new second-order optimization algorithm that addresses this
limitation in Section 3.5.

3. Scalable GP Regression and Variable Selection
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3.1 Overview of VGPR

Algorithm 1 contains a high-level overview of our VGPR algorithm for scalable variable
selection and model estimation in GP regression, with subsequent sections providing de-
tails and theoretical and numerical support. VGPR traverses the regularization path of the
penalized log-likelihood from strong to weak penalization until a stopping criterion based
on an out-of-sample (OOS) score is reached (Section 3.2). For a given penalization level,
VGPR conducts a forward-backward-selection procedure (Section 3.3), which iteratively
adds covariates to a candidate set based on the gradient with respect to the squared rele-
vances (Section 3.4) and deselects covariates through QCCD optimization (Section 3.5). We
introduce an iterative adaptive bridge penalty (Section 3.6) and provide further speed-ups
via an unbiased mini-batch subsampling method (Section 3.7), resulting in a computational
complexity that is essentially independent from n and d (Section 3.8).

Algorithm 1: VGPR
Input: F(0),wx(6), Xo, k
1: Initialize @ with r set to 0" and ¥ <— 1, \ < )Xo, ( + ¢
2: while OOS score improves do
3 (0,¢) « forward-backward({*(0), wy(8),0,(, k) — see Alg. 2
4:  Reduce A
5: end while

3.2 Traversing the regularization path

VGPR traverses the regularization path of the penalized log-likelihood, hi(@), from strong
to weak penalization (i.e., large to small \) until a stopping criterion based on an out-of-
sample (OOS) score is reached. We recommend starting with a penalty strength of \g = n,
which is typically sufficient to imply a completely sparse model without any covariates
selected. (Otherwise, we simply increase A exponentially until a fully sparse model is ob-
tained.) The regularization path is constructed over a decreasing series of A, for example,
a geometric series with a common ratio of 1/2. VGPR stops when an out-of-sample (OOS)
score such as mean-squared error fails to show obvious improvement.

Figure 2 illustrates the regularization path computed by VGPR using n = 10* responses
and d = 103 covariates under the bridge penalty (see Section 3.6). The covariance kernels
used for dataset simulation in Sections 3 and 4 are the Matérn covariance kernel defined by
(2) and parameterized by:

o?=1, 72=0.05% [rir3,r3r3r2] =[10%5%2%1%05%, rP=0ifl>5  (6)

unless specified otherwise. The covariates are generated either independently from the Latin
hypercube or dependently from a multivariate normal distribution with a constant correla-
tion of 0.9 and normalized to have a standard deviation of one. Our Vecchia approximation
uses a maximum conditioning set size of m = 100. A quarter of the responses were set
aside to compute the OOS RMSE based on which, the stopping condition was defined as
that the OOS RMSE improves less than 1% after any new covariate is selected. The OOS
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Figure 2: Regularization path computed by VGPR using simulated independent or dependent covariates.
The relevance parameters of the true covariates are color-coded, and their true values are marked by hor-
izontal colored dashed lines. The fake covariates, whose true relevance parameters are zero, are colored in
grey. The vertical red dotted lines mark the optimal model indicated by the stopping condition.

sample size of n/4 and the 1% OOS score threshold are used throughout this paper and are
generally recommended as default values.

In Figure 2, the true covariates and their relevance parameters were correctly selected
and well estimated, respectively. All fake covariates, except for one when using independent
covariates, were filtered out, highlighting the efficacy of VGPR in variable selection even
given a large pool of highly correlated covariates. Moreover, the number of optimization
parameters was always kept at O(dp) until the stopping condition was reached. Also due
to the small number of optimization parameters, VGPR completed the model estimation
within minutes.

3.3 Forward-backward selection

To keep the “active” set of covariates small when running optimization, VGPR keeps a
candidate set of covariates ¢ C {1,2,...,d} representing the covariates currently selected.
Assuming model sparsity, the size of ¢ can be kept much smaller than d. Given a current
¢, standard forward selection would fit O(d) models with covariates (Ul for each [ ¢ ¢, but
this procedure is prohibitively expensive for large d.

Instead, we propose a forward-backward-selection algorithm, provided in Algorithm 2,
to find the optimal model under each A. The algorithm iteratively performs a forward step
and a backward step. The forward step adds to ¢ a small number & of “promising” covariates
corresponding to the k largest entries in the squared-relevance gradient (SR-gradient), given
by the derivatives of £(8) = log pg(y) with respect to each r? with [ ¢ (, evaluated at the
current estimates of the relevances (i.e., r; = 0 for | ¢ (). For example, we set kK = 3 in
Figure 2. 'We provide numerical and theoretical support for the forward step in Section
3.4. After the forward step, we run a backward step on the new ( via our QCCD algorithm
(see Section 3.5), which finds the new parameter estimates using a warm start based on the
previous estimates and potentially deselects covariates by returning estimates of zero for
some SRs. The forward-backward procedure for a given A value stops (and VGPR moves
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Algorithm 2: Forward-backward selection

Input: (*(8),wx(0),0,¢, k
1: while OOS score improves do

.. , . . 00* (6 |5)
2. 8§ < mini-batch subsampling, g,2 < —57—

Define A( as the indices of the k largest coefficients in g,.2[—(]

¢ + CUUALC, initialize r[Al], T+ r

15 ¢ (8¢) < F£(6) + Mwa(¢), O + QCCD(RS, (,6¢,0) — see Alg. 3
Remove covariates with zero relevance from ¢

7: end while

8: return 8 and ¢

on to a smaller \) based on the same stopping criterion as in Algorithm 1, using the OOS
score.

We now provide more notational details on Algorithm 2. We use square brackets for
indexing, with negative indices corresponding to dropped elements. The parts in blue font
(in all algorithms) provide the mini-batching modifications to be discussed in Section 3.7.
MM and NN are implicitly updated at each occurrence of r < r, which improves the
accuracy of the scaled Vecchia approximation EF(O). In Line 5, we use the ( subscript
to indicate the parameter vector, the log-likelihood function, and the objective function
defined over the subset of covariates in (, as opposed to all covariates, which reduces the
number of parameters involved in QCCD. Notice that 8 is viewed as a subvector of 8 and
the assignment to the former indicates changes to the latter as well, which implies warm
starts and avoids local optima.

3.4 Numerical and theoretical support for gradient-based covariate selection

The SR-gradient can be used to order the covariates’ relevance levels in the ARD model.
Specifically, assuming that the SRs of the covariates in ( are fixed at their correct values,
the derivatives of £(6) = log pg(y) with respect to the remaining SRs evaluated at zero can
be used to rank the unselected covariates in ¢C.

We illustrate this idea using an example of selecting dy = 5 true covariates from d = 103
total covariates, shown in Figure 3, with o2 and 72 are fixed at their true values. It is
evident that true covariates (with rl20 > 0) have bigger coefficients in the SR-gradient. In
fact, the magnitudes of the coefficients reflect the magnitudes of {r%}. This conclusion
is valid even assuming strong dependence among covariates or using the gradient under
mini-batch subsampling (see Section 3.7). The full dataset has n = 5,000 responses and the
mini-batch size is 7 = 128. We used the derivatives under the scaled Vecchia approximation
(i.e., £7(8)) to substitute those of £(6), indicating sufficient accuracy from the scaled Vecchia
approximation.

In the remainder of this section, we provide theoretical support for why the SR-gradient
can be used for variable selection. The following notations are used in the theoretical results



CA0, GUINNESS, GENTON, KATZFUSS

1000 X X X X X IxX X X X X 1000 X X X X XiX X X X X
o~ 3 - X 3
C J C J
@ 0.75- : 8 0.75- :
i} ! i} !
® : @ :
O X ol O 3
2050 ‘ 050 % 4 3 +
N % J N \ X
2 - = X LX X
£ X £ ¥ ¥ X R |
5 0.25- 5 0.25- ‘ »
Z : pd x X L X
X i ig i X X
¥ 1 & (B | 3
0.00 ¥ 3 ¥ 0.00 |
6 1 2 3 4 0 1 2 3 4 6 1 2 3 4 0 1 2 3 4
d, (Left: independent | Right: dependent) d, (Left: independent | Right: dependent)
(a) Normalized gradient without mini-batching (b) Normalized gradient with mini-batching

Figure 3: Relative magnitudes of the coefficients in the SR-gradient. The number of covariates d = 10,
among which the first five are true (i.e., with positive true SRs). For each di = 0, 1,2, 3,4, we assume that
only the first d; true covariates are selected and their SRs are correctly estimated. The SRs of unselected
covariates are zero. The coefficients in the gradient are normalized to [0,1]. The first five coefficients in
the SR-gradient are marked by colored crosses and the rest by grey dots. Only coeffcients corresponding
to unselected covariates are plotted to align with goal of variable selection. The red dashed line separates
scenarios with independent and dependent covariates. Notice that some colored crosses are covered by grey
dots and that the coefficients for unselected true covariates were typically bigger than those for fake covariate.

and their derivations:

ro the true relevance vector [r1g, 20, - - - , 'do]

do the number of true covariates (i.e., g > 0 if [ < dy r;9 = 0 otherwise)
dq an integer between 0 and dg, 0 < d; < dp < d

ry [Tlo,...,leo,O,...,O]T

(00,70), (01, 71) the true and an arbitrary values for (o, 7)

3, 30,2 covariance matrix and its values evaluated at (og, g, 79) and (01,11, 71)
> 30,3 correlation matrix and its values evaluated at (1,rp,0) and (1,r1,0)

In this section, the expectations are taken with respect to both {x;}? ; and {y;} ;.

Proposition 1 Assume that K(x;,x;) = exp(—q*(xi,x;)?) and that {xy}iz1. . ni-1...d
have i.i.d. mormal or uniform distributions. When evaluated at (o1,r1,71), E[22%] >

E[2£.

(97“[2
2

Proposition 1 suggests that under the squared exponential kernel, when an arbitrary number
of SRs are at their true values while the others at zero, the order of the SR-gradient
coefficients indicates the relevance order of the covariates. While the condition on ry in
Proposition 1 is somewhat restrictive, we conjecture that when the gradient is evaluated at
r no greater than ry coefficient-wise, the above conclusion still holds, which can be readily

shown if we assume E [5972] -FE [a‘z—é], evaluated at (o1,r,71), changes monotonically with
l la

each coefficient in r. In general, numerical examples in Sections 3.1, 3.7, and 4 suggest that
the conditions in Proposition 1 can be relaxed and the result still holds.

10
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Based on Proposition 1, two corollaries addressing the initialization of r and correlated
fake covariates, respectively, can be derived.

Corollary 2 Assume that K(x;,%;) = exp(—¢"(xi,x;)?) and that {xy}iz1, ni=1...d have
i.4.d. normal or uniform distributions. When evaluated at r — 0:

E[a‘zlﬁl] > E[(ﬁ—%] for 0 <1y <do and dy < Iy < d.
Corollary 3 Assume that K(x;,%;) = exp(—¢"(xi,x;)?) and that {xy}iz1.. ni=1...d have
i.1.d. normal distributions. Let Xq+1 be a new covariate constructed as p1x;, + p2X;, with
dy <ly <dyg<lp <d, po >0, and p} + p3 = 1. When evaluated at (o1,r1,71):

Blf41 > B

Noticing that ( = ¢ can be closely approximated by r — 0, Corollary 2 indicates that
SRs should be initialized to small magnitudes but big enough to avoid numerical singu-
larity (e.g., 1078), which is denoted by 0T in Algorithm 1. Corollary 3 suggests that the
order of the SR-gradient coefficients can distinguish fake covariates that are correlated with
true covariates. Theoretical support for the previous proposition becomes more challeng-
ing under general covariance kernels, due to the lack of the separability property and the
straight-forward derivative formula. Proposition 4 aims to reach the same conclusion for
general ARD kernels but uses a first-order approximation of 3.

Proposition 4 Assume that {xi}i=1,. ni=1,..4 have i.i.d. distributions and that {Tlo};lid1+1

are small enough s.1. 0 can be closely approzimated by the first-order Taylor expansion of
X oatry:

SR d oz 2

20 ~ 21 + Zli(h-‘rl W —ry TlO.

When evaluated at (o1,r1,71):

Blogs] > Bl for di <y <do and dy <1 < d.
1 2

The first-order approximation typically holds when r;g — 0,1 = dy + 1,...,dy while on

the other hand, the expectation of the derivative of rl2 evaluated at r; = 0 is intuitively

positively correlated with ry (i.e., F [%] /' 110)- The two aspects collectively support
o Ir=0

that the order of the gradient coefficients is indicative for the order of relevance levels of
the covariates under general ARD covariance kernels.

3.5 Quadratic constrained coordinate descent

We introduce our quadratic constrained coordinate descent (QCCD) algorithm in the con-
text of minimizing a general objective function h(0), whose gradient and (positive-definite)
negative FIM, denoted by g and H, respectively, can be computed. QCCD is described in
Algorithm 3 with the assumption that parameter constraints are given by their lower bounds
b, but broader constraints on 0 can be similarly accommodated. 8y denotes the initial pa-
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Algorithm 3: Quadratic constrained coordinate descent (QCCD)
Input: A(-),60,b
1: @+ 0y, a1
2: while Not Converged do
3: S + mini-batch subsampling, g + Vh(0 | S), H + E[V2h(0 | S)]
Occp < CCD(0,ag, H,b) — see Alg. 4 o
B+ argmaxge (o ;) Armijo(8) > ¢, Onpw < 0 + B(6cep — 0)
if stationarity is detected then
a<—af2
end if
9: 0 < Ongw
10: end while
11: return 6

rameter values. Intuitively, QCCD iterates between building a quadratic approximation at
the current 6,

iL(ONEw) = h(0) + gT(ONEW — 0) + %(HNEW — O)TH(ONEW — 0), (7)

and finding the minimum of fz(GNEW) subject to the constraints on @ using constrained
coordinate descent (CCD), described in Algorithm 4.

Algorithm 4: Constrained coordinate descent (CCD)

Input: 6,g, H,b

1: d+g—HO

2: while Not Converged do
3:  for iin 1:length(@) do
4 6[i] + max ((—d[i] — H[i, —i] - 0[—i])/H[i, 4], b[i])
5. end for
6
7

: end while
: return 6

The CCD algorithm cyclically considers each parameter of € in a constrained univariate
quadratic optimization, where the minimum is analytically available and can be equal to
the boundary value. The minimum returned by CCD is subsequently used in a line search
subject to the Armijo condition that compares the ratio:

(0 —6ccp) - g
h(@) — h((1 — 3)8 + BOccp)’

with a threshold ¢ to achieve ‘sufficient decrease’ of the objective function (i.e., to avoid un-
reasonably large steps) and Ongw is guaranteed to exist subject to mild regularity conditions
(Kressner, 2015). QCCD is similar to the cyclical coordinate descent algorithm (Friedman
et al., 2010) in terms of building a quadratic approximation and using coordinate descent
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Figure 4: Convergence of Fisher scoring and QCCD algorithms. y-axis is the relevance on the pseudo-log
scale. The true covariates, with relevance r; > 0, are color-coded with their true values marked by the
colored dashed lines. The fake covariates, with relevance r; = 0, are colored in grey.

but has two improvements, namely, the Armijo line search condition and the incorporation
of parameter constraints.

QCCD has the same theoretical convergence rate as Fisher scoring because both find the
minimum of the same quadratic approximation, but the former’s ability to reach boundary
values makes covariate deselection (i.e., 7; being optimized to zero) more straight-forward.
Figure 4 compares the performance of Fisher scoring and QCCD when d is relatively small
(i.e., d < 100). Covariates were independently generated at n = 10* locations and a bridge
penalty with A = 32 was used in the objective function, which will be further discussed in
Section 3.6. The relevance vector ¥ used for MM and NN was updated together with the
updates of 8. The parameter estimates from QCCD were closer to the truth than those from
Fisher scoring. Further, QCCD was able to deselect all fake covariates, achieving r; = 0
for all I > 5, while Fisher scoring was unable to deselect any covariate without setting
a truncation level. The ability to automatically deselect covariates becomes increasingly
important when addressing GP regressions with larger numbers of covariates.
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3.6 Bridge penalty and its extension

The desired properties of the penalty function for GP regression can be different from
those for linear regression. Yi et al. (2011) compared several penalties in GP regression
that include Lasso, SCAD, and bridge penalties, concluding that the bridge penalty has
overall the best performance. This agrees with our analysis that unlike linear regression,
GP regression automatically avoids improperly large magnitudes of r. Therefore, a penalty
function that becomes flat more quickly as the parameter magnitude increases is more
suitable for GP regression, leading to higher model sparsity and smaller estimation bias.
However, one issue with the bridge penalty is that its derivative is infinite at zero,
and so it is impossible to escape this local optimum for any parameter that reaches zero
during optimization. This is especially problematic for the mini-batching procedure to be
introduced later, where zero can be reached erroneously due to a “bad” batch. Hence, we
adopt an iterative adaptive bridge penalty that amounts to a combination of the classic
bridge penalty and the iterative adaptive technique in Ziel (2016) and Sun et al. (2010):

d
wA(8) =AY (e + 1), (8)
=1

where ¢ is the iteration number during optimization and Cf,z is the sum of the parameter
rl2 over the previous « iterations. In addition to allowing parameters to escape zero values,
this adaptive bridge penalty also has the advantage that bigger r; tends to have bigger
¢;;, hence weaker penalty and smaller bias. Notice that £ = 0 corresponds to the classic

bridge penalty used in Sections 3.1 and 3.5 and that when computing ﬂg, we ignore the
second-order information of the penalty function to guarantee the non-negative definiteness
of the FIM, which is equivalent to applying a linear approximation to wy(x).

In this paper, we fix v at 0.25 and select x based on how likely the relevance parameters
of the true covariates are to reach zero during optimization; see Section 3.9 for a more
detailed analysis.

3.7 Mini-batching for Vecchia approximation

Although the Vecchia approximation has reduced the complexity of model estimation to be
linear in n, we aim to further improve the computation efficiency of VGPR through mini-
batch subsampling that has created considerable success in stochastic gradient descent. In
this section, we propose a subsampling method specific to the Vecchia approximation that
reduces the complexity to be linear in the batch size 1 and leads to unbiased estimating
equations. Specifically, we propose to sample the summands of the scaled Vecchia log-
likelihood /¥ (8):

@)=Y logpe(uilye) 9)

1€SC{1,....,n}

with equal probability and without replacement. Here, S is the mini-batch index set of
size n and we use £*(0) and h}(0) to denote the counterparts of ¢*(0) and h} (@) under
mini-batch subsampling.
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This mini-batch subsampling can be applied to covariate selection and parameter esti-
mation through slight modifications to Algorithms 2 and 3, respectively, as indicated by
their blue underscored components. To avoid oscillation around the optimum, which is
a common issue for mini-batch subsampling, we apply the technique introduced in Chee
and Toulis (2018) to our QCCD algorithm for the detection of stationarity as indicated
in Lines 6 to 8 of Algorithm 3. Specifically, the detection depends on the running sum of
the inner product of successive stochastic gradients, and the learning rate « is halved upon
detection of convergence; refer to Algorithm 1 of Chee and Toulis (2018) for more details.

One advantage of this mini-batch subsampling based on the Vecchia approximation is
having unbiased gradient estimators:

BVE(6)) =V (E[E jlogpe<yi|yc<¢>>aies1> -V (Z} jlogpe<yi|yc(@-)>> - Zvir),
i=1 =1
(10)

which is generally not the case for other mini-batch subsampling methods used in GP
regression such as Chen et al. (2020). In (10), the expectation is taken with respect to
S C {1,...,n}. The unbiased property of the mini-batch subsampling is relative to ViF (9)
as opposed to V/(80); however, optimizing the Vecchia log-likelihood generally leads to the
correct values for 0:

Proposition 5 Assuming that y is a realization of a Gaussian process with zero mean
and a covariance structure parameterized by @ = 0y and that éf(e) 1s its Vecchia-type log-
likelihood, the true parameter value @ = 0y maximizes the expectation of éf(O) with respect
toy: 8y € argmazgE[(*(8)].

Corollary 6 Vﬁ(@) = 0 are unbiased estimating equations assuming that éf(e) is first-
order differentiable.

The proof of Proposition 5 is in the Appendix, based on which the proof of Corollary 6 is
straight-forward. Stein et al. (2004) showed that the Vecchia approximation of the restricted
log-likelihood leads to unbiased estimating equations; here, we provide a stronger result for
the Vecchia approximation of the log-likelihood.

We numerically compared our subsampling strategy to two other strategies in terms
of the bias and the variance of their gradient estimators. Comparison method I selects
7 responses from {(y;)}1~,; with equal probability and without replacement, and then the
scaled Vecchia approximation for the GP defined over {(y;)}ics is used for computing the
SR-gradient. Comparison method II is similar to what we proposed in (9), sampling the
summands of éf(B) but with probabilities proportional to i~*/¢ and without replacement,
which compensates the O(i~'/4) decrease of min;c ;) |%; — x| (e.g., Katzfuss and Schéfer,
2021) into consideration and balances the presences of short-range and long-range distances.
Figure 5 compares the three mini-batch subsampling methods using a GP defined over
n = 10* locations in R? whose true parameters 8 are (02,r1,72,72) = (1,1,0.5,0.05?) and
assumed known. The numbers of mini-batches averaged over are 5,000 if the batch size
is smaller than 500 and 500 otherwise. Our proposed sampling method had the smallest
empirical absolute bias and RMSE, highlighting its advantage as the SR-gradient estimator.
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Figure 5: Absolute bias (solid) and RMSE (dashed) of the SR-gradient estimators of the three mini-batch
subsampling methods. Red, green, and blue represent our proposed mini-batch subsampling of (9), compar-
ison method I and comparison method II, respectively.

Comparison method I, as a most intuitive mini-batch subsampling method, leads to a poor
gradient estimator because the responses not selected in S are ignored, losing significant
amount of information compared with the other two methods. While it is desirable to reduce
the dependence within each mini-batch, the smaller bias and variance of our proposed
method over Comparison method II suggests finding sampling probabilities that lead to
smaller variance is non-trivial and may lead to nonzero bias.

Figure 6 shows regularization paths in the same setting as in Figure 2, except using
mini-batch subsampling with a batch size of 128 and increasing  in the penalty function
from zero to two. The choice of batch size poses a trade-off between computation efficiency
and variability of the gradient estimator, which may depend on the training dataset and
computation capacity; in general, larger batches improve the convergence stability but
increase the computational cost. A discussion on the choice of & is provided in Section 3.9.
The estimated models indicated by the red dashed lines were almost the same as those in
Figure 2 while the computation time was reduced by more than 90%. When considering
the overall sparsity patterns in Figures 2 and 6, the combination of mini-batch subsampling
and the iterative adaptive bridge penalty leads to a stronger capacity of deselecting fake
covariates, because different mini-batches tend to select the same set of true covariates
but different sets of fake covariates, inducing bigger variance on the gradient estimators of
the fake covariates while ¢, in (8) is smaller for the fake covariates, indicating stronger
penalization.

3.8 Complexity analysis

In this section, we analyze the computation gains from using the Vecchia approximation,
the VGPR algorithm introduced in Algorithm 1, and the mini-batching technique from Sec-
tion 3.7. The Vecchia approximation reduces the complexity of computing the log-likelihood
and its gradient from O(n3) and O(n3d) to O(nm?3) and O(ndm?), respectively; refer to
Guinness (2021) for the gradient computation under the Vecchia approximation. Based
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Figure 6: Regularization path computed by VGPR with mini-batch subsampling, using independent or
dependent covariates. The relevance parameters of the true covariates are color-coded, and their true values
are marked by horizontal colored dashed lines. The fake covariates, whose true relevance parameters are
zero, are colored in grey. The vertical red dotted lines mark the optimal model indicated by the stopping
condition.

on the intermediate results from the gradient computation, the FIM of the Vecchia log-
likelihood needs only O(nd?m?) additional operations. The VGPR algorithm reduces the
number of covariates involved in optimization, reducing the d in aforementioned complex-
ities to |(], with |[¢| = dy < d. Finally, the mini-batching technique further reduces the
O(n) complexities to O(n), leading to O(im3), O(idym?), and O(nd3m?) complexities for
computing the objective function, its gradient, and FIM, respectively. The SR-gradient of
all d covariates is needed in Algorithm 2 to select k new covariates at the cost of O(ndm?),
but its computation frequency is negligible compared with the number of gradient compu-
tations needed by QCCD and it is typically a minor component in the overall computation
cost.

For very large n, it is also possible to reduce the cost of MM and NN by replacing them
by random ordering and the index-based-on-inverted-file (IVF) method (implemented in the
Faiss library of Johnson et al., 2017), respectively. The cost of NN could be further reduced
by computing the m nearest neighbors on-the-fly only for the responses in the mini-batch
S.

GP prediction also benefits significantly from the techniques introduced in Section 3.
The nearest neighbors of each test point can be computed much faster in dy dimensions
than in d dimensions, based on which posterior inference at each test point can be achieved
in O(m? + dym?) time using the scaled Vecchia approximation, assuming that the number
of selected covariates is O(dp).

3.9 Sensitivity to tuning parameters

The VGPR algorithm includes several tuning parameters that are considered fixed when
running the algorithm. We provide some guidance here. Larger values of the conditioning
set size m lead to more accurate approximation of the exact GP and we choose m = 100
based on Katzfuss et al. (2022) and for computational feasibility. The Armijo constant ¢ in
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Algorithm 3 heuristically prevents ‘overly large’ steps; we choose ¢ = 10™% as recommended
in Chapter 3 of Wright et al. (1999) and used in the GpGp R package Guinness (2021). The
learning rate parameter « in Algorithm 4 reduces oscillation around an optimum, hence
promoting convergence; we use the same initialization (i.e., « = 1) and scaling (i.e., by 1/2)
for o as in Chee and Toulis (2018), where this oscillation-reduction technique was proposed.

The number of new covariates selected each iteration (k) and the penalty parameters
% and v in (8) are unique to our proposed VGPR algorithm and iterative adaptive bridge
penalty, and hence they have not been discussed in the existing literature. Here, we pro-
vide some recommendations and a sensitivity analysis on them; see Appendix B for more
details. Larger k leads to higher optimization efficiency but also the risk of local optima; we
recommend a value between 3 and 5. Bigger k corresponds to weaker numerical singularity
at 1, = 0. We recommend s > 0 when mini-batch subsampling is applied and a large s
(e.g., 10 or 15) when the GP with ARD kernels is likely a misspecified model. Smaller ~y
causes higher difference in the penalty derivatives at small and large r;. Yi et al. (2011)
used v = 0.01, whereas we recommend a choice between 0.1 and 0.25 for a smoother objec-
tive function. Based on Appendix B, we conclude that the VGPR algorithm is overall not
sensitive to the choice of k, k, and ~.

4. Simulation Study
4.1 Simulation setup

We compared the VGPR algorithm proposed in Algorithm 1 with methods commonly used
in machine learning for variable selection or GP model estimation, namely Lasso regression
(Tibshirani, 1996), the sparse additive model (SAM; Ravikumar et al., 2009), regression
trees (Tree; Loh, 2011), penalized GP regression (PGPR Yi et al., 2011), kernel interpola-
tion for scalable structured Gaussian processes (KISS; Wilson and Nickisch, 2015), Vecchia
Fisher scoring (Fisher; Guinness, 2021), and GPs with forward selection (FWD). We used
the scaled Vecchia approximation in Fisher and FWD but the exact GP log-likelihood in
PGPR to respect the original algorithm of Yi et al. (2011). For ‘Tree’ and ‘Lasso’, the de-
fault setups from the ‘glmnet’ R package (Friedman et al., 2010) and the ‘sklearn’ Python
module (Pedregosa et al., 2011) were used, respectively. KISS generally has high scalability
in n but low scalability in d. Based on the GPyTorch Gardner et al. (2018) implemen-
tation, when d > 5, the kernel function needed to assume an additive structure to be
computationally feasible, for which ARD kernels are yet available, hence we only consider
KISS as a state-of-the-art competitor for prediction at unknown locations. We generated
d independent or dependent covariates at (n 4+ 5000) locations and simulated (n + 5000)
GP responses. 5,000 responses were set aside as the testing dataset used to evaluate the
four methods’ performances. We considered n € {500, 5,000, 25,000}, d € {100, 1,000}, and
independent versus dependent covariates, for a total of 12 simulation scenarios. Methods
were compared from three aspects, namely posterior prediction as measured by the RMSE
based on the test dataset, misclassification ratios as measured by false positive and false
negative ratios, and computation times.

‘PGPR’ and ‘VGPR’ use penalty functions, for which we chose the classic bridge penalty
and the iterative adaptive bridge penalty as in Section 3.7, respectively, to compute their
regularization paths. Methods involving solution paths, including ‘VGPR’, needed an OOS
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score in their stopping conditions, for which a quarter or 5,000, whichever is smaller, of
the training dataset was set aside and only used in computing the OOS RMSE. Similar
to Sections 3.2 and 3.7, all stopping conditions were defined as producing less than 1%
improvement of OOS RMSE after the selection of any new covariate. The OOS RMSE was
also used to choose the best model in each iteration of forward selection. Fisher scoring
does not require a stopping condition based on an OOS score and hence used the whole
training dataset for parameter estimation.

Because Fisher scoring and the conjugate gradient used in Yi et al. (2011) are uncon-
strained optimization algorithms that rely on variable transformations, their parameters,
including r, cannot reach exact zeros. We set a cut-off threshold of 1077, the same as in
Yi et al. (2011), below which the corresponding covariate was viewed as deselected. The
initial values for o2, {n}fzo, and 72, when needed, were 0.25, 0.1, and 10™%, respectively,
while for PGPR, ten random initial values, as recommended in Yi et al. (2011), were used
for the optimization at each \. The maximum numbers of iterations were 100 for PGPR,
Fisher, and FWD, while 200 for VGPR, as the latter used mini-batch subsampling with
1 = 128 <« n. The computation times were measured on an Intel Xeon E5-2680 v4 CPU
using 56 cores and capped at a 10-hour limit for each GP replicate.

4.2 Simulation results

The comparison results are shown in Figure 7. The RMSEs of ‘Fisher’, ‘FWD’, ‘PGPR’, and
‘VGPR’, when computationally feasible, were similar for d = 100 but diverged for d = 1,000,
indicating convergence to local optima when the number of optimization parameters was
high. Specifically, both ‘PGPR’ and ‘Fisher’ involve O(d) parameters in optimization, while
‘FWD’ and ‘VGPR’ sequentially increase the number of parameters based on warm starts,
which achieved significantly better result for reaching the global optimum. While ‘FWD’
provided slightly more accurate predictions than ‘VGPR’ for n = 500, it quickly became
computationally infeasible as n or d increased. In contrast, ‘VGPR’ had a better trade-
off between data efficiency and computation scalability. ‘Lasso’, ‘SAM’, and ‘Tree’ were
less suitable for the simulated multivariate normal datasets due to model misspecification.
While ‘KISS’ is a GP-based model, its idea of finding a (large) common set of pseudo-inputs
for all locations became impractical when d is moderately large. In terms of ‘FPos’, which
measures the proportion of fake covariates among the selected, ‘VGPR’ outperformed all
other methods, achieving zero ‘FPos’ ratios when n > 5,000. This highlights the capabil-
ity of ‘VGPR’ for deselecting fake covariates, hence the advantages of using QCCD over
conjugate gradient and Fisher scoring for simultaneous variable selection and parameter
estimation. The false negative ratios were almost constantly zero for all methods, and
are hence not shown. Although slightly slower than the compared machine-learning mod-
els, ‘VGPR’ tremendously outperformed the other GP-based methods, becoming the only
feasible GP-based method when n = 25,000 and d = 1,000 under the 10-hour limit.

5. Application Study

We performed a comparison on several real datasets and data produced by a physical model.
Specifically, we compared the methods from Section 4 that are computationally feasible at
n = 25,000 and d = 1,000, namely ‘Lasso’, ‘Tree’, ‘VGPR’, and ‘SAM’. For these examples,
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Figure 7: Comparison of eight methods for variable selection and/or GP regression, in terms of RMSE, false
positive rates (FPos), and computation time in minutes. The results were averaged over five replicates. When
d = 100, ‘Fisher’, ‘FWD’, ‘PGPR’, and ‘VGPR’ had close RMSE scores when available. The computation
times of ‘Lasso’, ‘SAM’, and ‘Tree’ are similar, all faster than ‘VGPR’.

our assumed model, GP with ARD covariance kernels, is likely to be misspecified and
furthermore, true covariates may not exist in the given covariate pool, and so we used the
iterative adaptive bridge penalty with « bigger than those in Sections 3 and 4 to select the
most predictive covariates.

The first dataset was generated from the Piston function (e.g., Surjanovic and Bingham,
2013), which is a (deterministic) physical model with dy = 7 true covariates; a total of
d = 103 covariates were simulated at n = 10% locations. While the underlying model is
not a GP, the true covariates were included in the covariate pool, and we chose Kk = 5.
The second dataset was the “relative location of CT slices on axial axis” (Slice) from the
UCI Machine Learning Repository (Dua and Graff, 2017) that has n = 53,500 images
and d = 386 features. The images belong to 74 individuals, among which a quarter were
selected as the testing dataset. The third dataset was the “physicochemical properties of
protein tertiary structure” (CASP) dataset also from the UCI Repository with n = 45,730
responses and d = 9 features. A fourth dataset was the temperature (Temp) data used
in Garnett et al. (2013) that contains 7,117 training samples and 3,558 testing samples,
each with d = 106 features. For the last three datasets, we set kK = 15 to compensate for
model misspecification and the potential lack of true covariates, and supplemented with
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(103 — d) artificial covariates such that a total of 103 covariates were used to compare
the three methods’ capability of variable selection. Similar to previous experiments, we
generated either uncorrelated or correlated covariates but here, the latter was constructed
as random linear combinations of original covariates plus independent Gaussian noise. Both
the responses y and the covariates x; were standardized to have zero mean and unit variance.

Although the set of true covariates was unknown, misclassification ratios, specifically
the false positive ratio, could still be estimated based on the number of included artificial
covariates. On the other hand, the number of selected covariates is also an important indica-
tor for the quality of variable selection that directly relates to over-fitting and computation
efficiency. Table 1 summarizes the three metrics of the four methods under the previously
mentioned datasets. The ‘Piston’ and the ‘CASP’ datasets had too few original covariates

Dataset Method | RMSE | nSel | FPos || Dataset | Method | RMSE | nSel | FPos
Piston-I | VGPR 0.00 7 0% || CASP-I | VGPR 0.78 3 0%
Lasso 0.17 7 0% Lasso 0.85 | 177 | 96%
SAM NA | NA NA SAM 0.84 6 0%
Tree 0.92 6 17% Tree 0.92 6| 17%
Piston-D | VGPR 0.00 7 0% || CASP-D | VGPR 0.75 10 | 60%
Lasso 0.17 7 0% Lasso 0.85 | 221 | 96%
SAM NA | NA NA SAM 0.84 6 0%
Tree 0.71 | 147 | 95% Tree 0.92 6| 33%
Slice VGPR 0.38 64 Temp VGPR 0.29 6
Lasso 0.44 | 359 Lasso 0.28 84
SAM 0.50 | 118 SAM 0.29 40
Tree 0.44 | 334 Tree 0.32 26
Slice-1 VGPR 0.32 49 | 18% || Temp-I VGPR 0.29 8 0%
Lasso 044 | 792 | 59% Lasso 0.29 | 122 | 79%
SAM 0.50 | 118 0% SAM 0.29 36 8%
Tree 051 | 294 | 31% Tree 0.40 47 | 49%
Slice-D VGPR 0.31 50 | 12% || Temp-D | VGPR 0.29 9 0%
Lasso 0.43 | 696 | 54% Lasso 0.29 92 | 70%
SAM 0.49 | 142 | 20% SAM 0.29 36 | 22%
Tree 0.41 | 908 | 64% Tree 0.39 46 | 46%

Table 1: Performance comparison of Lasso linear regression (Lasso), sparse additive model (SAM), regression
tree (Tree), and VGPR. ‘Slice’, ‘Piston’, ‘CASP’, and ‘Temp’ are dataset names. ‘I’ and ‘D’ indicates being
supplemented by uncorrelated and correlated artificial covariates, respectively. ‘RMSE’ measures the RMSE
based on the testing dataset. ‘nSelect’ is the number of selected covariates. ‘FPos’ is short for false positive
ratio.

to be used for comparing variable selection, and so corresponding results are not listed. The
‘SAM’ method exceeded our memory capacity (128 GB) when n = 10° using the ‘Piston’
dataset, and so the results are not available. The optimization setups for ‘VGPR’ were the
same as in Section 4, except for the change of x and that k was increased from 3 to 5 to
further improve computation efficiency.
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‘VGPR’ outperformed the other three methods in almost all three aspects (same as in
Section 4), especially in terms of the number of selected covariates and the false positive
ratios, highlighting the strength of using the iterative adaptive bridge penalty and QCCD
for covariate deselection. For the ‘Piston’ dataset, our GP properly captured its non-linear
and continuous features, hence predicting with significantly higher accuracy. ‘VGPR’ had
a relatively high false positive ratio when the ‘CASP-D’ dataset was used but considering
that there were only nine original covariates, the ‘FPos’ was already high with few fake
covariates selected. Besides, the fake covariates in this case were correlated with the original
covariates, potentially improving posterior inference as reflected by the lower RMSE of
‘VGPR’. ‘Lasso’ and ‘SAM’ had comparable RMSE to ‘VGPR’ in modeling the ‘Temp’
dataset but its number of selected covariates and ‘FPos’ were significantly higher. The
complexity of ‘VGPR’ is tremendously reduced by the Vecchia approximation, gradient-
based covariate selection, and mini-batch subsampling, to achieve a computation time of
less than forty minutes for a dataset with n = 105 and d = 103, for which ‘Lasso’ and ‘Tree’
used sixteen and eight minutes, respectively. Despite being slower, ‘VGPR’ is arguably as
scalable as the other two methods (and much more so than existing GP regression methods)
based on the complexity analysis in Section 3.8.

6. Conclusions

We provide a highly scalable method, coined VGPR, for variable selection and model esti-
mation in GP regression, suitable for datasets with large numbers of responses n and covari-
ates d. ARD covariance kernels naturally combine variable selection and model estimation,
while a (scaled) Vecchia approximation provides fast and highly parallel computation of
the loglikelihood, its gradient and its FIM. We introduced a forward-backward-selection
algorithm that iteratively adds predictive covariates to a candidate set { based on the gra-
dient and removes irrelevant covariates from the candidate set using an efficient QCCD
algorithm. We provided theoretical support for the gradient-based covariate-candidate se-
lection. To further speed up our method for even larger n, we introduced a mini-batch
subsampling method specific to Vecchia-type approximations that has unbiased gradient
estimators whose expectations are shown to be zero at the true parameter values. The
resulting procedure requires only O(7|¢|? 4+ fd) time, where 7 is the mini-batch size, and
hence the computational complexity is essentially independent of n. To compensate for the
sampling variance of the stochastic gradient estimators under mini-batch subsampling, we
also introduced an iterative adaptive bridge penalty.

In our simulation study, VGPR was substantially faster and selected fewer (almost zero)
false covariates than other state-of-the-art GP regression methods that can be adapted for
variable selection. When using real datasets, VGPR was robust enough to select only a
small number of the most predictive covariates, maintaining the lowest misclassification
ratios and the best predictive power among standard methods for regression with variable
selection. VGPR is able to handle n = 10% responses with d = 10 features within 40
minutes on a standard scientific workstation. Due to its flexibility and accurate results, we
consider VGPR to be a suitable candidate for a default benchmark method for nonlinear
regression and variable selection on large datasets.
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One possible extension of the results in this paper is variable selection and model esti-
mation for generalized GP models, such as logistic or probit GPs for classification problems.
For example, Cao et al. (2022) derived the marginal and posterior predictive probabilities
of the probit GP. A second idea is to examine if the gradient of the objective function or
similarly simple criteria can be used to select new covariates for other regression models,
hence achieving a forward selection procedure that tremendously benefits the optimization.
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A. Implementation of FIC, FITC, and PIC

FIC selects the first m locations in MM as the inducing inputs. FITC selects the same locations as the initial
values of the m inducing inputs, which is then optimized using the ‘GPflow’ Python package, whose result is
used as the final inducing inputs of FITC. PIC selects the first m/2 locations in MM as inducing inputs and
divides the responses into disjoint subsets of size m/2. PIC considers the subsets of responses conditionally
independent given the inducing inputs as opposed to that responses are conditionally independent, which is
assumed by FIC and FITC. In other words, PIC considers also local correlation.

Among the five GP approximations, namely, FIC, FITC, PIC, Vecchia and scaled Vecchia, FIC typically
has the lowest cost per likelihood estimation, requiring only O(nm?) operations because the conditioning
sets remain the same for all responses. PIC has higher computation cost than FIC but its complexity stays
at the same level. Given the inducing inputs, FITC is as efficient as FIC but the inducing inputs of FITC
require an optimization with O(md) parameters, which could become the dominant complexity. Vecchia
and scaled Vecchia approximations have a complexity of O(nm?) for likelihood estimation, which although
higher than FIC and PIC, is still linear with n and has a highly parallel implementation. Furthermore, the
grouping technique introduced in Guinness (2018) can reduce the previous complexity to between O(nm?)
and O(nm?) and is already implemented in the ‘GpGp’ R package.

B. Sensitivity Analysis
We generated d = 100 dependent covariates at 10 locations, half of which were used for training and the
other half were used to compute the RMSE score. The sensitivity was assessed in terms of RMSE score

and number of fake covariates selected. From Figure 8, we conclude that our proposed VGPR algorithm is
largely robust across different values of k, v, and x within the recommended intervals.

C. Proofs

Proof [Partial proof of Proposition 1] Ignoring the constant term in ¢:

1 1
(=—5y Sy - 5 log|Z|

2
ol _ _ _
57 =y ISy — (7)),
T (o,r,7)=(01,r1,71)
where ;1 = g—% = —O’%El ® Dy, D; is an n X n matrix whose (i,7)-th coefficient is
" (o, m)=(01,r1,m1)

(a1 — xﬂ)z, and © is the Hadamard product. Because {zi}i=1,...,n,i=1,....a have i.i.d. distributions and
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Figure 8: Sensitivity of the VGPR algorithm with respect to the number of new covariates selected at each
iteration (k), and the penalty parameters (v, <) defined in (8).

T1,1 = Ti,1, We have:
Eltr(27' S, 1)) = Eler(Z7 (-1 0 Dyy)] = (37 (—01 %1 © Dy,))] = Eltr(S17 ' 2,,1))-
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Therefore, we only need to compare E[y ' 272, 127 y] and Ely ' 2712, 127 y]. First consider {x;}1-,
as fixed and take expectation with respect to y:

Eyly 272,28 y] = tr(B7 120 2 0).
Yo can be also written as:

d
S0 =031 Oexp | — Z (rio — r)Dy | + 701, = 0321 @ exp(—77,0Dy + C) + 75 L,
I=di+1

where C = =3, 1 aoni rD;. Hence, we can re-write Ey[y' 27337 y]:
Byly B0 S0aS ] = (B0 (<0751 0 DO (0351 © exp(—17,0Dy, + C) + 71))
= tr (27! (~07%1 © DS (0881 © exp(—rf,0D, + O))) +cr,

where ¢, = 78tr(E7 ' (—013; ©@ D;)X7') and Fx[c,] remains the same for [ = I; and | = l» because

{zi1}i=1,...,n,i=1,....,a have i.i.d. distributions. We can also remove the o2 and o? from the equation above

with ¢, = aﬁa%:

Eyly 81 S0y = eotr (2721 0 D)1 (51 © exp(—rf,o Dy, +C))) + er. (11)
Since X7 (=21 @ D)X and ;1 6 exp(—r7,oDi; + C) are symmetric, we have:
Eyly S7'S,57 Y] = co(vec (2;1(—21 ® Dl)z;l) vec (21 ® exp(—r7, Dy, + C))> Yo
= cg<(21_1 ® Efl)vec(—il ® D)), vec (il ® exp(—rlQlODl1 + C))) +cr
= (7' ® 23171)diag(vec(fh))vec(—Dl),diag(vec(i]l))vec(exp(—r?lODl1 + QC))) + ¢,

where (,) is the Euclidean inner product, ® is the Kronecker product, and vec(-) is the vectorization of a
matrix that stacks the columns of a matrix on top of one another. Use M to denote diag(vec(21))(Z7' @
> )diag(vec(31)), which is a positive definite matrix:

Eyly £ 20,151 "y] = ¢o(Mvee(=Du), vee(exp(—riyoDi, + C))) + c-.

Now consider the expectation with respect to X and notice that M, D;,, and C are mutually independent.
Assuming [ =1y or [ = l2:

Ex[(Mvec(—Dy), vec(exp(—r7, Dy, + C)))] = tr (Ex[vec(—Dl)vec(exp(—riDll + C))T]EX[M]) (12)
To show (12) is bigger when | = I; than when [ = [3, it remains to show that:
tr (Covx [vec(—Dy, ), vec (exp(—ri, Dy, + C))] Ex[M]) > 0.

It suffices to show that Covx[vec(—Dy, ), vec(exp(—r7, Dy, + C))] is positive semi-definite and has a rank
greater than zero because the trace of the multiplication between one positive definite matrix and one non-
zero positive semi-definite matrix is positive. It is obvious that Covx [vec(—Dy, ), vec(exp(—r7, Dy, + C))]
has a rank greater than zero. Its coefficients have three types of values:

+ Ciy.2)] = Covx[—d;}

i1,J

Covx[—dl-1

2 4l
1,5 17eXp(_Tlldi;,jQ)]EX[eXp(Cizyjz)]
0 i1 =1 oriz = j2 or |{i1,i2, 1,52} = 4
={ a i1 # j1 and {i1, j1} = {i2, j2} ;
b i1 # j1 and 42 # j2 and [{i1, 42,751,752} = 3

2 31
17eXp(_Tlldi27]'2

where dﬁ}j and ¢; ; denote the (4, j)-th coefficients of D;, and C, respectively, and | - | denotes the cardinality

of a set. First, we can take out Ex[exp(ci,,j,)] and have the following:

Covx[vec(fDll),vec(exp(frlel1 +0))] = Covx[vec(fDll),vec(exp(frlell))} X ¢,
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where ¢ = Ex[exp(¢i,,j, )] for ia # j2. Second, notice that the structures of
Covx [vec(—Dy, ), vec(exp(—r7, Dy, ))] and Covx [vec(Dy, ), vec(Dy, )]

are the same, except for that the latter has different values for a and b, denoted by a and 5, respec-
tively. Since Covx[vec(Dy, ), vec(Dy,)] is positive semi-definite and a and @ are positive, to show that

Covx [vec(—Dy, ), vec(exp(—r7, Dy, ))] is also positive semi-definite, it is sufficient to show that 0 < 2 < 2.
é = COV[(Xl — X2)27 (Xl - X3)2] (13)
a var[(X1 — X2)?] ’
b_ cov[—(X1 — X2)?, exp(—r? (X1 — X3)?)] (14)
a  cov[— (X1 — X2)2,exp(—r2(X1 — X2)?)|’
Without loss of generality, we can assume X1, Xz, X3 Se U(—%, %) or X1, X2, X3 ESe N(0,1), under which
g < g can be shown numerically as in Figure 9.
0.125 0.2496-
©0.100 o
2 = 0.2402-
0.075
0.2488-
0.050
0 25 50 75 100
rsq rsq

(a) (b)

Figure 9: The ratio (14) (solid black) and the threshold (13) (dashed red) under (a) uniform distribution
and (b) normal distribution for X;.

With the accurately computed relationship between (13) and (14), we conclude the proof under the
assumption that {x;}i=1,...,n,1=1,...,¢ have i.i.d. uniform or normal distributions. For other distributions,
similar numerical procedure can be used to draw the conclusion. |

Proof [Proof of Corollary 2] When r — 0, X — 1,x,. We can substitute;h in the proof of Proposition 1
by a non-singular covariance matrix arbitrarily close to 1,,x», denoted by 3, substitute di by 0, and hence

d
S~ ogE1 Oexp | — Z (rio —ri)Dy | + 75 1.
I=dy+1
The rest of the proof should remain the same. |

Proof [Proof of Corollary 3| Based on (12),

or?

or?
Ll(or,m)=(o1,r1,71) da+l

o e { o ]
(o,r,7)=(01,r1,71)
= ¢o Ex[(Mvec(—Dy, ), vec(exp(—r?1 Dy, + C)))] — co Ex[(Mvec(—Dg41), vec(exp(—r?1 D, +Q)))]
Because {Zii}i=1,...,n,1=1,...,d have i.i.d. normal distributions, Ex[vec(—Dg+1)] = Ex[vec(—Dy, )],

= ¢copatr (Covx[vec(fDll),Vec(exp(fr?lDl1 + C))|Ex[M]) > 0.
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Proof [Proof of Proposition 4] From the proof of Proposition 1, we know that

ot

2
Tll

ol
rl22

E - B

(o,r,7)=(01,r1,71)

= Ex[Byly 275,137y - Ex[Eyly ' =7 S,.37 ]

(o,r,7)=(01,r1,71)

Based on (11),
vly 21 a3y - Byly B S50 Y]

= cotr ~3$, 60D,y 20) —eotr (2;1(721 © D12)2f120>

Dll Dlz))zilio)

E 1 El @ Dl1 —Dlz))Efl 21 — Z T‘lgofll @Dl" 5

o

onF = -3, oD, Noticing that Ex[D;; — Dy,] is a zero matrix, that {Dl}?:l

(o,r,7)=(1,r1,0)
are mutually independent, and that D;;, and D,, are independent from 33;, the expectation of the above
equation with respect to X is equal to:

o Ex [tr (2;1(—21 ® (Dy, — D)= (—r?mi:l o Dll))]

where ¥; 1 =

_ . T
= coriho Bx [tr ((2;1 @ 27 Yvee(E1 @ (D, — Dy, ))vec (21 o} Dll) )}
2 —1 —1 = ~
= CoTiy,tr (Ex[El ® X7 |Covx [Vec(Zl ® (D, — Dy,)), vec (21 ® Dll)D

= cor?wtr (Ex[El_l ® Efl]Covx [VGC(E1 ® Dll),vec(fh ® Dll)]) >0,

because Fx[E7' ® X7 is positive-definite and Covx [vec(il ®Dy,), vec(Zh @Dzl)] is positive semi-
definite with a rank greater than zero. |

Proof [Proof of Proposition 5| Here, we take expectations only with respect to y and consider {x;}i=, as
fixed. Using the non-negativeness of the KL divergence, we can show that for a generic random vector w,
whose distribution is parameterized by 6o:

p(w; 6o)

Ellog p(w; 60)] — Ellog p(w; 8)] = /log o(w: 0)

= Ellogp(w;00)] > E[log p(w; 8)],

with which Proposition 5 can be thus proved:

p(w;0p)dw > 0

Ey[(7(6)] = Ey[logpp(y)] = E [10nge Yilyew)] = Zlogpo Wilyew)]

i=1 i=1

n
=" By [Buntye Mg po(wilyen)]
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where Ey, |y . [logpe(yilyec))] achieves maximum at @ = 6. Therefore, Ey [75(y)] achieves maximum at
0 =20,. |
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